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1 Introduction

Forecasting consumer price inflation accurately in the near and medium term has large

implications for monetary policy and other policy choices as well as business decisions in

the wider economy. In particular during periods of changing momentum in inflation—

such as the ongoing rise in inflation above inflation targets in many advanced economies

in the aftermath of the Covid-19 shock—inflation forecasts move to the forefront of the

policy debate. Accurate inflation forecasts are crucial for central banks for the design

of appropriate and timely policy responses and for communicating the path at which

inflation is expected to return to target. However, forecast performance can vary with

the state of the economy (Odendahl et al., 2022). Forecast mistakes can be large around

turning points or periods of high inflation since the time series process of inflation and its

relationship with macroeconomic predictors can become unstable. During such periods,

drawing information from disaggregated price dynamics across different sectors might be

particularly useful since this may help to detect broad-based increases across items and

turning points early on. At the same time, non-linear and non-parameteric models may

be well suited to deal with large changes in both the predictors and the macroeconomic

variables of interest.

In this paper, we explore the forecasting gains for aggregate inflation measures from

this angle: we use a unique large set of disaggregated item index series comprising the con-

sumer price index (CPI) and a range of forecasting approaches, including novel machine

learning tools, to forecast aggregate inflation.

In particular, we forecast monthly CPI headline, core, and service inflation in the

United Kingdom at horizons of 1-12 months ahead. As predictors we use a large set

monthly CPI items and, for comparison, a set of standard macroeconomic indicators. We

evaluate a wide range of forecasting methods that exploit this large information set in dif-

ferent ways: dimensionality reduction techniques (Principal Component Analysis (PCA),

Partial Least Squares (PLS)), shrinkage methods (Ridge, Lasso and Elastic Net regres-

sions), as well as non-linear machine learning tools (Support Vector Machines (SVM),

Artificial Neural Networks (ANN), Random Forests). We consider the period 2002m1-

2021m11, evaluating the models using rolling window pseudo out-of-sample forecasts

against an autoregressive benchmark. The original sample of CPI items is unbalanced,

with items entering and dropping from the sample in accordance with their presence in

a representative household’s consumption basket. We train our models and run forecasts

over rolling sample periods of 8 years, which assures balanced panels of items, with on av-

erage more than 500 items entering the models for a given forecast, thereby also tracking

the changing composition of consumption.

The contribution of the paper is three-fold. First, we assess the forecasting gains from

considering disaggregated item level information. Item-level prices (e.g. “cereal bar”,
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“light bulb”, “cinema admission”) matter for aggregate inflation since they directly relate

to the aggregate consumer price index. The ONS constructs aggregate CPI inflation from

the item indices, that are themselves aggregations of price quotes collected in shops and

centrally collected prices. The dynamics and inter-dependencies of disaggregated price

items are complex and the distributional moments of item indices do not necessarily

translate linearly to the aggregate level. As such, prices of different items or sectors

can behave asynchronously, the frequency and dispersion of price adjustments can vary

across items and over time, and the characteristics of certain groups of items can be over-

represented in the aggregate (Chu et al., 2018; Petrella et al., 2019; Stock and Watson,

2019). This suggests that by incorporating item indices directly into a flexible model the

forecaster is able to exploit a rich set of information (Hendry and Hubrich, 2011). The

use of disaggregated information can also help to communicate adjustments to forecasts

based on dynamics observed in different sectors.

Second, we run a horse race between a wide range of forecasting models that represent

different approaches to tackle the large dimension and high degree of disaggregation of our

forecasting setup. We compare well-established linear approaches, such as principal com-

ponent analysis and shrinkage methods, with machine learning tools that are potentially

stronger in detecting turning points and complex dynamics in the item data due to their

flexibility to learn unknown functional forms. In order to assess potential non-linearities

in forecasting performance, we evaluate forecasts over sub-periods for which the aggregate

inflation measure to be forecast displayed certain characteristics, such as rising, falling,

high or low inflation.

Third, we provide a model-agnostic and flexible approach to address the “black box

critique” of machine learning models that compares the signals from a diverse set of

models in a uniform manner. We measure the contribution of individual items to forecasts

using Shapley values (Strumbelj and Kononenko, 2010; Lundberg and Lee, 2017), and re-

aggregate those into contributions from groups of items according to interpretable CPI

categories.

Our findings are as follows. First, over the entire sample period, it is hard to sig-

nificantly beat the AR benchmark. Only the Ridge regression using disaggregated item

series achieves a significant and substantial improvement at the 6-month horizon for head-

line inflation, while LASSO slightly improves the core inflation forecast compared to the

benchmark at the 3-month horizon. Second, the picture changes when evaluating the

forecasts over sub-periods during which aggregate inflation is rising, falling, high or low,

and a wide range of significant improvements against the benchmark is observed. This

indicates that it is important to consider non-linearities over time when forecasting UK

inflation. Exploiting a large set of predictors substantially helps to forecast inflation dur-

ing turning points when inflation dynamics are changing or inflation outturns fall into

tails. Third, there is not one single model that performs best across sub-periods and
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horizons, and so it is advisable to consider a wide range of models. When inflation is

rising or falling, shrinkage methods perform best at horizons of 6-12 months when com-

bined with CPI items, whereas machine learning methods tend to be stronger when also

fed with macroeconomic indicators and for shorter horizons of 1-3 months when inflation

is rising. PCA tends to outperform the benchmark at different horizons during periods

when inflation is high, low, or falling. Finally, for the current environment of rising and

high inflation, the results over sub-periods imply that our approach can be particularly

useful for forecasting headline and core CPI inflation with shrinkage or machine learning

methods. Service inflation, on the other hand, can be difficult to forecast in the current

environment given that our approach typically yields forecast gains when service inflation

is falling, low or stable. However, useful signals may still be derived for turning points

towards falling inflation levels.

We look at the Ridge regression and Random Forest to analyse model interpretability.

This reveals intriguing model differences. The Ridge allocates mostly stable importances

to different sub-groups across horizons and targets, as measured by group-aggregated

Shapley value shares. The Random Forest, by contrast, shows variance across both di-

mensions. This is due to the Forest being the more flexible higher-variance model poten-

tially returning a richer information set. Both models are also seen to give comparatively

more weight, relative to the share of the corresponding inputs, to item sub-groups which

are known to be more volatile, like energy or food & beverages. While we do not find a

general association between model performance and sub-group importance, this analysis

can offer a starting point into interpreting idiosyncratic drivers of predictions.

Our analysis relates to various strands of the forecasting literature. A vast literature

focuses on forecasting inflation using a wide range of approaches such as Philips curve-

based models (Stock and Watson, 1999, 2008), univariate unobserved component models

(Stock and Watson, 2007, 2016), aggregation of forecasts of sub-components (Hubrich,

2005), Bayesian VARs (Koop, 2013; Domit et al., 2019), dimensionality reduction (Kim

and Swanson, 2018) and medium-sized DSGE models (Carriero et al., 2019). With re-

gard to machine learning tools and non-parametric approaches, earlier studies find that

forecasts of US inflation with neural networks outperform autoregressive or random walk

benchmarks at different horizons (Chen et al., 2001; McAdam and McNelis, 2005; Naka-

mura, 2005; Almosova and Andresen, 2019). Closer to our approach, Garcia et al. (2017)

and Medeiros et al. (2019) forecast Brazilian and US CPI inflation, respectively, using

large sets of macroeconomic predictors with various methods, where for the US the Ran-

dom Forest performs best. Clark et al. (2022) find that a non-parametric specification of

the conditional mean and innovations in US inflation using Gaussian process regression

and Dirichlet process mixture achieves gains for point and density forecasts, particularly

during the volatile period of the Covid-19 pandemic, and in predicting left-tail risks. In

a similar vein, Hauzenberger et al. (2022) provide evidence that non-linear dimension re-
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duction techniques with shrinkage priors improve US inflation forecasts in real time, and

that non-linear models are particularly useful during recessionary episodes.

Our analysis also relates to a rather small set of studies that have used disaggregated

data to forecast aggregate series. Hernández-Murillo and Owyang (2006) and Owyang

et al. (2015) use US state-level data to forecast national-level GDP while accounting for

spatial interactions between the states, finding forecast gains relative to aggregate predic-

tors. Hendry and Hubrich (2011) show that adding disaggregated sector-level information

into forecast models improves forecast accuracy for aggregate US inflation. Aparicio and

Bertolotto (2020) use combinations of high-frequency online price item series to forecast

CPI one to three months ahead in ten advanced economies; their forecasts outperform

benchmark models as well as surveys of forecasters by anticipating changes in official

inflation rates. Most closely related to our approach, Ibarra (2012) uses a factor model

based on 243 CPI item series and 54 macroeconomic series to forecast aggregate CPI in

Mexico, reaching a forecasting performance comparable to forecasts from expert surveys.

Our analysis for the UK includes a larger set of CPI item series and a wider range of

forecasting approaches to extract information from the data.

The remainder of the paper is organized as follows. Section 2 describes the data used

in the forecasting exercise and introduces the CPI item series data set. Section 3 describes

the forecasting set-up and gives a brief model overview. Section 4 presents the forecast

results for the entire sample period and over sub-periods during which inflation displayed

certain characteristics. Section 5 addresses the black-box critique to our high-dimensional

forecasting setting through Shapley value-based inference. Section 6 concludes.

