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1 Introduction

Recent macroeconomic and policy developments have led to an increased study of occasionally binding

constraints. Following the global financial crisis of 2007–2008, monetary policymakers in many economies

cut their short-term policy rates to their effective lower bounds. The development of macro-prudential

frameworks has introduced policy instruments, such as capital requirements, that may bind occasionally.

These events have prompted the development of methods to incorporate occasionally binding con-

straints in policy-relevant macroeconomic models. The typical size of these models prohibits the use of

global solution methods, which properly account for how the risk that constraints bind in the future will

affect the actions of forward-looking decision makers today. As a result, many techniques focus on the

inclusion of occasionally binding constraints in an otherwise linear-quadratic framework.

This paper contributes to that research effort by consolidating, combining and extending existing

approaches into a toolkit that is capable of analyzing a wide range of policy-relevant scenarios.

The tools developed in this paper apply to linear rational expectations models, of the type routinely

used in policy institutions. The tools focus on cases in which policy is conducted optimally, to minimize

a quadratic loss function, under either commitment or discretion (optimal time-consistent policy). The

paper presents methods for cases in which both policy instruments and non-policy variables may be

subject to occasionally binding constraints.

The methods build on the ‘Model Analysis & Projection System’ (MAPS) toolkit (Burgess et al.,

2013). That toolkit incorporates the Anderson and Moore (1985) solution algorithm for linear rational

expectations models, which allows the solution to be expressed in terms of the expected future paths of

exogenous variables. In this paper, the future paths of exogenous variables are treated as ‘anticipated

disturbances’ to the model equations. Following Svensson and Tetlow (2005), these anticipated dis-

turbances can be interpreted as capturing judgment and other ‘off-model’ information that informs the

scenarios and forecasts produced by many policy institutions. Incorporating these disturbances therefore

makes it possible to conduct optimal policy analysis with occasionally binding constraints for projections

and scenarios produced using judgment.

The toolkit developed in this paper has several advantages over existing methods (discussed below).

By providing an integrated framework, the toolkit facilitates the comparison of optimal policy under

alternative assumptions about the policymaker’s ability to commit to future actions. The toolkit easily

supports multiple policy instruments and multiple constraints, which is likely to be particularly useful in

light of the increasing use of additional unconventional monetary policy tools. Moreover, where possible,

the toolkit is designed to ensure that incorporating additional constraints does not materially affect

the ‘scale’ of the solution problem. This makes it particularly relevant for applications with large-scale

models typically used by policy institutions.1

The methods in this paper contribute to a strand of research focused on the incorporation of oc-

casionally binding constraints in an otherwise linear-quadratic framework. Indeed, the toolkit builds

heavily on some key contributions to the literature.

The tools for analyzing optimal commitment problems combine the optimal policy solution set out

in Dennis (2007) with the method for imposing occasionally binding constraints developed by Holden

and Paetz (2012) and Holden (2019). While the Holden and Paetz (2012) method provides a powerful

method for incorporating the effects of instrument bounds under commitment, it cannot in general be

directly applied to optimal discretionary policy. The algorithms for optimal discretion therefore combine

the approaches of Dennis (2007) and Brendon et al. (2010), extended to incorporate the presence of

‘anticipated disturbances’. Indeed, a common thread connecting all of the methods presented in this

paper is the importance of these disturbances in permitting optimal policy analysis of non-model-based

1The toolkit, together with replication code for the examples in the paper, is available from the authors on
request.
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forecasts and scenarios, building on the insights of Svensson and Tetlow (2005).

A popular and powerful approach for incorporating occasionally binding constraints is the ‘OccBin’

toolkit developed by Guerrieri and Iacoviello (2015). In principle, this approach can be applied to

optimal commitment problems with constraints on the policy instruments, since the solution concept is

identical to that studied by Holden and Paetz (2012). However, such an implementation would have

several practical disadvantages. In particular, it would require derivation and specification of the first

order conditions for optimal policy within the model. It would also be less easily scalable to the case of

multiple constraints and would not permit the application of anticipated disturbances, thus limiting the

range of feasible applications.

Other methods that can be used to analyze occasionally binding constraints are similarly specialized

and therefore not directly applicable to the range of applications that can be studied with the toolkit

developed in this paper. For example, approaches that embed anticipated structural change have been

used to incorporate the lower bound on the policy instrument (see, for example, Cagliarini and Kulish,

2013; Kulish and Pagan, 2017; Kulish et al., 2017). However, these methods do not do not allow for

policy to be set optimally. Similar issues apply to methods that incorporate Markov switching methods

to impose occasionally binding constraints (Bianchi and Melosi, 2017; Chen, 2017; Benigno et al., 2020).

This paper is also part of an enormous literature on optimal monetary policy in linear quadratic

rational expectations models. While many contributions consider more sophisticated and challenging

policy environments, such as stochastic structural change (Blake and Zampolli, 2011; Svensson and

Williams, 2008) and leader/follower relationships between different policymakers (Chen et al., 2020), they

do not incorporate occasionally binding constraints on the policy instruments. Implementing occasionally

binding constraints within those frameworks would be a worthwhile avenue for future research.

This paper is most closely related to de Groot, Mazelis, Motto, and Ristiniemi (2021), who have,

in independent work, developed a toolkit (called ‘COPP’) for optimal policy analysis. Similarly to the

methods presented below, COPP can analyze optimal time-consistent and commitment policies using

multiple policy instruments that are subject to occasionally binding constraints. It is also designed

for optimal policy analysis around a scenario or projection that is not generated by the model itself.

An important difference is that the COPP toolkit does not require a fully specified structural model,

merely a baseline path for the variables in the policymaker’s loss function and impulse responses of those

variables to changes in the paths of the policy instruments. While similar in several respects, the methods

described below employ a different definition of time-consistent optimal policy and are also designed to

handle cases with occasionally binding constraints on non-instrument variables.

Piecewise linear solution methods (such as those presented in this paper and discussed above) rep-

resent an approximation to the true effects of occasionally binding constraints in rational expectations

models. These methods do not account for the fact that agents’ expectations account for the risks of

encountering the occasionally binding constraints in future periods. These effects on expectations can

have substantial effects on current decisions and hence the true model solution. Incorporating these

effects requires sophisticated solution methods, typically employing global solution techniques. The pace

of progress in this area is impressive.2 However, at present, the methods are typically applicable only to

relatively small models. Moreover, piecewise linear approximations may be sufficiently accurate in some

important cases, as demonstrated by Guerrieri and Iacoviello (2015).

After setting out key assumptions and notation in Section 2, the rest of the paper paper proceeds

incrementally, using simple examples to demonstrate the new functionality introduced in each section.

Section 3 presents the method for optimal commitment policy, subject to occasionally binding con-

straints on the policy instruments. Section 4 describes the method for optimal discretionary policy, when

there are anticipated disturbances to the model equations. This serves as a stepping stone to Section

2Important recent contributions to this field include Brumm and Scheidegger (2017), Druedahl and Jørgensen
(2017) and Maliar et al. (2019).
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5, which considers optimal discretionary policy subject to occasionally binding constraints on the policy

instruments. Section 6 presents methods for handling cases in which both policy instruments and other

variables are subject to occasionally binding constraints.

Section 7 complements the examples from previous sections by utilizing FRB/US, a large-scale model

used by the Federal Reserve Board of Governors, to demonstrate the applicability of the toolkit to policy-

relevant questions. Section 8 concludes.

2 Preliminaries

The methods in this paper build on the ‘Model Analysis & Projection System’ (MAPS) toolkit developed

at the Bank of England (Burgess et al., 2013). That toolkit is designed to operate with discrete time,

infinite horizon linear(ized) rational expectations models. The discrete ‘period’ or ‘date’ is indexed by

t = 1, . . . ,∞ and the model is written in the following form:

HFE C B
txt+1 +H xt +H xt−1 = Ψzt (1)

where xt is a nx × 1 vector of endogenous variables, zt is a nz × 1 vector of exogenous disturbances,

Et represents the mathematical expectation conditional on period-t information. The nx × nx matrices

HF , HC , HB and the nx × nz matrix Ψ are coefficient matrices.

A wide range of models can be cast in this form. A prominent example is the class of so-called

Dynamic Stochastic General Equilibrium (DSGE) models, typically consisting of a set of first order

conditions to optimization problems and the constraints on those problems. Taking a log-linear approx-

imation to these equations around a suitable approximation point generates a set of linear equations of

the form (1). In these cases, the entries in the coefficient matrices (HF , HC , HB ,Ψ) will be functions of

so-called ‘deep’ parameters describing preferences and technology.

The form in (1) omits constants explicitly, which is typically appropriate for log-linearized DSGE

models. However, constants can be incorporated into a model as an element of x, with appropriate

adjustments to the conditions governing existence and uniqueness of a rational expectations equilib-

rium.3 Similarly, higher order lags and leads of endogenous variables can be incorporated by introducing

appropriate identities to define auxiliary variables.

The rational expectations solution to the model (1) is given by:

∑∞
xt = Bxt−1 + E i

t F Φzt+i (2)
i=0

where the solution matrix B can be computed using the ‘AIM’ algorithm Anderson and Moore (1985)

and: ( )−1
F = − HC +HFB HF (3)( )−1
Φ = HC +HFB Ψ (4)

The rational expectations solution (2) (and variants of it) form the basis of much of the analysis in

this paper. The solution includes the expected values of future disturbances, Etz 4
t+i.

3As in Hansen and Sargent (2013), an element in x that captures the constants (say, ι) can be defined using
the equation ιt = ιt−1. Ensuring that this variable has the initial condition ι−1 = 1 allows constants to be
included by loading on ι with the appropriate coefficient. This approach implies that there will be an exact unit
root in the model which should be accounted for in the standard ‘root counting’ tests (eg Blanchard and Kahn
(1980)) for existence and uniqueness of a rational expectations equilibrium.

4Under the common assumption that shocks are serially uncorrelated, mean zero random variables, then
Etzt+i = 0, ∀i and the rational expectations solution can be written as xt = Bxt−1 + Φzt.
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The representation of the solution (2) has three important strengths. First, it provides a route

through which expectations of future constraints may be incorporated – as explained in detail below.

Second, it permits the analysis of ‘news shocks’ without the need to expand the state vector of the

the model to incorporate them.5 Finally, Svensson and Tetlow (2005) demonstrate how anticipated

disturbances can be used to ensure that a structural model (such as that in equation (1)) reproduces a

forecast generated from other sources. In particular, the disturbances z can be interpreted as judgmental

information that lies beyond the scope of the model.

Indeed, this final point represents a key contribution of the methods in this paper. Specifically, the

methods support the interpretation in Svensson and Tetlow (2005) that: “the central bank’s judgment
∞

will be represented as the central bank’s projections of the future deviations [that is, {zt+i}i=0]. This

allows us to incorporate the fact that a considerable amount of judgment is always applied to assumptions

and projections.”

So, as in Svensson and Tetlow (2005), the methods presented in this paper, allow a structural model

to be used to conduct optimal policy analysis around a non-model-based forecast. Many central banks

and policy institutions use a broad range of information to produce their primary forecasts and large-scale

structural models of the form (1) for policy analysis. The ability to combine model-based optimal policy

analysis with judgment-based forecasts therefore represents a key strength of the methods presented

below. Section 7 discusses this point in more detail and provides an example.

The terms Etzt+i in (2) can also be used to encode information about future constraints on variables

in the model, including policy instruments. For example, Laséen and Svensson (2011) use Etzt+i to

impose expected future paths for the monetary policy instrument in DSGE models in which monetary

policy follows a simple rule. That is achieved by using (2) to compute the sequence of future shocks to

the monetary policy rule that deliver a desired path for the short-term interest rate.6 This approach

has been applied to study the responses of DSGE models to ‘forward guidance’ about the path of the

monetary policy instrument.7

The methods in this paper focus on cases in which policy is conducted optimally. The starting point

is a version of the model in which the policy rules describing the behavior of the policy instruments are

removed from the model (1). Doing so gives the following representation:

H̃F ˜C
x̃ Etx̃t+1 +Hx̃ x̃t + H̃B

x̃ x̃t−1 + H̃F
r Etr ˜C ˜

t+1 +Hr rt = Ψz̃ z̃t (5)

where x̃ denotes the nx̃ × 1 vector of non-policy endogenous variables, r is the nr × 1 vector of policy

instruments and z̃ denotes the nz̃ × 1 vector of non-policy shocks.

To move from (1) to (5), the nx (= nx̃ + nr) variables, x, are partitioned into policy instruments, r

and non-policy variables x̃. The nr equations that describe the behavior of the policy instruments are

removed, leaving a system of n equations. The matrices H̃F , H̃C , H̃B
x̃ x̃ x̃ x̃ are nx̃ × nx̃ coefficient matrices

formed by extracting the relevant rows and columns from HF , HC , HB . The nx̃×nr coefficient matrices

H̃F H̃r and C
r are constructed analogously. The nx̃ × n ˜

z̃ matrix Ψz̃ is found by removing the rows of Ψ

corresponding to the policy equations and the columns corresponding to any policy shocks (that appear

solely in the policy equations).

Without loss of generality, lags of the policy instruments, r, are excluded from (5).8 This ensures

5There is a rich literature examining news shocks in models of the type studied in this paper. Beaudry and
Portier (2014) provide a broad overview and Gambetti et al. (2019) contribute to (and review) the more recent
literature with a focus on monetary policy.

6Burgess et al. (2013, Appendix C) presents a general purpose ‘inversion algorithm’ to compute the required
sequences of anticipated disturbances Etzt+i required to generate a desired forecast for the endogenous variables,
Etxt+i.

7See, for example: Hirose and Kurozumi (2011); Milani and Treadwell (2012); Harrison (2015); Haberis et al.
(2019).

8This is not a restrictive assumption since any model that does contain lags of the instrument(s) can be
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that the instruments are not state variables in the system, thereby simplifying the form that the solution

takes.

The policymaker chooses the instruments r to minimize a quadratic loss function given by:

∑∞ { }
i ′ ′Lt ≡ Et β (x̃t+i) W (x̃t+i) + (rt+i) Q (rt+i) (6)

i=0

where 0 < β < 1 is the policymaker’s discount factor and W and Q are nx̃ × nx̃ and nr × nr positive

semi-definite weighting matrices.

As in Dennis (2007), cases in which loss function minimization is implemented under commitment

and discretion are considered.

Under commitment, the policymaker formulates a time-invariant policy plan that accounts for the

entire sequence of constraints on the minimization problem. The Lagrange multipliers on these con-

straints appear in the first order conditions of the optimal policy problem and provide a link through

which future policy is influenced by current multipliers. A corollary is that promises of future policy

actions can affect outcomes today.

Under discretion, the precise concept of equilibrium is ‘Markov-perfect Stackelberg-Nash’. Such

equilibria arise from the following assumptions. At the start of each period, the policymaker observes

the state of the economy and then sets the instruments optimally. Having observed the policymaker’s

optimal instrument setting, the private sector makes their decision, given rational expectations about

the future state of the economy. Both the policymaker and the private sector take the future optimal

behavior of the policymaker as given when making their decisions.9

3 Optimal commitment with instrument bounds

The method to implement an optimal commitment solution with bounds on the policy instrument com-

bines the analysis of Dennis (2007) and Holden and Paetz (2012).

3.1 Method

The policymaker minimizes the discounted sum of current and future losses subject to the structural

equations of the economy and bound constraints on the policy instruments. The optimal commitment

solution can be written as a Lagrangean, in the same way as Dennis (2007) for the unconstrained problem

and Harrison (2012) for the case in which the instruments are constrained: 
′ ′

∞ (x̃∑  ( t+i) W (x̃t+i) + (rt+i) Q (rt+i) ) 
L̃ = E βi  E ˜ −2λ′ H̃F x + H̃C ˜B ˜F
t t t+i x̃ t t+1 x̃ x̃t +Hx̃ x̃t−1 +Hr Etr ˜C

+1 +Hr rt − Ψ̃t z̃ z̃ 
t 

i=0 −2µ′t+i (Srt+i − b)

where λt+i and µt+i are the Lagrange multipliers on the structural equations and the instrument bound(s)

respectively. The instrument bounds are encoded by S, a coefficient matrix, and b, an nµ × 1 vector of

constants.

rewritten (by introducing appropriate identities if necessary) so that no instrument lags appear.
9The equilibria are Markovian because they are characterized by feedback rules from the state of the economy

inherited from the previous period (and not the entire history). They are sub-game perfect, Stackelberg-Nash
because they can be derived as Nash equilibria in a game between current and future policymakers in which the
current policymaker acts as Stackelberg leader and in which the strategy pursued by the policymaker is optimal
regardless of time and regardless of the state of the economy.

5



The first order conditions of the problem can be written as:( )
0 = Qrt − H̃

′ ( )′
C
r λt − β−1 H̃F

r λt−1 − S′µt (7)( )′ ( )′ ( )′
0 = Wx̃ H̃C −1 ˜F ˜B

t − x̃ λt − β Hx̃ λt−1 − β Hx̃ Etλt+1 (8)

0 = H̃F
x̃ Etx̃t+1 + H̃C

x̃ x̃t + H̃B
x̃ x̃t−1 + H̃F

r Etrt+1 + H̃C
r rt − Ψ̃z̃ z̃t (9)

0 = µ′t (Srt − b) (10)

for t > 1 (the first order conditions for t = 0 are considered below).

Equation (10) is the Kuhn-Tucker condition on the instrument inequality constraint. It pins down

the value of the multiplier µ depending on whether the optimality condition (7) can be achieved without

the instrument(s) violating the bound(s).

The first order conditions that apply in period t = 1 depend on the assumptions about the interpre-

tation of the policy problem solved in that period. Taking a ‘timeless perspective’ to the optimal policy

problem implies that the policymaker behaves as if the first period of optimization was in the distant

past (Woodford, 1999). From a practical perspective, this implies that the first order conditions (7)–(10)

apply in period t, for some exogenously specified values of the multipliers, λ0. An alternative approach

is to interpret the optimization at t = 1 as entirely independent of any previous commitments (so that

λ0 = 0).

There has been much debate about the appropriateness of the timeless perspective approach to

optimal policy analysis.10 It is beyond the scope of this paper to contribute to that debate. For

completeness, solutions are presented for both timeless perspective and fully optimal cases.

3.1.1 Timeless perspective

To proceed, µ is treated as if it is exogenous. As will be demonstrated below, this allows µ to be used

as a ‘shadow shock’ to impose the instrument bounds on the model solution in a way that is entirely

consistent with the endogeneity of µ.

This assumption allows the system (7)–(9) to be stacked together as:

   ( )   ′  
0 0 0 x̃  0 Q − H̃C ( )  t+1 r

′  x̃ )  t

− B   (  
0 = 0 0 β H̃ Et  r +1 +

x̃ t  H̃
′  W 0 − C  rt  x̃ 

H̃F ˜˜ HF λt+1r H̃C
x 0 ˜ λ ˜ HC

r 0 t( ) x  0 0 −β−1 H̃
′ 

F  
r x̃ 0 [ −S′ ] ( )′  t−1    z̃ ˜     t

+ + (11) 0 0 − rβ−1 0HF 0
x̃  t−1

µ
H̃B −˜ t

λt−1 Ψz̃ 0
x̃ 0 0

This system can be written as a structural model in the augmented vector of endogenous variables: 
x̃ t 

yt ≡  rt  (12)

λt

giving:

HF
y Etyt+1 +HC

y yt +HB
y yt−1 = Ψy z̃t + Ψµµt (13)

10See, for example: Blake and Kirsanova (2004); Dennis (2010); Jensen and McCallum (2010).
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where:  
0 0 0 ( )

HF
y =  ′  0 0 − β H̃B

x̃ 
H̃F ˜
x̃ HF r 0( )′  0 Q − H̃C

r 
HC  ( )
y =  ˜ ′  W 0 − HC

x̃ 
H̃C ˜
x̃ HC

r 0 ( )′ 
0 0 −β−1 H̃F

r 
B  ( )
y =  ′ 

H  0 0 −β−1 H̃F 
x̃ 

H̃B
x̃ 0 0 

0 
Ψy =  0 

Ψ̃z̃ 
S′ 

Ψµ =  0 
0

Since the structural form in (13) is isomorphic to (1), the rational expectations solution to the

augmented model is: ∑∞ ∑∞
y = B y + F i i
t y t−1 yΦyEtz̃t+i + FyΦµEtµt+i (14)

i=0 i=0

where Fy can be computed using a version of (3) and Φy and Φµ are computed using (4).

