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1 Introduction

A classic question in macroeconomics concerns the transmission of monetary policy surprises

into the economy. The interest in this question stems from the notion that empirical impulse-

responses can guide the development of theory (eg, Christiano, Eichenbaum, and Evans,

1999). This research strategy, however, rests on the assumption that one can identify the

relevant impulses (shocks) in the data. The traditional approach to this identification prob-

lem relies on monthly or quarterly vector auto-regressions (VAR) combining macroeconomic

data with a short-term nominal interest rate, taken as a proxy for a policy instrument.

Various identification schemes have been proposed within this approach (see Ramey, 2016,

for a review). What they have in common, however, is that the identified shocks at best

reflect monetary policy surprises relative to the mathematical expectations of the regression

model.1 Furthermore, VAR-based identification is limiting once financial data are included.

How does one invert the reduced-form VAR residuals to identify monetary policy shocks

when, at monthly or quarterly frequency, financial markets react to monetary policy and

policy makers partially base their decisions on information contained in asset prices? At the

same time, ignoring financial data is inefficient, as asset prices may reveal expectations and

uncertainty about future monetary policy and some sectors, for instance the housing market,

are sensitive to asset prices (long-term interest rates).2

High-frequency (HF) data can ameliorate the identification problem (Bagliano and Favero,

1999; Kuttner, 2001; Cochrane and Piazzesi, 2002; Gürkaynak, Sack, and Swanson, 2005a,

are early contributions). The idea is that, up to a measurement error, the announcement of

the outcome of a policy meeting is the only (exogenous) event impacting on asset prices in

a tight enough window around the announcement. Asset price movements in that window

1An alternative identification strategy, proposed by Romer and Romer (2004), is based on central bank
narrative.

2Evans and Marshall (1998) is an early attempt to include long-term interest rates in a macro VAR model
with monetary policy shocks identified in one of the traditional ways. Rudebusch (1998) questions VAR-
based policy shocks. Woodford (2005) provides a theoretical discussion of the key role of long-term interest
rates in the transmission of monetary policy.
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can thus provide instruments for policy shocks.3 The dynamic effects of the shocks identified

by the HF instruments can then be studied in a standard empirical macroeconomic model.

Gertler and Karadi (2015) carry out such an exercise and arrive at a stark conclusion: mon-

etary policy transmits into the economy almost exclusively through changes in term premia,

with expected future interest rates left almost unaffected.4 This finding presents a challenge

to quantitative-theoretical models used for monetary policy analysis. In most models, mone-

tary policy transmits through changes in the conditional mean of the nominal pricing kernel,

not its variance, the relevant part for movements in term premia (eg, Atkeson and Kehoe,

2009). Furthermore, in practice, communication aimed at managing expectations of future

monetary policy is an integral part of modern central banking (eg, Woodford, 2005).

In this paper, we revisit the relevance of expected future interest rates vs. term premia

in the monetary transmission mechanism. Our focus is on the nominal yield curve in the

period 1996-2007, characterized by conventional monetary policy. The analysis consists of

three steps.

First, we employ an estimated affine term structure model (ATSM) to decompose the

HF movements in yields around Federal Open Market Committee (FOMC) announcements

into expected future interest rates and term premia.5 Importantly, the ATSM is estimated

subject to restrictions (Joslin, Singleton, and Zhu, 2011), leading to more precise estimates

of expected interest rates and term premia than those obtained from VARs, the framework

used by Gertler and Karadi (2015).6 The estimates from the restricted ATSM show that

expected interest rates are as important as term premia in explaining yield curve movements,

including those around FOMC announcements. For instance, at the 10-year maturity, the two

3An implicit assumption in this approach is that asset prices reflect all available public information up
to the point of the announcement.

4Term premia reflect risk compensation for holding a long-term bond and can be estimated as a difference
between the observed long-term interest rate of a given maturity and a forecast of the path of the short rate
over that time horizon (ignoring technical details such as measurement errors and Jensen’s inequality).

5ATSMs are the go-to models in empirical finance to study the term structure of interest rates. See
Diebold, Piazzesi, and Rudebusch (2005), Piazzesi (2006), Duffee (2012), or Gürkaynak and Wright (2012)
for an introduction.

6Due to a small sample bias (eg, Bauer, Rudebusch, and Wu, 2012), VARs substantially underestimate
the responses of expected interest rates to current shocks, thus prescribing a bulk of the observed movements
in long-term interest rates to term premia.
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components have about the same variance.7 Second, we use principal components (PCs) of

the estimated HF changes in expectations and term premia around FOMC announcements as

basis to construct orthogonal instruments for monetary policy shocks. A particular rotation

is applied to a subset of the PCs to obtain components with an economic interpretation: (i)

action, taking the form of a change in the current policy rate; (ii) change in the expected

path of future policy rates; and (iii) change in uncertainty about future monetary policy.8

Finally, we use the instruments in a local projections (LP) macro model (Jordà, 2005) to

trace out the dynamic effects of the policy shocks, identified by the instruments, on macro

variables. Most of the estimated responses can be justified through the lenses of existing

theories, although we also document some new patterns. The analysis delivers especially

tight findings for the housing market, a sector which, through mortgage finance, is closely

related to the term structure.9

We view our analysis as the natural next step in the line of research using HF data to iden-

tify monetary policy shocks. The first HF studies used a single asset, fed funds rate futures

for the current month, to identify a single monetary policy shock—an action—capturing an

unexpected change in the current policy rate (eg, Kuttner, 2001; Gürkaynak et al., 2005a;

Beechey, 2007). Recognizing the complexity of monetary policy announcements, the work of

Gürkaynak, Sack, and Swanson (2005b) extended the single-shock approach to two shocks:

action and statement (see also Campbell, Evans, Fisher, and Justiniano, 2012). In this case,

the shocks are identified from HF changes in a spectrum of fed funds rate futures with ma-

turities up to a year. Under the assumption that term premia for such a short horizon are

small, the fed funds rate futures reflect expectations of the policy rate for the coming year.

7In terms of the specific restrictions imposed on the ATSM, we follow two approaches proposed by
Bauer et al. (2012) and Bauer (2018).

8In the literature, the term “target” is sometimes used for what we refer to as “action”; the terms “path”,
“statement” or “forward guidance” are used for what we call “expected path”. As “forward guidance” is
often used specifically in the context of the post-2008 zero-lower bound period, we prefer to avoid this term.
We also prefer the term “expected path” to “path” or “statement” in order to stress that this component is
extracted from the expectations part of the yield curve.