2 Data

We use the headline CPI index from the UK Office for National Statistics (ONS), trans-

formed to year-on-year inflation rates, as the main target variable in our forecasting ex-

ercise. Additionally, we consider CPI core inflation that corresponds to the CPI headline

index excluding the generally more volatile food and energy components, as well as CPI

core service inflation based on CPI indices of twelve service categories, excluding goods

and more seasonally volatile services.1 These inflation measures represent the less volatile

component of consumer prices, and are typically considered to be more closely linked to

underlying and domestically generated price pressures.

Our main interest lies in exploring the predictive gain from using a large set of CPI

disaggregated item series published by the ONS, which we describe in more detail below,

to forecast aggregate inflation. Additionally, we explore forecast gain from a set of 46

1The twelve services categories are household, health, miscellaneous, financial, accommodation, cater-
ing, recreational, communication, other housing, other transport, other services for personal transport
equipment. Prices of airfares, package holiday, and education and rents since prices in these sectors tend
to be volatile and have strong seasonal pattern.
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macroeconomic series, selected to represent broad categories of UK economic and finan-

cial activity: unemployment and hours, real measures for retail trade, manufacturing and

sales, international trade, labor costs, house price indexes, interest rates, stock market

indicators, exchange rates, and import prices. Several studies have shown the predic-

tive power of such macroeconomic data sets in forecasting inflation (Stock and Watson,

2002a,b). This data also has the advantage of being readily available over longer sample

periods and being continuously monitored by central banks and professional economists.

Prior to estimation, the series are transformed to year-on-year log differences to achieve

stationarity and are standardised (see Table B1 in Appendix B).2

2.1 CPI item series

The CPI measures the price of consumption goods according to the household expendi-

ture on a representative basket of goods relative to a base date. Changes in CPI, i.e.

price inflation, are a guide for changes in households’ living costs. While the CPI and

price inflation are both macroeconomic concepts, they are constructed from the prices of

single items over time, i.e. prices observed through local collection in physical shops or

online or central collection in case of national prices. That is, item prices connect the

disaggregated indices and aggregate inflation, which we exploit in this paper. The UK

CPI is constructed by the ONS from an evolving set of representative monthly item in-

dices, weighted according to household expenditure shares. At the lowest level, single item

prices, or price quotes, are aggregated into item-level indices.3 The item indices combine

prices of products corresponding to an item using equal weights. For further aggregation,

the items are weighted according to a representative consumption basket to produce prices

of classes, groups, divisions, and finally the CPI based on the Classification of Individual

Consumption according to Purpose (COICOP), an international classification framework.

We use monthly item series from January 2002 until November 2021. There are overall

over 1400 item indices over the total sample. But many item indices do not cover the full

sample period since for each month, the ONS publishes only the 630-710 items that enter

the consumption basket and thus the aggregate CPI at that point in time. Particularly

over the first years of the sample, there were substantial changes in the basket, with items

entering and dropping out of the basket frequently. This highly unbalanced structure of

the data is a challenge since we require a balanced sample of items for our estimations.

If we were to pick those items that cover the full sample, we would be left with 280 item

indices that are not representative of the consumption basket, particularly towards the

end of the sample. We therefore opt to approximately imitate the evolving nature of

2CPI aggregate and item series are not revised after first publication. Since the focus of this study lies
in using CPI item series as predictors, we do not account for real-time data issues with macroeconomic
data, and we use the final data release.

3A detailed description of the collection of prices and the construction of CPI is given by ONS (2019).
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the composition of different goods in aggregate CPI by running estimations over rolling

windows of item samples. We choose a window length of 8 years. Hence, we start with an

initial balanced sample of items available over the period 2002-2009. We then iterate the

sample forward, with items that are being discontinued at the end of the rolling window

dropping out, and new items that are fully covered over the rolling 8-year window entering

at each iteration step. Items that do not have coverage for that 8 years are dropped from

that sample. For each estimation window, we estimate our models on the first 7 years

and we use the last 12 months as the test sample to run out-of-sample forecasts—as

such we make sure, that we we use the same sample of items for training and testing

at each point in time. As we iterate forward, the composition of our predictors evolves,

mimicking the change in the consumption basket. On average, more than 400 item indices

are included in a window suggesting good overall coverage. Since there are more frequent

changes in the basket at the early part of the sample period with more discontinued item

series, the rolling estimation sample starts with 386 items for the window 2002-2009 and

then gradually becomes larger, until reaching a more stable size of 540-570 items for the

later windows. Figure B1 in the appendix depicts the evolving sample size for the 8-year

sample window, as well as for two alternative window sizes. We face a trade-off when

fixing the window length: a smaller window size implies a closer representation of the

consumption basket with more items covered in each window, but it also gives a shorter

training sample.4

We chain-link the item indices and take year-on-year log differences, which removes

stochastic seasonality and smooths extreme observations through the log transform. Item

series are mean-variance standardised in line with the expanding window approach of our

forecasting setting described in Section 3. Figure B2 in Appendix B plots a selection of

the transformed item series for illustration.

2.2 Descriptive statistics

To better understand how the item series dynamics compare to the aggregate CPI, we

provide descriptive statistics for the disaggregated data we use. Table 1 assesses the

representativeness of our sample of item series. It summarises statistics of year-on-year

item-level index growth rates grouped by divisions, the twelve largest sub-categories of

the CPI using the final release classification, with their weights depicted in column 3

4We ran estimations for the window length of 6 years with 5 years used for training. Results were
similar, though somewhat less significant due to the shorter training sample. Alternatively, we ran an
expanding window estimation, starting with an initial training period 2002-2008 and than expanding it
gradually, such that the number of items covered decreased over time and became less representative
of the consumption basket, covering 280 items for the longest training period. This resulted in weaker
forecasting gains compared to the rolling window approach. This indicates that tracking the composition
of the consumption basket in more detail benefits forecasting.
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(November 2021; see also (ONS, 2019)).5 The middle panel of the table compares the

average number of items in our balanced panel based on 8-year rolling window estimations

(column 5) to the average number of items available in each category per year in the

unbalanced panel (column 4).6 The series included in the balanced panel cover on average

69% of the item indices in each division. The left panel of the table shows the mean

and standard deviation of yearly changes of our chained-linked index series. The mean

across items for most CPI divisions is comparable to average aggregate year-on-year price

inflation, with some deviations for the categories “Clothing & footwear” and “Education”.

However, the standard deviations across items are relatively large for most categories,

pointing to the amount of heterogeneity in the disaggregated data.

Table 1: Summary statistics of filtered UK CPI inflation item indices.

description weight
(%)

#items,
unbal-
anced

#items,
balanced

coverage
(%)

median SD

1 Food & non-alc. bev. 12 155.41 111.6 72 1.74 7.31
2 Acl. bev. & tobacco 5 26.57 15.2 56 2.02 4.23
3 Clothing & footwear 7 77.63 54.6 70 -0.71 5.59
4 Housing & fuels 13 37.04 30.3 82 2.67 6.42
5 Furnishing & house maint. 6 72.85 53.1 73 1.34 5.02
6 Health 3 20.09 14.7 73 1.77 4.28
7 Transport 14 43.58 31.5 72 2.46 7.27
8 Communication 3 9.18 5.6 61 1.91 10.69
9 Recreation & culture 15 112.35 64.6 56 1.41 8.07

10 Education 2 3.05 2.1 69 6.71 5.44
11 Restaurants & hotels 9 48.36 31.8 66 2.85 1.88
12 Misc. goods & services 11 76.13 52.4 69 1.65 8.42
13 Total 100 682.2 467.5 69 2.15 6.22

Notes: Division-level summary statistics of year-on-year percentage changes of item series. CPI weights (%) are taken
from COICOP weights for November 2021. The total number of items (#), unbalanced, refers to all item series available
on average between January 2002 until November 2021 in that division in the unbalanced panel published by the ONS.
Note that this number does not need to be an integer because of items entering and exiting the CPI basket over time. The
number of items, balanced, refers to those included in our sample since they cover at least the 8 year rolling window length.
Coverage (%) is the fraction of our included set of items to all items. Median and standard deviations (SD) are taken over
all observations in the balanced panel in a division. Source: ONS & authors’ calculation.

This also becomes evident in Figure 1, which shows the distribution and moments of

item series growth rates over the entire sample (left panel), as well as the evolution of

the median and interquartile range over time compared to aggregate CPI inflation (right

panel). As previously documented (Klenow and Kryvtsov, 2008; Ozmen and Sevinc, 2011),

the distribution of disaggregated price changes has a leptokurtic shape with a sharp peak

and wide tails on both sides. That is, while most items do show only small price changes,

some show very large changes.7 In line with Table 1, the median of item index growth

5A set of zero-weight indices not in the CPI have been added to Housing & Fuel (440249, 410201,
410701, 410703, 410801, 440202, 610307, 610308).

6Average numbers of series by divisions are not integers due to series dropping in and out over time,
and due to the number of items having full coverage over the rolling window increasing over time.