To compute the results of a simulation or projection of the model that incorporates the effects of the

instrument constraints, the multipliers µt (t = 1, . . . ) are used to impose the constraints, if necessary.

When the instrument constraints do not bind in period t, the relevant elements of µt are zero. When the

instrument constraints do bind, µt is chosen so that the instruments satisfy the constraints. The method

solves for the values of µt, (t = 1, . . . ) that impose the occasionally binding constraints.

The starting point for simulating the model with occasionally binding constraints is a ‘baseline

simulation’ in which the constraints are ignored. A simulation over H periods is produced by setting
H{µt = 0}t=1. From a given initial condition x0 and a realization of the shocks (E1z̃t, t = 1, . . . ,H) the

H H
baseline simulation for {yt}t=1 is computed using (14) (with {µt = 0}t=1).

The baseline simulation can be checked to determine whether it violates the assumption that the

constraints never bind. This amounts to checking whether Srt > b, ∀t. If any of these assumptions

is violated in the baseline simulation, a quadratic programming procedure based on Holden and Paetz

(2012) is used to enforce the occasionally binding constraints.

It is convenient to represent the occasionally binding constraints as inequality constraints on a set

of ‘target variables’, τ :

τt = Sτyt = Srt (15)

The method to impose occasionally binding constraints is based on the insight that the effect of the

µ shocks can be simply added to the baseline simulation, given the linearity of the solution. Inspection

of (14) reveals that the effect of the fundamental (z̃) and µ shocks enter linearly. To find the µ shocks

that ensure that the target variables satisfy the OBC, requires finding a sequence of shocks that, when

added to the baseline simulation, will achieve this. This requires knowledge of the impact of µ shocks in

all periods t = 1, . . . ,H on the target variables in all periods t = 1, . . . ,H.

7



H
Consider, then, the effects of the µ shocks {µt}t=1 on the endogenous variables in period 1 of the

simulation. From (14), this is given by:

H∑−1

ŷ i
1 = F Φµµ1+i, (16)

i=0

which captures the fact that in period 1 all of the shocks occur in (present and) future periods. The

effects on the target variables are given by τ̂1 = Sτ ŷ1.

For period 2, the rational expectations solution can be used to show that the effects on endogenous

variables are:
H∑−2

ŷ2 = By ŷ1 + F iΦµµ2+i, (17)
i=0

and from the expression for ŷ1, this implies:

H∑−1 H∑−2

ŷ2 = By F iΦµµ1+i + F iΦµµ2+i. (18)
i=0 i=0

This step provides a recursive scheme for building a matrix that maps the effects µt in periods

t = 1, . . . ,H to the target variables in each period. The first (block) row of this matrix can be found by

expanding (16):  
µ1 . 
. [ ] . 

τ̂ = S Φ . . . S F k−1Φ . . . S FH−1  
1 τ µ τ µ τ Φµ  µ k  (19) .  .. 

µH

The second row is built by using equation (18) to multiply the coefficients in the first row by By and

then adding the coefficients on shocks that arrive from period 2 onwards:  
µ1  .. [ ] .  

τ̂2 = SτByΦ H
µ . . . S k−1 k−2 H−1 −2

τByF Φµ + SτF Φµ . . . SτByF Φµ + SτF Φµ  µ k  , .  .. 
µH

This can be applied for each row in turn and provides a method to write the mapping from the µ

shocks to the target variables as:

T =MD (20)

where    
τ̂1 µ1   . . 
.   .  .   .    T =  τ̂ k  , D =  µ  k  .   .  ..   .. 
τ̂H µH

where the rows of M are built using the recursive scheme described above.11 The mapping (20) records

the effects of all µ shocks on all target variables. This reflects the fact that there may be interactions

11If the number of OBCs is nµ, then τ and µ are nµ × 1 vectors so that T and D are (nµH)× 1.
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between the different constraints on individual policy instruments.

To incorporate the bounds on the OBCs, it is convenient to compute the vector T̂ as the deviation

of the target variables from their constraint values. This is done by recording the relevant rows of the
H

baseline simulation {yt}t=1 and subtracting the value of the constraints. This normalization implies that

if the baseline simulation was such that T̂ > 0, then that solution (which assumes that the constraints

never bind) would be valid.

The optimal policy problem studied here is isomorphic to the one studied by Holden and Paetz

(2012). So their insight that a quadratic programming problem can be use to solve for D applies. The

quadratic programming problem is:

1
min D′ (M+M′)D + T̂ ′D (21)

2

subject to: T̂ +MD ≥ 0 (22)

D ≥ 0 (23)

The problem in equations (21)–(23) can be understood as follows. The constraint (22) ensures that

the OBCs are respected. T̂ is the baseline simulation for the target variables, measured relative to the

constraint values. MD = T is the marginal effect of the µ shocks D on the target variables. So T̂ +MD
is the path of the target variables measured relative to their constraints after the µ shocks have been

applied: requiring this to be non-negative implies that the constraints are respected.

The constraint (23) requires that the µ shock values used to impose the constraints are positive.

This requirement ensures that the OBCs are truly binding.

Finally, note that the minimand (21) can be expanded as follows:

1 1D′ (M M′)D + ̂ 1T ′ 1 1
+ D = D′MD + D′M′D + T̂ ′D + D′T̂

2 2 2 2 2( ) ( )1 1 ′
= D′ MD + T̂ + MD + T̂ D,

2 2

where the first line exploits the fact that T̂ ′D is a scalar and the second line collects terms. The minimand

is therefore analogous to a contemporary slackness condition: it achieves a minimum of zero when D = 0

or T̂ +MD = 0.

The solution to the quadratic programming problem is a vector, D∗. This vector represents the

values of the anticipated µ values required for the OBCs on the policy instruments to be respected.

The vectors of shocks µ can be extracted from D∗ and the effects of these anticipated µ values can be

incorporated into the simulation using (14).12

3.1.2 Fully optimal commitment

Under a fully optimal period-1 plan, the policymaker is unhindered by any past commitments. This

means that λ0 = 0 so that the first order conditions in period t = 1 satisfy:( )
0 = Qr1 − H̃

′
C ′
r λ1 − S µ1 (24)( )

0 = Wx̃1 − H̃
′ ( )

C
x̃ λ ˜ ′

B
1 − β Hx̃ E1λ2 (25)

0 = H̃F
x̃ E H̃1x̃2 + C

x̃ x̃1 + H̃B
x̃ x̃0 + H̃F

r Etr2 + H̃C
r r1 − Ψ̃z̃ z̃1 (26)

0 = µ′1 (Sr1 − b) (27)

12The first H elements of D∗ correspond to the values of the first element of µ for periods t = 1, . . . , H and so
on.
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which can be written as:

HF
y E1y2 +HC

y y1 +HB
y,1y0 = Ψy ẑ1

where  
0 0 0

B  
Hy,1 =  0 0 0 

H̃B
x̃ 0 0

The solution for y2 satisfies the rational expectations solution, (14), since λ1 does constrain period

2 policy. This means that:

( ) ( ) ( ) ∑∞−1 −1 −1
y = − HC +HFB HB y + HC F

1 y y y y,1 0 y +Hy B
C

y Ψy ẑ1 − Hy +HF F i
y By Hy FyΦyE1ẑ2+i

i=0( )−1 ∑∞
= − HC

y +HF
y By HB

y,1y
i

0 + Φy ẑ1 + Fy FyΦyE1ẑ2+i

i=0

Employing the same partitioning of the ẑ vector used above gives:

∑∞ ∑∞
y1 = By,1y0 + F i i

yΦz̃E1z̃1+i + FyΦµE1µ1+i (28)
i=0 i=0

where ( )−1
By,1 ≡ − HC F B

y +Hy By Hy,1

Equation (28) shows that the solution in period t = 1 has the same generic form as (14) with By,1

in place of By. This demonstrates that the effects of anticipated disturbances on period 1 outcomes

are identical to those used to compute the M matrix described in Section 3.1.1. Since the solution for

outcomes in periods t ≥ 2 is identical to the timeless perspective case, the only difference in constructing

a simulation for an optimal period-1 plan is to use (28) in place of (14) to compute the outcomes in the

first period of the simulation.13

3.2 Discussion

The building blocks of the method presented above are the optimal commitment approach presented by

Dennis (2007), the application of the Anderson and Moore (1985) algorithm to derive a representation

including anticipated disturbances and the quadratic programming method developed by Holden and

Paetz (2012) to use anticipated disturbances to impose inequality constraints.

As argued by Holden and Paetz (2012), an advantage of the quadratic programming approach is

that it easily handles multiple constraints. In the context of the present paper, the method is therefore

readily applicable to cases in which there are multiple policy instruments. Such cases are of substantial

interest given the increased use of unconventional monetary policy tools (in part prompted by prolonged

periods in which the short-term policy rate has been constrained by a lower bound) and a growing body

of research exploring coordination of macroeconomic policies (including monetary, macro-prudential and

fiscal).

Holden and Paetz (2012) also provide a general discussion of uniqueness and existence of an equi-

librium that satisfies the occasionally binding constraints.14 Holden (2019) provides a more extensive

analysis, with a particular focus on New Keynesian models with a lower bound constraint on the mon-

13Indeed, if y0 = 0, the timeless perspective solution coincides with the optimal period-1 plan.
14For example, a sufficient condition for the quadratic programming problem to have a unique solution is if

the matrix (M+M′) is positive semi-definite.
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etary policy rate. Since the method presented in this section is designed for optimal policy analysis

using general (potentially large-scale) models, few of the specific results considered in previous papers

will apply.15

The method presented in this section has many similarities with the ‘OccBin’ approach developed

by Guerrieri and Iacoviello (2015). The equilibrium concept studied by Guerrieri and Iacoviello (2015)

is identical and so the results from applying that approach will coincide with those presented here.

In practice, the approach presented here has three potential advantages over the OccBin toolkit.

First, OccBin is not designed to incorporate optimal policy behavior, which means that the model must

be rendered in an appropriate form before using the OccBin toolkit. While this is clearly feasible (see, for

example, Canzoneri et al., 2020), doing so for a large-scale model represents a substantial undertaking.

Second, as noted above, the method presented here scales readily to the imposition of bounds on

multiple policy instruments. Incorporating N occasionally binding constraints using OccBin requires

specifying 2nµ alternative sets of model equations, whereas the Holden and Paetz (2012) approach requires

nµ additional ‘shocks’ (i.e., the multipliers, µ). This consideration is particularly important given the

reliance of the OccBin approach on a ‘guess and verify’ method for finding the equilibrium. If the model

may be in any of 2nµ possible ‘states’ in each period t, the set of possible equilibria to be checked becomes

very large.16

H
Finally, the algorithm is designed to incorporate non-zero ‘anticipated disturbances’ ({zt+i}i=1) and

can therefore be used for optimal policy analysis around a non-model-based forecast or scenario.

3.3 Example

The example is adapted from Harrison (2012) and considers optimal commitment policy in a model with

quantitative easing (QE). The model incorporates simple portfolio frictions such that the relative yields

on short-term and long-term government debt depend on the relative quantities of these assets held

by households. Asset purchases by the central bank (i.e., QE) can affect the relative bond holdings of

household and hence long-term bond rates. As well as incorporating the zero lower bound on the nominal

interest rate, a non-negativity constraint and an upper bound on the quantitative easing instrument are

also imposed.

The model equations are: [ ]
1 δ

x̂t − ηx̂t−1 = E R̂t (x̂t+1 − ηx̂t))− σ t + R̂e − E r∗tπ̂t+1 − ̂ (29)
1 + δ 1 + δ L,t t

R̂eL,t = R̂t − νqt (30)

R̂t =χβE ̂
tRt+1 + (1− χβ) R̂eL,t (31)

κη
π̂t = βEtπ̂t+1 + κx̂t − x̂t−1 (32)

1 + ψσ

r̂∗t = ρr̂∗t−1 + εt (33)

where the ‘̂ ’ notation denotes log-deviations from steady state, scaled by 100.17 The output gap is

expressed as a percentage deviation of output (y) from potential output (y∗), x̂t = 100 ln (yt/y
∗
t ). The

quantitative easing variable, q, represents the fraction of long-term government debt held by the central

bank and is unscaled.

15Extensive experiments have revealed few indications of equilibrium non-existence or multiplicity. An intrigu-
ing possibility is that monetary policy under commitment in New Keynesian models tends to generate policy
behavior with a strong ‘price level targeting’ element. Holden (2019) argues that price level targeting rules are
less likely to exhibit multiple equilibria in New Keynesian models with a lower bound on the policy rate.

16Of course, the speed and efficiency of the quadratic programming approach will also depend on the precise
algorithm used to compute the solution.

17For a variable zt, ẑt ≡ 100 ln (zt/zss) where zss is the steady state value of the variable.
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Equation (29) is an aggregate demand relationship derived from the Euler equation of optimizing

households. The output gap x̂ evolves according to a standard Euler equation, with inertial terms

appearing due to external habit formation (when η > 0). The portfolio frictions imply that the interest

rate that drives spending decisions is a weighted average of the short-term policy rate R̂ and the one-

period return on the long-term bond, ReL,t.

Equation (30) is a no-arbitrage relationship between the one-period return on the long-term bond

and the short-term interest rate. Returns are equalized up to an expression in q. QE affects relative bond

yields because deviations from households’ preferred portfolio mix generate utility losses (Harrison, 2012)

or portfolio adjustment costs (Harrison, 2017). Given the stylized treatment of fiscal policy introduced by

Harrison (2017), the central bank can control households’ portfolio mix directly through its QE actions.

Equation (31) is a pricing equation for the yield to maturity on the long-term bond, which is an

infinitely-lived consol with a geometrically declining coupon.

Equation (32) is a Phillips curve relating the output gap to inflation and can be derived from the

assumption of Calvo (1983) price stickiness. Finally, equation (33) describes the evolution of the natural

real interest rate, r∗, as a simple AR(1) process.

The loss function is given by:

∑∞ [ ( ) ]
2

Lt = βi π̂2 2
t+i + λ x̂2

x t+i + λ∆R R̂t+i − R̂ 2
t+i−1 + λqqt+i + λ∆q (qt+i − qt+i−1) (34)

i=0

which says that the policymaker attempts to stabilize inflation, the output gap and movements in its

policy instruments. The loss function penalizes changes in the short-term nominal interest rate and the

QE instrument to capture a preference for gradualism in policymaking.18 The loss function also includes

a penalty for the use of the quantitative easing instrument (with weight λq) since models with explicit

portfolio frictions (for example Harrison, 2012, 2017) predict that these frictions generate welfare costs.19

Minimization of the loss function is subject to bounds on the policy instruments:

R̂t ≥ 100 lnβ (35)

qt ≥ 0 (36)

qt ≤ q̄ ≤ 1 (37)

Constraint (35) is the familiar zero lower bound constraint on the policy rate, expressed in terms of

the log deviation of the policy rate from steady-state, R̂. Constraint (36) states that the central bank

holds non-negative quantities of long-term government debt (or equivalently that the central bank may

not issue long-term debt that is perfectly substitutable for long-term government bonds). Constraint

(37) says that the central bank is limited in the fraction of long-term government debt that it may hold.

There is a maximal upper bound of 1, since the central bank may not purchase more than the entire

stock of outstanding long-term bonds. However, the upper bound q̄ may be less than 1, reflecting, for

example, concerns about interest rate risk exposure associated with a large central bank balance sheet

(Harrison, 2017).

The parameter values are shown in Table 1. These values are taken from Harrison (2012) and

Harrison (2017) where possible. The weights on the output gap, inflation and the policy rate capture

a ‘balanced’ loss function sometimes considered by monetary policymakers (for example, Yellen, 2012;

18Including terms that penalize the variability of policy instruments is widely adopted in the literature studying
optimal policy and comparing alternative policy rules in estimated models. See, for example: Rudebusch and
Svensson (1999); Levin and Williams (2003); Givens (2012). One rationale for including a term penalizing changes
in the policy rate is to avoid destabilizing effects in financial markets (Lowe et al., 1997).

19The weights in the loss function are set with reference to applications by policymakers (for example, Yellen,
2012; Carney, 2017), rather than microfoundations.
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Carney, 2017). The weights on QE and the change in QE are set so that the initial response of QE to the

shock considered below mimics the scale of asset purchases undertaken in the United Kingdom in 2009.

Similarly, the parameter governing the strength of QE, ν, is set such that the response of the long-term

bond rate in the simulation below is similar to that estimated effect of QE in the United Kingdom. These

results are discussed further below.

Parameter Description Value

β Household discount factor 0.9925
κ Slope of Phillips curve 0.024
ψ Inverse Frisch elasticity 0.11
σ Elasticity of intertemporal substitution 1
δ Share of long-term to short-term debt 0.3
χ Long bond coupon decay rate 0.98
ρ Autocorrelation of natural real interest rate 0.85
ν Elasticity of long-term bond rate to QE 1.25
η Habit formation parameter 0.8
q̄ Upper bound on QE 0.5
λx Loss function weight on output gap 0.25
λ∆R Loss function weight on policy rate smoothing 1
λq Loss function weight on QE 0.05
λ∆q Loss function weight on change in QE 5

Table 1: Parameter values for QE model

The experiment considers a large reduction in r∗ that causes the short-term policy rate to be con-

strained by the zero bound. The shock is calibrated so that the natural rate falls from its steady state

level of 2% per year to -8%. Policy is set under commitment with a ‘timeless perspective’ solution.
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Figure 1: Recessionary shock under optimal commitment with instrument bounds

Figure 1 shows the results of this simulation. Each panel shows the results from two versions of the

simulation. The solid lines show the case in which the QE instrument is unavailable.20 The dashed lines

20This case can be interpreted as the case in which QE is infinitely costly λq →∞. In practice, it is implemented
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show the case in which QE is used, with the loss function specification described above.

Focusing first on the case in which QE is unavailable (solid lines), the fall in the natural rate of

interest, r∗ is sufficient to push the policy rate to the zero bound immediately – a cut of three percentage

points from its steady-state level of 3%. The policy rate stays at the zero bound for 10 quarters, slightly

longer than the spell for which the natural real interest rate is negative. While this ‘lower for longer’

behavior is insufficient to prevent a near term recession, it creates the conditions for a prolonged future

boom.

The persistent boom generated by the optimal policy response is sufficient to generate an immediate

rise in inflation that persists for many years. The long-lived increase in inflation reduces expected real

interest rates, cushioning the effects of the shock on output. The stimulus of the promise requires the

policy rate to rise rapidly after liftoff from the ZLB and quickly rise above the steady-state level of 3%.

This behavior implies that the long-term bond rate declines only marginally below the steady-state level

of 3% before rising persistently above.

When QE is used (dashed lines), the policymaker immediately purchases around 30% of the long-

term government debt stock, with QE rising to its upper bound of 50% within a few quarters. QE

remains at its upper bound for several quarters, before gradually unwinding. The QE response lowers

the long-term bond rate by around 100 basis points on impact. The scale of the initial QE response is

broadly in line with QE1 in the United Kingdom (Daines et al., 2012) and the decline in the long-term

bond rate is similar to the estimated effect of QE1 in Joyce et al. (2011).

The reduction in long-term bond rates induced by QE stimulates spending, thus reducing the scale

of the initial recession relative to the case in which QE is unavailable (solid lines). Since QE has an

immediate effect on spending, there is less need to reduce real interest rates via an increase in inflation

expectations. The subsequent boom in output and inflation overshoot are both smaller than the case in

which QE is unavailable. The stimulus from QE permits a slightly earlier liftoff from the ZLB.