9The findings reported in the main text are based on the ATSM estimated on monthly data, which is the
standard in the literature. In an Online Appendix we confirm that estimates based on daily data, which in
terms of frequency are closer to the HF data, deliver similar properties of the ATSM model.
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In this approach, the statement does not affect the current rate but captures any changes

in expectations for the policy rate one year ahead, not inferred from the action itself.10 We

extend this approach to information contained in the entire yield curve (up to 10-year matu-

rity). This is possible due to the ATSM, which allows us to extract expectations separately

from term premia, while avoiding the problems, in this task, inherent in a VAR. Two or-

thogonal instruments (action and expected path) are extracted from the expectations part

of the yield curve. Unlike action, the expected path component is restricted not to affect

the current short rate. The third orthogonal instrument (uncertainty) is obtained from term

premia. This instrument affects neither the current short rate nor the conditional mean of its

future path and can be interpreted as any residual uncertainty surrounding future monetary

policy not already inferred from the other two components.11 The three instruments have

very different loadings on the HF changes in yields: action has a declining pattern across

maturities, expected path has a tent-like pattern with a peak at the 2-year horizon, and

uncertainty has an increasing pattern. To provide support for the economic interpretation of

the components, we compare the first two components to those obtained by previous studies

from fed funds rate futures (Gürkaynak et al., 2005b) and the third component to implied

and estimated interest rate volatility.12

The interpretation of the three instruments is derived solely from their HF effects on the

yield curve. Further structural content of the shocks they identify is based on the responses

of macro and financial variables in the LP model. The effects of the shock identified by

action are consistent with a standard monetary policy shock in a New-Keynesian model, in-

cluding its extensions with the financial accelerator (Bernanke, Gertler, and Gilchrist, 1999)

10For instance, the FOMC may surprise markets by a wording that makes bond traders revise their
expectations about future monetary policy, even when there is no surprise in the action.

11As expectations and term premia in an ATSM can be correlated, the uncertainty instrument is obtained
from the part of term premia orthogonalised with respect to the two expectations components.

12Swanson (2021) also uncovers three components of monetary policy surprises. However, in each subsam-
ple of his analysis only two components are operative: target and path (which incorporates both expectations
and term premia) in the pre-2008 period and path and large scale asset purchases in the post-2008 period.
Like here, his decomposition is based on the entire yield curve, but without separating expectations from
term premia. Hanson and Stein (2015), Gertler and Karadi (2015) and Nakamura and Steinsson (2018), in
contrast, summarise monetary policy surprises by a single factor, based on either fed funds rate futures or
one-year or two-year government bond rates.
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and time-varying term premia (Rudebusch and Swanson, 2012). The shock identified by

the expected path component is associated with a strong response of interest rate expec-

tations and produces responses of other variables that are consistent with both the Fed

information effect (Nakamura and Steinsson, 2018) and the Fed response to news channel

(Bauer and Swanson, 2020).13 Finally, the responses to the uncertainty component are a

little less clear-cut to map into existing theories. We propose a hypothesis, based on the LP,

that could be explored in future research. In the data, term premia and various measures of

monetary policy uncertainty increase in response to the shock. The effect on output, how-

ever, is mixed and we prescribe it to a fall in excess bond premium (Gilchrist and Zakraǰsek,

2012), a variable capturing tightness in the corporate credit market. Specifically, an increase

in the term premium increases the 30-year mortgage rate. New home sales and demand for

mortgages decline, thus possibly allowing more credit to flow to the corporate sector. This

effect may be counteracting the standard negative effect of uncertainty on output.

For all three instruments, our analysis uncovers a particularly tight connection between

monetary policy and the housing market. Regardless of the shock, an increase in the 10-year

bond yield, no matter whether occurring due to expectations or term premia, is associated

with a similar increase in the 30-year mortgage rate and a sharp contraction in the housing

market (new home sales and house prices).

HF intra-day data have been increasingly used to study various phenomena. Besides the

context most directly related to us, the literature can be divided into two mutually non-

exclusive categories: yield curve decomposition (including real and inflation components)

and identification of shocks. The first category includes, for instance, Beechey (2007),

Beechey and Wright (2009), Bauer (2015), Gertler and Karadi (2015), Hanson and Stein

(2015), and Hördahl, Remolona, and Valente (2015). Daily data are sometimes also used

(Abrahams, Adrian, Crump, Moench, and Yu, 2016). Some studies employ ATSMs, while

others use regressions. The second category includes, eg, Bernanke and Kuttner (2005),

13The local projections alone cannot discriminate between the two mechanisms. In an Online Appendix
we show that the instrument extracted from a model that is subject to the small sample bias is unable to
identify this shock.
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Miranda-Agrippino and Ricco (2015), Nakamura and Steinsson (2018), Cieslak and Schrimpf

(2019), Jarocinski and Karadi (2020), and Bauer and Swanson (2020). We focus on the most

fundamental decomposition of the nominal yield curve, into term premia and expected fu-

ture interest rates, and one specific event, FOMC announcements.14 In terms of the housing

market, a subset of our findings is consistent with those reported by Hamilton (2008), who

follows a different methodology.15

The paper proceeds as follows. Section 2 discusses the HF data, Section 3 introduces the

ATSM and the necessary notation, Section 4 provides an overview of the estimation method

and the restrictions imposed, Section 5 reviews the estimates, applies the model to the HF

data, and carries out the LP analysis. Finally, Section 6 concludes. Robustness checks and

technical details related to the estimation are included in an Online Appendix.

2 High-frequency data

In order to study the HF yield curve reactions, we measure yields at various maturities in

a narrow window around FOMC announcements. In doing so, we build on the literature

studying monetary policy shocks within the HF approach. As noted in the Introduction,

this literature focuses on short maturities, whereas we explore the reaction of the entire yield

curve. Our main HF data source is Refinitiv Tick History. As in the earlier literature, the

surprises are measured in a 30-minute window starting 10 minutes before and ending 20

minutes after the announcement.

We focus on the period January 1996-August 2007, characterized by conventional mon-

etary policy. Unfortunately, the data could be scarce, especially in the 1990s, with only a

dozen of intra-day observations available in some cases. Therefore, for a few announcement

14Swanson (2021) contains references for studies that, unlike us, focus on the post-2008 zero-lower bound
period.

15A part of the literature, Kim and Orphanides (2012) being an early example, complements yield curve
data with surveys of professional economists as a source of data for expected future interest rates. To keep
the paper focused on the improvement of the estimation of the yield curve components relative to VARs, we
confine ourselves only to yield curve data.
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dates our window has to be wider than 30 minutes. Despite this, the estimated changes

in rates are similar to those reported by other studies (eg, Miranda-Agrippino, 2016). At

the beginning of the sample, Treasury bonds with maturities longer than 10 years were

traded relatively infrequently. Therefore, our longest maturity is based on the 10-year Trea-

sury yield series. At medium-term maturities, Treasuries were not as frequently traded as

LIBOR-based swaps (especially in the 1990s). Hence we faced a trade-off between having the

same instrument but captured at different times due to relative illiquidity, or having all rates

captured at the same time but taken from similar rather than the same instrument. We chose

the latter and estimated the HF changes at 2-, 3-, and 5-year maturities from LIBOR-based

swaps, which enabled us to create consistent narrow windows around the announcements.

At the short end, we use the 3-month Treasury bill rate.16

The observed changes across the various maturities around the announcements are shown

in Figure 1, which displays a consistent response pattern across all maturities. Table 1

presents basic statistics for the responses across maturities. Several observations follow.

First, during the sample period, monetary policy surprises were slightly negative on average,

with the shortest maturities affected the most and the impact declining with maturity. Sec-

ond, all maturities display a strong reaction to the announcements, with the largest volatility

occurring at the 2- and 3-year maturity.17 Third, the yield curve tends to respond to the an-

nouncement in a consistent way, as indicated by the positive correlations between reactions

across maturities, although the correlations are declining with maturity. Interestingly, the

responses are highly correlated across medium and long maturities, with all the correlations

between them being around 0.9.