7A slight difference here to other studies is that we look at chained index series and not individual
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rates is close to average headline inflation, both on average over the entire sample as well

as over time. The fit of the median across item indices to aggregate inflation improves

over time (right panel), in line with the improved coverage of item series through our

rolling windows. On the other hand, there is a large amount of heterogeneity in item

dynamics as captured by the wide tails of the histogram (left panel) and the wide swathe

representing the interquartile range across items over time (right panel).
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Figure 1: Distribution and moments of year-on-year growth rates in item-level CPI indices.
Notes: Statistics are computed over chain-linked items that are included in our rolling window estimations.
The left panel shows the histogram of CPI item growth rates over the entire sample period (blue bars),
the overall mean and median over items (green solid and dotted lines), and the mean over negative
and positive item growth rates (green dashed lines), the mean headline year-on-year CPI inflation for
comparison (red solid line). The histogram bars are limited to ±25% for clearer presentation with a small
number of changes beyond this range. The right panel shows the median (orange line) and inter-quartile
range (orange swathe) of year-on-year growth rates of item indices over time, and for comparison headline
CPI year-on-year inflation (blue line). Source: ONS and authors’ calculation.

3 Methodology

3.1 Forecasting set-up and evaluation

We forecast monthly aggregate year-on-year UK CPI inflation (Headline, Core, or Ser-

vices) over horizons of h = 1, . . . , 12 month. As discussed in section 2, we start with an

initial training sample for the period 2002m1-2008m12 over which we also tune model

hyperparameters within the first seven years (see below for details), and we evaluate out-

of-sample forecasts over the h subsequent months. We then iterate the training sample

forward by one month, also adjusting the composition of CPI items to assure a balanced

and representative sample in each estimation window, and we repeat the procedure of

hyperparameter tuning and out-of-sample forecasting.

Our benchmark model is an AR(p) forecast which only accounts for lagged dynamics

item price quotes, with growth rates in the latter typically being centred around zero and hence more
difficult to compare to aggregate price changes.
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of the target variable, of the form

yt+h = α + Σp
j=1γjyt−j+1 + εt+h (1)

where yt is the target variable, h is the forecast horizon, and the number of lags is set to

p = 2 based on the Bayesian Information Criterion (BIC).8

To pin down the forecast gain from the large set of predictors relative to the AR(2)

benchmark, we proceed in two steps. First, we estimate an AR(2) for inflation and we

compute the residual ỹt to strip inflation off the part that is explained by the autore-

gressive component. Then, we feed the residual as target to the set of models outlined

below. We, thus, look to forecast inflation using the large set of predictors conditional

on the autocorrelation in inflation being already accounted for. This two-step approach

assures that the signals from the large set of predictors are picked up separately from the

signals coming from lagged dynamics, and hence it helps the models to exploit the large

data set more efficiently. By contrast, adding the lags together with a large number of

disaggregated predictors in a single forecasting step, can result in each predictor individ-

ually having a very low impact compared to the two lags, given that inflation follows a

highly persistent process. This can blur the different signals and can result in the mod-

els laying an overly strong weight on the lagged coefficients. Further, since a number of

models we use are nonlinear in nature, having lagged dynamics added to such a nonlinear

specification can make accounting for such dynamics more complex. Therefore, removing

lagged dynamics, as we do in a first step, places all models on a equal footing in terms of

evaluating their predictive performance.

We evaluate the average precision of the forecasts against the AR(2) benchmark based

on relative root mean squared errors (RMSE). We test for statistical difference in forecast

accuracy using the Diebold and Mariano (1995) test with Harvey’s correction for short

samples (Harvey and Newbold, 2000). First, we run the forecast evaluations over the

full test period 2009m1 to 2021m11. Additionally, we are interested in whether our

models with disaggregated CPI items might perform differently in periods where the

level of inflation or the momentum in inflation are high (low) compared to the overall

sample period. We therefore also evaluate the out-of-sample forecasts over sub-sets of

months where the outturn of the aggregate inflation series that we forecast fell into certain

segments.

3.2 Overview of forecasting methods

All the forecasting methods we present here have the advantage that they can deal with

large datasets and thus wider information sets. We are given a dataset of a large number

of predictors xt = (x1t, . . . , xNt)′, i = 1, . . . , N and t = 1, . . . , T . We are interested in

8The value p = 2 is very stable across time, such that we use this value throughout.
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forecasting the residual ỹt of headline CPI inflation, after stripping it from the impact of

its own lags in a AR(2) regression, in period t+ h, based on a set of predictors xt
9

ỹt+h = α + ΣN
i=1βxt + Σp

j=1γjyt−j+1 + ut+h. (2)

Due to the large number of predictors, estimating (2) directly with each predictor

included individually would lead to high estimation uncertainty and a lack of degrees of

freedom, where the dimension of β might be larger than T . Such a model thus suffers

from over-parametrization, and some form of dimensionality reduction is required. The

models we employ take different approaches to deal with this, either by reducing the

dimensionality of the input space directly or via explicit or implicit weighting (shrinkage).

The main ideas of the models are outlined below, with details presented in Appendix A.

Dimensionality reduction techniques

We consider two forecast approaches that rely on dimensionality reduction techniques:

Principal Component Analysis (PCA) and Partial Least Squares (PLS). These methods

exploit the fact that economic series are often strongly correlated and thus can be sum-

marized effectively in a small set of common components. This substantially reduces

the number of parameters in the model, addressing over-parametrisation and degrees of

freedom issues in rather short samples. In particular, a vector of N indicator series xt

is summarized by a vector r × 1 of finite latent components ft. The two models have

in common that they use information densely, i.e. information from a wide range of

available predictors is drawn upon by summarising them through common components.

PCA summarises the joint variability of predictors xt into a static factor which is added

into a prediction regression as in equation 2. On the other hand, PLS is a static model

that combines predictors into a common component such that the covariance between the

component and the target variable yt+h is maximised.

Shrinkage methods

The goal of shrinkage methods is, using different penalisation schemes, to reduce the

dimension of the matrix of indicator series xt. This produces linear combinations of

the original regressors, where those coefficients that do not carry any predictive power

for the target variable are assumed to approach zero or are set equal to zero, according

to a shrinkage parameter λ, which differs across models. Ridge regression shrinks the

coefficients of predictors that contribute little to the predictive ability of the model towards

zero, albeit they never become exactly zero—it is therefore a dense model which draws on

9We also experimented with including lags of the predictors xt into the models. Forecasts did not
improve substantially, but estimation time increased considerably due to the larger number of parameters
in models with lagged predictors. We therefore opt for a specification without lagged predictors.
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all available information albeit to different degree. In the case of no shrinkage, i.e. λ = 0,

Ridge regression becomes equivalent to a linear OLS regression. LASSO regression, on

the other hand, penalises the sum of squared residuals according to the sum of absolute

coefficients which results in some of the coefficients being shrunk to exactly zero. It is

thus a sparse model which performs shrinkage through variable selection. The Elastic

Net is a hybrid approach which combines these two types of shrinkage: in a first step, it

finds Ridge regression coefficients and, in a second-step, Lasso-type shrinkage i.e. variable

selection is applied. A correction factor is applied to account for increased bias through

double shrinkage.

Non-Linear Machine Learning Models

The non-linear machine learning models that we use can be summarized as

yt+h = g
(
zt, β

0
)

+ εt εt ∼ N(0, σ2) (3)

where yt+h is h-steps ahead inflation, zt = [xt,Σ
p
j=1yt−j+1] is the set of M = N + p

predictors and lagged variables, β0 is a M × 1 vector of parameters, and εt a vector of

identically distributed errors with zero mean and variance σ2. The relationship between

the data matrix zt and the target ŷt+h is captured by a non-linear matrix-valued function

g(·) that varies with the model at hand. We use three types of machine learning models:

Random Forests, Artificial Neural Networks, and Support Vector Machines.

Random Forests are collections of many decision trees, which in turn consecutively

split the training dataset until an assignment criterion with respect to the target variable

into a “data bucket” (leaf) is reached. The algorithm minimises the objective function

within areas of the target space, i.e. these “buckets”, conditioned on the input zt. By

averaging predictions over tree ensembles, random forests reduce the problem of overfitting

by reducing the variance of model prediction, and typically performs better compared to

individual trees. Tree models are mostly sparse as their hierarchical structure acts like a

filter. That is, only variables which actually improve the fit are chosen during construction

of each tree during training.

Artificial Neural Networks (ANN) consist of an input layer, at least one hidden layer,

and an output layer. Layers are connected via the network weights W representing the

model parameters and pass through non-linear activation functions at each hidden layer.

Note that, without hidden layer, an ANN becomes a linear function and is similar to

solving the least squares problem. We use multilayer perceptrons (MLP), a form of feed-

forward network, as ANN architecture. The activation function g(zt,W ) acts as a gate

for signals and introduce non-linearity into the model. Its functional form is subject

to hyperparameter tuning. The variables zt in the input layer are multiplied by weight

matrices W at each layer, then transformed by an activation function in the hidden layers
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and passed on through the network until the linear output layer is reached resulting in

a prediction ŷt+h. Deeper networks are generally more accurate but also require more

data to train them due to the larger number of parameters in the weight matrices. The

number of hidden layers, i.e. the depth of the network, and the number of neurons in

each layer as well as appropriate weight penalisation in our ANN are hyper-parameters,

and are determined by cross-validation as discussed below.

Support Vector Machines (SVM) identify a (small) set of training points, the support

vectors, to either represent a boundary between classes (classification problem) or a line

(regression problem). This representation becomes non-linear through the use of kernels

for the joint processing of test observations in conjunction with the support vectors. We

use the popular Gaussian kernel (radial basis function, RBF). Penalisation is introduced

by allowing some wiggle room in situation where best fit lines or classification boundaries

cannot be perfectly represented by the support vectors (see e.g. Friedman et al., 2001).