4 Optimal discretion with ‘anticipated disturbances’

The contribution of this section is to characterize the solution of the model under optimal time-consistent

policy when agents in period t may anticipate non-zero future disturbances: z̃t+s = 0 , s > 0. These

shocks are labeled as ‘anticipated disturbances’, though as discussed in Section 2 they are sometimes

called ‘news shocks’ in the literature. As noted in the introduction, including anticipated disturbances

is a key requirement for methods that can be applied to forecasts or scenarios that are not constructed

using the model alone.

The analysis in this section assumes that the policy instruments are not subject to bounds and

therefore represents a stepping stone to the cases in which policy instruments are constrained, analyzed

in Sections 5 and 6.2.

6

4.1 Method

The policymaker minimizes the loss function (6), repeated here for convenience:

∑∞ { }
minL = E βi

′
t t (x̃t+ ) W (x̃

′
i t+i) + (rt+i) Q (rt+i)

xt,rt
i=0

= (x̃
′

t) W (x̃
′

t) + (rt) Q (rt) + βLt+1 (38)

where the recursive representation of the loss function (38) is convenient for the subsequent analysis.

by including a ‘rule’ for QE given by qt = 0 and assuming that the only instrument available to the policymaker
is the short-term interest rate.
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Minimization is subject to the constraint imposed by the partitioned model equations (5):

H̃FE x̃ + H̃C x̃ + H̃Bx̃ + H̃F ˜
x̃ t t+1 x̃ t x̃ t−1 r Etr C ˜

t+1 +Hr rt = Ψz̃ z̃t

The solution to be found will be of the following form:

∑H
x̃t = Bx̃x̃x̃t−1 + (Fs,x̃x̃Φx̃z̃ + Fs,xr˜ Φrz̃) z̃t+s (39)

s=0∑H
rt = Brx̃x̃t−1 + (Fs,rx̃Φx̃z̃ + Fs,rrΦrz̃) z̃t+s (40)

s=0

where: Bx̃x̃ is a matrix of loadings on lagged endogenous variables in the law of motion for the endogenous

variables; Brx̃ the loadings on lagged endogenous variables in the law of motion for the instruments;

Fs,x̃x̃Φx̃z̃ the loadings on s-period ahead shocks in the law of motion for the endogenous variables arising

via their effect on the endogenous variables; Fs,xr˜ Φrz̃ the loadings on s-period ahead shocks in the law of

motion for the endogenous variables arising via their effect on the instruments; Fs,rx̃Φx̃z̃ the loadings on

s-period ahead shocks in the law of motion for the instruments arising via their effect on the endogenous

variables; Fs,rrΦrz̃ the loadings on s-period ahead shocks in the law of motion for the instruments arising

via their effect on the instruments; and where F0,x̃x̃ = I, F0,xr˜ = 0, F0,rx̃ = 0 and F0,rr = I.
The derivation of the solution will characterize the forward loading coefficients {F }H H

s,x̃x̃ s=1, {Fs,xr˜ }s=1,

{Fs,rx̃}H H
s=1 and {Fs,rr}s=1. In doing so, it is demonstrated that Bx̃x̃, Brx̃, Φx̃z̃ and Φrz̃ are unaffected by

the presence of anticipated disturbances. Recursive formula that allow the forward loading coefficients

to be computed up to an arbitrary H are also derived.21

The algorithm works by backward induction, leveraging the fact that the solution in period t + H

is identical to that derived in the absence of anticipated disturbances. For completeness, a notationally-

consistent version of the Dennis (2007) algorithm (without anticipated disturbances) is presented in

Appendix A. The environment is perfect foresight, so the expectations operator is omitted throughout.

Appendix B presents the backward induction steps that derive the solutions for periods H, H − 1,

H − 2 and H − 3. As noted above, that derivation demonstrates that the loadings on x̃t−1 (that is Bx̃x̃

and Brx̃) are unaffected by the presence of anticipated disturbances.

The backward induction process shows that the law of motion for the equilibrium under optimal

discretion with anticipated disturbances up to a horizon of H is:

∑H
xt = Bxt−1 + FsΦz̃ z̃t+s (41)[ ] [ s=0][ ] [ ][ ]

x̃ B 0 x̃ − ∑H
t x̃x̃ t 1 Fs,x̃x̃ Fs,xr˜ Φx̃z̃

= + z̃t+s
rt Brx̃ 0 rt−1 Fs,rx̃ Fs,rr Φrz̃s=0

The B and Φ matrices are given by: ( )
B 1

˜x̃ = −Θ− ˜
x HB

x̃ + H̃C
r Brx̃( )

Φx̃z̃ = Θ−1 Ψz̃ − H̃C
r Φrz̃

B = ∆−1
rx̃ r ∆x̃

Φrz̃ = ∆−1
r ∆z̃

21A convenient implication of these two results is that the forward loadings required for a particular projection
can be ‘post-computed’ without other parts of the optimal discretion solution needing to be recomputed.
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where:

Θ = H̃C
x̃ + H̃F

x̃ B ˜F
x̃x̃ +Hr Brx̃

∆ = Q+ ζH̃C
r r

∆x̃ = −ζH̃B
x̃

∆z̃ = ζΨ̃z̃

and: ( )′
ζ = Θ−1H̃C −

r (W + βVx̃x̃) Θ 1

with:
′ ′ ′

Vx̃x̃ = (Bx̃x̃) WBx̃x̃ + (Brx̃) QBrx̃ + β (Bx̃x̃) Vx̃x̃Bx̃x̃

which captures the marginal effect of the endogenous variables (x̃[) on future losses.]
Fs,x̃x̃ Fs,xr˜

Appendix B shows that the forward loadings in (41), Fs ≡ , can be constructed
Fs,rx̃ Fs,rr

recursively as follows:

Fs = F pss + F pols (42)

where F pss and F pols measure the impact of s-period ahead anticipated disturbances via their effect on

private sector behaviour and policy optimisation, defined as:

F pss = FpsFs−1

F pols = FpolΣs

where F0 = I.
The matrix Fps measures the impact of anticipated disturbances via one-period ahead expectations

on private sector behavior (taking into account the action of policy) and can be decomposed as follows:[ ]
ps psF F

Fps = x̃x̃ xr˜
psF Fpsrx̃ rr

where: ( )
psFx̃x̃ = −Θ−1 H̃F

x̃ + H̃C
r ∆−1

r ∆ psF( rx̃)
psFxr˜ = −Θ−1 H̃F

r + H̃C
r ∆−1

r ∆ psFrr

psF −1
ps

rx̃ = ∆r ∆Frx̃

Fps −1
ps

rr = ∆r ∆Frr

and:

∆ psF = −ζHF
rx̃ x̃

∆ ps = −ζH̃F
Frr r

The matrix Fpol measures the impact of anticipated disturbances via one-period ahead losses on

policy optimization (taking into account private sector behavior) and has the following structure:[ ]
pol polF F

Fpol = x̃x̃ xr˜
polF Fpolrx̃ rr
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where:

polF = −Θ−1H̃C∆−1
x̃x̃ r r ∆ polFrx̃

polF − −1 ˜C −1
xr˜ = Θ Hr ∆r ∆ polFrr
polF = ∆−1
rx̃ r ∆ polFrx̃

Fpolrr = ∆−1
r ∆ polFrr

and: ( )′ ′
∆ pol = Θ−1H̃C
F r β (Bx̃x̃)
rx̃ ( )′ ′

∆ pol = Θ−1H̃C
rr r β (Brx̃)F

The matrix Σs describes the cumulated impact of anticipated disturbances s periods ahead on one-

period ahead losses and can be computed recursively as:

Σs = βB′Σs−1 + ΩFs−1

where Σ0 = 0 and: [ ]
W + βVx̃x̃ 0

Ω =
0 Q

4.2 Discussion

As noted above, the matrices describing the autoregressive behavior of the endogenous variables and the

contemporaneous effects of shocks (that is, Bx̃x̃, Brx̃, Φx̃z̃ and Φrz̃) are identical to those derived by

Dennis (2007) for the case where there are no anticipated disturbances. The key innovation therefore

relates to the incorporation of the effects of anticipated disturbances on the decisions of the policymaker

and private agents.

Equation (42) shows that the loading coefficients on anticipated disturbances arising via both private

sector expectations and policy optimization depend on the coefficients on future disturbances arising

from both sources. That is, the private sector correctly takes into account that (e.g.) two-period-ahead

anticipated disturbances affect one-period-ahead policy optimization and the policymaker correctly takes

into account that (e.g.) two-period-ahead anticipated disturbances affect one-period-ahead private sector

behavior via both their own expectations and their rational understanding of how policy will respond.

These observations indicate that the Dennis (2007) solution derived under the assumption of no

anticipated disturbances will remain valid in the presence of such disturbances if it gives rise to a static

targeting criterion, whereby the first order condition to the optimal policy problem does not depend on

endogenous state variables.

4.3 Example

The example uses the model developed by Ferrero et al. (2018) to analyze monetary and macro-prudential

policies. The model features a household sector with distinct borrowers and savers and a standard New

Keynesian sticky price specification.
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Ferrero et al. (2018) derive a log-linear approximation around an efficient steady-state. The log-

linearized model equations are:22

πt = γxt + βEtπt+1 (43)

xt − ξc̃t = − σ−1(it − Etπt+1) + Et(xt+1 − ξc̃t+1) (44)( ) ( )
dbt = γd dbt−1 − ˜πt + (1− γd) qt + (1− ξ)ht (45)

−b 1 b 1 ξ 1− ξ˜ ˜dt = (it−1 + dt−1 − πt) + (ht − ht−1) + c̃t (46)
βs Θ η( )1 + τh − βs h β˜ s

qt = σhξht + ut + σxt − σξc̃t + Et (σξc̃t+1 − σxt+1 + qt+1) (47)
1 + τh 1 + τh[ ](1− γd) µ̃Θ 1− (1− γd) µ̃Θ− βb ˜qt = µt − σh (1− ξ)ht − uh

1− (1− γ ) µ̃Θ 1− (1− γ ) µ̃Θ t
d d

βb
+ σ (1− ξ) c̃t + σxt + Et (qt+1 − σ (1− ξ) c̃t+1 − σxt+1) (48)

1− (1− γd) µ̃Θ

βb
xt + (1− ξ) c̃t = E (xt+1 + (1− ξ) c̃t+1) + σ−1

t E π −
t+1 − σ 1

t it
βs (1− µ̃)

µ̃ βbγdµ̃− µt + Etµt+1 (49)
σ (1− µ̃) σ (1− µ̃)

uh h
t = ρhut−1 + εht (50)

Equation (43) is a standard New Keynesian Phillips curve, relating inflation, π to the output gap x.

Equation (44) is derived from the Euler equation of savers and represents the ‘IS’ curve of the model.

As in a standard representative household model, the output gap depends on the expected output gap

and the ex-ante real interest rate (it−Etπt+1, where i is the short-term nominal interest rate). However,

in this model, the IS curve also depends on the difference between the consumption level of borrowers

and savers: the ‘consumption gap’ c̃ ≡ cb − cs b
t t t where ct and cst denote the log-deviations of borrower

consumption and saver consumption from steady state.

Equation (45) is the borrowing constraint in the economy, which states that the debt of borrowers

depends on debt in the previous period and a loan-to-value constraint that depends on the real house
˜price, qt and the housing stock, which can be represented as a function of the ‘housing gap’ ht ≡ hbt −hst .

Equation (46) is the borrower’s budget constraint (evaluated in equilibrium) which provides a law of

motion for debt.

Equations (47) and (48) are derived from the housing demand equations for savers and borrowers

respectively. In each case, the equation has a familiar Euler equation form, depending on the housing

gap, expected demand (output and consumption gaps) and expected house prices. The demand for

housing for borrowers also depends on µt, the Lagrange multiplier on the borrowing constraint. The

multiplier on the borrowing constraint also appears in the Euler equation for borrower’s consumption,

(49).

Finally equation (50) describes the evolution of the exogenous housing demand disturbance used in

the example. The process has a familiar autoregressive structure. It is usually assumed that the shock

component εh is an identically and independently distributed mean zero random variable, so that that

Etεt+h = 0, ∀h > 0. However, the example will consider a fully anticipated movement in εt+h for h > 0:

a ‘news shock’.

Each time period in the model is interpreted as a quarter (of a year). The deep parameter values,

22The model is simplified slightly by ignoring preference and cost-push shocks and ignoring transitory variations
in the loan to value ratio and capital requirements (which are considered as macro-prudential policy instruments
by Ferrero et al. (2018)).
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following Ferrero et al. (2018), are shown in Table 2.23

Description Value

βs Saver discount factor 0.9925
σ Inverse elasticity of substitution (consumption) 1
ϕ Inverse Frisch elasticity 1
γd Debt limit inertia 0.7
Θ Debt limit (fraction of house value) 0.9
γ Slope of Phillips curve 0.024
βb Borrower discount factor 0.99
ξ Fraction of borrowers in economy 0.57
η Debt to (quarterly) GDP ratio 1.8
ψ Elasticity of funding cost to capital ratio 0.05
σh Inverse elasticity of substitution (housing) 25
ε Elasticity of substitution between final output varieties 6
ρh Housing demand shock persistence 0.9

Table 2: Parameter Values

To illustrate the method, the simulation is repeated for two specifications of the loss function:

∑∞ ( )
LFIT0 = E0 βts x2

t + λππ
2
t (51)

t=0∑∞ ( )
LLAW 2 ˜= E 2 2 2

0 βt0 s xt + λππt + λcc̃t + λhht (52)
t=0

Following Ferrero et al. (2018), (51) is interpreted as a ‘flexible inflation targeting’ (‘FIT’) loss

function, corresponding to the generic mandate that applies to many central banks. This requires the

central bank to stabilize variations in inflation and economic activity (the output gap).

Again following Ferrero et al. (2018), equation (52) is interpreted as a case in which the monetary

policy maker is ‘leaning against the wind’ (LAW). In this case the monetary policy instrument (the

nominal interest rate) is used to stabilize fluctuations in the consumption and housing gaps, alongside

inflation and the output gap. Since consumption and housing gaps arise from the financial frictions in

the model, this specification is one in which the monetary policy mandate includes financial stability

considerations.24

The results are compared to a ‘naive’ application of the Dennis (2007) algorithm that does not

incorporate the effects of anticipated disturbances. Specifically, that approach consists of the following

steps:

1. Solve the model using the Dennis (2007) algorithm (as in Appendix A). This gives a solution of

the form xt = BDxt−1 + ΦDzt.

2. Use the first order condition of the Dennis (2007) algorithm to substitute for the policy rules in

23
( )

The additional composite parameters in the log-linearized model satisfy µ̃ = 1− βbβ−1
s (1− βbγ −1

d) , τh =
(βs − µ̃ (1− γd) Θ− βb) and β = ξβb + (1− ξ)βs. The parameter τh is a housing tax applied to ensure that the
steady state is efficient.

24The loss function in equation (52) corresponds to the social welfare function derived as a second order
approximation to household welfare. Ferrero et al. (2018) show that the weights on policy objectives in the loss

functions are related to the deep parameters of the model as follows: λπ = ε ; λc = ξ(1−ξ)σ(1+σ+ϕ) ; λh = σhξ(1−ξ) .
γ (1+ϕ)(σ+ϕ) σ+ϕ

Ferrero et al. (2018) also consider cases in which macroprudential policy instruments are used alongside monetary
policy to maximize social welfare.
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the model, (1), to give a model incorporating the optimal policy response of the form:

HF C B
DEtxt+1 +HDxt +HDxt−1 = ΨDzt

( )−1
3. Form the forward shock loading matrix, FD, using equation (3): F C F F

D = − HD +HDBD HD .

4. Use the AIM solution representation, (2), to compute the effects of the news shock, namely:

∑∞
xt = B i

Dxt−1 + Et FDΦDzt+i
i=0
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Figure 2: Housing demand news shock: “flexible inflation targeting” loss function

Figure 2 shows a housing preference news shock. In quarter 0, the model is at steady state. In

quarter 1, it is revealed that a positive housing preference disturbance will arrive in quarter 6 (that is,

εh6 > 0). The solid black lines depict the results from the solution algorithm described in Section 4.1 and

the dashed gray lines show the results from applying the ‘naive’ approach described above.

In this case, the naive approach delivers the same outcome as the correct solution. The reason is that

the first order condition for optimal policy delivers a targeting rule for monetary policy that is entirely

static. In particular, as shown by Ferrero et al. (2018), the targeting rule under this policy configuration

is given by:
1

πt = − xt (53)
ε

which is the familiar targeting rule from the textbook New Keynesian model under optimal discretion

(for example, Woodford, 2003). Intuitively, this criterion emerges because, in the absence of a lower

bound constraint on the policy rate, the monetary policymaker’s current decisions have no effect on the

ability of future policymakers to set optimal policy.

More formally, given the aggregate demand structure of the model, the output gap can be treated

as the policy instrument. As a result, the Phillips curve is the only binding constraint on the policy

problem so that the values of endogenous state variables (for example, debt) do not restrict the set of

allocations that can be achieved by the current policymaker.

The results in Figure 2 demonstrate that a housing demand news shock leads to an immediate rise in

the real house price, which continues to increase until the shock is realized. Thereafter, real house prices
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decline back towards steady state. The targeting criterion (53) is delivered by complete stabilization

of the output gap and inflation. The path for the policy instrument therefore follows the path of the

natural real interest rate, which itself is determined by the path of the consumption gap.25

The prospect of higher future house prices relaxes the loan-to-value constraint on borrowers, leading

them to increase consumption and their holdings of housing in the near term, financed by higher real

debt levels. These patterns move into reverse once the shock has been realized and real house prices

subsequently decline, following the autoregressive process (50).
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Figure 3: Housing demand news shock: “leaning against the wind” loss function

Figure 3 shows the effects of the same shock when the policymaker minimizes the LAW loss function,

(52). In this case, the constraints imposed by the full dynamic structure of the model (rather than just

the Phillips curve) are relevant. As a result, the true solution is very different to one constructed using

the ‘naive’ approach.

The optimal policy in this case does not stabilize the output gap and inflation. Rather, the optimal

policy generates a large negative output gap and (hence) a sizable undershoot of inflation below target.

This is achieved by a persistent increase in the real interest rate. So, relative to the flexible inflation

targeting case (Figure 2), leaning against the wind generates a tighter policy stance and smaller fluctua-

tions in the consumption and (to a lesser degree) housing gaps. Tighter policy also moderates the initial

increase in the real house price.

The dynamics for the ‘naive’ solution approach are markedly different for many variables. Even

when the broad contours of the responses are similar, the magnitudes are often substantially different

(for example, the response of inflation). More generally, the naive solution tends to generate solutions

that are more similar to the flexible inflation targeting case, shown in Figure 2. In part this reflects

the fact that, unlike the true solution, the naive solution does not properly account for the dynamic

responses of the private sector and monetary policymaker.

Note that the naive solution approach could be used to generate the correct solution when the

policymaker minimizes (52), as long as the news shocks are directly encoded into the structural form of

the model, (1). Such an approach would involve adding a set of equations that measure the effect of a

shock in the past (see, for example, Harrison, 2015). Doing so ensures that the policymaker and private

sector internalize the effects of news shocks on decisions at all horizons.

25See Ferrero et al. (2018) for further discussion.
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While such an approach can be easily used for a small number of news shocks, it does not generalize

to the case when many of these shocks are used as ‘anticipated disturbances’ in a broader sense. One

example of this is when anticipated disturbances are used to construct a baseline forecast containing

judgment, demonstrated in the example presented in Section 7.

5 Optimal discretion with instrument bounds

The method to impose instrument bounds on the optimal commitment solution described in Section 3

leveraged the fact that the decision rules for optimal policy (the first order conditions) have a time-

invariant form.26 That permitted the model augmented with the first order conditions for optimal policy

to be solved as a rational expectations model. The Holden and Paetz (2012) method can then be used

to impose instrument bounds by finding the anticipated sequence of values for the Lagrange multipliers

on the instrument constraints that implement the constraints.

In the presence of instrument bounds, the first order conditions for optimal discretionary policy do

not, in general, have a time-invariant form. This implies that, in general, the Holden and Paetz (2012)

approach cannot be used to apply instrument bounds when policy is set under optimal discretion. This

is discussed further in Section 5.2 and demonstrated using a simple example in Appendix F.