16To analyse the behaviour of the yield curve around the announcements in a systematic way, we con-
structed a consistent yield curve across all maturities, adjusting for observed daily LIBOR spreads. We do
this by estimating the spreads between LIBOR swap rates and the corresponding maturity yields observed
at the close of business on the pre-announcement dates and then apply them to LIBOR rates around the
announcements.

17While the maximum response at the 2- and 3-year horizon persists across various splits of the sample,
the relative volatility of the 3-month vs. 10-year maturity has changed towards the end of our sample. In
the subsample 1996-2003, the standard deviation of the 3-month T-bill rate was 5.5 vs. 4.3 for the 10-year
bond. This has reversed to 2.0 vs. 4.26 in the period 2003-2007.
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3 The ATSM framework

The aim of this section is to provide a brief overview of the ATSM and introduce concepts

and notation used in the rest of the paper. An underlying assumption behind an ATSM is

the fundamental principle of finance, applied to default-free zero-coupon bonds of different

maturities. Specifically,

(j)
Et

[
Mt+1Rt+1

]
= 1, (1)

where the expectation operator is with respect to information in period t, the scalarMt+1 > 0

(j)
is a kernel that prices all bonds and Rt+1 is a one-period gross return on a bond of any

(j) (j 1) (j) (j)
maturity j. That is, Rt+1 = Pt+1

−
/Pt , where Pt is the price in period t of a bond of

(0)
maturity j, which becomes a bond of maturity j − 1 one period later. Of course, Pt = 1,

as one dollar today has a value of one dollar.

ATSMs assume a specific functional form for the pricing kernel

1− ′ ′
logMt+1 = rt + λ λt + λ εt+1. (2)

2 t t

The popularity of this functional form lies in its practicality: when combined with the state

space described below, it leads to a convenient affine solution for yields satisfying the no-

arbitrage condition (1). Here, rt is the continuously compounded short-term nominal interest

rate, λt is a N × 1 vector of risk prices for N underlying risk factors, and εt+1 is a N × 1

vector of innovations specified below. The N risk factors summarise the state space and are

assumed to follow a first-order Gaussian VAR

Xt = μ+ ΦXt−1 + Σεt, (3)

with εt ∼ N(0, IN). This VAR process is referred to as the ‘P-measure’ and the implied

dynamics as the ‘P-dynamics’.

Both the short rate and the risk prices are assumed to be related to the N factors through

8



affine mappings

′
rt = δ0 + δ1Xt, (4)

λt = Σ−1(λ0 + λ1Xt), (5)

where δ0 δ1, Σ
−1, λ0, and λ1 are commensurate to the variables. In particular, λ1 is N ×N .

That is, the risk price of a particular factor can be affected by all factors. Observe that

under risk neutrality (zero risk prices), the pricing kernel is simply Mt+1 = exp(−rt). That

is, future cash flows are discounted with the short rate. Equations (1)-(5) summarize the

ATSM.

(0)
Starting with Pt = 1, the model can be solved recursively for equilibrium bond prices

ˆ(see, eg, Gürkaynak and Wright, 2012).18 The vector of any J yields, Yt, can be written as

Ŷt = A+ BXt, (6)

ˆwhere Yt is a J × 1 vector. Equation (6) describes the model-implied yield curve—the cross-

section of yields at a point in time that is consistent with no-arbitrage. (In an empirical

implementation of the model, model-implied yields can potentially differ from observed yields

due to measurement error and the lack of fit.) The arbitrage-free loadings A and B are

non-linear, recursive, functions of the model parameters δ0, δ1, λ0, λ1, μ, Φ, and Σ (see,

eg, Gürkaynak and Wright, 2012). It can then be shown that the coefficients A and B in

equation (6) are unaffected by switching to risk neutral pricing, Mt+1 = exp(−rt), and a

risk-adjusted law of motion for the risk factors

Xt = μQ + ΦQXt−1 + Σεt, (7)

18Given the functional assumptions on the pricing kernel and the state space, the solution is an affine
mapping from the factors to the logarithm of bond prices. Continuously compounded yields can then be

(j)
inferred from the bond prices through standard discounting, Pt = exp(

(j) (j)
− (j)
jyt ), which can be inverted to

obtain yields as yt = (−1/j) logPt . Yields are thus also affine in factors. For j = 1, we get the short
rate: y1t = rt.
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where

μQ = μ− λ0 and ΦQ = Φ− λ1. (8)

The VAR process (7) is referred to as the ‘Q-measure’, describing the ‘Q-dynamics’. That

is, dynamics under risk neutral pricing. Observe that under risk neutral pricing, the model

is parameterised in terms of δ , δ Q
0 1, μ , ΦQ, and Σ. Thus, to derive the cross-sectional

implications of the model summarized by equation (6), all that is required is the Q-measure.

The knowledge of the P-measure and the risk prices λt is not required. To put it differently,

the cross-section identifies the parameters of the Q-measure, not the P-measure.

Under the Q-measure, the expected value of the short rate j periods ahead can be ob-

tained from the short rate equation (4) and the VAR process (7). The effect of Xt on the

expected value is given by (ΦQ)j. The effect of Xt on the average expected short rate over

the forecast horizon j under the Q-measure is thus

1
Bj = δ1

′ [I + ΦQ +
j

· · ·+ (ΦQ)j−1
]
, (9)

which is the jth row in the loading matrix B in equation (6). Under the P-measure, the

expected value of the short rate j periods ahead can be obtained from the short rate equation

(4) and the VAR process (3). In this case, the effect of Xt on the expected value is given by

Φj and the average expected short rate over the forecast horizon is given by

BP 1
j = δ′

j 1

[
I + Φ + · · ·+ Φj−1

]
. (10)

≡ − P (j)
The difference Cj Bj Bj is the effect of Xt on the term premium in yield yt and,

as follows from the relationship (8), depends on λ1. (Observe that B = BP + C.) Thus,

while the knowledge of the P-measure is not required for the cross-sectional implications of

the model, it is necessary for deriving a decomposition between term premia and expected

interest rates. Observe that the P-measure can be identified either from the time-series of

Xt and equation (3) or the cross-section of yields and the knowledge of λ0 and λ1 through

10



the relationship (8).

4 Estimation of the ATSM

This section provides an overview of the estimation method and the restrictions imposed.

All technical details are contained in the Online Appendix.

4.1 The importance of restrictions

In principle one could estimate a VAR on yields, and possibly macro variables, and then

iterate it forward j times to obtain forecasts of the short rate between now and the jth period

ahead, thus obtaining the expectations and term premium components for the jth maturity

(eg, Gertler and Karadi, 2015). There are two problems with this approach. First, the VAR-

based forecasts of future yields of different maturities may imply arbitrage opportunities.