3.3 Tuning of hyperparameters

All of our models require some form of hyperparameter selection prior to estimation. In

the case of dimensional reduction techniques, we use a form of information criteria (e.g.

AIC, BIC) to choose the lag length or the number of common components. In cases

where the derivation of information criteria is not feasible, such as the shrinkage methods

and machine learning tools, we use cross-validation procedures.10 The main difference

between information criteria and cross-validation methods is that the latter depends on

out-of-sample performance, whereas information criteria are “in-sample” statistics.

K-fold cross-validation involves the assumption that samples are independent and

identically distributed which results in unreasonable correlation between training and

testing instances in the time series context. We therefore opt for a variant of K-fold cross-

validation where the model is evaluated on “future” observations least like those that are

used to train the model. In each fold, test indices must be higher than before. We split

the in-sample data in k = 5 folds as the train set and the k + 1-th fold as test set. As a

performance metric, we consider the average mean squared error over the test set.

The hyper-parameters selected through cross-validation include the penalty imposed

on shrinkage methods but also the maximum depth of trees for the Random Forest, the

architecture of the ANN and the choice of the kernel function for SVM.11 Given that the

estimation is done over rolling window, the selected hyperparameters can change over

windows, as well as over forecast horizons and specifications. Overall, cross-validation

10For a review of various cross-validation methods see Coulombe et al. (2019)
11We choose the following grid sets: For Ridge, LASSO and Elastic Net α ∈ {1e −

05, 0.0001, 0.001, 0.01, 0.1, 1.0}, for Elastic Net L1-ratio ∈ {0.1, .5, .9, .95, 1}, for Forest max. depth
∈ {1, 2, 3, 5, 6, 7, 8, 9, 10}, for ANN hidden layer dimension ∈ {(2, 3), 10, 2), (20, 2), (2, 3), (20, 3), (5, 5)}
and activation function tanh or ReLU, for SVM C ∈ {100, 10, 1000} and ε ∈ {0.01, 0.1, 0.5, 0.9}, the
kernel is chosen to be RBF.
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favours quite similar parameters and model architectures across specifications that use

different sets of predictors and also across horizons, although they evolve somewhat over

time, i.e. over rolling window test sets.12 Differences mostly appear regarding the archi-

tecture of the ANN and the Random Forest. In particular, for larger data specifications,

e.g. when we use both CPI item and macroeconomic time series, the procedure selects

deeper versions of the network and larger tree structures of the Random Forest. This

suggests an increase in complexity as more data are involved in training the model. Reg-

ularisation plays an important role both for linear and non-linear models. Notably, the

Ridge regression always imposes a heavy penalty which might explain the overall strong

performance of this model.

4 Results

We present the results of the forecasting exercise focusing on relative RMSE against the

AR(2) benchmark and predicted value comparisons for the models with CPI items, either

alone or in combination with macroeconomic series. The comparison with the AR model

provides information on the marginal forecast gain through the inclusion of a large set

of predictors, and it indicates a ranking between models in terms of the extent to which

they outperform or lose out against the AR.

We start with results over the entire sample period. We then present forecasting

results over sub-periods with certain inflation characteristics, i.e. periods of rising and

falling inflation or high and low inflation. This allows us to assess whether the use of

disaggregated data and models such as non-linear machine learning tools might be partic-

ularly useful during periods where inflation experiences turning points or tail outcomes,

and where a simple AR model might have more difficulties forecasting inflation compared

to more normal times.

4.1 Forecast results over the entire sample period

Table 2 shows relative RMSE against the benchmark for the specification with CPI item

series as predictors over the entire sample period. Forecasts for the three different inflation

measures are shown in the three panels of the table for selected forecast horizons. Results

indicate that it is difficult for the models to significantly outperform theAR(2) benchmark.

The shrinkage methods perform best for forecasting headline CPI and Core CPI inflation.

The Ridge model provides a substantial improvement against the AR at the 6-month

horizon, with a relative RMSE of 0.86, and a smaller and insignificant improvement at

the 12-month horizon. The LASSO model provides a significant improvement at the

12Results for selected hyperparamerters are not shown for space constraints and are available upon
request.
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3-month horizon for Core CPI inflation, and also some insignificant improvements for

headline CPI. For Core Service inflation, which is a rather stable component that seems

to be captured well by an AR(2), none of the models outperforms the benchmark.

Table 2: Forecasting exercise results, CPI items series predictors.

Predictors: CPI item indices

Target: headline CPI Target: Core CPI Target: Service CPI
horizon 3 6 12 horizon 3 6 12 horizon 3 6 12
PCA 1.0 0.98 1.04 PCA 0.96 0.97 1 PCA 1.03 1.06 1.08
PLS 1.09 1.19 1.29 PLS 1.1 1.08 1.11* PLS 0.98 1.06 1.11
Ridge 1.0 0.84* 0.96 Ridge 1.05 0.89 1.02 Ridge 1.01 1.01 1.01
Lasso 0.98 1.01 0.96 Lasso 0.97* 1.05 0.98 Lasso 1.04 1.09** 1.06
Elastic 1.0 1 0.98 Elastic 0.99 0.99 1 Elastic 0.99 1.01 1.03
SVM 1.0 1.02 1.14 SVM 1.02 1.03 1.08 SVM 1.04 1.05 1.03
Forest 0.99 1.07 1.21 Forest 1.01 1.09 1.19 Forest 1.06* 1.11** 1.14**
NN 1.19** 1.24* 1.16 NN 1.12 1.35 1.11 NN 1.4 1.26 1.32**

Notes: Root mean squared errors, relative to AR(2) model. Forecasts of headline CPI inflation (left panel), Core inflation
(middle) and Service inflation (right) using CPI item series as predictors. Rolling window samples over sample period
2002-2021 with 7 years of training sample and out-of-sample forecasts at horizons of 3, 6, and 12 months. Significance of
forecast accuracy is assessed via Diebold and Mariano (1995) test statistics with Harvey’s adjustment. Significance levels:
***:1%, **:5%, *:10%. Relative RMSE for forecasts at the 1-month horizon were not significant and are not presented for
space constraints.

The above findings are reflected in the model predictions of headline inflation shown in

Figure 2 for the specification with CPI items only. At a forecast horizon of 3 months, the

AR benchmark forecasts capture actual inflation outturns closely, albeit with slight delay.

All of our models’ forecasts are quite close to the AR benchmark, but most have some

excess volatility which explains their weaker performance. At the horizon of 6 months,

all models somewhat lag behind the target but get most of the dynamics right. The good

performance of the Ridge regression (middle panel) relative to the benchmark becomes

evident particularly during periods where inflation experiences turning points. For in-

stance, the rise in inflation during 2011 is captured precisely and without delay by the

Ridge regression. The subsequent decline in inflation during the years 2012-2015 is also

captured by the Ridge regression, albeit incompletely and with some excess fluctuations.

During the periods of rising inflation over the years 2016-2017 and most recently in 2021,

the Ridge regression is the model that was closest to the actual outcome. Whereas many

models added volatility to the forecasts during these periods, the strong shrinkage un-

derlying the Ridge model likely helped muting volatile signals from individual predictors.

All models lag behind the actual outcome at a horizon of 12 month and only capture

part of the dynamics. The models combined with CPI items show more fluctuations

than the AR, which can explain their worse performance, but which may render them

useful during certain periods of more volatile inflation. These observations suggest that

the Ridge regression, and other models combined with CPI items, might be useful dur-

ing periods where the inflation momentum is changing or where the level of inflation is

particularly high or low, compared to the overall sample. We will investigate this further
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in the next sub-section by evaluating our forecasts over periods where inflation outcomes

have particular characteristics.
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Figure 2: Predicted values for headline CPI inflation.
Notes: Forecasts of CPI headline inflation (standardised), from different types of forecasting models
(columns, coloured lines) using CPI items as predictors, over horizons h = 3, 6, 12 (rows). Out-of-sample
predictions for rolling samples from 2009m2 to 2021m11, compared to the actual headline CPI inflation
outcome (black lines) lagged by h months.

Table 3 shows results for headline CPI inflation forecasts using macroeconomic indica-

tors either in combination with CPI item series (left panel) or on their own (right panel).

This allows to assess whether the disaggregated CPI item series are relevant predictors

beyond the predictive power from macroeconomic dynamics, and whether certain models

perform better when fed with different types of predictors. The additional gain from

macroeconomic indicators is small overall.13 When using them in combination with item

series, a couple of models show small improvements against the AR(2), but those are

insignificant. Hence, including even more series and combining series of different nature

does not seem to be helpful and rather results in a loss of degrees of freedom. When

using macroeconomic indicators on their own, LASSO performs better than in the spec-

ifications with item data and reaches significant improvements against the AR(2) at the

3-month and 12-month horizon. On the other hand, the Ridge regression performs much

worse with macroeconomic data than with CPI item data, and now significantly loses out

against the benchmark. Overall, this shows that different models are preferred with dif-

ferent types of data. When using the highly disaggregated CPI data, the Ridge regression

works particularly well, i.e. a dense model that shrinks many of the parameters towards

but not exactly zero, and does not do variable selection. When using macroeconomic data,

LASSO which performs shrinkage akin to variable selection works better for forecasting

13For Core inflation and Service Core inflation forecasts, there were no improvements from adding
macroeconomic indicators.
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inflation. This is different from existing evidence for GDP forecasts using macroeconomic

data, where previous studies found dense models such as the Ridge regression to perform

best (Giannone et al., 2017).