Incorporating instrument bounds under optimal discretionary policy therefore requires the use of a

method that is able to correctly internalize the time-varying nature of optimal policy behavior. One such

approach is to cast the policy problem in terms of a finite horizon dynamic programming problem, under

the (verifiable) assumption that no instrument constraints bind beyond the horizon under consideration.

This section details an implementation of the method developed in Brendon, Paustian, and Yates

(2010, henceforth ‘BPY’), extended to include the effects of anticipated disturbances. This approach

delivers optimal outcomes in a time-consistent Markov-perfect Stackelberg-Nash equilibrium under the

assumption of perfect foresight.

The algorithm works by iterating over indicators of binding constraints. It first solves for a terminal

steady state in which the constraints on policy instruments are slack. It then starts from a guess of the

path of constraints indicators, which take the value of 1 if a particular constraint is binding in a particular

period and 0 if it is slack, in a transition from the current state to the terminal state. It then solves

the model backwards using value function iterations from the terminal state, assuming that constraints

are binding as suggested by the guess of the indicators. This procedure results in a set of time-varying

policy rules for the instruments. The algorithm then checks the constraints and the non-negativity of

Lagrange multipliers on the inequality constraints for the guess of binding constraints. If the optimality

conditions are satisfied, the time-varying policy rules represent the solution. If they are not, the guess

for the constraint indicators is updated.27

5.1 Method

Let H denote the horizon over which future disturbances may be anticipated and the horizon over which

constraints may be binding. That is, no constraints bind beyond horizon H.28

26As discussed in Section 3, while a ‘timeless perspective’ solution gives rise to truly time invariant solution,
the first period solution must be adjusted when computing a fully optimal solution.

27For example, a candidate solution will be inadmissible if either of the following are true: (a) the candidate
solution for one or more of the instruments violates the bounds placed on it; (b) the candidate solution for one
or more of the Lagrange multipliers on the instrument constraints violate the non-negativity constraint.

28This assumption is unlikely to be restrictive because it is unlikely that there would be many (if any) relevant
applications. In any case, it would be reasonably straightforward to extend the derivation to allow for return to
a steady state in which one or more instrument bound constraints is binding.
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As in previous sections, the model is (5), repeated here for convenience:

H̃FE x̃ + H̃C x̃ + H̃Bx̃ + H̃F H̃x̃ t t+1 x̃ t x̃ t−1 r Etrt+1 + C
r rt = Ψ̃z̃ z̃t

The policymaker minimizes the same discounted sum of current and future losses, (6), but also

subject to bound constraints on the instruments (54):

∑∞ {
i ′ ′ }

minLt = Et β (x̃t+i) W (x̃t+i) + (rt+i) Q (rt+i)
xt,rt

i=0

s.t. Srt ≥ b (54)

where S is an nµ × nr coefficient matrix, and b is an nµ × 1 vector of constants that characterize the

instrument bounds.

The solution to be found will be of the following form:

H∑−t
x̃t = Bx̃x,t˜ x̃t−1 + Ξs,x̃z̃,tz̃t+s + γx,t˜ (55)

s=0

H∑−t
rt = Brx,t˜ x̃t−1 + Ξs,rz̃,tz̃t+s + γr,t (56)

s=0

H∑−t
µt = Bµx,t˜ x̃t−1 + Ξs,µz̃,tz̃t+s + γµ,t (57)

s=0

where µ denotes the vector of Lagrange multipliers attached to the bound constraints, the vectors γx,t˜ ,

γr,t and γµ,t measure the impact of the constraints (should they be binding contemporaneously or in the

future) on the endogenous variables, instruments and Lagrange multipliers in period t and where Ξs,x̃z̃,t,

Ξs,rz̃,t and Ξs,µz̃,t are loadings measuring the impact of anticipated disturbances s periods ahead on the

endogenous variables, instruments and Lagrange multipliers in period t.

Appendix D solves the optimal policy problem by backward induction starting from period H. That

process demonstrates the following results.

The constraint internalized by the policymaker in a generic period t is given by:( ∑ ∑ )
−t

Ψ̃
H

x̃ Θ 1 z̃ z̃t − H̃F −1 − ˜F H−t−1

= − x̃ s=0 Ξs,x̃z̃,t+1z̃t+1+s Hr s=0 Ξs,rz̃,t+1z̃t+1+s
t t −H̃

(58)
B
x̃ x̃t−1 − H̃C H̃r rt − F

x̃ γx,t˜ +1 − H̃F
r γr,t+1

where:

Θt = H̃C ˜ F
x̃ +HF

˜ B ˜
x x̃x,t˜ +1 +Hr Brx,t˜ +1 (59)

Appendix D demonstrates that the first order condition for the instrument can be expressed as:( ∑ )˜ F H−t−1 ∑H− −1
′ Ψ ˜ ˜F t

z̃ z̃t −H −x̃ s=0 Ξs,x̃z̃,t+1z̃t+1+s Hr s=0 Ξs,rz̃,t+1z̃t+1+s
Qrt − S µt = ζt −H̃B − ˜C − ˜F − ˜F( x̃ x̃t−1 Hr rt Hx̃ γx,t˜ +1 H γr,t+1) r( ) H−t

Θ−1 ˜ ′ ∑
+ t HC

r β Vs,x̃z̃,t+1z̃t+s + Vxγ˜ ,t+1

s=1

where: ( )′
ζt = Θ−1H̃C

t r (W + βVx̃x,t˜ +1) Θ−1
t (60)
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The first order condition can be written more compactly as:

H∑−t
∆r,trt − S′µt = ∆x,t˜ x̃t−1 + ∆z̃s,tz̃t+s + ∆c,t (61)

s=0

where:

∆ H̃r,t = Q+ ζ C
t r (62)

∆x,t˜ = −ζtHB
x̃

∆ = ζ Ψ̃z̃0,t (t z̃ ) )
∆ −1 ˜ ′ (

C ˜F ˜F
z̃s,t = Θt Hr βVs,x̃z̃,t+1 − ζt Hx̃ Ξs−1,x̃z̃,t+1 +Hr Ξs−1,rz̃,t+1( ) )

∆c,t = Θ−1 ˜ ′ (
t HC ˜F ˜F

r βVxγ˜ ,t+1 − ζt Hx̃ γx,t˜ +1 +Hr γr,t+1 (63)

Appendix E demonstrates that the derivatives of future losses satisfy:

′ ′
Vx̃x,t˜ +1 = (Bx̃x,t˜ +1) (W + βVx̃x,t˜ +2)Bx̃x,t˜ +1 + (Brx,t˜ +1) QBrx,t˜ +1 (64)

′ ′
Vs,x̃z̃,t+1 = (Bx̃x,t˜ +1) (W + βVx̃x,t˜ +2) Ξs−1,x̃z̃,t+1 + (Brx,t˜ +1) QΞs−1,rz̃,t+1

′
+ (Bx̃x,t˜ +1) βVs−1,x̃z̃,t+2 (65)

′ ′ ′
Vxγ˜ ,t+1 = (Bx̃x,t˜ +1) (W + βVx̃x,t˜ +2) γx,t˜ +1 + (Brx,t˜ +1) Qγr,t+1 + (Bx̃x,t˜ +1) βVxγ˜ ,t+2 (66)

The equilibrium conditions for the period t instruments and Lagrange multipliers can therefore be

written as: [ ][ ] [ ] [ ] [ ]
∆ −S′ H

r ∆ ∑−t
r,t t x,t˜ ∆

= x̃
z̃s,t ∆

J I J t−1 + z̃
c,t

t+s + (67)
tS − t µt 0 0

s=0
Jtb

where Jt is an nµ × nµ diagonal matrix indicating which of the constraints is binding in period t. This

system jointly determines the solution for the instruments and the Lagrange multipliers:

H∑−t
rt = Brx,t˜ x̃t−1 + Ξs,rz̃,tz̃t+s + γr,t (68)

s=0

H∑−t
µt = Bµx,t˜ x̃t−1 + Ξs,µz̃,tz̃t+s + γµ,t (69)

s=0

where:

Brx,t˜ = Γrr,t∆x,t˜ (70)

Ξs,rz̃,t = Γrr,t∆z̃s,t

γr,t = Γrr,t∆c,t + Γrµ,tJtb

Bµx,t˜ = Γµr,t∆x,t˜

Ξs,µz̃,t = Γµr,t∆z̃s,t

γµ,t = Γµr,t∆c,t + Γµµ,tJtb (71)

where Γrr,t, Γrµ,t, Γµr,t and Γµµ,t are the upper-left, upper-right, lower-left and lower-right blocks of
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[ ]−1
∆r,t −S′

respectively, defined as:
JtS I− Jt

Γ = ∆−1 −∆−1 ′
rr,t r,t r,t S Γµµ,tJtS∆−1

r,t (72)

Γ −
rµ,t = ∆ 1

r,t S
′Γµµ,t

Γ = −Γ J S∆−1
µr,t µµ,t t r,t(

Γ = I− J − 1
+ J −

S∆ 1 ′)
µµ,t t t r,t S (73)

Substituting the law of motion for the instruments into the constraint in equation (58) gives:

H∑−t
x̃t = Bx̃x,t˜ x̃t−1 + Ξs,x̃z̃,tz̃t+s + γx,t˜ (74)

s=0

where: ( )
Bx̃x,t˜ = −Θ−1 ˜

t HB
x̃ + H̃C

r Brx,t˜ (75)( )
Ξ0,x̃z̃,t = Θ−1 ˜

t Ψz̃ − H̃C
r Ξ0,rz̃,t( )

Ξ −
s,x̃z̃,t = −Θ 1 ˜

t HF
x̃ Ξ ˜F ˜C

s−1,x̃z̃,t+1 +Hr Ξs−1,rz̃,t+1 +Hr Ξs,rz̃,t( )
γx,t˜ = −Θ−1

t H̃F
x̃ γx,t˜ +1 + H̃F

r γ
C

,t+1 + H̃r r γr,t (76)

5.1.1 The algorithm

The following algorithm can be used to compute a perfect-foresight transition given a set of anticipated

disturbances, {z̃t}Ht=1, from an arbitrary initial condition, x̃0, to a steady state regime (pre-computed

using the method in Appendix A) in which none of the instrument constraints is binding.

0. Form a guess for the indicators, {Jt}Ht=1, that describe which of the constraints is binding in each

period of the transition.

1. For each period, t, starting in period H (using the period H + 1 terminal conditions outlined at

the end of Appendix D.1) and working backwards to period 1, compute the following:

(a) Compute Θt and ζt using equations (59) and (60).

H−t
(b) Compute ∆r,t, ∆x,t˜ , ∆c,t, ∆z̃0,t and, if t < H, {∆z̃s,t} using equations (62)-(63).s=1

(c) Compute Γrr,t, Γrµ,t, Γµr,t and Γµµ,t using the formulae in equations (72)-(73).

H−t H−t
(d) Compute and store Brx,t˜ , {Ξs,rz̃,t} , γr,t, Bµx,t˜ , {Ξs,µz̃,t} and γµ,t using equationss=0 s=0

H−t
(70)-(71) and Bx̃x,t˜ , {Ξs,rz̃,t} and γr,t using equations (75)-(76).s=0

H−t
(e) Compute Vx̃x,t˜ , Vxγ˜ ,t and {Vs,x̃z̃,t} using equations (64)-(66).s=1

2. Compute {x̃t}Ht=1, {rt}Ht=1 and {µt}Ht=1 starting in period t = 1 and working forwards to period H.

If Srt − b ≥ 0 and µt ≥ 0 for all t = 1 . . . H, then an equilibrium has been found. If not, then the

guess {Jt}Ht=1 does not constitute an equilibrium, either because one or more of the constraints is

violated in one or more periods, or because one or more of the Lagrange multipliers is negative

(indicating that a constraint is assumed to be binding when it should not be). In that case, update

the guess {Jt}Ht=1 and go back to step 1.

25



5.2 Discussion

As in the method presented in Section 4, a key innovation is the inclusion of anticipated disturbances

in the solution. Importantly, the impact of anticipated disturbances is summarized with single horizon

and time-varying impact matrices (denoted Ξ). It would be possible to factor out the forward loading

and shock impact matrices in the same way as for the unconstrained problem considered in Section 4,

but there is little value in the additional algebra necessary to do that. The time variation in the solution

matrices that is due to variation in whether and the extent to which the instrument bound constraints

are binding (either in period t or in expectation in the future) also implies that both the forward and

impact loadings will vary over time. So, unlike the method in Section 4, there is no generic expression

for the forward loading matrices as a function of the expectation horizon only.

These observations also imply that the case of optimal discretionary policy with instrument bounds

cannot, in general, be solved using a straightforward application of the Holden and Paetz (2012) method.

It should be emphasized that this result does not represent a criticism of Holden and Paetz (2012): their

method is designed for particular cases and they do not claim that optimal discretionary policy is among

them.

Appendix F considers this issue in detail and uses a simple two-period example to demonstrate several

key results. First, it is possible to replicate the solution presented in this section using the Holden and

Paetz (2012) method under some special conditions. These include cases in which (a) there is a single

constraint on a single instrument that binds only in the first period of a simulation/projection or (b)

the first order condition for optimal discretionary policy is entirely static. Case (a) is clearly a very

restrictive one. The ‘static’ first order conditions in case (b) tend to occur in models in which there are

no (payoff relevant) endogenous state variables, which rules out most realistic applications.

Taken together, these results are used to demonstrate that a straightforward application of the Holden

and Paetz (2012) will not in general deliver the correct solution because the effects of future constraints

on policy are not properly accounted for. While Appendix F considers this analytically for a simple

example, some intuition for this result can be found by considering the solutions under commitment

and discretion from previous sections. For the case of commitment, the time-invariant nature of the first

order conditions for optimal policy gives a representation of equilibrium as a function of future multipliers

on the instrument constraints, equation (14). A similar representation could be derived in the case of

optimal discretion. However, the solution under optimal discretion reveals that the multipliers on the

instrument constraints are endogenous to the solution, as shown by equation (69).

Intuitively, a policymaker can seek to moderate the impact of future instrument constraints on the

discounted sum of future losses via the optimal decisions they make. A standard application of the

Holden and Paetz (2012), which treats the future path of multipliers as exogenous (and isomorphic to

anticipated shocks), would not take that dependency into account.

Appendix F provides some further evidence that it may be possible to extend the Holden and Paetz

(2012) method to incorporate the endogeneity of the multipliers on the instrument constraints. However,

a solution computed using such a method would be conditional on a particular conjecture for the periods

in which the instrument constraints were binding. Such an extension would therefore require the same

type of ‘guess and verify’ procedure as the method presented in Section 5.1 in order to find the equilibrium.

As such, the strong computational advantages of the Holden and Paetz (2012) method in the case of

commitment solutions do not carry over to the case of optimal discretion.

Indeed, all steps of the algorithm in Section 5.1.1 are straightforward and cheap to compute. They are

simply applications of the recursive formulas in the definition of equilibrium (in a finite-horizon dynamic

program with known terminal and initial conditions).29 However, the algorithm has the potential to be

29The implementation also allows for unanticipated disturbances to be realized in any period along the transi-
tion, facilitating stochastic simulation around a baseline scenario or forecast. This requires repeated (recursive)
application of the algorithm above, beginning in period t = 1 and ending in period H. In each period t, the
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very inefficient, depending on how many iterations are required to find the equilibrium binding constraint

indicator {Jt}Ht=1. As noted by Brendon et al. (2010), “The precise sequencing of regimes unfortunately

requires some guesswork”.30

The baseline implementation of the algorithm is based on a heuristic that sequentially adds and then

removes guesses that constraints are binding (i.e. unit entries in {Jh}Hh=1) until an equilibrium has been

found. The choice of which guesses to add/remove is based on the largest violations of the constraints on

the policy instruments and non-negativity constraints on the associated multipliers. At each iteration,

a binding indicator guess is added for the largest violation of the instrument constraint. In the event

that there are no such violations, a binding indicator guess is removed for the largest µ non-negativity

violation.31

There is relatively little research on the questions of existence and uniqueness of equilibrium in the

environment studied here. Armenter (2018) has noted that multiplicity of Markov-perfect equilibria may

be widespread in even very simple New Keynesian models in which monetary policy is constrained by a

lower bound. From a practical perspective, such a result would imply that the method used to update

the sequence of constraint indicators {Jt}Ht=1 could influence the (non-unique) equilibrium on which the

algorithm settles. Alternatively, there is a possibility that equilibria in which policy instruments are

subject to occasionally binding constraints may not exist in discrete time models (see Appendix B in

Boneva et al., 2018, for a discussion).

5.3 Example

The example revisits the QE experiment of Section 3.3, utilizing the same model, parameterization and

shock scenario. However, in this case optimal policy is time consistent (rather than optimal commitment).
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Figure 4: Recessionary shock under optimal discretion with instrument bounds

outcomes in periods t + 1 . . . H, {x̃t+s}H−ts=1 , {rt+s}H−ts=1 and {µt+s}H−ts=1 constitute a forecast conditional on the
information known (i.e. the set of anticipated disturbances and the unanticipated shocks realized to date) up to
that point.

30The ‘regimes’ in Brendon et al. (2010) correspond to the sequence of indicators {Jt}Ht=1.
31This approach to incrementally adjusting the guesses for {Jt}Ht=1 has the potential to generate ‘cycles’ in the

guesses: the same sequences of guesses for {J H
t}t=1 are repeated as the iterations proceed. Such cycles could be

indicative of equilibrium non-existence. It would of course be possible to implement a more sophisticated search,
drawing on the literature on discrete optimization.
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Figure 4 shows the results of the same recessionary scenario considered in Section 3.3, in which the

natural real interest rate falls to -8% under optimal discretion. As before, the solid black lines show the

case in which the policymaker has access only to the short-term policy rate and the dashed gray lines

show the case in which QE is also used.

Relative to the results under optimal commitment (Figure 1), the shock leads to a much larger and

more persistent recession, regardless of whether or not the policymaker has access to QE. The prolonged

recession is sufficient to pull inflation below the target (of 0%). These results reflect the well-known result

that time-consistent policy is unable to influence current conditions by credible promises to behave in a

particular manner in the future. In the context of the recessionary scenario considered here, policymakers

are unable to promise to accommodate a future boom in order to increase inflation expectations and

hence reduce real interest rates. As a result, time consistent policy leads to a larger and more prolonged

recession and the short-term policy rate is constrained by the zero bound for longer than when policy is

set under optimal commitment.

QE is a relatively powerful additional instrument under discretion. Compared to the case of optimal

commitment considered in Section 3.3, the policymaker is unable to rely on costless promises about

future interest-rate policy, which motivates a greater reliance on QE. The optimal QE policy (dashed

lines) is to enact very large scale asset purchases, so that the upper bound on QE is reached within 2

quarters. A prolonged period of maximal QE is sufficient to lower long-term interest rates persistently.

The macroeconomic effect of QE amounts to several percentage points for the output gap and almost

0.5pp for annual inflation.32

6 Optimal policy with instrument and non-instrument bounds

Many applications of piecewise linear methods to handle occasionally binding constraints (Guerrieri and

Iacoviello, 2015; Holden and Paetz, 2012) examine cases in which these constraints may apply to variables

other than the policy instruments. For example, Guerrieri and Iacoviello (2017) estimate a model in which

the borrowing constraint of impatient households may become slack, in addition to a lower bound on the

short-term nominal interest rate (which is assumed to be set according to a simple rule). In contrast,

algorithms designed to consider optimal policy in which instruments may be constrained (for example

Brendon et al., 2010) do not allow for constraints on variables other than the policy instruments.