Second, nominal interest rates are highly persistent, which, in samples of the length typically

observed, leads to both a downward bias in the persistence of the VAR process and high

standard errors of its estimates. This problem arises because we do not observe frequent

enough mean reversions of interest rates in the data to estimate the parameters of the

driving process well.19

By construction, ATSMs resolve the first issue. ATSMs can also resolve the second issue,

but only if they are estimated subject to restrictions. As ATSMs are estimated on both time

series and cross-sectional data, they use more information than a VAR. In particular, the

cross section of yields at a point in time can potentially provide very precise information for

the model dynamics.20 However, the cross-section identifies only the parameters of the Q-

measure and to arrive at a decomposition into term premia and expectations, the knowledge

19See the classic results of Kendall (1954), Nicholls and Pope (1988), and Shaman and Stine (1988) and,
for a discussion in the context of ATSMs, Bauer et al. (2012). As demonstrated by Pierse and Snell (1995),
increasing the sampling frequency does not resolve the problem.

20To illustrate this, suppose investors were risk neutral (ie, prices of risk were equal to zero) and so observed
yields were equal to expected future interest rates. Then one could simply read off expected future interest
rates from the cross-section, thus avoiding the problematic time series data altogether.
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of the parameters of either risk prices or the P-measure is required. Further, Joslin et al.

(2011) demonstrate that in a canonical ATSM—the maximally flexible model that is sub-

ject only to normalizing restrictions—the cross-sectional data convey no information for the

estimation of the other parameters (see also Hamilton and Wu, 2012). As a result, the P-

dynamics are solely estimated from time series data and the estimates of expected interest

rates (and thus term premia) are equivalent to those obtained from a simple VAR.21 To

improve the estimates relative to a VAR, the ATSM is estimated subject to restrictions to

correct for the downward bias in the underlying VAR.

4.2 Model nomenclature: M0, M1 and M2

To ensure identification, we employ the normalising restrictions of Joslin et al. (2011), leading

to their canonical representation. Under this representation, the N risk factors are defined

as linear combinations of yields, Xt = WŶt, where W is a weighting matrix, and the model

parameters are mapped into a set of unknowns kQ, φQ, μ, Φ, and Σ, which fully characterize

the P- and Q-dynamics, (μ,Φ) and (μQ,ΦQ) respectively. Here, kQ determines the mean of

the short rate under the Q-measure and φQ is a N × 1 vector that contains the eigenvalues

of ΦQ. Following Joslin et al. (2011), the risk factors Xt are calculated as the first N < J

PCs of the yields and W is the associated N×J loading matrix. Finally, the observed yields

ˆYt are assumed to be measured with error: Yt = Yt + et. Under the assumption that Xt

is observed in the estimation (ie, N linear combinations of yields using the weights W are

estimated exactly by the model), the J − N independent measurement errors are normal

with variance σ2
e . We use N = 4, with the first three PCs resembling the standard level,

slope and curvature factors.

We estimate three versions of the model. Model M0 is the maximally flexible benchmark

that is only subject to the Joslin et al. (2011) normalising restrictions. As a result, the

21Conceptually, the Gertler and Karadi (2015) results can thus be viewed as estimated from an unrestricted
ATSM.
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estimates of the parameters of the P-measure (μ, Φ) are based only on time-series data.22

Model M1 places zero restrictions on λ0 and λ1.
23 To impose such restrictions, we use a

stochastic search variable selection (SSVS) algorithm employed by Bauer (2018). It is clear

from equation (8) that setting some risk prices to zero has the effect of ‘pulling up’ the VAR

parameters μ and Φ towards μQ and ΦQ, thus ameliorating the small sample bias. Model M2

is based on the analysis of Bauer et al. (2012), who propose a statistical method to estimate

and correct the small sample bias in μ and Φ. In this case, the model is estimated subject to

the restriction that, assuming it is the data-generating process, it produces the same small

sample bias as in the data. As a result, this procedure increases the persistence of the VAR

under the P-measure, relative to model M0.

4.3 Bayesian procedure

In the Joslin et al. (2011) canonical representation, the likelihood function factors into two

components

f (Yt|Y Q Q 2
t ,−1 Θ) = f

(
Yt|Xt, φ , k ,Σ, σe

)× f(Xt|Xt−1, μ,Φ,Σ), (11)

where Θ =
(
φQ, kQ,Σ, σ2

e , μ,Φ
)
denotes the parameters to be estimated. Note that the first

term in this factorisation is the ‘Q-likelihood’, as it incorporates information from the cross-

section of yields. In contrast, the second term is the ‘P-likelihood’, based on information

derived from the time-series of the risk factors.24

We employ a Bayesian approach to estimate the three versions of the model, using the

Gibbs sampling algorithm proposed by Bauer (2018). The Bayesian approach is particularly

useful as it provides a systematic and efficient method to impose restrictions on μ and Φ (or

equivalently on λ0 and λ1) in the likelihood function (11). This means that there is no need

22The parameters of risk prices are then obtained residually as λ0 = μ− μQ and λ1 = Φ− ΦQ.
23This strategy has been implemented, in various forms, by Cochrane and Piazzesi (2008), Duffee (2011),

Joslin et al. (2011), Joslin, Priebsch, and Singleton (2014), and Bauer (2018).
24As Joslin et al. (2011) show, the fact that the two likelihoods share Σ does not affect the estimates of

the other parameters.
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to carry out an explicit model comparison exercise that can involve estimation of a large

number of restricted specifications. Moreover, maximisation of the likelihood of the ATSM

is a non-trivial task that is made even more challenging by the small sample of the typical

data set.25

4.4 Data for the ATSM estimation

The three versions of the model are estimated on monthly data for yields at maturities

of 1, 3 and 6 months and 1 through 10 years. That is, thirteen maturities in total. The

data at maturities of one year and above are obtained from the Federal Reserve Board

database on the nominal yield curve (the Gurk¨ aynak-Sack-Wright data set), with rates at

shorter maturities taken from the FRED database. The sample runs from January 1990 to

December 2008.26

5 Results

The results are presented in the following steps: (i) we inspect the impact of the restrictions

on the estimated models (Section 5.1), (ii) extract and analyse three main components of

monetary policy surprises from the HF data (Sections 5.2-5.4), and (iii) use the components

as instruments in a local projections model (Section 5.5).

5.1 Inspecting the estimated ATSMs

All models display a good fit to the monthly data with root mean squared errors that are

25Bayesian estimation does not rely on maximisation of the likelihood function and, instead, aims to
approximate the joint posterior distribution of the model parameters. MCMC methods make this task
easy by working with the two conditional distributions associated with the joint posterior. Finally, as the
Bayesian approach approximates the posterior distribution, error bands for parameter estimates are obtained
directly. In contrast, frequentist approaches rely on asymptotic standard errors that may be inaccurate in
small samples; bootstrap methods in the ATSM case have high computational costs.

26As noted in the Introduction, for robustness, the Online Appendix reports estimates obtained also on
daily data.
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below five basis points.27 Figure 2 shows the estimated posterior distributions of the largest

eigenvalues of ΦQ and Φ. Under the Q-measure, the three models have a very similar profile

in terms of persistence. This, of course, is expected as the estimates are based on the same

cross-sectional information and the partial likelihoods for the Q-measure differ across the

models only in terms of Σ. The results, however, are very different for the eigenvalues under

the P-measure. The maximally flexible model has the lowest median persistence out of the

three models and the widest posterior distribution. Restrictions on risk prices or statistical

bias correction thus lead to a substantial increase in persistence, as well as in the precision

of the estimates.28 As a result, at the median estimates, in M1 and M2 the volatility of

expectations is about twice as high as in M0 and roughly at par with the volatility of term

premia.