Table 3: Forecasting exercise results, Macroeconomic indicators as predictors.

Predictors: CPI items & Macro ind. Predictors: Macro ind. only

Target: headline CPI Target: headline CPI
horizon 3 6 12 horizon 3 6 12
PCA 1.04 1.01 1 PCA 0.98 0.99 1.1
PLS 1.3 1.2* 1.09 PLS 0.98 1.01 1.81
Ridge 0.97 0.9 0.99 Ridge 0.99 1.22** 1.72**
Lasso 0.94 1.05 0.98 Lasso 0.92** 0.97 0.99*
Elastic 0.98 0.95 1 Elastic 1 0.98 1.02
SVM 1.14 1.01 0.99 SVM 0.96 1.18 1.52**
Forest 1.2 1.07 0.96 Forest 0.97 0.99 1.18
NN 1.84** 1.25* 1.28** NN 0.95 1.16* 1.44**

Notes: Root mean squared errors, relative to AR(2) model. Forecasts of headline CPI inflation using CPI item series and
Macroeconomic indicators (left panel) or Macroeconomic indicators only (right panel) as predictors. Also see notes for
Figure 2.

4.2 Forecast results for specific inflation outcomes

We have seen that it is difficult to beat the AR(2) model significantly on average over

the entire sample period. However, the comparison of predicted values indicated that

there might be differences in the relative performance of the models during sub-periods

where inflation was for instance high or rising. We therefore evaluate the forecast errors

separately over months where aggregate inflation displayed certain characteristics. For

this purpose, we define sub-periods during which the outturn of the aggregate inflation

series that we forecast 1) is high (above 3%, i.e. in its upper quartile since the year 2008),

2) low (below 1.5%, i.e. in its lower quartile), 3) within its interquartile range (IQR)

(between 1.5% and 3%), 4) has positive momentum meaning that inflation is rising for

an extended period (defined as the 3-month moving average of percentage point change

in inflation being positive for at least five consecutive months), 5) negative momentum

or in other words inflation is falling for an extended period (3-month moving average of

percentage point change in inflation being positive for at least five consecutive months),

6) or else when inflation is stable.

Table 4 shows the results for headline inflation forecasts, over different horizons

(columns) and using different sets of predictors (panels). For readability, the table only

shows the sub-periods and models for which we observed significant improvements against

the benchmark, and types of models are coloured differently (dimension reduction tech-

niques in blue, shrinkage methods in red, machine learning tools in green). We find a wide
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range of significant improvements with RMSE relative to the benchmark of 0.75-0.95 cer-

tain inflation regimes. Which models beat the benchmark depends on the horizon and

also on the set of predictors that they are combined with.

Table 4: Forecast performance over sub-periods with different inflation characteristics
(Headline inflation).

Headline CPI inflation forecast — CPI items only
Horizon 1 3 6 12
CPI inflation falling - PCA 0.92** Elastic 0.91** Elastic 0.93***

Ridge 0.74***
CPI inflation rising - Forest 0.88** Lasso 0.92* Lasso 0.89***

Ridge 0.75*** Elastic 0.99*
CPI inflation stable - - - Ridge 0.86*
CPI inflation low PCA 0.94* PCA 0.95* - Ridge 0.84*
CPI inflation high - - Ridge 0.8*** PCA 0.87**
CPI inflation in IQR - - - Elastic 0.95***

Headline CPI inflation forecast — CPI items & Macro indicators
Horizon 1 3 6 12
CPI inflation falling - PCA 0.93** Elastic 0.9** Elastic 0.93***

Ridge 0.78***
CPI inflation rising Ridge 0.78* Forest 0.81** Ridge 0.82*** Lasso 0.88***

Elastic 0.99*
CPI inflation stable - - SVM 0.89* -
CPI inflation low - PCA 0.94* - Ridge 0.84*
CPI inflation high - - Ridge 0.88*** PCA 0.87**
CPI inflation in IQR - - - Elastic 0.94***

Headline CPI inflation forecast — Macro idicators only
Horizon 1 3 6 12
CPI inflation rising Lasso 0.9** Forest 0.88** - -

NN 0.87* SVM 0.9* - -
CPI inflation high PCA 0.84* - - PCA 0.79*

Notes: Relative RMSE computed over sub-periods with different inflation characteristics. These are periods during which
the actual headline CPI inflation outcome at a given horizon fell into a certain category (falling, rising or stable inflation, or
inflation in the upper/lower quartile of the inflation distribution or in its interquartile range). Only models with significant
gains in terms of relative RMSE against the AR(2) benchmark over a sub-period and horizon are listed (“-” indicates
that there were no significant gains for a sub-period/horizon; sub-periods where no models showed significant gains for a
specification are not listed). Significance of forecast accuracy is assessed via Diebold and Mariano (1995) test statistics with
Harvey’s adjustment. Significance levels: ***:1%, **:5%, *:10%.

When using CPI item series (either alone or in combination with macroeconomic indi-

cators), shrinkage methods perform strongly at higher horizons of 6 and 12 months. At the

12-month horizon, there are significant improvements compared to the benchmark from

at least one model for most sub-periods, whereas at the 6-month horizon, improvements

are achieved for the periods where inflation is falling, rising or high. The Elastic Net

performs particularly well when headline inflation is rising, while the LASSO performs

well when it is falling. The Ridge regression does well for a wider range of sub-periods,

particularly at the 6 month horizon, in line with its strong performance over the entire

sample period presented above. Here, Ridge regression significantly improves against the

benchmark with a relative RMSE of 0.75 during periods of falling inflation and rising
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inflation, respectively, and 0.8 during periods of high inflation. It also shows a significant

improvement with relative RMSE of 0.85 during periods of stable or low inflation at the

12-month horizon but does not perform well anymore for the other sub-periods. On the

other hand, PCA and two of the machine learning tools, Random Forest and SVM, achieve

improvements against the benchmark mostly at lower to medium horizons, although PCA

also forecasts well at the 12 month horizon when inflation is high.

There is little gain overall from adding macroeconomic data compared to exploiting

CPI items alone. However, the Random Forest does gain from the joint set of macroeco-

nomic indicators and item series predictors and reaches a relative RMSE of 0.81 during

periods when inflation is rising. Using macroeconomic indicators alone also helps at low

horizons when CPI inflation is rising or high. Machine learning tools in particular are

able to achieve forecasting gains from exploiting the macroeconomic indicators in the

short run when inflation is rising, with relative RMSE of 0.87-0.9 at the 1-month and 3-

month horizons. This can indicate the presence of a potentially non-linear Phillips Curve

relationship that machine learning tools are able to exploit to achieve forecasting gains

in the short run, while other linear models hardly draw any signals from macroeconomic

data for inflation.

Table 5 shows the corresponding results over sub-periods for the specifications for

core and service CPI inflation. Whereas over the entire sample we did not observe any

significant forecast gains against the benchmark, there are substantial improvements for

some of the sub-periods. For core inflation forecasts, similarly to headline CPI forecasts,

shrinkage methods combined with CPI items yield improvements at higher horizons. The

Elastic Net yields a significant improvement for falling core inflation, and the LASSO for

rising core inflation at the 12-month horizon, while the Ridge regression improves against

the benchmark during periods of rising core inflation at the 6-month horizon. The PCA

also shows gains when core inflation is high at shorter horizons and when core inflation is

falling at the 12-month horizon. Again, machine learning tools work best when exploiting

macroeconomic indicators over sub-periods. The Random Forest and Artificial Neural

Net achieve significant relative RMSE of 0.84-0.91 at the 1-month horizon during periods

of rising or high core inflation, but also at higher horizons with the SVM at 6-months and

with the Random Forest at 12-months. Shrinkage methods, in particular the Elastic Net

and LASSO also show significant improvements at the 1-month horizon, but these are

weaker compared to the machine learning tools. Turning to service inflation, on the other

hand, shrinkage methods and PCA dominate. Here, substantial improvements in RMSE

of up to 40% are achieved at horizons of 3 to 12 months when service inflation is stable,

falling, or low. The strongest improvements are achieved when CPI items are combined

with macroeconomic data. However, no improvements for service inflation forecasts are

achieved from using macroeconomic indicators alone, or for any set of predictors during

periods when service inflation is high or rising.
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Table 5: Forecast performance over sub-periods with different inflation characteristics
(Core and Service inflation).