This section considers the case in which non-instrument variables may be subject to occasionally

binding constraints in addition to the occasionally binding constraints on policy instruments considered

in previous sections. A challenge for creating a general purpose algorithm to handle this case is that

constraints on non-instrument variables can take a wide variety of forms. The method presented here

is designed to encompass a wide variety of plausible cases. In particular, multiple constraints on non-

instrument variables are considered, given the potential importance of such cases in future research.33

It is assumed that the non-instrument variables are subject to N ≥ 1 contemporary slackness condi-

tions of the form:

Cix̃t ≥ di, Gix̃t ≥ ki, (Cix̃t − di) (Gix̃t − ki) = 0, i = 1, . . . , N (77)

The ‘baseline’ state of the model (described in equation (5)) is assumed to be the case in which all

32Note that the overshoot of inflation in Figure 4 reflects the role of the model dynamics (in particular the lag
of the output gap in the Phillips curve) rather than the result of a credible promise to engineer a period of above
target inflation.

33The inclusion of multiple constraints can lead to rich and state-dependent dynamic as demonstrated by
Bluwstein et al. (2020) in the case of occasionally binding constraints on leverage and new lending.
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constraints are ‘inactive’. By convention, the term ‘inactive’ is used to refer to cases in which

Cix̃t = di,

and, without loss of generality, it is assumed that:

di = 0, i = 1, . . . , N

which means that this case satisfies:  
C 1  . .  ˜xt = 0 (78).

CN

The motivation for labeling these cases as ‘inactive’ states is that there are many relevant cases

in which constraints on non-instrument variables are generally binding, but may occasionally become

slack. A common example is the case of a collateral constraint. Many models assume that the collateral

constraint binds in the deterministic steady state and for small shocks around that steady state. However,

the constraint may become temporarily slack in response to a large enough shock (see Guerrieri and

Iacoviello, 2017; Ferrero et al., 2018, for example). As such, it may be unhelpful to label alternative

states of the model as those in which non-instrument constraints are ‘binding’ or ‘slack’. Indeed, the

very nature of the contemporary slackness conditions implies that one constraint will bind when another

is slack. So, for the example of a collateral constraint that binds near to the steady state, the binding

collateral constraint is labeled as the ‘inactive’ state and the case in which the constraint is slack is the

‘active’ state.

Since there are N non-instrument OBCs that may each be in either of two states (i.e., ‘inactive’,

Cix̃
N

t = 0; or ‘active’, Gix̃t = ki) there are a total of 2 distinct states. These distinct states are indexed

j = 1, . . . , 2N , with the ‘baseline’ state identified as state 1.

The framework outlined above implies that the structural form of the model (5) can be written as

follows:

∑2N ∑2N
H̃F
x̃ Etx̃t+1 + I ˜C

j,tHx,<j˜ >x̃ + H̃B
t x̃ x̃

F
− ˜

1 + H̃t r Etrt+1 +HC
r rt = Ψ̃z̃ z̃t + Ψδ Ij,tδ<j>

j=1 j=1

where Ij,t is a scalar indicator variable taking the value of 1 if the model is in state j in period t and 0

otherwise and the additional disturbances δ are introduced to enforce the equality constraints Gix̃t = ki

as described below. Note that the notation ‘< j >’ is used to index the ‘state’ of the model. The matrix

Ψδ is an nx̃×N matrix that loads on the N ×1 vector δ. So the i-th row of δ records a scalar value (1 or

0) corresponding to whether or not the i-th constraint is active in period t.34 Similarly the i-th column

of Ψδ is zero, except for the row corresponding to the equation of the structural form that implements

the constraint Gix̃t = ki: that element of Ψδ is equal to ki.

The validity of the representation above relies on several assumptions about the implementation

of the non-instrument constraints. The main assumption is that the equations corresponding to the

constraints (78) are a subset of the H̃C
x̃ matrix in the baseline state (ie H̃C

x,<˜ 1>). Those constraints also

imply that δ = 0. Importantly, it is assumed that these equations only feature entries in the H̃C
<1> x̃

matrix (and not in H̃F
x̃ , H̃B

x̃ or Ψ̃z̃). This is not a restrictive assumption because it is possible to include

additional equations within the model structure as identities that define the variables to be constrained.

Given this observation, a second assumption is that each contemporary slackness condition is written

34As noted previously, there are 2N possible values of δ corresponding to whether or not each of the N
constraints are active or inactive.
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as a constraint on a single element of x̃ (so it is identified with a particular variable). In practice, this

means that the Gi matrices are 1×nx̃ vectors of zeros with a single unit entry in the column corresponding

to the variable that must satisfy the constraint. While not strictly necessary for the implementation of

the method (and it is not imposed in the derivation below), this assumption simplifies the algorithmic

implementation of the method.

Given these assumptions, the structural form of the model can be written more compactly as:

H̃F x̃ + H̃C x̃ + H̃B H̃x̃ t+1 x,t˜ t x̃ x̃t−1 + F
r rt+1 + H̃C

r r Ψ̃t = z̃ z̃t + Ψδδt (79)

where the time-varying coefficient matrices, H̃C
x,t˜ and δt depend on the set of OBCs that are active in

period t. Given the focus on a perfect foresight solution the expectation operator is omitted (as in

previous sections).

The next subsections consider the cases of optimal commitment and discretion when the structural

model equations are given by (79). Similar to the approach described in Section 5, the solution assumes

that anticipated disturbances (z̃) are zero beyond some horizon, H. Moreover, it is assumed that the

model is permanently in the baseline state from period H + 1 onwards.35

6.1 Optimal commitment

The time-varying nature of the structural model equations implies that the solution does not take a time-

invariant form as considered in Section 3. Instead, it is necessary to solve backwards from period H + 1,

in a similar manner to the methods used for optimal discretion in Sections 4 and 5. In common with

those methods, the solution approach involves making a guess for the instrument and non-instrument

OBCs that bind in each period and then verifying whether that guess is valid. Since the solution is

computed by backward induction, only the timeless perspective case is considered here.36

Given the structural form (79), the first order conditions of the optimal policy problem can be written

as: ( )′ ( )′
0 = Qr HC

t − ˜
r λt − β−1 H̃F

r λt−1 − S′µt (80)( )′ ( )′ ( )˜ ˜ ′
0 = Wx̃t − HC λ β−1

t HF
x,t˜ − x̃ λ B

t−1 − β H̃x̃ Etλt+1 (81)

0 = H̃F
x̃ Etx̃t+1 + H̃C

x,t˜ x̃t + H̃B
x̃ x̃

F C
t− + H̃1 H̃r Etrt+1 + r r Ψ̃t − z̃ z̃t −Ψδδt (82)

Following the logic of Section 3, it is helpful to rewrite the model in terms of an expanded vector of

variables and shocks:  
x̃ [ ] t  z̃

yt ≡  rt  , ẑ
t

t ≡
δt

λt

With these expanded vectors, the structural form of the model is given by:

HF
y y

C B ̂
t+1 +Hy,tyt +Hy yt−1 = Ψẑ ẑt + Ψµµt (83)

35Provided a solution exists, this is not a restrictive assumption. H can be increased to be sufficiently large
for the model to revert to the baseline state and a projection from period H + 1 onwards can be used to verify
that none of the occasionally binding constraints are subsequently violated.

36As in Section 3, consideration of the fully optimal solution requires a straightforward adjustment to the first
order conditions in the first period.
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where the matrices HF
y and HB

y are reported in Section 3 and where: ( )′  0 Q − H̃C
r 

C  ( )  ′
Hy,t = W 0 − H̃ C 

x,t˜ 
H̃C H̃C x,t˜ r 0
0 0

Ψ̂
 

ẑ =  0 0 
Ψ̃z̃ Ψδ 
S′ 

Ψµ =  0 
0

Appendix G shows that the solution is given by:

H∑−t H∑−t
y ,t Φ̂t = By yt−1 + Ft,h t+hẑt+h + Ft,hΦµ,t+hµt+h (84)

h=0 h=0

where ( )−1
By,t = − HF C

y By,t+1 +Hy,t HB
y( )

Φ̂
−1

t = HF
y By,t+1 +HC ̂

y,t Ψẑ( )−1
Φµ,t = HF

y B
C

y,t+1 +Hy,t Ψµ

and the By,t matrix recursions start from

By,H+1 = By

where By is the rational expectations solution from equation (14).

For h > 1, the F matrices are given by:

Ft,h = ΥtFt+1,h−1

with:

Ft,0 = I( )−1
Υt ≡ − HF

y By,t+1 +HC
y,t HF

y

which implies Ft,1 = Υt.

As in the method in Section 3, computing the results of a simulation or projection of the model that

incorporates the effects of the instrument constraints uses µt (t = 1, . . . ,H) to impose the constraints, if

necessary. The difference is that the simulation or projection now also uses δt (t = 1, . . . ,H) to ensure

that non-instrument constraints are also and simultaneously satisfied.

Again following the method of Section 3, the first step is to construct a ‘baseline simulation’ in which

the instrument constraints are assumed not to bind: assuming µt = 0, t = 1, . . . ,H. From a given

initial condition {x̃ H
0, λ0}, a realization of the anticipated disturbances {z̃t}t=1 and an assumption about{ }H

the non-instrument constraints that are active in each period (and hence HC
y,t, δt ), the baseline

t=1
H

simulation for {x̃t}t=1 is computed using (84) (with µt = 0, t = 1, . . . ,H).

The baseline simulation can be checked to determine whether it violates the assumption that the
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instrument constraints never bind. This amounts to checking whether Srt > b, t = 1, . . . ,H. If any of

these assumptions is violated in the baseline simulation, the instrument constraints are enforced using a

variant of the method in Section 3.

As in Section 3, the occasionally binding constraints are implemented by computing the effects of on
H

the ‘target’ variables, τt defined in equation (15). From (84) the effects of the µ shocks {µt}t=1 on the

endogenous variables in period 1 of the simulation is given by:

H∑−1

ŷ1 = F1,hΦµ,1+hµ1+h (85)
h=0

and the effects on the policy instruments are given by τ̂1 = Sτ ŷ1.

As in Section 3, a recursive scheme for building a matrix that maps the effects µt, t = 1, . . . ,H to

the instruments in each period can be developed. The first (block) row of the matrix can be found by

expanding (85):  
µ1  .. [ ] .  

τ̂1 =Sτ Φµ,1 . . . F1,t−1Φµ,t . . . F1,H−1Φµ,H  µ  t ︸ ︷︷ ︸ . 
≡ω1  .. 

µ︸ ︷︷H ︸
≡D

so that ωtD denotes the effects of current and future multipliers on (all) variables (y) in period t.

The weights on current and future policy shocks at horizon h, ωh, are given by:[ ]
ω2 = 0 Φµ,2 . . . F2,t−1Φµ,t . . . F2,H−2Φµ,H

. . . [ ]
ωt = 0 0 . . . Φµ,t . . . Ft,H−tΦµ,H

. . . [ ]
ωH = 0 0 . . . 0 . . . Φµ,H

This implies that the effects of past and future shadow shocks at horizon h is given by:

Rt = By,tRy−1 + ωt, t = 1, . . . ,H (86)

with R0 = 0.

As in Section 3, these coefficients can be used to build a matrix mapping the µ shocks to the target

variables as:

T =MD (87)

where    
τ̂1 SτR1 .   . 
.  .  .   .    T =  τ̂h  , M =  S R  (88)   τ h  .   .  ..   .. 
τ̂H SτRH

Equation (87) is isomorphic to equation (20) in Section 3 and so the same quadratic programming
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H
approach can be used to find the sequence of {µt}t=1 required to implement the occasionally binding

constraints on the policy instruments.

Collecting together the steps described above gives the following algorithm:

0. Form an initial guess for the equilibrium set of non-policy constraints that are active in each period
H H

(encoded in, {Ij,t} , j = 1, . . . , 2N ). Set {δt} t=1 t=1 consisten with this guess.t

1. For each period, t, starting in period H (using the period H + 1 terminal conditions outlined in
H−t

Appendix G) and working backwards to period 1, compute By,t, Φ̂t,Φµ,t and {Ft,t+h} usingh=0

the formula above.

2. Compute {yt}Ht=1 using (84) starting in period t = 1 and working forwards to period H and

assuming µt = 0, t = 1, . . . ,H.

3. Check the constraints:

(a) If Srt − b ≥ 0 is violated in any period t, form the matrices T and M in equation (88) and
H

solve the quadratic programming problem in (21)–(23) for the multiplier sequence {µt}t=1.
H

Recompute the projection using (84) and {µt}t=1. Otherwise go directly to step 3b.

(b) If the contemporary slackness conditions (77) are satisfied for all i = 1, . . . , N and for all t =

1, . . . ,H, the solution has been found. Otherwise, update the guess {I H N
j,t}t=1, j = 1, . . . , 2

and go back to step 1.

6.2 Optimal discretion

The algorithm for optimal discretion subject to instrument constraints presented in Section 5 is easily

adapted to handle the type of non-instrument constraints considered in this section. That is because

the algorithm embeds the time-varying nature of the policy problem (in particular, the effects of the

occasionally binding instrument constraints on the derivatives of future losses with respect to current

allocations).

As described earlier, the method for incorporating non-instrument constraints encapsulates those

constraints in the form of a time-varying matrix H̃C
x,t˜ . Inspection of the derivation described in Section

5 reveals that the time-variation in the structural equations can be captured by updating equation (59)

to

Θt = H̃C
x,t˜ + H̃F F

x B ˜
˜ x̃x,t˜ +1 +Hr Brx,t˜ +1 (89)

where H̃C
x,t˜ depends on the constraints that are active in period t, as in the derivation in Section 6.1.

The structure of the model must also be extended to include anticipated disturbances, δ used to

impose the effects of the occasionally binding constraints on the constrained variables. To preserve the

notation in Section 5 this can be done by defining the vector of non-policy shocks to be:[ ]
z̃†

z̃t ≡ t (90)
δt

where z̃† are the ‘fundamental’ non-policy shocks in the structural model, (5). Similarly,[ ]
Ψ̃z̃ = Ψ̃†z̃ Ψδ (91)

where Ψ̃†z̃ represents the loadings on the ‘fundamental’ non-policy shocks in the original model.

The solution algorithm is therefore given by:

0. Extend the model (5) to include the additional disturbances, δ using equations (90) and (91).

Form an initial guess for the equilibrium set of non-policy constraints that are active in each
H N H

period (encoded in, {Ij,t} , j = 1, . . . , 2 ). Set {δt}t=1 t=1 consistent with this guess.
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1. Solve the optimal discretion problem, subject to instrument bounds, using the algorithm presented

in Section 5.1.1, but using equation (89) in place of (59) to compute Θt.

2. Check the constraints. If the contemporary slackness conditions (77) are satisfied for all i =

1, . . . , N and for all t = 1, . . . ,H, the solution has been found. Otherwise, update the guess

{Ij,t}Ht=1, j = 1, . . . , 2N and go back to step 1.

6.3 Discussion

The methods described in the previous sub-section are straightforward extensions of those presented in

earlier sections. As such, the same general issues apply. In particular, the previously discussed issues

associated with finding a solution using a ‘guess and verify’ approach will be particularly relevant for the

discretionary equilibrium described in Section 6.2. One benefit of the commitment solution described in
H

Section 6.1 is that the quadratic programming approach to finding the sequence of multipliers {µt}t=1 is

likely to be faster than a simple iterative scheme for updating guesses about the instrument constraints

that bind each period.

Importantly, a variant of the Holden and Paetz (2012) method can be used for commitment policies,

even though the structural equations of the model vary over time on account of the occasionally binding

non-policy constraints. This is possible because the changes in the structural equations are perfectly

foreseen (conditional on the conjectured sequence of non-policy constraints that bind in each period) and

because the Holden and Paetz (2012) is adapted to account for the implications of this time variation for

the effects of future instrument constraints on endogenous variables (that is, the Ft,h and Φµ,t matrices

in equation (84)).

6.4 Examples

6.4.1 Commitment

This example uses the model of Smets and Wouters (2007, henceforth ‘SW’), viewed by many as an

exemplar of medium-scale DSGE models estimated using Bayesian methods. It has been the blueprint

for models developed for forecasting and policy analysis in many policy institutions. Since the model is

well known, the description below is confined to the small modifications required for the experiment.

The starting point is the SW model with parameter values equal to the posterior means reported in

Smets and Wouters (2007). Two modifications are made to the model for the purposes of this example.

The first modification raises the persistence of the “risk premium shock” (ρb) to 0.85 (the posterior

mean is 0.22). This creates more protracted responses to the shock, which is necessary to produce

meaningful episodes in which occasionally binding constraints are relevant.

The second modification is to replace the baseline specification of investment adjustment costs with an

assumption that investment is subject to ‘speed limit’ constraints, specified below. Removing investment

adjustment costs implies that the parameter ϕ is set to zero.

The constraints on investment can be written as:

∆it ≤ $U (92)

∆it ≥ $L (93)

where ∆i U
t ≡ it − it−1 is the change in investment and $ > 0 > $L are the upper and lower limits on

the rate of change of investment.

Given the absence of investment adjustment costs, these constraints imply that the investment Euler
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equation (equation (3) in Smets and Wouters (2007)) is replaced by:

qt − ξ 1−σ 1−σ
t + βγ ξt+1 + ζt − βγ ζt+1 = 0

where ξ and ζ are the Lagrange multipliers on constraints (92) and (93) respectively.37

The contemporary slackness conditions for this particular case are therefore given by:( )
ζ ≥ 0, ∆i ≥ $L, (ζ − 0) ∆i −$L = 0 (94)︸t︷︷ ︸ ︸ t ︷︷ ︸ ︸ t ︷︷t ︸
C1x̃t≥0 G1x̃t≥k1 (C1x̃t−0)(G1x̃t−k1)=0( ( ))

ξt ≥ 0, −∆it ≥ −$U , (ξ i︷︷ ︸ t − −$U = (95)︸ ︸ ︷︷ ︸ ︸ t − 0) −∆ 0︷︷ ︸
C2x̃t≥0 G2x̃t≥k2 (C2x̃t−0)(G2x̃t−k2)=0

The ‘speed limits’, $U and $L, are set to limit changes in investment to roughly 4 percentage points

above and below steady-state investment growth. While this limit is set arbitrarily (for the purposes of

the simulation), it nevertheless allows for relatively large swings in investment, given that the model is

calibrated on a quarterly basis.38

The policymaker uses the nominal interest rate, r, to minimize the loss function

∑∞ ( )
Lt = βi π2

t+i + λxx
2
t+i

i=0

where x is the flexible price measure of the output gap. Following the example in Section 6.4.2, the

weight on the output gap in the loss function is set to λx = 0.25.

Loss minimization is subject to a lower bound on the policy rate:

rt ≥ b

where the bound b is set equal to minus 1 times the steady-state nominal interest rate, computed from

the posterior mean parameter values reported by Smets and Wouters (2007).

The scenario considered is similar to the one in Section 6.4.2. A large negative shock to the risk

premium process (εb) is anticipated to arrive in quarter t = 4. The scale of the shock is chosen to require

a material response of the monetary policy rate such that the lower bound becomes a relevant constraint

on the policy response.

Figure 5 plots the results.

In the absence of any occasionally binding constraints (dashed gray lines) the optimal policy path

necessitates a reduction in the policy rate below zero when the risk premium shock arrives in quarter

4. As in the example in Section 6.4.2, a path for the policy rate that tracks the evolution of the risk

premium process delivers full stabilization of the output gap and inflation.

In the presence of the zero bound on the policy rate (solid gray lines), the policy rate is constrained

by the zero bound when the shock arrives in quarter 4. In contrast with the example in Section 6.4.2,

a policymaker that is able to commit to future policy actions avoids a deep recession in the short term.

Conditional on the lower bound on the policy rate, the optimal policy is to promise a prolonged period

of relative loose monetary policy (a low path for the real interest rate). This sustains a long-lived output

boom and a persistent rise in inflation. The rise in inflation is sufficiently large that the nominal interest

37Note that the constraints on investment are specified in the underlying decision problem, so that (92) and
(93) represent log-linearized versions of the constraints and ξ and ζ are transformed versions of the underlying
multipliers on those constraints (that is, scaled by the marginal utility of consumption). It is assumed that the
flexible price equilibrium is not subject to investment speed limits.

38In the updated version of the SW data set used by Harrison (2015), these upper and lower bounds were each
violated just twice between 1980 and 2008.
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Figure 5: Negative risk premium shock scenario under optimal commitment with zero bound and ‘speed limit’
constraints on investment growth

rate is generally above its steady-state level. Since investment is fully flexible, investment and investment

growth follow particularly volatile profiles.