5.2 High-frequency yield curve decomposition

˜The decomposition is based on the median estimates. Let ΔXt denote the vector of changes

˜in the risk factors in the 30-minute window around FOMC announcements. ΔXt is obtained

as the first four PCs of the changes in yields in that window. Recall that the HF data are

for maturities of 3 months, and 2, 3, 5, and 10 years. The HF changes in term premia and

˜expectations are then computed using ΔXt and the estimated models.29

In terms of the notation of Section 3, the vector of changes in the expectations component,

˜ ˜for the five maturities, is given by ΔY E
t = BPΔXt and the vector of changes in term premia is

27The estimates of the P and Q parameters, and the implied λ’s, are shown in the Online Appendix. There
we also report results for the daily models, as well as additional results for the monthly models, including
plots of the time series of expectations and term premia over time and their correlations with economic
activity over the business cycle. Regarding the latter, here we only note that in M1 and M2 the 10-year
term premium is counter-cyclical, whereas in

28
M0 it is uncorrelated with the business cycle.

To illustrate this, take the median values to the power of 120 to derive their effect on excepted interest
rates ten years ahead. This exercise results in 0.12, 0.41, and 0.63 percentage point increase in the nominal
short rate in ten-years time for the three models respectively, for one percentage point increase in the current
short rate.

29Given that the set of maturities in the HF dataset is only a subset of the maturities used to estimate
the models, one may wonder how different the estimated parameters of the ATSMs would be if only the
maturities of the HF dataset were used in the estimation. It turned out that the estimates are almost
identical. The maturities in the HF dataset thus seem to capture all of the main movements in the yield
curve over time.
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Ỹgiven by Δ TP
t = C ˜ΔXt, where B

P and C are derived from the parameters of the estimated

˜ ˜ ˜models as described in Section 3. We also derive ΔYt = BΔXt, where ΔYt is a vector of

changes in the fitted HF yields and B = BP + C. An implicit assumption in using the

estimated ATSM for the HF decomposition is that a model estimated on monthly data is

suitable to describe the yield curve at the HF. The fact that the models estimated on daily

data (see the Online Appendix) have similar properties as the monthly models gives us

confidence that this assumption, for our purposes, is reasonable.30

Figure 3 provides a summary of the movements of the yield curve around FOMC an-

nouncements explained by the three models. It plots the volatility curve of the HF changes

in expectations and term premia across maturities (refer back to Table 1 for the volatility of

the changes in the observed yields). The figure demonstrates that imposing restrictions on

the estimated ATSM increases the reaction of expected future interest rates to FOMC an-

nouncements. While in the unrestricted model M0, term premia at the 10-year horizon, for

instance, are significantly more volatile than expectations, the relative volatility is reversed

in model M1 and in model M the variance of the two components is roughly at par.312

Before moving on to the next stage, the HF reaction of the 3-month maturity (the shortest

maturity at our disposal at the HF) deserves attention. In Figure 3, all three models display

a standard deviation of term premia at the 3-month maturity of about one basis point. In

the estimated ATSM, the shortest maturity is one month. At that maturity, risk premia are

zero. There are, however, some nonzero elements in the C matrix at the 3-month maturity,

especially for the fourth risk factor. The variation in risk premia at the 3-month maturity

observed in Figure 3 occurs due to a few data points in the HF sample at which the typically

unimportant fourth risk factor had an unusually large realisation. However, the restrictions

imposed below effectively eliminate the effects of these sporadic events from the subsequent

analysis.

30The root mean squared error of the fit of the models at the HF is about three basis points across all
models (monthly and daily), comparable to their fit at the monthly and daily frequencies.

31Recall that term premia and expectations can be correlated. The variances of the two components thus
do not necessarily add up to the variance of the respective yield. The solid lines at the bottom of the charts
in Figure 3 plot the correlation at a given maturity.
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5.3 Instruments for policy shocks

The instruments are obtained in three steps. First, we decompose the HF changes in ex-

pectations into PCs and select the most important PCs. Second, we orthogonalise term

premia with respect to the selected PCs of expectations. The PCs of expectations are mu-

tually orthogonal by definition. However, expectations and term premia (and thus their

respective PCs) can be correlated. The second step addresses this correlation, leaving us

with movements of term premia that are orthogonal to the PCs of expectations. We then

carry out a PC decomposition of the part of term premia that is orthogonal to the PCs of

expectations. Finally, in the third step, we apply a particular orthogonal rotation to the PCs

of expectations and the PCs of the above part of term premia to assign them an economic

interpretation.

˜ ˜Formally recall that ΔY E P ˜, t = B ΔXt, where ΔXt is the HF change in the N risk factors

(N ˜ ˜= 4), ΔY E
t has a dimension J̃ × 1 (J = 5), and BP is determined by the parameters of

˜the estimated model. A PC decomposition of expectations returns: ΔY E
t = ΩEPE

t . Here,

ΩE ˜is a J × N loadings matrix and PE
t are the corresponding PCs. The dimension of the

PCs is equal to N , as the changes in expectations are constructed from N risk factors.32 We

select the first N ˜
E ≤ N most important PCs. Thus, ΔY E

t ≈ ΩE
1 PE

1t, where the subscript “1”

refers to the selected PCs and their corresponding loadings matrix, which is a partition of

ΩE . The approximation sign denotes the fact that we are not using all but only the most

important PCs. To ensure orthogonality of the PCs of term premia, with respect to the

˜selected PCs of expectations, we run the following regression for each j = 1, ..., J

˜ΔY TP
jt = αj + β� E

j P1t + ξjt, (12)

˜where ΔY TP
jt is the j ˜ ˜th element of ΔY TP

t = CΔXt, with C determined by the parameters

of the estimated model. Let ΔỹTP
t = [ξ1t, . . . , ξJ̃t]

� collect the parts of term premia that

32 ˜ ˜ ˜A PC decomposition of J time series returns J PCs. However, as there are only N < J risk factors, the
˜remaining J −N PCs have zero variance and can thus be ignored.
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are orthogonal to the selected PCs of expectations. We then carry out a PC decomposition

of ΔỹTP
t , retaining only the first NTP ≤ N most important PCs, denoted by PTP

1t . Thus,

ΔỹTP
t ≈ ΩTP

1 PTP
1t . This procedure leaves us with a vector of mutually orthogonal components

of the HF changes in expectations and term premia, [PE
1t ,PTP

1t ]�. Orthogonal matrixes

QE and QTP , which have dimensions NE × NE and NTP × NTP , respectively, are then

applied to PE
1t and PTP

1t , respectively, producing new components PE
1t
∗ ≡ QEPE

1t and PTP
1t

∗ ≡
QTPPTP Ỹ1t . The associated loadings for Δ E

t and ΔỹTP
t of these rotated components are,

respectively: ΩE
1
∗ ≡ ΩE

1 (Q
E)−1 and ΩTP

1
∗ ≡ ˜ΩTP TP

1 (Q )−1. That is, ΔY E
t ≈ ΩE

1
∗PE

1t
∗ and

ΔỹTP
t ≈ ΩTP

1
∗PTP

1t
∗.