Core CPI inflation forecast — CPI items only
Horizon 1 3 6 12
Core inflation falling - Lasso 0.84* - Elastic 0.86*

PCA 0.89***
Core inflation rising - - Ridge 0.82* Lasso 0.89**
Core inflation high PCA 0.89* PCA 0.91* - -

Core CPI forecast - CPI items & Macro indicators
Horizon 1 3 6 12
Core inflation falling - - - PCA 0.89***
Core inflation rising - - - Lasso 0.88***
Core inflation high - - - SVM 0.94***

Core CPI forecast - Macro indicators only
Horizon 1 3 6 12
Core inflation rising Elastic 0.99* - Ridge 0.82* -

Lasso 0.98* SVM 0.95*
Forest 0.89**

NN 0.84*
Core inflation high Elastic 0.99* - - Forest 0.89**

Lasso 0.98*
Forest 0.91*

NN 0.87*

Service CPI forecast — CPI items only
Horizon 1 3 6 12
Service inflation falling - Ridge 0.84** Ridge 0.71** Elastic 0.94**

Lasso 0.86*
Service inflation stable - Elastic 0.97** PCA 0.86** -
Service inflation low - Ridge 0.87* - Elastic 0.97**

Ridge 0.89***

Service CPI forecast - CPI items & Macro indicators
Horizon 1 3 6 12
Service inflation falling - Ridge 0.68*** Ridge 0.68** Lasso 0.87***
Service inflation stable - Elastic 0.59** PCA 0.83** -

PCA 0.89*
Service inflation low - Ridge 0.75** - Ridge 0.88***

Notes: Relative RMSE computed over sub-periods with different inflation characteristics. These are periods during which
the actual inflation outcome (Core CPI or Service CPI) at a given horizon fell into a certain category (falling, rising or
stable inflation, or inflation in the upper/lower quartile of the inflation distribution or in its interquartile range). Also see
Notes to Table 4.

All in all, various findings emerge from the evaluation of forecasts over sub-periods.

First, we obtain a wide range of improvements against the benchmark for periods when

inflation is rising, falling, high or low. This indicates that it is important to consider

non-linearities over time when forecasting UK inflation. The consideration of the entire

sample period masks differences across sub-periods, and while an AR is hard to beat

during periods of stable inflation or on average across different periods, exploiting a large

set of predictors does help forecast inflation during turning points and when inflation
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dynamics are more extraordinary. Second, there is not one single model that performs

best across sub-periods and horizons, such that it is advisable to consider a wide range of

models. When inflation is rising or falling, shrinkage methods perform best at horizons

of 6-12 months when combined with CPI items, whereas machine learning methods tend

to be stronger when also fed with macroeconomic indicators and for shorter horizons of

1-3 months when inflation is rising. Third, with regard to the current environment of

rising and high inflation, the results over sub-periods imply that our approach can be

particularly useful for forecasting headline and core CPI inflation. Service inflation, on

the other hand, can be difficult to forecast in the current environment given that our

approach typically yields improvements when service inflation is falling, low or stable,

but could become useful again to detect turning points towards falling inflation.

5 Opening the forecasting “black boxes”

We have shown in the previous section that the use of disaggregated CPI item data

combined with a wide range of models can improve aggregate inflation forecasts. However,

this large set of predictors combined with potentially complex models comes with the

drawback of challenges in interpreting forecast outcomes, i.e. our results are subject

to the “black box critique”. Dimensional reduction and shrinkage methods do provide

tractable measures of contributions from individual predictors (e.g. factor loadings or

regression parameters after shrinkage). Yet, finding a meaningful way to re-aggregate

signals from individual items to wider classes or sectors to help interpretation remains a

challenge. The non-parametric and non-linear machine learning tools additionally come

with the difficulty to pin down which variables drive model predictions.

For the interpretation of results, three questions are of interest. First, what is the con-

tribution of a predictor to the forecast? Second, are certain sub-groups of predictors (i.e.

CPI items that belong to a certain item group, e.g core items, energy items, or goods and

service items) more relevant than others? And if they, does this old across time, predic-

tors and targets? Answers to these questions can be informative for identifying relevant

predictors for lower-dimensional forecasting frameworks, or for communicating forecasts

and to inform policy decisions. We address this through a model-agnostic approach that

is based on three steps: model decomposition, partial re-aggregation or grouping, and

the investigation of group properties. We describe this approach in more detail in the

following before presenting results.

5.1 Shapley values to explain statistical models

The first step is model decomposition. We employ the Shapley additive explanations

framework (Strumbelj and Kononenko, 2010; Lundberg and Lee, 2017) which exploits an
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analogy between variables in a model and players in a cooperative game. The Shapley

value framework has a set of appealing analytical properties while being applicable to any

model.14 It consists in calculating the ‘payoff’ for including a specific predictor in the

model, conditional on other predictors being present. Each prediction (i.e. a predictive

value at time t and horizon h) from a model is decomposed into the sum of contributions

from the individual input variables, the so-called Shapley values.

Let the total number of predictors be M = |M| from the set M of price items and

macroeconomic series as described in Section 3. A predicted value, ỹt+h, of the residual

at time t for the forecast at horizon h can be decomposed into its Shapley components

φhtj for the jth variable. That is,

ỹt+h =
M∑
j=0

φhtj , (decomposition) (4)

The j = 0 component is set to the mean predicted value in the training set and can

be interpreted as an intercept.15 For a non-linear forecasting model, computation of (4)

requires deriving the marginal contribution of predictor j by running sequential forecasts

of all possible coalitions of predictors, with and without j. Thus, the Shapley value for

predictor j (ignoring time subscript and forecast horizon superscript for the moment) is

computed as

φj =
∑
S⊆M\j

S!(M − S − 1)!

M !
[f(S ∪ {j})− f(S)] . (5)

Here, the payoff of a coalition S ⊆ M is f(S), the payoff of this coalition combined

with predictor j is f(S ∪ {j}), and their difference measures the marginal contribution

of j to that coalition. The intercept φ0 corresponds to f(∅), i.e. with no variables in

the model. After summing these marginal contributions over all coalitions, we get an

estimate of the contribution of variable j to a single model prediction. Comparing all

possible combinations of predictors with M ≈ 400 is computationally infeasible.16 We

therefore focus our analysis on models where an exact solution exists, namely linear models

and the Random Forest. For a linear regression model, the Shapley value of predictor j is

simply the product of its regression coefficient wj and the difference between the predictor

value and its mean, i.e. φj = wj(xj −Et[xj]) with the expectation taken over the training

dataset. For the Random Forest, or tree-based models more generally, variable coalitions

correspond to paths down the branches of the model where these variables lie on the same

14In particular, it is the only attribution framework that is local, linear, efficient, symmetric and
respects null contributions and strong monotonicity of variables (see Young (1985); Lundberg and Lee
(2017) for details).

15The AR forecast component can be added as an additional summand if one wishes to recover the
combined model forecast.

16See Buckmann and Joseph (2022) for details and a discussion of different computational approaches.
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branch. These can generally be enumerated easily, reducing the complexity of the sum in

Eq. 5 (see Lundberg et al. (2018) for details). For other models, coalitions can be sampled

with a readjustment of the weights in (5).

The second step is context-specific grouping and re-aggregation. Predictors in

our case are mostly disaggregated price indices. Their values have a clear interpretation

as the relative price of a narrowly defined product at a given point in time. However,

single item series can be volatile and difficult to keep track of, as is the case with the

corresponding Shapley values. We therefore group the M model components φhtj into

K << M higher-level sub-groups denoted Gk, which represent an an aggregation level

between the disaggregated input and aggregate inflation to be forecast,

ŷt+h =
K∑
k=0

ψhtk with ψhtk =
∑
j∈Gk

φhtj (sub-group aggregation) , (6)

with ψht0 = φht0 being the same intercept. We opt for grouping CPI items according

to categories conventionally used in decision making situations, such as sub-categories

of CPI typically monitored by central banks. These are goods and services, with the

former two additionally divided into less volatile core goods (services) and more volatile

components such as energy and food & beverages. We also aggregate all macroeconomic

indicators into a sub-group. This gives us six mutually exclusive sub-groups of predictors:

core goods, food & beverages, energy, core services, volatile services, and macroeconomic

indicators.17

In the last step, we look at two simple metrics based on sub-group Shapley values,

namely the absolute and relative weights given to a group for forecasts at a particular

horizon,

Φ̄h
k =

|Φ|hk∑K
k=1 |Φ|hk

with |Φ|hk =
∑
t∈T

∑
j∈Gk

|φhtj| (absolute weight) (7)

Φ̃h
k =

Φ̄h
k

Mk/M
(relative weight) , (8)

where T collects time indices, such as the whole test period or those during particular

macroeconomic inflation regimes, like falling or rising aggregate prices, over which these

metrics are averaged. Absolute sub-group Shapley weights are shares and sum to one

over all K groups. Relative weights penalise absolute weights according to the share of

indices entering a model averaged over the evaluated test sample. These have an expected

value of one and measure how much a model relies on a certain sub-group compared to a

uniform representation of all variables in terms of Shapley attributions.18 If the relative

17The detailed groupings can be provided upon request.
18Sub-groups should not be too small compared to the overall number if inputs, as this can potentially
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Shapley weight of a sub-group is greater than one, a model puts over-proportional weight

on that group compared to other groups, and vice versa for relative weights below one.

5.2 Results based on Shapley values

We first look at the absolute Shapley weights of sub-groups for different targets. We focus

on the specifications including macroeconomic variables as our analysis allows for a direct

comparison between groups, be it different item groups or types of variables.
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Figure 3: Absolute Shapley weights of sub-groups (colour) by forecast horizon.
Notes: Rows show the Ridge regression (upper) and the Random Forest (lower). Columns different
macroeconomic inflation targets: headline (left), core (middle), and services (right).

The absolute weights for different groups as a function of the forecasting horizon are

shown in Figure 3 for the different models (rows) and targets (columns). Core goods

items are attributed the largest shares across models and horizons for the Ridge. This is

in line with these also being the largest groups by number and weight in the CPI basket.