The solid black lines show the case in which the investment ‘speed limits’, (94) and (95), are imposed

alongside the lower bound on the policy rate. The limits on investment growth reduce the amplitude

of the investment responses in the quarters around the arrival of the εb shock. The extent to which

investment can rise when the risk premium shock arrives is particularly constrained. This limits the

degree to which the path of monetary policy can stimulate spending and inflation and the optimal policy

path is constrained at the zero bound for several quarters after the shock arrives. Nonetheless, the

resulting deviations of output from potential and inflation from target are smaller in the presence of

additional constraints on the feasible paths for investment. This result echoes that of Section 6.4.2 and

highlights the potential for a subtle interplay between constraints on policy instruments and non-policy

variables.

The final panel plots the multipliers ξ and ζ for the simulation in which both the zero bound and

investment speed limits are imposed. In equilibrium, the period for which the investment speed limits

are binding overlaps with the period during which the monetary policymaker is constrained by the zero

lower bound.

6.4.2 Discretion

A simple inertial New Keynesian model is used to explore the implications of downward nominal wage

rigidity. Most of the model is standard and resembles the model used in Sections 3.3 and 5.3 (though

without a role for QE).

xt − ηxt−1 = Et (xt+1 − ηx ∗
t)− σ (it − Etπt+1 − rt ) (96)

π −1
t − ιπt−1 = βEt (πt+1 − ιπt) + α (1− βα) (1− α)wt (97)

r∗t = ρr∗t−1 + εt (98)

The IS curve (96) includes habit formation, with habit parameter η ∈ [0, 1). The Phillips curve (97)

includes price indexation, with indexation parameter ι ∈ [0, 1). The Phillips curve is written in terms
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of the real wage w because the focus will be on the case in which nominal wages are sticky downwards.

The weight on the real wage (real marginal cost) is a function of the Calvo adjustment parameter α.

With fully flexible nominal wages, the real wage will equal the marginal rate of substitution, which

is given by:39 ( )
1 η

mt ≡ ψ + xt − xt−1
σ σ

However, suppose that workers will not accept a fall in the absolute level of nominal wages. Under

the assumption that the model is log-linearized around a positive (quarterly) inflation target, π∗, the

following constraint is applied:

πwt ≥ −π∗ (99)

where

πwt ≡ wt − wt−1 + πt

is the quarterly rate of wage inflation.

To implement the non-negativity constraint on wage inflation, the gap between the real wage and

the marginal rate of substitution is defined by:

w̃t ≡ wt −mt

The ‘baseline state’ of the model corresponds to the case in which w̃t = 0 and the occasionally

binding constraint (the lower bound on nominal wage inflation) is ‘inactive’. The contemporary slackness

condition for this particular case is therefore given by:

w̃t ≥ 0, πw , (w̃ ∗
t ≥ −π∗ t − 0) (πwt − (−π )) = 0 (100)︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

C1x̃t≥0 G1x̃t≥k1 (C1x̃t−0)(G1x̃t−k1)=0

The policymaker uses the nominal interest rate, i, to minimize the loss function

∑∞ ( )
Lt = βi π2

t+i + λxx
2
t+i

i=0

subject to a lower bound on the policy rate:

β
it ≥ ln

π∗

The parameter values used in the experiment are shown in Table 3. For the most part, these values are

taken from the model in used in Sections 3.3 and 5.3. The value of β is higher, to ensure that the steady

state real rate is lower (at around 2% annualized). This implies that the steady-state nominal interest

rate is around 4% (annualized), given the assumption of a 2% annual inflation target. The persistence of

the shock to the natural real interest rate is higher, to increase the scale of the stabilization problem (and

hence ensure that the lower bound on the policy instrument and nominal wage inflation are encountered

in a meaningful manner).

The simulation is an anticipated (or ‘news’) shock to the natural rate of interest. Given the calibration

of the model, each period of time is interpreted as a quarter (of a year). The value of εt in quarter t = 4

39This can be derived for a period utility function defined over consumption, C, and hours worked N of the form
1

(C η
U (C,N =

t− ¯ 1−
C σ

)
t−1) −1 χ

1 + N1+ψ
t , where habit formation is defined in terms of aggregate consumption

1− 1+ψ
σ

C̄. The result imposes market clearing, yt = ct; the production function yt = nt (both expressed in first order
approximations using log-deviations) and the fact that the preference shock does not affect potential output. So
the output gap satisfies xt = yt.
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Parameter Description Value

β
α
ψ
σ
ι
ρ
η
λx

100π∗

Household discount factor
Probability of not adjusting price
Inverse Frisch elasticity
Elasticity of intertemporal substitution
Degree of inflation indexation
Autocorrelation of natural real interest rate
Habit formation parameter
Loss function weight on output gap
Inflation target (quarterly, per cent)

0.995
0.8725
0.11

1
0.7
0.9
0.8
0.25
0.5

Table 3: Parameter values for inertial New Keynesian model

is chosen so that the (annualized) natural rate of interest falls from its steady-state value of 4% to -4%

in quarter 4 of the simulation. Thereafter, it recovers according to the autoregressive process (98).
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Figure 6: Recessionary scenario under optimal discretion with zero bound and downward nominal wage rigidity

Figure 6 shows the results of the simulation.

In the absence of any occasionally binding constraints (dashed gray lines) the optimal policy path

necessitates a reduction in the policy rate below zero in quarter 4, before tracking the recovery of the

natural real interest rate back to steady state. This ensures full stabilization of output, price and wage

inflation and the real wage.

In the presence of the zero bound on the policy rate (solid gray lines), the policy rate cannot track

the evolution of r∗ when it falls in quarter 4. Agents recognize that the policy rate will be too high in

the future: monetary policy will be too tight. This expectation reduces aggregate demand and inflation

immediately, even though the natural real interest rate does not fall until quarter 4. Indeed, the fall in

demand and inflation is enough to push the policy rate to the zero bound immediately. This implies

that monetary policy is too tight for a prolonged period, generating a substantial recession and negative

quarterly inflation rates. The large fall in output generates substantial movements in the marginal rate

of substitution. Since this simulation assumes fully flexible wages, the real wage falls markedly and

wage inflation is substantially negative for several quarters. The policy rate stays at the lower bound for
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several quarters after the natural real interest rate has risen above zero, reflecting the continued weakness

of the output gap and inflation due to the inertial dynamics in the model.

The solid black lines show the case in which downward nominal wage rigidity, equation (99), is

imposed alongside the lower bound on the policy rate. In this case, the initial dramatic fall in nominal

wage inflation is mitigated, which dampens the fall in the real wage, marginal cost and inflation. The fact

that monetary policy is initially constrained by the zero bound implies that the tightening in monetary

policy is also moderated, resulting in a smaller fall in the output gap. In equilibrium, the gap between

the real wage and the marginal rate of substitution (w̃, plotted in the bottom right panel) is somewhat

smaller than would be implied from a comparison of the solid black and solid gray lines.40 Overall the

presence of downward nominal wage rigidity generates a smaller recession and a slightly faster recovery

(the policy rate lifts off from the lower bound earlier than in the flexible wage).

These results demonstrate that the interplay between occasionally binding constraints may be sub-

tle. At first glance, the assumption that nominal wages could not adjust downwards in response to a

recessionary shock could be thought to exacerbate the scale of a recession generated by the zero lower

bound constraint on monetary policy. However, in equilibrium, the additional nominal friction prevented

a large scale decline in costs, prices and inflation, thus mitigating the rise in real interest rates associated

with the zero bound recession. This experiment therefore displays the so-called ‘paradox of flexibility’

associated with New Keynesian models.41

7 Large-scale model application

The examples in earlier sections have used relatively small-scale models, for ease of exposition. For some

of those examples, it would in principle be possible to solve the models using projection methods. This

section demonstrates the applicability of the toolkit to large-scale macroeconomic models of the type

used in policy institutions. For models of this size, projection methods are not (yet) a feasible alternative

to approximate solutions such as the piecewise linear methods presented in this paper.

The example uses a version of the FRB/US model routinely used for forecast and policy analysis by

staff at the Federal Reserve Board. The model and baseline forecast are taken from Haberis, Harrison,

and Waldron (2019, henceforth ‘HHW’), which contains a more detailed description of both components.

The FRB/US model is a large-scale model, developed by economists at the Federal Reserve Board.42

A linearized version of the model contained in the Macroeconomic Model Data Base (MMB) developed

by Wieland et al. (2012) is used.43 Similar versions of this model have been used for optimal policy

simulations supporting the FOMC’s communications. In particular, the experiments are similar to those

reported by Yellen (2012). Even by the standards of workhorse models in use at policy institutions,

FRB/US is large: the version used here has over 350 endogenous variables and more than 60 shocks.44

The first step in the exercise is to build a baseline projection. This is done following HHW, who

construct a forecast based on the FOMC’s December 2012 ‘Survey of Economic Projections’ (SEP). The
H

baseline forecast is constructed by selecting a sequence of anticipated disturbances {z̃T+h}h=1 for forecast
H

periods h = 1, . . . ,H to deliver projections for a subset of endogenous variables, {x̃T+h}h=0 that match

the median SEP forecasts.45 This highlights the importance of the anticipated disturbances in analysis

40This reflects the endogenous response of the output gap, which determines the response of the marginal rate
of substitution, mt.

41For further analysis and discussion of the paradox of flexibility see, for example: Eggertsson and Krugman
(2012); Kiley (2016); Bhattarai et al. (2018); Billi and Gaĺı (2020).

42Brayton and Tinsley (1996) provide a description of the first version of the model.
43Two versions are provided in the MMB. The rational expectations variant is used to allow for the expectational

effects of optimal policies.
44So nx̃ ≈ 350 and nz̃ ≈ 60.
45The ‘inversion algorithm’ in the MAPS toolkit, described in Burgess et al. (2013, Appendix C) is used for

this step.
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of this type. As Svensson and Tetlow (2005) argue:

Projections and monetary policy decisions cannot rely on models and simple observable

data alone. All models are drastic simplifications of the economy, and data give a very

imperfect view of the state of the economy. Therefore, judgmental adjustments in both

the use of models and the interpretation of their results – adjustments due to information,

knowledge, and views outside the scope of any particular model – are a necessary and

essential component in modern monetary policy.

H
Following Svensson and Tetlow (2005), the anticipated disturbances {z̃T+h}h=1, which they call

‘deviations’, encapsulate non-model information:

. . . the deviation represents the difference between the model outcomes and the actual

realizations of data and includes all extra-model explanations of the actual data. Below, the

central bank’s judgment will be represented as the central bank’s projections of the future

deviations. This allows us to incorporate the fact that a considerable amount of judgment

is always applied to assumptions and projections.

The exercise constructs optimal policy projections, under both commitment and discretion. The loss

function follows Yellen (2012):

∑∞ [ ]
2LT+1 = βh

2 2
(πT+h+1 − π∗) + (u +h+1 − u∗T ) + (rT+h+1 − rT+h) (101)

h=0

which applies equal weights to squared deviations of annual inflation (π) from target (π∗), unemployment

(u) from the natural rate (u∗) and changes in the federal funds rate (r). The inflation target is set to

2% and the natural rate of unemployment in the version of FRB/US used here is 5.5%. The discount

factor is set to β = 0.9925.

The federal funds rate is assumed to be subject to a lower bound of 12.5 basis points. This is encoded

as a bound on r of the form:

rT+h ≥ elb

where elb is computed relative to the implied steady-state federal funds rate (assumed to be 4%, based

on the long-run SEP projections).

Figure 7 shows the baseline projection (solid black line) and the projections under optimal commit-

ment (solid gray line) and optimal discretion (dashed gray line). The dashed vertical line denotes the

end of the historical data (i.e., period T ).
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Figure 7: Optimal policy projections using FRB/US

The baseline forecast is one in which the unemployment rate gradually falls to around 6% and annual

PCE inflation rises gradually to the target of 2%. This is supported by a path for the federal funds rate

that stays at the lower bound until 2015, before gradually rising back towards its steady state level.
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The projection under optimal commitment (solid gray line) embodies the familiar ‘lower for longer’

policy prescription. The federal funds rate is held at the lower bound for slightly longer than the baseline

forecast and rises more gradually thereafter. This generates sufficient stimulus to reduce unemployment

more rapidly. As a result, inflation temporarily overshoots the 2% target.

The projection under optimal discretion (dashed gray line) looks somewhat different. The path for

unemployment slightly below the baseline projection, but inflation overshoots the target more persis-

tently. The federal funds rate lifts off somewhat earlier than in the baseline projection, rising more

slowly. These properties suggest that the policymaker faces a trade-off between high unemployment and

high inflation, that is more difficult to manage when it does not have access to a commitment technol-

ogy. Under optimal discretion, the policymaker is unable to commit to lifting off later and subsequently

raising rates more quickly.

An implication of this result is that the baseline projection may implicitly embody a commitment

mechanism that allows for a credible promise to liftoff later than a time-consistent policy would allow.46

Indeed, these projections were accompanied by an FOMC statement embodying ‘threshold-based forward

guidance’ over the likely path of the federal funds rate (see Haberis et al., 2019). Nonetheless, economic

performance is better under optimal discretion than the baseline projection. To examine this, the root

mean loss, defined as:

( )∑ [ ] 1
H 2

1 2M ≡ βhT (π ∗ 2 ∗ 2
T+h+1 − π ) + (uT+h+1 − u ) + (rT+h+1 − rT+h)

H
h=0

is computed for each projection. The baseline root mean loss is 0.62. Under optimal discretion the mean-

square loss falls to 0.52, which is itself higher than the loss of 0.46 achieved under optimal commitment.

8 Conclusion

This paper presents a set of piecewise-linear solution algorithms to solve linear rational expectations

models in the presence of occasionally binding constraints on policy instruments and non-policy variables.

Optimal policy may be computed under the assumption of commitment or discretion.

Importantly, the methods allow for the presence of ‘anticipated disturbances’ to the model equations.

Following Svensson and Tetlow (2005), these anticipated disturbances can be interpreted as capturing

judgment and other ‘off-model’ information that informs the forecasts produced by many policy insti-

tutions. Incorporating these disturbances therefore makes it possible to conduct optimal policy analysis

with occasionally binding constraints for projections and scenarios produced using judgment. As such,

the methods presented here are likely to be of particular use in policy institutions that apply large-scale

macroeconomic models to scenarios and forecasts that incorporate judgment and other non-model-based

information.

46Recall that the baseline projection does not come from the model itself – it is based on the median projections
of FOMC members.
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A The Dennis (2007) algorithm

This appendix, presents a variant of the Dennis (2007) algorithm cast in the same notation used through-

out the paper.

For completeness, the statement of the policymaker’s problem is restated here. The policymaker

minimizes the following quadratic loss function, subject to the constraint imposed by the structure of

the economy and taking optimal future policy as given:

∑∞ { ′ ′ }
minLt = Et βi (x̃t+i) W (x̃t+i) + (rt+i) Q (rt+i)
x̃t,rt

i=0

= (x̃
′ ′

t) W (x̃t) + (rt) Q (rt) + βEtLt+1 (A.1)

Given the linearity of the problem (and the assumption that no lags of the instruments appear in

the structural equations), the solution that shall be sought and verified below is as follows:

x̃t = Bx̃x̃x̃t−1 + Φx̃z̃ z̃t (A.2)

rt = Brx̃x̃t−1 + Φrz̃ z̃t (A.3)

which has the same Markovian form as standard RE solutions in linear (or linearized) models.

A.1 Characterizing the solution

The policymaker’s problem is to minimize the loss in equation (38) subject to the constraint imposed

by the structure of the economy in equation (5) and taking optimal behavior on the part of future

policymakers as given. The optimal behavior of future policymakers can be embedded directly in the

constraint imposed by the model by substituting out expectations in the partitioned structural equations

(5) using the proposed solution in equations (A.2)-(A.3) and then re-arranging the result to get:( )
x̃ = Θ−1 Ψ̃ z̃ − H̃B
t z̃ x̃ x̃t−1 − H̃C

t r rt (A.4)

where:

Θ = H̃C
x̃ + H̃F

x̃ Bx̃x̃ + H̃F
r Brx̃ (A.5)

The policymaker’s problem can then be represented as a Lagrangean:{ ( ( ))}
′ ′

min (x̃t) W (x̃ ) + (r ) Q (r ) + βE L − 2λ′ −1 ˜ ˜B
t t t t t+1 t x̃t −Θ Ψz̃ z̃t −Hx̃ x̃t−1 − H̃C

r rt (A.6)
x̃t,rt

The first-order conditions are:

′ ∂EtLt+1
rt : 2 (rt) Q+ β − 2λ′ −1 ˜C

∂r tΘ Hr = 0 (A.7)
t

∂E L
x̃t : 2 (x̃

′ t t+1
t) W + β − 2λ′

∂x̃ t = 0 (A.8)( t )
λ : x̃ −Θ−1 Ψ̃ − H̃t t z̃ z̃

B
t x̃ x̃t−1 − H̃C

r rt = 0 (A.9)

Appendix A.2 shows that the expectation for next period’s loss can be written as:

EtLt+1 = (x̃
′

t) Vx̃x̃x̃t + Vcc (A.10)
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where:

′ ′ ′
Vx̃x̃ = (Bx̃x̃) WBx̃x̃ + (Brx̃) QBrx̃ + β (Bx̃x̃) Vx̃x̃Bx̃x̃ (A.11)

1 [( ′ ′ )]
Vcc = tr (Φrz̃) QΦrz̃ + (Φx̃z̃) PΦx̃z̃ (A.12)

1− β

and:
′ ′

P = W + β (Brx̃) QBrx̃ + β (Bx̃x̃) PBx̃x̃ (A.13)

Fixed points for Vx̃x̃ and P can be found numerically using a doubling algorithm or by solving the implied

Lyapunov equation.
∂It is straightforward to see from equation (A.10) that EtLt+1 = 0. This arises as a consequence∂rt

of the assumption that no lags of the policy instruments appear in the model equations. It is also

straightforward to see that:
∂EtLt+1

= 2 (x̃
′˜ t) Vx̃x̃ (A.14)

∂xt

This can be substituted into first-order condition for the endogenous variables (A.8) and rearrange the

result to form an expression for the Lagrange multiplier, λ′t:

λ′t = (x̃
′

t) (W + βVx̃x̃) (A.15)

This in turn can be substituted into the first-order condition for the instruments (A.7) to get:47

′ ′
(rt) Q− (x̃t) (W + βV 1

x̃x) Θ− ˜
˜ HC

r = 0( )
Qrt − Θ−1H̃

′
C
r (W + βVx̃x̃) x̃t = 0 (A.16)

Equation (A.16) is the targeting rule that characterises the optimal discretionary policy, relating the

optimal choice for the instruments to the optimal choice for the endogenous variables.48

Using the first-order condition for the Lagrange multiplier (i.e. the constraint) in equation (A.9) to

substitute out x̃t gives: ( )
Qrt − ζ Ψ̃ ˜B ˜C

z̃ z̃t −Hx̃ x̃t−1 −Hr rt = 0 (A.17)

where: ( )
ζ = Θ−1H̃

′
C (W + βV ) Θ−1
r x̃x̃ (A.18)

Equation (A.17) can be rearranged to get the following:

∆rrt = ∆x̃x̃t−1 + ∆z̃ z̃t (A.19)

where:

∆r = Q+ ζH̃C
r (A.20)

∆x̃ = −ζH̃B
x̃ (A.21)

∆ ˜
z̃ = ζΨz̃ (A.22)

47The second line follows from noting that W , Q and Vx̃x̃ are symmetric.
48The policymaker’s optimal choice for the instrument depends on three effects: (i) a direct effect of the

instrument on the contemporaneous period loss, which depends on Q; (ii) an indirect effect of the instrument on
the contemporaneous period loss via its effect on the endogenous variables, which depends on W ; (iii) an indirect
effect of the instrument on the discounted sum of expected future losses, which depends on βVx̃x̃.
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It immediately follows that:

B 1
x̃ = ∆−r r ∆x̃ (A.23)

Φ −1
rz̃ = ∆r ∆z̃ (A.24)

which requires that ∆r be invertible. Substituting the law of motion for the instruments back into the

constraint (A.4) gives: ( )
x̃ = Θ−1 ˜
t Ψ˜z̃t − H̃B

x̃ x̃
C

−1 − H̃z t r (Brx̃x̃t−1 + Φrz̃ z̃t) (A.25)

From which it is clear that: ( )
B −

x̃ = −Θ 1
x̃ H̃B

x̃ + H̃C
r Brx̃ (A.26)( )

Φ 1
x̃z = Θ− ˜

˜ Ψz̃ − H̃C
r Φrz̃ (A.27)

which demonstrates that the solution is as proposed in equations (A.2)-(A.3).