The rotated components [PE TP
1t
∗,P1t

∗]� are the instruments. By construction, they are

orthogonal to each other. By imposing the rotation on the PCs of expectations and orthog-

onalised term premia, we are implicitly imposing a rotation on the underlying risk factors.

Working with the PCs of expectations and term premia, however, is more intuitive and is

closer to the practice in the literature.33

5.4 Implementation and inspection of the instruments

We have shown that the restricted models M1 and M2 generate substantially stronger

responses of expected interest rates to FOMC announcements than modelM0. To economize

on space, we therefore continue only with M1 (similar results for M2 are contained in the

Online Appendix). Following the steps described above, the data suggest NE = 2: the

first two PCs of expectations account for 98.6% of the total variance of expectations across

maturities, with the respective contributions of 87.6% and 11%. The orthogonalised term

33The mapping between the two is as follows. Start with the fact that expectations can be expressed
˜either in terms of their PCs or the risk factors. Thus, var(ΔY E
t ) = ΩEΛE(ΩE)� = BPΛX(BP)�, where

ΛE = PE
t (PE

t )� ˜ ˜is a diagonal covariance matrix and ΛX = ΔXt(ΔXt)
� is also a diagonal covariance matrix,

as both PE ˜and ΔX E P E X P P
t t are PCs. In general, however, Ω = B and Λ = Λ and B is not orthogonal (B

is derived from the ATSM, not a PC decomposition). Nevertheless, there exists a (N ×N) matrix H such
˜that var( Y E P 1 X P 1 E ˜ E ˜Δ t ) = (B H− )HΛ H�(B H− )�. We can thus relate Pt to ΔXt as Pt = HΔXt, where

H = (ΩE)�BP. The rotated PCs of expectations are thus related to the risk factors as E∗ E
t = QE

t =
QE ˜

P P
HΔXt. When the rotation is applied only to a subset of E

t , such as the NE most important PCs, the
relationship is QE E

P
PE ˜
1t = QEH1ΔXt, where Q is NE ×NE and H1 is the partition of H commensurate to

the first NE PCs. The same applies to the orthogonalised term premia.

� �
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premia are explained by two PCs, which account, respectively, for 92% and 8% of their

variance.34

The two PCs of expectations, PE
1t, and the two PCs of orthogonalised term premia, PTP

1t ,

are rotated to create [PE
1t
∗,PTP

1t
∗]� such that ΩE

1
∗ and ΩTP

1
∗ have the following properties:

(i) in ΩE
1
∗ the first element in the second column is equal to zero and (ii) in ΩTP

1
∗ the first

element in the first column is equal to zero. This means that only the first component of

PE
1t
∗ affects the 3-month T-bill rate; the second component of PE

1t
∗ does not. Also, the first

component of PTP
1t

∗ does not affect the 3-month T-bill rate, while the second one does.35

The rotation of PE
1t is based on Gürkaynak et al. (2005b). Given the above restrictions,

the first component of PE
1t
∗ is interpreted as a surprise in action, while the second component

is interpreted as a surprise in expected path. The expected path component captures any

surprise in the FOMC announcement that affects expectations of future policy rates above

and beyond the information already inferred from action. Following the same logic, we

interpret the first component of PTP
1t

∗ (the one that does not affect the 3-month T-bill

rate) as capturing any surprise in the FOMC announcement affecting perceived uncertainty

surrounding the expected path of policy rates, not already inferred from the action and

expected path components. We refer to it as a surprise in uncertainty.36 A number of studies

have established that central bank communication contains elements affecting uncertainty

about future monetary policy, as perceived by financial markets. For instance, Swanson

(2006) shows that improvements in Fed communication since the 1990s have substantially

reduced policy rate uncertainty. Wright (2011) demonstrates that a decline in inflation

34The first two PCs of raw term premia (ie, before they are orthogonalised with respect to the PCs of
expectations) make up 78% and 21% of the total variance of raw term premia. Their correlations with
the first two PCs of expectations are significantly different from zero only in the case of the second PC of
expectations (around -0.45 for both PCs of term premia). These statistical relationships get picked up by
the orthogonalisation regressions (12). The R2s of the regressions for the five maturities are 0.30, 0.35, 0.32,
0.16, and 0.02, respectively. The regressions thus do not explain much of the term premia at the 5- and
10-year horizon. (The positive correlations between expectations and term premia at the 5- and 10-year
horizon observed in Figure 3 are mainly due to the third PC of expectations.) As a result, term premia at
the 5- and 10-year horizon are almost completely explained by the PCs of orthogonalised term premia.

35Before the rotation is applied, [PE
1t,PTP

1t ]� are normalised to have a unit standard deviation, a standard
normalisation required for identification.

36Husted, Rogers, and Sun (2020) follow a similar orthogonalisation strategy with respect to action and
expected path, although in a different framework, to isolate the marginal effect of an uncertainty factor.
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uncertainty, achieved through advances in the monetary policy framework, has reduced term

premia.37

There is no degree of freedom left to impose restrictions on the second component of

PTP
1t

∗, whose presence in the analysis is a necessary consequence of the fact that there are

four risk factors in the ATSM and term premia have been orthogonalised with respect to two

PCs of expectations.38 This “residual” component is thus free to affect the 3-month T-bill

rate. Nevertheless, its contribution is visible only on a few occasions in the HF sample, as

shown in the Online Appendix (these occasions are related to the unusually large realizations

of the generally small fourth risk factor in the ATSM, see the discussion in Section 5.2). Its

contribution to other maturities is equally small; at the 10-year horizon it is minuscule. We

thus leave it out from the subsequent analysis and work with three instruments: action,

expected path and uncertainty.

Table 2 reports the loadings of the five maturities in the HF dataset on the three in-

struments (ie, it reports the first and second column of ΩE
1
∗ and the first column of ΩTP

1
∗).

The loadings are normalized relative to the loading at the two-year horizon to allow easy

comparison with other studies. The patterns clearly differ across the three instruments.

Action has a declining pattern across maturities, expected path has a tent-like pattern with

a peak at the 2-year horizon, and uncertainty has an increasing pattern. Different com-

ponents of policy announcements thus give rise to very different HF reactions of the term

structure. Gürkaynak et al. (2005b) extract their two components, target and path from

a spectrum of fed funds futures rates and regress the HF changes in longer maturities on

the two components. Kuttner (2001) carries out the same exercise for a single target com-

ponent, extracted from a single fed funds futures rate.39 The declining pattern exhibited

37Blinder, Ehrmann, Fratzscher, de Haan, and Jansen (2008) provide a thorough review of an early liter-
ature on central bank communication, including its effects on monetary policy uncertainty; Tillmann (2020)
contains a number of recent references on monetary policy uncertainty and term premia.

38The 2 × 2 rotation matrix QTP allows for only four restrictions. One is the orthogonality of the two
components, other two impose normalised unit variance on the factors, and the fourth is the zero response
of the 3-month T-bill rate to the first component.