For headline inflation, food & beverage items also play a sizeable role for both models,

whereas their share drops for the other targets, where this items are less prevalent. An

important difference between the Ridge regression (upper row) and the Random Forest

(lower row) for all targets are the different paths of Shapley value shares over forecast

horizons. The Ridge regression gives stable weights to all groups across forecast horizons.

cause divergence and associated instability caused by the denominator of Eq. 8. We do not find this to
be of concern in our case, while this may increase the volatility of relative Shapley weights in some of our
results, such as for the energy group of items.
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The Random Forest shows a similar overall ordering of group shares, but Shapley value

shares fluctuate much more across horizons. As such, the Random Forest increasingly

draws on core services—a less volatile component—for higher horizons, and less on goods

and food & beverages. The Random Forest also draws on energy items for predicting

headline inflation over medium horizons, whereas Ridge regression relies very little on

these items. The Shapley value shares of macroeconomic indicators are comparatively

low for both models, reflecting the result from the forecasting exercise of little added

contribution from macroeconomic indicators once CPI items are included.

Overall, this suggests that the two models learn from different signals in the data,

giving different weights to different groups across horizons. This is in line with the two

models having very different underlying optimisation algorithms, with the Ridge being

a dense linear model and the Random Forest a hierarchical nonlinear universal function

approximator. Given our modelling environment with relatively small T compared to

a large M , we do not expect both models to have the same generalisation properties,

i.e. having learned from the same signals. On the one hand, the stable Shapley value

share attribution of the Ridge regression suggests an advantage in terms of robustness of

models interpretations. On the other hand, the changes in the comparative importance

of different groups over horizons, as suggested by the Random Forest, provides relevant

information in itself and reflects the higher complexity and non-linearity of the model.

Furthermore, these contributions may differ in their informativeness for different inflation

regimes. For instance, the higher variance of shares of the Random Forest may make it

useful to provide information about turning points, such as rising or falling inflation.

To assess this, and to also check whether the two models give different relative im-

portance to certain sub-groups, we next look at relative Shapley weights for rising and

falling headline inflation. This is shown in Figure 4. Again, the two models are shown

along rows with different inflation regimes (all, rising, falling) along the columns.

Näıvely one may expect that the sub-groups to be attributed model weights propor-

tional to their fraction of the input space assuming that the items in each group have

similar information content. However, this is not the case as we can see in Figure 4.

Both model over-proportionally rely on more volatile sub-groups food & beverages, non-

core services and energy.19 While the relative sub-group attributions of the Ridge are

more volatile than its absolute shares across horizons, this effect is much stronger still

for the Forest, where energy and volatile-service items can receive multiple times their

input weights in terms of Shapley value shares. This is again in line with the Forest being

the more flexible models. While potentially delivering useful signals, high relative shares

should also be compared to the high absolute shares, which do provide the main forecast-

ing contributions from Figure 3. For instance, energy and volatile services make up about

19It is reassuring that the importance of energy drops for core inflation measures given that these
measure do not include those.
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Figure 4: Relative Shapley weights of sub-groups (colour) by forecast horizon for headline
inflation.
Notes: Rows show the Ridge regression (upper) and the Random Forest (lower). Columns different
macroeconomic inflation regimes: all (left), rising (middle), and falling (right).

1.6% of items each, albeit energy with an over-proportional weight in the consumption

basket. Whereas food & beverages is a major sub-group, especially for headline infla-

tion, where it constitutes about 24% of items on average, albeit with an underproportial

consumption weight.

More generally, we do not find an evident systematic relation between relative Shapley

weights and forecast performance, suggesting that idiosyncratic factors are important, i.e.

the current point in time and the particular drivers of changes in certain consumer price

groups. The Shapley value decomposition and analyses presented here can form the basis

for such assessments.

6 Conclusion

We have conducted a forecasting exercise aimed at predicting UK inflation using a unique

and granular set of monthly CPI item series, as well as a more standard set of macroe-

conomic indicators. We have considered out-of-sample forecasting using a wide range of

models that deal with the high dimensionality of the data set in different ways: dimension

reduction techniques, shrinkage methods, and non-linear machine learning tools.

We have shown that, while it is difficult to beat the AR benchmark over the entire

sample period, a wide range of forecast gains are achieved when evaluating forecasts over
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sub-periods where inflation was rising, falling, high or low. Exploiting a large set of

predictors substantially helps to forecast inflation during turning points when inflation

dynamics are changing or inflation outturns fall into tails. In this, there is not one

single model that performs best across segments and horizons, and so it is advisable to

consider a wide range of models. When inflation is rising or falling, shrinkage methods

perform best at horizons of 6-12 months when combined with CPI items, whereas machine

learning methods tend to be stronger when also fed with macroeconomic indicators and for

shorter horizons when inflation is rising. For the current environment of rising and high

inflation, the results over segments imply that our approach can be particularly useful for

forecasting headline and core CPI inflation with shrinkage or machine learning methods,

whereas service inflation can be difficult to forecast when it is rising. These findings are

in line with recent literature on forecasting inflation using machine learning and non-

parametric methods, according to which a range of models can provide forecast gains, but

in general non-linearities help forecasting inflation during business cycle turning points

or rare events (Clark et al., 2022; Hauzenberger et al., 2022). Our analysis shows the

potential of combining such non-parametric and non-linear methods with disaggregated

price data to forecast aggregate inflation, and that this provides gains in particular in

periods of changing inflation momentum and periods of high or low inflation.

Beyond the gains in forecast accuracy, forecasts derived from item series can help re-

searchers and policy makers to interpret and communicate adjustments to forecasts based

on dynamics observed across sub-groups of items and economic sectors. Item-level series

connect individual prices at the product level with the macroeconomic CPI inflation con-

cepts policy makers and economists are ultimately interested in. The large dimension of

the input space, the volatility of individual CPI items, and the opacity of some of the

models that can deal with such large data also pose challenges for the interpretation of

forecasting results. We have addressed these through the Shapley value framework which

derives linear contributions to the forecast from groups of items along CPI divisions. It

thus represents a universal way to understand and communicate forecast results within

economic policy settings. Here we find differences between more conventional linear mod-

els, like the Ridge regression, and more flexible machine learning models, like the Random

Forest. The former tends to allocate stable shares of model output weights to different

item sub-groups across specifications, while the latter shows considerable variance. Both

give over-proportional weight to items belonging to more volatile groups.
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A Forecasting Models

Dimensionality reduction techniques

Principal Component Analysis (PCA) and regression is widely used in the fore-

casting literature, having been introduced by Stock and Watson (2002c). The indicator

series xt are summarized by a joint principal component, or factor, ft. In a first step, the

first principal component from the set of indicator series. In a second step, the factor is

included in forecasting regression as follows

ŷt+h = α̂ + Σp
j=1β̂ft + Σp

j=1γ̂jyt−j+1. (9)

The key idea is that a small number of principal components suffices to explain most

of the variability in the data, and that these components also hold the bulk of predictive

power for the target variable yt+h. We set the number of principal components to r = 5

in the specifications where we include CPI item series and to r = 3 when we include

macroeconomic predictors only.A1

Partial Least Squares (PLS). is a dimensionality reduction technique that estimates

multiple regressions under a large but finite number of regressors. PLS is similar to PCR

in the sense that orthogonal linear combinations of k series xt are estimated and then

used for prediction of yt+h. However, instead of maximizing the share of variability in

the indicator series by common components, the linear combinations are chosen such

that the covariance between these linear combinations and the target variable yt+h is

maximized. PLS is less prone to the problem of irrelevance of estimated factors to predict

the target, and can outperform PCA particularly when the factor structure among the

indicator variables is weak (Groen and Kapetanios, 2016). We treat the number of linear

combinations as a hyperparameter and select k = 6 it using cross-validation from a pre-

specified grid.

Shrinkage methods

Ridge Regression. is a shrinkage method that penalises the residual sum of squares

with the sum of squared coefficients (L2-norm). This shrinks the coefficients of those

predictors with a minor contribution in terms of predictive ability of the model towards

zero, albeit they never become exactly zero. As such, the Ridge regression is a dense

modelling technique—it uses the full range of predictors, although assuming that the

A1The Bai and Ng (2002) selection criteria suggested a high numbers of principal components with a
high explained variance share. Since this does not correspond to the goal of dimension reduction, we
instead select the number of factors equal to the lowest number of factors which explains 50% of the
variance in the data.
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contribution of many of them might be small. Under our framework, the optimisation

problem can be written as:

β̂Ridge = argmin
β

{
T∑
i

(yi − α−
N∑
j

βzij)
2 + λ

N∑
j

β2
j

}
(10)

for given values of α and λ ≥ 0. It is common practice to centre the values of predictors

around the mean first, and not to include the constant term.A2 The parameter λ stands

for the penalty imposed on coefficients and controls its overall magnitude. We have

β̂Ridge → β̂OLS as λ→ 0 which is the no penalty case, and β̂Ridge → 0 as λ→∞. Selecting

a good value for the tuning parameter λ is crucial and is done via cross-validation.