A.2 Period ahead loss function expansion

The expected value of the period ahead loss function is defined as:

∑∞
E E i− {

1 ˜ ′ ′ }
tLt+1 = t β (xt+i) W (x̃t+i) + (rt+i) Q (rt+i)

i=1∑∞ ∑∞
E i−1 ˜ ′

= β (x ) W (x̃ ) + E βi−1 ′
t t+i t+i t (rt+i) Q (rt+i) (A.28)
i=1 i=1

The first term on the right-hand-side of equation (A.28) can be written as: ( )∑ ′ 
∞ ∑∞ i ∑

B˜ ′ E  x̃x̃) x̃
i i−j

(
E ˜ ( t + (Bx̃x̃) Φx̃z̃z +j W

βi−
t̃1 j=1

t (xt+i) W (x i−1
t+i) = t β ) 

i ∑i i−j
i=1 i=1 (Bx̃x̃) x̃t + j=1 (Bx̃x̃) Φx̃z̃ z̃t+j∑∞ ( )′

= Et (x̃
′ i i

t) βi−1 (Bx̃x̃) W (Bx̃x̃) x̃t
i=1∑∞ ( ) i′ ∑

i i
+ E ′

t (x̃
i

t) β −1 −j
(Bx̃x̃) W (Bx̃x̃) Φx̃z̃ z̃t+j

i=1 j=1∑∞ ∑i ( )′
E i−1 ′ ′ i−j i

+ t β (z̃t+j) (Φx̃z̃) (Bx̃x̃) W (Bx̃x̃) x̃t
i=1 j=1∑∞ ∑i ( ) ∑i′

+ E −
t βi−1 ′ ′ i−j i k

(z̃t+j) (Φx̃z̃) (Bx̃x̃) W (Bx̃x̃) Φx̃z̃ z̃t+k
i=1 j=1 k=1∑∞ ( )′

(x̃
′ i

= t) βi−1 i
(Bx̃x̃) W (Bx̃x̃) x̃t

i=1∑∞ i ( )∑ ( )′
i

+ βi−1 i −j ′
tr (Bx̃x̃) W (Bx̃x̃) Φx̃z̃Etz̃t+j (x̃t)

i=1 j=1∑∞ i ( )∑ ( )′
+ βi−1 ′ i−j i ′

tr (Φx̃z̃) (Bx̃x̃) W (Bx̃x̃) Etx̃t (z̃t+j)
i=1 j=1
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( )∑∞ ∑i ( )′ ∑i
i−1 ′ i−j i−k ′

+ β tr (Φx̃z̃) (Bx̃x̃) W (Bx̃x̃) Φx̃z̃Etz̃t+k (z̃t+j)
i=1 j=1 k=1∑∞ ( )′′ i i

= (x̃ βi−1
t) (Bx̃x̃) W (Bx̃x̃) x̃t

i=1

∞ i (∑ ( )∑ )′′ i−j i−j
+ βi−1 tr (Φx̃z̃) (Bx̃x̃) W (Bx̃x̃) Φx̃z̃

i=1 j=1∑∞ ( )′˜ ′ ′ i i i
= (xt) (Bx̃x̃) β (Bx̃x̃) W (Bx̃x̃) Bx̃x̃x̃t

i=0∑∞ ∞ ( ) )∑ ( ′
+ βi βj

′ i i
tr (Φx̃z̃) (Bx̃x̃) W (Bx̃x̃) Φx̃z̃

i=0 j=0 ∑∞ ( )′′ ′ i i
= (x̃t) (B x̃) βix̃ (Bx̃x̃) W (Bx̃x̃) Bx̃x̃x̃t

i=0∑∞ ( ( ) )
1 ′

i
+ βi

′ i
tr (Φx̃z̃) (Bx̃x̃) W (Bx̃x̃) Φx̃z̃

1− β
i=0

′ ′ 1 ( ′ )
= (x̃t) (Bx̃x̃) SBx̃x̃x̃t + tr (Φx̃z̃) SΦx̃z̃ (A.29)

1− β

where:
′

S = W + β (Bx̃x̃) SBx̃x̃ (A.30)

for which a fixed point can be found numerically using a doubling algorithm.

The steps in the derivation are as follows: the first equality uses the law of motion for the endogenous

variables in equation (A.2) to express the loss in terms of time t endogenous variables; the second equality

follows by expanding the first; the third equality uses the fact that each term is a scalar, that the trace

of a scalar is that scalar and that terms within a trace operator are commutable; the fourth equality

follows from noting that the shocks are iid (implying zero covariance between shocks in different time

periods) and independent of the endogenous variables, and that the covariance matrix of the shocks

Etz̃t+j (z̃
′ 49

t+j) = I; the fifth equality follows from rewriting the sums as infinite sums starting from∑∞
zero; the sixth equality follows from noting that βj ≡ 1

j=0 1− ; and the seventh (assuming that theβ

spectral radius of Bx̃x̃ is less than one) from:

∑∞ ( )′
i

S = βi
i

(Bx̃x̃) W (Bx̃x̃)
i=0 ∑∞ ( )′

i i i
= W + β (Bx̃x̃) W (Bx̃x̃)

i=1 { }∑∞ ( )′′ i i
= W + β (B x) βix̃˜ (Bx̃x̃) W (Bx̃x̃) Bx̃x̃

i=0

′
= W + β (Bx̃x̃) SBx̃x̃

49This assumption reflects the normalization convention in the MAPS toolkit on which the algorithms
are built. In the Dennis (2007) derivation the result is Etz̃t+j (z̃t+j)

′( = Ω. )A full set of steps for
′

the covariance matrix of the shocks is as follows: Et (z̃t+j)
′ (Φxz̃)

′
˜ (B )i−j W (B )i−j Φ z̃ ≡( ( )′ ) x̃x̃ x̃x̃ x̃z̃ t+j

E tr (z̃ )′ (Φ )′ i
t t+j ˜ (Bx̃x̃) −jxz̃ W (B) x̃˜)i−j Φ( ( x x̃z̃ z̃t+j ≡

′ ) ( ( ( )′ ))
E )′ (B −

x˜)ittr (Φ −j
x̃z̃ x W (B i j ′

˜ x̃x̃) Φx̃z̃ z̃t+j (z̃t+j) ≡ tr Et (Φx̃z̃)
′ (Bx̃x̃)i−j W (B i−j

x̃x̃) Φx̃z̃ z̃t+j (z̃ ′
t+j) ≡(( ( )′ )) ( ( )′ )

tr (Φx̃z̃)
′ (Bx̃x̃)i−j W (B ′ i−j

˜)i−j Φx̃z̃E ′ i−j
x̃x tz̃t+j (z̃t+j) ≡ tr (Φx̃z̃) (Bx̃x̃) W (Bx̃x̃) Φx̃z̃Ω
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The steps above can be repeated for the second term on the right-hand-side of equation (A.28) and

use the law of motion for the instruments characterized in equation (A.3) to write:

∑∞
Et E ′

βi−1 ′
(rt+i) Q (rt+i) = t (Brx̃x̃t + Φrz̃ z̃t+1) Q (Brx̃x̃t + Φrz̃ z̃t+1)

i=1  ( )′  i−1 B rx̃ (Bx̃x̃) x̃t + Φrz̃ z̃t+i ∑∞  ∑i−1 i−1−j Q 
i−1 (+Brx̃ j=1 (Bx̃x̃) ΦE x̃z̃ z̃t+j

+ t β ) 1
=2  i−
i Brx̃ (Bx̃x̃) x̃ z̃ t + Φrz̃ t+i ∑i−1 i−1−j +Brx̃ j=1 (Bx̃x̃) Φx̃z̃ z̃t+j∑∞ ( )′′ i−1 ′ i−1

= (x̃t) βi−1 (Bx̃x̃) (Brx̃) QBrx̃ (Bx̃x̃) x̃t
i=1∑∞

+ E ′ ′
t βi−1 (z̃t+i) (Φrz̃) QΦrz̃ z̃t+i
i=1  ( ) ∑∞ ∑i−1 ′ 

E i−1 (z̃
′ ′ i−1−j ′

t+j) (Φx̃z̃) (Bx̃x̃) (Brx̃) Q
+ t β  i−1−j 

i=2 j=1 Brx̃ (Bx̃x̃) Φx̃z̃ z̃t+j∑∞ ( )′′ i ′ i 1 ( ′ )
= (x̃t) βi (Bx̃x̃) (Brx̃) QBrx̃ (Bx̃x̃) x̃t + tr (Φrz̃) QΦrz̃

1− β
i=0

∞ ( ( ) )
β ∑ ′

i ′ i ′ i
+ β tr (Φx̃z̃) (Bx̃x̃) (Brx̃) QBrx̃ (Bx̃x̃) Φx̃z̃

1− β
i=0

∑∞
i−1 ′ ′ 1 ( ′ ) β ( )

E ′
t β (rt+i) Q (rt+i) = (x̃t) Rx̃t + tr (Φrz̃) QΦrz̃ + tr (Φx̃z̃) RΦx̃z̃ (A.31)

1− β 1− β
i=1

which follows identical (or near identical) steps to those described in the derivation of equation (A.29)

and where:
′ ′

R = (Brx̃) QBrx̃ + β (Bx̃x̃) RBx̃x̃ (A.32)

which can also be found using a doubling algorithm.

Finally, the results can bed substituted in equations (A.29) and (A.31) into equation (A.28) to get:

∑∞ ∑∞
E L = E βi−1
t t+1 t (x̃

′
t+i) W (x̃ i−1 ′

t+i) + Et β (rt+i) Q (rt+i)
i=1 i=1

1 ( ) 1 ( )
= (x̃

′ ′
t) xx̃) SBx̃x̃x̃

′ ′ ′
(B˜ t + tr (Φx̃z̃) SΦx̃z̃ + (x̃t) Rx̃t + tr (Φrz̃) QΦrz̃

1− β 1− β
β ( ′ )

+ tr (Φx̃z̃) RΦx̃z̃
1− β

= (x̃
′ ( ′ ) 1 [( ′ ′ )]

t) (Bx̃x̃) SBx̃x̃ +R x̃t + tr (Φrz̃) QΦrz̃ + (Φx̃z̃) PΦx̃z̃
1− β

= (x̃
′

t) Vx̃x̃x̃t + Vcc (A.33)

where:

′
Vx̃x̃ = (Bx̃x̃) SBx̃x̃ +R

′ ′ ′
= (Bx̃x̃) WBx̃x̃ + (Brx̃) QBrx̃ + β (Bx̃x̃) Vx̃x̃Bx̃x̃ (A.34)

1 [( ′ ′ )]
Vcc = tr (Φrz̃) QΦrz̃ + (Φx̃z̃) PΦx̃z̃ (A.35)

1− β
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with:

P = S + βR

′ ′
= W + β (Brx̃) QBrx̃ + β (Bx̃x̃) PBx̃x̃ (A.36)

Note that the definitions for P , S and R are identical to those in Dennis (2007). The coefficient (Vx̃x̃)

in the quadratic for x̃ is different (Dennis (2007) has P ) because this derivation is for the loss function

in period t+ 1, rather than for the loss function in period t.

Note also that the MAPS normalization that the covariance matrix of the shocks is an identity

implies one further difference relative to Dennis (2007). Denoting the covariance matrix of the shocks as

Ω as in Dennis (2007), the definition for the constant term would become (with all else identical):

1 [( ′ ′ ) ]
Vcc = tr (Φrz̃) QΦrz̃ + (Φx̃z̃) PΦx̃z̃ Ω

1− β

B Derivation of optimal discretion solution with anticipated

disturbances

This appendix presents the derivation of the algorithm used to solve a model under optimal discretion

with anticipated disturbances. As noted in Section 4, the derivation proceeds by backward induction.

The policy problem is solved in period H before moving back to period H − 1 and so on. The solution

leverages the fact that from period H onwards there are no anticipated disturbances, so the equilibrium

is described by the solution derived by Dennis (2007) and presented (in notation consistent with this

paper) in Appendix A.

B.1 Period H

In period H the anticipated disturbances are equivalent to unanticipated shocks.50 This means that the

following laws of motion, analogous to those derived in Dennis (2007) are applicable (see Appendix A):

x̃H = Bx̃x̃x̃H−1 + Φx̃z̃ z̃H (B.1)

rH = Brx̃x̃H−1 + Φrz̃ z̃H (B.2)

where: ( )
B = −Θ−1 H̃B + H̃C
x̃x̃ x̃ r Brx̃ (B.3)( )

Φ = Θ−1
x̃z Ψz̃ − H̃C

˜ r Φrz̃ (B.4)

Brx̃ = ∆−1
r ∆x̃ (B.5)

Φrz̃ = ∆−1
r ∆z̃ (B.6)

where:

Θ = H̃C
x̃ + H̃F

x̃ B ˜F
x̃x̃ +Hr Brx̃ (B.7)

∆r = Q+ ζH̃C
r (B.8)

∆x̃ = − ζH̃B
x̃ (B.9)

50Of course, the fact that they were anticipated in previous periods means that the projection in period H
would in general be different from the case in which these shocks are entirely unanticipated: the initial conditions
x̃H−1 will be influenced by the anticipation of z̃H in preceding periods.

51



∆z̃ = ζΨ̃z̃ (B.10)

where: ( )′
ζ = Θ−1H̃C

r (W + βVx̃x̃) Θ−1 (B.11)

with:
′ ′ ′

Vx̃x̃ = (Bx̃x̃) WBx̃x̃ + (Brx̃) QBrx̃ + β (Bx̃x̃) Vx̃x̃Bx̃x̃ (B.12)

B.2 Period H − 1

In period H − 1, we must take account of the fact that the period H shocks, z̃H , are anticipated by both

the private sector and the policymaker. The (partitioned) set of equations that describe the model are:

H̃F
x̃ x̃H + H̃C ˜B ˜F

x̃ x̃H−1 +Hx̃ x̃H−2 +Hr rH + H̃C ˜
r rH−1 = Ψz̃ z̃H−1 (B.13)

We can use the period H laws of motion in equations (B.1)-(B.2) to substitute out x̃H and rH in equation

(B.13) and rearrange to get:( )
x̃ = Θ−1 Ψ̃ z̃ − H̃FΦ z̃ − H̃FΦ z̃ − H̃Bx̃ − H̃C
H−1 z̃ H−1 x̃ x̃z̃ H r rz̃ H x̃ H−2 r rH−1 (B.14)

where Θ is defined in equation (B.7). Note that the private sector’s expectations take into account the

optimal behavior of the policymaker in the future and the shocks anticipated to arrive in period H.

The policymaker’s problem is to minimize the loss function subject to the constraint in equation

(B.14). This problem can be represented as a Lagrangean:

′ ′
min (x̃H−1) W (x̃H−1) + (rH−1) Q (rH−1) + βLH

x̃H−1,rH−1( ( ))
−2λ′H−1 x̃H−1 −Θ−1 Ψ̃z̃ z̃ ˜F ˜F ˜B ˜C

H−1 −Hx̃ Φx̃z̃ z̃H −Hr Φrz̃ z̃H −Hx̃ x̃H−2 −Hr rH−1

The first-order conditions are:

′ ∂LH
rH−1 : 2 (rH−1) Q+ β − 2λ′ −1 ˜C

∂r H−1Θ Hr = 0 (B.15)
H−1

x̃
′ ∂LH

H−1 : 2 (x̃H−1) W + β − 2λ′
∂x̃ H−1 = 0 (B.16)( H−1 )

λ − : x̃ −Θ−1
− Ψ̃ z̃ − − H̃F

H 1 H 1 z̃ 1 x̃ Φx̃z̃ z̃H − H̃F
H r Φrz̃ z̃ H̃H − B

x̃ x̃H−2 − H̃C
r rH−1 = 0 (B.17)

Appendix C.1 shows that:

LH = (x̃
′

H−1) Vx̃x̃x̃H−1 + (x̃
′ ′

H−1) V1,x̃z̃ z̃H + (z̃
′ ′

H) (V1,x̃z̃) x̃H−1 + (z̃H) V11,z̃z̃ z̃H

where Vx̃x̃ is defined in equation (B.12) and:

′ ′
V1,x̃z̃ = (Bx̃x̃) (W + βVx̃x̃) Φx̃z̃ + (Brx̃) QΦrz̃ (B.18)

where V11,z̃z̃ is undefined because, as a constant, it will not appear in the first order conditions.

It is straightforward to see that ∂LH = 0, which arises as a consequence of the assumption that∂rH−1

there are no lags of the policy instruments in the model equations. It is also straightforward to see that:

∂LH ′ ′ ′
= 2 (x̃˜ H−1) Vx̃x̃ + 2 (z̃H) (V1,x̃z̃)

∂xH−1
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We can substitute this expression into equation (B.16) and rearrange the result for λ′H−1:

λ′
′ ′ ′

H−1 = (x̃H−1) (W + βVx̃x̃) + (z̃H) β (V1,x̃z̃)

This in turn can be substituted into equation (B.15) to get:

′ ( )
(rH−1) Q− x̃

′ ′ ′
( −1 C( H)−1) (W + βVx̃x̃) + (z̃H) β (V1,x̃z̃) Θ H̃r = 0

Qr 1
−1 Θ− ˜ ′ ( )′

H − HC
r (W + βV −

xx) x̃H−1 − Θ 1H̃C
˜˜ r βV1,x̃z̃ z̃H = 0 (B.19)

If the shocks anticipated for period H are zero (or in the absence of anticipated disturbances), then the

targeting rule in equation (B.19) is identical to the targeting rule from the Dennis (2007) solution in

Appendix A. Otherwise, the targeting rule is modified to include a term in the anticipated disturbances.

These disturbances affect outcomes in period H and, therefore, affect losses in period H and onwards.

The policymaker is aware of the shocks (they are anticipated) and so optimally takes them into account

when setting policy. This demonstrates that the Dennis (2007) targeting rule derived in Appendix A is

not valid in projections with anticipated disturbances.

We can then use the constraint as represented by the FOC for the Lagrange multiplier in equation

(B.17) to substitute out x̃H−1 and the expression in equation (B.18) to substitute out V1,x̃z̃ to get:( ( ) )
Qr F

− − ζ Ψ̃ z̃ − − H̃ Φ + H̃F ˜B ˜C
H 1 z̃ H 1 x̃ x̃z̃ r Φrz̃ z̃H −Hx̃ x̃H−2 −Hr rH−1( )′
− ( ′ )

− Θ 1H̃C ′
r β (Bx̃x̃) (W + βVx̃x̃) Φx̃z̃ + (Brx̃) QΦrz̃ z̃H = 0

where ζ is defined in equation (B.11). This equation can be rearranged to get the following (the logic of

which will become clear when it is generalized below):(( ) ( ) )
∆rrH−1 = ∆x̃x̃H−2 + ∆z̃ z̃H−1 + ∆ psF + ∆ pol (W + βVx̃x̃) Φx̃z̃ + ∆ ps

F Fr ∆ pol
r

+ Q Φrz̃ z
rx̃ F H̃

rx̃ rr

where ∆r, ∆x̃ and ∆ ps pol
z̃ are defined in equations (B.8)-(B.10), and and denote terms in the antici-

pated disturbances arising from via private sector agents’ expectations and via policymaker optimization

respectively with the associated terms defined as:

∆ F
psF = −ζHx̃ (B.20)
rx̃ ( )

∆ 1H̃
′

= Θ− C ′
polF r β (Bx̃x̃)
rx̃

∆ psF = − H̃
rr

ζ F( r )
′

∆ pol = Θ−1H̃
′

C
r β (Brx̃) (B.21)Frr

It immediately follows that: (( ) ( ) )
ps pol ps polrH−1 = Brx̃x̃H−2 + Φrz̃ z̃H−1 + F1,rx̃ + F1,rx̃ Φx̃z̃ + F1,rr + F1,rr Φrz̃ z̃H

= Brx̃x̃H−2 + Φrz̃ z̃H−1 + (F1,rx̃Φx̃z̃ + F1,rrΦrz̃) z̃H (B.22)

where Brx̃ and Φrz̃ are defined in equations (B.5)-(B.6) and:

psF 1
,rx̃ = ∆−1 r ∆ psF (B.23)

rx̃

polF1,rx̃ = ∆−1
r ∆ pol (W + βVx̃x̃)Frx̃

psF −1
ps

1,rr = ∆r ∆Frr

polF1,rr = ∆−1
r ∆ polQ (B.24)Frr
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Note that the law of motion incorporates the effect of the shocks anticipated for period H, but is otherwise

unaffected: the formulae for Brx̃ and Φrz̃ are identical to the case studied in Appendix A.