39There are some differences across the studies and ours in terms of the maturities and the period covered.
Nevertheless, relative to other studies in the literature, the time span is quite similar, in the sense that it
focuses on the pre-2008 period of conventional monetary policy.
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by our action component is consistent with the target component in both Kuttner (2001)

and Gürkaynak et al. (2005b). Our expected path component has a similar pattern as the

Gürkaynak et al. (2005b) path component.

The contributions of the three components to the HF changes in yields can be observed

in Figure 4, for the 3-month, 5-year and 10-year maturities. By construction, only action

affects the 3-month maturity. The contribution of this instrument declines with maturity.

Expected path is important both at the 5- and 10-year maturity, while uncertainty has

clearly the largest impact at the 10-year maturity. An interesting aspect of the figure is

an apparent decline in the importance of uncertainty, and an increase in the importance of

expected path, in contributing to the movements at the 10-year maturity from about 2001.

This finding can be interpreted, at least partially, as being in line with the conclusions of

Swanson (2006) and Wright (2011) that better Fed communication and transparency since

the late-1990s have reduced monetary policy uncertainty.40

The bottom chart of Figure 4 shows that two (positive) realisations of the uncertainty

component stand out: February 3, 1999 and January 3, 2001. The February 3, 1999, meeting

was not accompanied by a statement (before May 1999, statements were not issued after

every meeting). Based on the market commentary, a justification for the increase in the

uncertainty component could be that the market was speculating if or when the Fed may

embark on a tightening cycle, after the policy rate was cut on three occasions in the previous

quarter in fear of a recession that did not materialise.41 On January 3, 2001, FOMC cut

the policy rate by 50 basis points, following a conference call, which came nearly four weeks

ahead of the regularly-scheduled policy meeting. According to market commentary, this

emergency meeting caught most investors off guard.42

To cross-check the economic interpretation of the instruments, Figure 5 compares the

first two instruments with the target and path components derived from fed funds futures

40In principle, uncertainty could be about the underlying state of the economy, the transmission mecha-
nism, and the response function of monetary policy with respect to the state of the economy. The evidence
in Swanson (2006) and Wright (2011) concerns the last type of uncertainty.

41Source: https://money.cnn.com/1999/02/03/economy/fed/.
42Source: https://money.cnn.com/2001/01/03/economy/fed/.
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by Gürkaynak et al. (2005b), for the part of the sample where our and their sample overlap.

The third instrument is compared with two popular proxies for monetary policy uncertainty:

implied volatility from options on fed funds futures or swap rates (eg, Swanson, 2006; Wright,

2017) and estimated interest rate uncertainty (Jurado, Ludvigson, and Ng, 2015). These two

proxies of uncertainty are for daily, rather than intra-day, changes bracketing the FOMC an-

nouncements. For implied volatility we use options on one-year swap rates; interest rate

uncertainty is estimated as time-varying volatility of the forecast error in forecasts of the

3-month T-bill rate one year ahead.43 Given that our instruments are derived from differ-

ent data than any of the measures they are compared with, we would not expect perfect

correspondence. Nevertheless, Figure 5 reports that in all four cases there is a statistically

significant positive relationship, with the p-values in all but one case below 1% (below 5%

in the remaining case).44

5.5 Local projections

To estimate the dynamic impact of policy shocks on macroeconomic and financial variables

of interest, we use Bayesian local projections, introduced by Miranda-Agrippino and Ricco

(2015). The Bayesian approach addresses concerns regarding efficiency of standard LP esti-

mates.45 As in Jordà (2005), the model is

P

Z = c(h)
(h) (h)

t+h + B1 Zt +
∑

bj Zt−j + vt+h,
j=1

43Kaminska and Roberts-Sklar (2018) provide a list of various measures of monetary policy uncertainty
proposed in the literature, including those based on computational linguistics and surveys. Most of these
measures, however, are available only at monthly or lower frequency.

44Interestingly, the R2 in the regression of the expected path component on the Gürkaynak et al. (2005b)
path component raises from under 0.1 before 2000 to 0.35 in 2004, while the slope coefficient raises from
0.2 in 1996 to 0.65 in 2004 (the estimates are based on time-varying coefficient regression, using the Gibbs
sampling algorithm proposed by Cogley and Sargent, 2002). It appears that as the Fed communication has
improved over time, the information content about the expected future path of policy rates obtained from
different markets got more aligned.

45Technical details and sensitivity analysis are contained in the Online Appendix.
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where Zt is a vector of the M variables of interest, h is the impulse-response horizon

and vt+h denotes residuals. The impulse-responses for the shocks of interest at horizon

(h)
h can be calculated as B1 A0, where A0 denotes the contemporaneous impact matrix.

The contemporaneous impulse-responses in a LP are equivalent to those in a VAR (see

Miranda-Agrippino and Ricco, 2015). A column of the A0 matrix corresponding to a given

shock can thus be estimated from residuals of a VAR (in Zt) and a HF instrument using

the method of Mertens and Ravn (2013). The three HF instruments identify three different

contemporaneous responses at the monthly frequency (columns of A0), A0,k, k = 1, 2, 3. The

(h)
dynamic impulse-responses in the LP model are then computed as B1 A0,k.

The LP model is estimated on monthly data for 1990-2007, a period typical for studies

that focus on conventional monetary policy.46 The benchmark model has the following

variables: log of industrial production, the CPI inflation rate, the Gilchrist and Zakraǰsek

(2012) excess bond premium (EBP), and the first two PCs of yields that were used as

risk factors in the ATSM. The first three variables are standard in the empirical macro

literature.47 The two PCs are included as a summary statistics for the responses of the

yield curve (they account for 99% of the total variation in yields across maturities at the

monthly frequency) and underpin the responses of the 10-year yield and its expectations

and term premium components. Twelve lags are used as controls. Then additional variables

are added one by one, including their twelve lags as controls:48 the 30-year mortgage rate,

implied volatility used in Section 5.4, the Husted et al. (2020) monetary policy uncertainty

index (MPU)49, the log of S&P 500, the log of real house prices, and the log of new single-

46As in Miranda-Agrippino and Ricco (2015), the prior distributions are set using a training sample, which
spans the period 1982-1989.

47The excess bond premium is the component of the spread between an index of rates of return on corporate
securities and a similar maturity government bond rate that is left after the component due to default risk
is removed. It is typically interpreted as a measure of tightness in the credit market for non-farm business
sector.

48In principle, this can change the responses of the original variables, but in practice the responses remained
similar. The alternative is to have a larger set of variables from the outset, but this is difficult from a
computational view point due to the relatively small sample size.