Least Absolute Shrinkage and Selection Operator (Lasso). The fact that the

Ridge regression includes all the N parameters in the model can be a disadvantage,

particularly in short sample periods and thus little degrees of freedom. The Lasso is an

alternative to Ridge regression that overcomes this obstacle (Tibshirani, 1996). Lasso

regressions penalise the sum of squared residuals with the L1-norm, i.e. the sum of

absolute coefficients. In this case, some of the coefficients are set exactly to 0. The Lasso

estimators β̂Lasso are computed by solving the following optimisation problem :

β̂Lasso = argmin
β

{
T∑
i

(yi − a−
N∑
j

βzij)
2 + λ

N∑
j

|βj|

}
(11)

As such, the Lasso is a sparse modelling technique which performs shrinkage in terms

of variable selection; it, thus, tends to give more parsimonious models compared to the

Ridge. Again, the values of the parameters are centred, the constant term is excluded,

and cross-validation is employed for the selection of the tuning parameter λ.A3

Elastic Net. is a hybrid approach which combines the previous L1 and L2 penalties

(Zou and Hastie, 2005) . The “näıve” estimators of the Elastic Net, βn−EN are computed

by solving the problem:

A2The reason for this is that the Ridge regression coefficients estimates can substantially change when
multiplying a given predictor by a constant, due to the sum of squared coefficients term in the penalty
part of the objective function.

A3The L1-Lasso-penalty makes the solutions nonlinear in the yi’s, and there is no closed form, unlike for
the Ridge regression. However, there are efficient algorithms for computing the entire path of solutions as
λ varies. For example, Least Angle Regression (LARs, Efron et al. (2004)) provides an efficient algorithm
for computing the Lasso estimates.
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β̂n−EN = min
β
{

T∑
i

(yi − a−
N∑
j

zijβ)2 + λ1

N∑
j

β2
j + λ2

N∑
j

|βj|} (12)

The näıve version of Elastic Net method finds an estimator in a two-stage procedure:

First, for each fixed λ2 it finds the ridge regression coefficients, and then a Lasso-type

shrinkage is applied. This kind of estimation incurs a double amount of shrinkage which

leads to increased bias and poor predictions. However, using the correction factor 1 + λ2

the prediction performance is improved and the elastic net estimators are given by β̂EN =

(1 + λ2)β̂n−EN .

Non-Linear Machine Learning Models

Tree Models and Random Forests. Tree-based models are a non-parametric meth-

ods for both regression and classification problems. The idea behind them is to consec-

utively split the training dataset until an assignment or stopping criterion with respect

to the target variable into a “data bucket” or leaf is reached. Splitting the vector of pre-

dictors zt (predictors and lags of dependent variable) into Nleaf , Z = {Z1, . . . ZNleaf
}, the

optimal estimates of the β “coefficients” is just the average of the training target values

ytrt+h within each leaf of a tree. The regression function is

yt+h =

Nleaf∑
m=1

β̂mI(zt ∈ Zm) + εt, with β̂m = 1/|Zm|
∑

ytr∈Zm

ytrt+h, m ∈ {1, . . . , Nleaf} .

(13)

A disadvantage of regression trees is that they are not identically distributed: they

are built adaptively to reduce the bias. This may lead to severe over-fitting. Ensemble

approaches such as a “Random Forest” (Breiman, 2001) are routinely used to overcome

this problem. A Random Forest is an ensemble of uncorrelated trees which are estimated

separately. The correlation between trees in a forests is (partially) broken by building

them from small-enough random samples drawn with replacement (bootstraps) from the

full training sample.

The predictions of the individual trees are then averaged for a single prediction re-

ducing variance (bagging). A general drawback of random forests, as compared to single

trees, is that they are hard to interpret due to the built-in randomness with causes the

differences between individual trees.

Artificial neural networks (ANN) are similar to linear and non-linear least squares

regressions and can be viewed as an alternative statistical approach to solving the least

squares problem. A standard architecture of ANNs are multilayer perceptrons (MLP), a
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form of feed-forward network, which we use in our analysis. The variables zt in the input

layer are multiplied by weight matrices Wi, i ∈ {1, . . . , L}. These are the parameters

of the model symbolically connecting the nodes of different layers of the network. The

number of rows in each such coefficient matrix determines the number of neurons in that

layer where all internal hidden layers have size Nh. By passing through a hidden layer,

the product of inputs from the previous layer, the input layer or a hidden layer, are

transformed by an activation function and passed on to the next hidden or the output

layer. The output layer is linear in our case represented by the final regression coefficients

β̂ together with the Nh output from the last hidden layer resulting in the prediction ŷt+h.

The number of hidden layers L determines the depth of the network, with deeper networks

being generally more accurate but also needing more data for training. Formally, this can

be described as

yt+h = g(zt,W ) + εt =

Nh∑
k=0

β̂k gL(gL−1(gL−2(. . . g1(zt,W1), . . . ,WL−2), βL−1),WL)k + εt

(14)

The activation function g(·) acts as a gate for signals and introduces non-linearity

into the model. Common choices are the hyperbolic tangent, the rectified unit function

(ReLU) or the logistic function. The precise form is often subject to hyperparameter

tuning.

Support Vector Machines (SVM) Were originally introduced as a classification

method based on the idea of identifying a small set of input points, the support vectors,

to represent class boundaries in the classification problems (Vapnik, 1998). The model has

recently gained attention among the economics and finance communities as it offers nice

statistical properties and can handle and capture non-linearities in the data (Xiang-rong

et al., 2010; Wang et al., 2012). A support vector regression, with a continuous target as

in our case, can be written as

yt+h = α̂0 +
m∑
i=1

α̂iK
(
ztri , zt

)
+ εt , (15)

where the sum runs over the training sample. If strictly bigger than zero, the weights

α̂i ≥ 0 mark the support vectors ztri jointly selected from the training data during op-

timisation. The Kernel K(·, ·) acts like an inner product and returns a scalar. It allows

the incorporation of non-linearities into the model where we use a Gaussian kernel (radial

basis function, RBF). Penalisation is achieved by imposing restrictions on the α̂i.
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B Additional Tables and Figures

Table B1: Macroeconomic Series used as Predictors

Code Variable Name Source Transf cat.

1 IoS: Services, Index ONS LD real
2 PNDS: Private Non-Distribution Services: Index ONS LD real
3 IoS: G: Wholesales, Retail and Motor Trade: Index ONS LD real
4 IoS: 47: Retail trade except of motor vehicles and motorcycles: Index ONS LD real
5 IoS: 46: Wholesale trade except of motor vehicles and motorcycles: Idx ONS LD real
6 IoS: 45: Wholesale & Retail Trade & Repair Motor V. & M’cycles: Idx ONS LD real
7 IoS: O-Q: PAD, Education and Health Index ONS LD real
8 IoP:Production ONS LD real
9 IoP:Manufacturing ONS LD real
10 Energy output (utilities plus extraction) Pound Sterling (Index ONS LD real
11 IoP: SIC07 O. Idx D-E: Utilities: El., Gas, Water Supply, Waste Mngnm. ONS LD real
12 IOP: B:MINING AND QUARRYING: ONS LD real
13 RSI:VolumeAll Retailers inc fuel:All Business Index ONS LD real
14 Construction Output: Seasonally Adjusted: Volume: All Work ONS LD real
15 BOP Total Exports (Goods) ONS LD real
16 BOP Total Imports (Goods) ONS LD real
17 PPI Output ONS LD real
18 PPI Input ONS LD real
19 Nationwide House Price MoM BoE database D hp
20 RICS House Price Balance BoE database D hp
21 M4 Money Supply BoE database LD real
22 New Mortgage Approvals BoE database LD real
23 Bank of England UK Mortgage Approvals BoE database LD real
24 Average Weekly Earnings ONS LD real
25 LFS Unemployment Rate ONS D real
26 LFS Number of Employees (Total) ONS LD real
27 Claimant Count Rate ONS D real
28 New Cars Registrations BoE database LD real
29 Oil Brent BoE database LD fin
30 UK base rate BoE database L fin
31 3m LIBOR BoE database L fin
32 Sterling exchange rate index BoE database LD fin
33 GBP EUR spot BoE database LD fin
34 GBP USD spot BoE database LD fin
35 FTSE 250 INDEX BoE database LD fin
36 FTSE All Share BoE database LD fin
37 UK focused BoE database LD fin
38 S&P 500 BoE database LD fin
39 Euro Stoxx BoE database LD fin
40 Sterling ERI BoE database LD fin
41 VIX BoE database LD fin
42 UK VIX - FTSE 100 volatility index BoE database LD fin
43 Import prices, total ONS LD price
44 Import prices, total ex fuel ONS LD price
45 Import prices, goods ONS LD price
46 Import prices, services ONS LD price

Notes: Sources are the Office for National Statistics (ONS), the Bank of England database (BOE). Transformation codes:
LD = log year-on-year difference, L = levels, D = year-on-year difference. Category (Cat) codes: real = real activity, hp =
house prices, fin = financial, price = prices.
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Figure B1: Evolving sample of CPI items for different rolling window sizes. Notes: Items
are included if they fully cover a 6-, 8-, or 10-year rolling windows at each point in time. A shorter
window allows for the inclusion of a larger set of items, but gives a shorter training period for estimation.
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Figure B2: Selected item series. Notes: Data in year-on-year growth rates, standardised. Item identifiers No. 210102 to No. 211010. Series that do not
cover at least the estimation window length of 8 years are dropped from the sample. Discontinued series only enter the estimation for the estimation windows
that they cover in full.
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