49This is a broader measure of monetary policy uncertainty than implied volatility, derived from media
analysis using computational linguistics.
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family home sales.50

Figures 6-8 report the findings. The responses to the shock identified by the action in-

strument (Figure 6) appear to be broadly consistent with responses to a standard Taylor

rule shock in a New-Keynesian (NK) model. Industrial production declines and inflation

also exhibits a declining tendency. As in a version of the NK model with a financial ac-

celerator (eg, Bernanke et al., 1999), EBP rises. The 10-year bond yield at the monthly

frequency initially declines. A number of NK models in which the implicit inflation target

is not constant have this property. In, eg, Gürkaynak et al. (2005a) the decline occurs due

to expectations, whereas in Rudebusch and Swanson (2012) it is due to term premia. The

responses in Figure 6 give more support to the latter. The observed decline in the term

premium is accompanied also by initial reductions in monetary policy uncertainty, exhibited

by both proxies used. The S&P500 falls, which is consistent with the standard discount fac-

tor channel (Bernanke and Kuttner, 2005).51 Finally, the 30-year mortgage rate essentially

mimics the 10-year bond yield. The housing market variables (house prices and new home

sales) in turn mimic the mortgage rate, but with a negative sign.52

The responses to the shock identified by the expected path instrument (Figure 7) are

markedly different from the responses to the shock identified by action. Specifically, in-

dustrial production and inflation increase. Also the 10-year bond yield increases and the

increase is mainly due to an increase in the expectations component. The S&P500 rises too

and there is not much change in the two measures of monetary policy uncertainty. These

responses are suggestive of either the Fed information effect (Nakamura and Steinsson, 2018)

or the Fed response to news channel (Bauer and Swanson, 2020).53 If the Fed information

effect is present, the instrument identifies a revelation, by the FOMC announcement, of a

positive news about the future state of the economy, which was not in the public domain

50Except the excess bond premium, implied volatility, the MPU index, and the yield curve data, the data
come from either FRED or Haver.

51See also the ‘monetary policy shock’ in Jarocinski and Karadi (2020).
52The negative relationship between the mortgage rate and the housing market variables is in line with

ˇthe price effect of monetary policy in Garriga, Kydland, and Sustek (2017).
53See also the ‘central bank information shock’ in Jarocinski and Karadi (2020).

24



before the FOMC meeting. If the Fed response to news channel is present, the instrument

instead identifies a larger than expected upward adjustment in the Fed’s assessment of the

future path of monetary policy, in response to a positive news already in the public domain.

On the basis of the LP alone, it is not possible to discriminate between the two theories

(see Bauer and Swanson, 2020, for how to discriminate between the two theories). Although

both theories are based on a positive underlying news, the housing market contracts, as the

30-year mortgage rate increases in line with the 10-year bond yield.54

Finally, Figure 8 contains responses to a shock identified by the uncertainty instrument.

Supporting the uncertainty interpretation of the instrument, the two proxies of monetary

policy uncertainty rise on impact. The term premium at the monthly frequency also in-

creases, accompanied by an increase in the expectations component, leading to an increase

in the 10-year yield. The responses of industrial production and inflation, however, do not

conform to the standard view of the macroeconomic effects of uncertainty shocks (Bloom,

2009) and the S&P500 remains broadly flat. According to the standard theory, output and

prices should decline in response to an exogenous increase in uncertainty. However, it is

plausible that general equilibrium effects, not taken into account in these models, may in

some cases counteract the direct effect of uncertainty. The responses in Figure 8 suggest one

such mechanism. The increase in the 10-year bond yield is followed by a similar increase in

the 30-year mortgage rate and a contraction in the housing market. The resulting decline

in demand for mortgages may free up loanable funds for the corporate sector, leading to

the observed decline in the EBP. The easier access to credit by firms (Bernanke et al., 1999)

may in turn counteract the negative effect of uncertainty on industrial production.

54In the Online Appendix we show that the expected path instrument extracted from the unconstrained
model M0 is unable to identify the shock. This is because the small sample bias in model M0 implies
that the expectations component at long horizons is relatively unimportant. This reduces drastically the
relevance of the expected path instrument.
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6 Conclusions

This paper revisits the relative importance of expected future interest rates and term premia

in the transmission of monetary policy. To this end, we adopt a three-stage procedure.

First, we decompose high-frequency movements in the yield curve around FOMC meetings

into expectations and term premia. Unlike existing work on the topic, we carry out this

decomposition using term structure models (and we also correct for a small sample bias in

the estimates of the two components).

Second, we decompose the HF reaction of expected interest rates and term premia across

maturities into their respective PCs and use these to construct orthogonal instruments to

identify monetary policy shocks. An orthogonal rotation of the PCs provides an economic

interpretation of the instruments. The instruments generalise the proxies for monetary policy

shocks employed in previous studies, which were typically based either on a single maturity

or extracted only from the short-end of the yield curve.

Third, impulse-responses provide further structural interpretation. Responses to the

shock identified by the action instrument are consistent with a standard monetary policy

shock in a New Keynesian model with financial frictions. The expected path instrument

appears to identify a shock that induces responses that are consistent with a Fed informa-

tion effect or the Fed response to news channel. The shock identified by the uncertainty

instrument is associated with an increase in term premia and monetary policy uncertainty.

However, the excess bond premium, measuring tightness in corporate credit market, declines

in response to the shock, mitigating the impact of a rise in uncertainty on output. All three

shocks have a pronounced effect on the housing market, whereby an increase in long-term

interest rates is associated with a decline in new home sales and house prices.

Our analysis has been carried out on the sample preceding the 2008 global financial

crisis and the subsequent zero lower bound and unconventional monetary policies. The

findings thus characterise the transmission mechanism in a conventional setting. Following

the approach of Swanson (2021), the analysis could be extended to the subsequent period.
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However, to adequately account for the zero lower bound, the term structure model would

need to depart from the convenient affine representation, as, for example, in Wu and Xia

(2016). We see such extensions as a promising avenue for future research.
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Table 1: Effect of FOMC announcements on yields across maturities

3-month 2-year 3-year 5-year 10-year

Average response, bps
Minimum, bps
Maximum, bps
St. Deviation

-1.4
-23
9
4.6

-1
-22
19
5.9

-1.1
-23
21
6.1

-0.5
-16
19
5.2

-0.3
-16
13
4.3

Correlations

3-month
2-year
3-year
5-year

1 0.57
1

0.49
0.92
1

0.41
0.93
0.91
1

0.35
0.86
0.85
0.90

Note: The sample is from January 1996 to August 2007.
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Table 2: Loadings on the components of policy surprises

3-M 2-YR 3-YR 5-YR 10-YR

Rotated PCs PE∗ and PTP∗
1t 1t

Expectations
Action 1.48 1.00 0.84 0.68 0.51
Expected path

Term premia
Uncertainty

0

0

1.00

1.00

0.97

1.05

0.84

1.40

0.64

2.23

Gürkaynak et al. (2005b)
Target
Path

2.07
0

1.00
1.00

n/a
n/a

0.57
0.90

0.27
0.69

Kuttner (2001)
Target 1.29 1.00 n/a 0.78 0.51

Note: The loadings for action are the first column of Ω1 ; the load-

ings for expected path are the second column of ΩE
1
∗; the loadings

for uncertainty are the first column of ΩTP
1

∗. For ease of compar-

ison across studies, the loadings are normalised to be equal to one

at the 2-year maturity. Our sample is January 1996-August 2007.

Gürkaynak et al. (2005b): Table 5, sample July 1991-December 2004.

Kuttner (2001): Table 3, sample June 1989-February 2000, daily

changes.

E∗
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Figure 1: Yield changes around FOMC announcements across maturities.
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ers denote the available maturities at the high frequency. The shortest maturity is
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