It is then straightforward to define the law of motion for x̃H−1 by substituting the law of motion for

rH−1 into the the constraint (B.14): (( ) ( ) )
polx̃ ps ps pol

H−1 = Bx̃x̃x̃H−2 + Φx̃z̃ z̃H−1 + F1,x̃x̃ + F1,x̃x̃ Φx̃z̃ + F1,xr˜ + F1,xr˜ Φrz̃ z̃H

= Bx̃x̃x̃H−2 + Φx̃z̃ z̃H−1 + (F1,x̃x̃Φx̃z̃ + F1,xr˜ Φrz̃) z̃H (B.25)

where Bx̃x̃ and Φx̃z̃ are defined in equations (B.3)-(B.4) and:( )
psF − −1 ˜F ˜C ps
1,x̃x̃ = Θ Hx̃ +Hr F1,rx̃ (B.26)

pol polF − −1 ˜C
1,x̃x̃ = Θ Hr F( 1,rx̃ )
ps 1 psF1,xr˜ = −Θ− H̃F

r + H̃C
r F1,rr

pol polF = −xr H̃1 Θ−1 C
,˜ r F1,rr (B.27)

Again, note that the definitions for Bx̃x̃ and Φx̃z̃ are identical to the case studied in Appendix A.

B.3 Period H − 2

As with period H−1, we can derive the effective constraint that the policymaker must take into account

when optimising in period H − 2 by substituting the period H − 1 laws of motion in equations (B.22)

and (B.25) in place of expectations for the period H − 1 outcomes for the instruments and endogenous

variables in the (partitioned) model equations and rearrange the result to get:( )
−1 Ψ̃z̃ z̃H− − H̃F

2 x̃ (Φx̃ ˜ −1 + (˜ z̃zH F1,x̃x̃Φx̃z̃ + F1,xr˜ Φrz̃) z̃H)
xH−2 = Θ

−H̃
(B.28)

F
r (Φrz̃ z̃H−1 + (F ˜B ˜C

1,rx̃Φx̃z̃ + F1,rrΦrz̃) z̃H)−Hx̃ x̃H−3 −Hr rH−2

The policymaker minimises the following:

′
min (x̃

′
H−2) W (x̃H−2) + (rH−2) Q (rH−2) + βLH−1

x̃H−2,rH−2  
Ψ̃ z̃ F H− ˜ z̃ 2 −Hx̃ (Φx̃z̃ z̃H−1 + (F1,x̃x̃Φx̃z̃ + F1,xr˜ Φrz̃) z̃H)

−2λ′


H−2x̃H−2 −Θ−1 −H̃F
r (Φrz̃ z̃H−1 + (F1,rx̃Φx̃z̃ + F1,rrΦrz̃) z̃H) 

−H̃B
x̃ x̃H−3 − H̃C

r rH−2

The first-order conditions are:

′ ∂LH−1
rH−2 : 2 (rH−2) Q+ β − 2λ′ ˜

r H−2Θ−1HC

∂ r = 0 (B.29)
H−2

∂L
x̃H−2 : 2 (x̃

′ H−1
H−2) W + β − 2λ′

∂x̃ H−2 = 0 (B.30) H−2 
Ψ̃z̃ z̃H−2 − H̃F x̃ (Φx̃z̃ z̃H−1 + (F1,x̃x̃Φx̃z̃ + F1,xr˜ Φrz̃) z̃H)

−1 F 
λH−2 : x̃H−2 −Θ  −H̃r (Φrz̃ z̃H−1 + (F1,rx̃Φx̃z̃ + F1,rrΦrz̃) z̃H)  = 0 (B.31)

−H̃B
x̃ x̃ H̃3 − C

H− r rH−2

Appendix C.2 shows that:

LH−1 = (x̃
′ ′ ′ ′ ′

H−2) Vx̃x̃x̃H−2 + (x̃H−2) V1,x̃z̃ z̃H−1 + (z̃H−1) (V1,x̃z̃) x̃H−2 + (x̃H−2) V2,x̃z̃ z̃H∑2 ∑2
′

(z̃
′ ′

+ H) (V2,x̃z̃) x̃H−2 + (z̃H−2+i) βVij,z̃z̃ z̃H−2+j

i=1 j=1
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where Vx̃x̃ is defined in equation (B.12), V1,x̃z̃ in equation (B.18) and:

′ ′ ′
V2,x̃z̃ = (Bx̃x̃) (W + βVx̃x̃) (F1,x̃x̃Φx̃z̃ + F1,xr˜ Φrz̃) + (Brx̃) Q (F1,rx̃Φx̃z̃ + F1,rrΦrz̃) + (Bx̃x̃) βV1,x̃z̃

′ ′ ′
= (Bx̃x̃) β (Bx̃x̃) (W + βVx̃x̃) Φx̃z̃ + (Bx̃x̃) (W + βVx̃x̃) (F1,x̃x̃Φx̃z̃ + F1,xr˜ Φrz̃)

′ ′ ′
+ (Bx̃x̃) β (Brx̃) QΦrz̃ + (Brx̃) Q (F1,rx̃Φx̃z̃ + F1,rrΦrz̃) (B.32)

and again the constant terms in the anticipated disturbances, Vij,z̃z̃, are undefined.
∂LIt is straightforward to see that H−1 = 0 and that:∂rH−2

∂LH−1 ′ ′ ′ ′ ′
= 2 (x̃H−2) Vx̃x̃ + 2 (z̃H−1) (V1,x̃z̃) + 2 (z̃H) (V2,x̃z̃)

∂x̃H−2

We can substitute this expression into equation (B.30) and rearrange the result for λ′H−2:

λ′
′ ′ ′ ′ ′

H−2 = (x̃H−2) (W + βVx̃x̃) + (z̃H−1) β (V1,x̃z̃) + (z̃H) β (V2,x̃z̃)

This in turn can be substituted into equation (B.29) to get:

′ ( ˜ ′ ′ ′ ′ ′)
(rH−2) Q− (xH−2) (W + βVx̃x̃) + (z̃ ) β (V ) + (z̃ ) β (V ) Θ−1

H−1 1,x̃z̃ H 2,x̃z̃ H̃C
r = 0( )′ ( )′

Qr −1 C −1 C
H−2 − Θ H̃r (W + βVx̃x̃) x̃H−2 − Θ H̃r β (V1,x̃z̃ z̃H−1 + V2,x̃z̃ z̃H) = 0 (B.33)

which extends the period H − 1 result to show that both one- and two-period ahead anticipated distur-

bances appear in the targeting rule.

We can then use the constraint as represented by the FOC for the Lagrange multiplier in equation

(B.31) to substitute out x̃H−2 and the expressions in equation (B.18) and (B.32) to substitute out V1,x̃z̃

and V2,x̃z̃ to get:  
Ψ̃z̃ z̃H−2 ˜ −HF 

x̃ (Φx̃z̃ z̃H−1 + (F1,x̃x̃Φx̃z̃ + F1,xr˜ Φrz̃) z̃ 
0  H)

= QrH−2 − ζ  −H̃F
r (Φrz̃ z̃H−1 + (F1,rx̃Φx̃z̃ + F1,rrΦrz̃) z̃H) 

−H̃B
x̃ x̃ H̃H−3 − C

r rH−2 ( ′ ′ )  (Bx̃x̃) (W + βVx̃x̃) Φx̃z̃ + (Brx̃) QΦrz̃ z̃H−1( ) ′ 
−1 ˜ ′  ′ 

C  (Bx̃x̃) β (Bx̃x̃) (W + βV x˜) Φ ˜x x̃z̃ − Θ Hr β ′  
+ + (Bx̃x̃) (W + βVx̃x̃) (F1,x̃x̃Φx̃z̃ + F1,xr˜ Φrz̃)  z̃H 

′ ′ ′
+ (Bx̃x̃) β (Brx̃) QΦrz̃ + (Brx̃) Q (F1,rx̃Φx̃z̃ + F1,rrΦrz̃)

This equation can be rearranged to get the following:

∆rrH−2 = ∆x̃x̃H−3 + ∆z̃ z̃(( H−2 ) ( ) )
+ ∆ psF + ∆ pol (W + βVx̃x̃) Φx̃z̃ + ∆ psF + ∆ polQ Φrz̃ z̃H−1 (rx̃ F rr Frx̃ rr ) 

∆ psF F1,x̃x̃ + ∆ psFrr F1,rx̃ + ∆ pol (W + βVx̃x̃)F1,x̃x̃ rx̃ Frx̃
′ Φx̃z̃  +∆ ( polQF1,rx̃ + ∆ polβ (Bx̃x̃) (W + βVx̃x̃)Frr F


+ rx̃ )   z̃H ∆ psF F1,xr˜ + ∆ psF F1,rr + ∆ pol (W + βVx̃x̃)F1,xr˜F 

+ rx̃ rr
rx̃

′ Φrz̃
+∆ polQF1,rr + ∆ polβ (Brx̃) QFrr Frx̃

where ∆r, ∆x̃ and ∆z̃ are defined in equations (B.8)-(B.10), and ∆ psF , ∆ pspol , ∆
rx̃ F F pol

rr
and ∆ areFrx̃ rr

defined in equations (B.20)-(B.21). It follows that:(( ) ( ) )
ps pol ps polrH−2 = Brx̃x̃H−3 + Φrz̃ z̃H−2 + F1,rx̃ + F1,rx̃ Φx̃z̃ + F1,rr + F1,rr Φrz̃ z̃H−1
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(( ) ( ) )
ps pol ps pol+ F2,rx̃ + F2,rx̃ Φx̃z̃ + F2,rr + F2,rr Φrz̃ z̃H

= Brx̃x̃H−3 + Φrz̃ z̃H−2 + (F1,rx̃Φx̃z̃ + F1,rrΦrz̃) z̃H−1 + (F2,rx̃Φx̃z̃ + F2,rrΦrz̃) z̃H∑2

= Brx̃x̃H−3 + (Fi,rx̃Φx̃z̃ + Fi,rrΦrz̃) z̃H−2+i (B.34)
i=0

ps pol ps polwhere Brx̃ and Φrz̃ are the same as above, F0,rr = I and F0,rx̃ = 0, F1,rx̃, F1,rx̃, F1,rr and F1,rr are

defined in equations (B.23)-(B.24), and where:( )
psF = ∆−1 ∆ ps ˜ ps
2,rx̃ r F F1,x̃x + ∆Frr F1,rx̃ (B.35)( rx̃

polF 1
,rx̃ = ∆−

( ′ ) )
2 r ∆ pol β (Bx̃x̃) (W + βVx̃x̃) + (W + βVx̃x̃)F1,x̃x̃ + ∆ polQF1,rx̃( F Frx̃ ) rr

psF = ∆−1 ∆ ps
r F ps

2,rr F 1,xr˜ + ∆F F1,rr( rx̃ rr( ) )
polF2,rr = ∆−1 ′

r ∆ pol β (Brx̃) Q+ (W + βVx̃x̃)F1,xr˜ + ∆ polQF1,rr (B.36)F Frx̃ rr

Notice that the loading coefficients for two-period-ahead shocks arising via both private sector expec-

tations and policy optimization depend on the one-period-ahead coefficients arising from both sources.

The private sector correctly takes into account that two-period-ahead anticipated disturbances affect one-

period-ahead policy optimization and the policymaker correctly takes into account that two-period-ahead

anticipated disturbances affect one-period-ahead private sector behavior via both their own expectations

and their rational understanding of how policy will respond.

It is then straightforward to define the period H − 2 law of motion for x̃ using the constraint (B.28):(( ) ( ) )
x̃ ps pol ps pol
H−2 = Bx̃x̃x̃H−3 + Φx̃z̃ z̃H−2 + F1,x̃x̃ + F1,x̃x̃ Φx̃z̃ + F1,xr˜ + F1,xr˜ Φrz̃ z̃H−1(( ) ( ) )

ps pol ps pol+ F2,x̃x̃ + F2,x̃x̃ Φx̃z̃ + F2,xr˜ + F2,xr˜ Φrz̃ z̃H

= Bx̃x̃x̃H−3 + Φx̃z̃ z̃H−2 + (F1,x̃x̃Φx̃z̃ + F1,xr˜ Φrz̃) z̃H−1 + (F2,x̃x̃Φx̃z̃ + F2,xr˜ Φrz̃) z̃H∑2

= Bx̃x̃x̃H−3 + (Fi,x̃x̃Φx̃z̃ + Fi,xr˜ Φrz̃) z̃H−2+i (B.37)
i=0

ps pol ps polwhere Bx̃x̃ and Φx̃z̃ are the same as above, F0,x̃x̃ = I and F0,xr˜ = 0, F1,x̃x̃, F1,x̃x̃, F1,xr˜ and F1,xr˜ are

defined in equations (B.26)-(B.27), and where:( )
psF2,x̃x̃ = −Θ−1 psH̃F

x̃ F1,˜x̃ + H̃F
x r F1 H̃x̃ + C

,r r F2,rx̃ (B.38)

polF − −1 ˜C pol
2,x̃x̃ = Θ Hr F( 2,rx̃ )
psF − −1 ˜F ˜F ˜C ps
2,xr˜ = Θ Hx̃ F1,xr˜ +Hr F1,rr +Hr F2,rr

polF2,xr˜ = −Θ−1H̃C pol
r F2,rr (B.39)

B.4 Period H − 3

We can substitute the period H−2 laws of motion in equations (B.34) and (B.37) in place of expectations

for period H − 2 outcomes in the (partitioned) model equations and rearrange the result to get: ( ) ∑
Ψ̃z̃ z̃

2
H̃H Φ˜ −3 − F ( x̃ i=0 (Fi,x̃x̃ x̃z̃ + Fi,xr˜ Φrz̃) z̃H−2+i

x = Θ−1
H−3

)  (B.40)
−HF

∑˜ 2
r i=0 (F ˜B ˜C

i,rx̃Φx̃z̃ + Fi,rrΦrz̃) z̃H−2+i −Hx̃ x̃H−4 −Hr rH−3

where F0,xr˜ = 0, F0,rx̃ = 0, F0,x̃x̃ = I and F0,rr = I.
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The policymaker solves:

′
min (x̃

′
H−3) W (x̃H−3) + (rH−3) Q (rH−3) + βLH−2

x̃H−3,rH−3  ( )∑ 
2

Ψ̃z̃ z̃ − − H̃F
H 3 x̃ i=0 (Fi,x̃x̃Φ ( ˜ xrΦ xz̃ + Fi,˜ rz̃) z̃H)−2+i∑ 

−2λ′ x̃ − −1
− 

−3 3  −H̃F 2
H H Θ 

r i=0 (Fi,rx̃Φx̃z̃ + Fi,rrΦrz̃) z̃H−2+i 
−H̃Bx̃ ˜C

x̃ H−4 −Hr rH−3

The first-order conditions are:

′ ∂LH−2
r − : 2 (r − ) Q+ β − 2λ′ Θ−1H̃C
H 3 H 3

∂r H−3 r = 0 (B.41)
H−3

x̃
′ ∂LH−2

H−3 : 2 (x̃H−3) W + β − 2λ′ (B.42)
x̃ H−3 = 0
∂ H−3 ( )∑ ˜ ˜ ˜F 2

Ψ 3 i=0 ( z̃zH− −H( x̃ Fi,x̃x̃Φx̃z̃ + Fi,xr˜ Φrz̃) z̃H)−2+i

λH 3 : x̃H−3 −Θ−1 ∑ 
−  ˜  − F 2

Hr i=0 (Fi,rx̃Φx̃z̃ + Fi,rrΦrz̃) z̃H−2+i  = 0 (B.43)

−H̃B
x x̃H−4 − ˜C˜ Hr rH−3

Appendix C.3 shows that:

∑3 ∑3
′LH−2 = (x̃H−3) Vx̃x̃x̃H−3 + (z̃

′ ′
H−2+i) (Vi,x̃z̃) x̃

′ ′
H−3 + (z̃H−3+i) (Vi,x̃z̃) x̃H−3

i=1 i=1∑3 ∑3
′

+ (z̃H−3+i) βVij,z̃z̃ z̃H−3+j

i=1 j=1

where Vx̃x̃ is defined in equation (B.12), V1,x̃z̃ in equation (B.18), V2,x̃z̃ in equation (B.32) and:

′ ′ ′
V3,x̃z̃ = (Bx̃x̃) (W + βVx̃x̃) (F2,x̃x̃Φx̃z̃ + F2,xr˜ Φrz̃) + (Brx̃) Q (F2,rx̃Φx̃z̃ + F2,rrΦrz̃) + (Bx̃x̃) βV( ) 2,x̃z̃∑2 ( ′) ′

2−j (Bx̃x̃) (W + βVx̃x̃) (Fj,x̃x̃Φx̃z̃ + Fj,xr˜ Φrz̃)
= β (Bx̃x̃) ′ (B.44)

+ (Brx̃) Q (Fj,rx̃Φx̃z̃ + Fj,rrΦrz̃)j=0

where note again that F0,xr˜ = 0, F0,rx̃ = 0, F0,x̃x̃ = I and F0,rr = I.
∂LIt is straightforward to see that H−2 = 0 and that:∂rH−3

3
∂LH− ∑

2 ′ ′
= 2 (x̃

′
V˜ H−3) x̃x̃ + 2 (z̃H−3+i) (Vi,x̃z̃)

∂xH−3 i=1

We can substitute this expression into equation (B.42) and rearrange the result for λ′H−3:

∑3

λ′
′

H−3 = (x̃
′

H−3) (W + βVxx̃) + (z̃ ′
˜ H−3+i) βVi,x̃z̃

i=1

This in turn can be substituted into equation (B.41) to get:( )∑3
′ ′

(rH−3) Q− (x̃
′

H−3) (W + βV x̃) + (z̃ ′ −1
x̃ H−3+i) βVi,x̃z̃ Θ H̃C

r = 0
i=1( )′ ( ) ∑3

Qr − − Θ−1H̃C (W + βV ) x̃ − Θ−1
− H̃

′
C

H 3 r x̃x̃ H 3 r β Vi,x̃z̃ z̃H−3+i = 0 (B.45)
i=1
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We can then use the constraint as represented by the FOC for the Lagrange multiplier in equation

(B.43) to substitute out x̃H−3 and the expressions in equation (B.18), (B.32) and (B.44) to substitute

out V1,x̃z̃, V2,x̃z̃ and V3,x̃z̃ to get: ( )
Ψ̃ z̃ − H̃F

∑ 
2

(F Φ + F Φ ) z̃ z̃ H−3 ( x̃ i=0 i,x̃x̃ x̃z̃ i,xr˜ rz̃ H)−2+i∑  ( )
0 Qr − − ζ ′

= H 3  2  ˜−H̃F
r i=0 (Fi,rx̃Φx̃z̃ + Fi,rrΦrz̃) z̃ − −1 HC

H−2+i Θ r β

−H̃Bx̃ − H̃Cr x̃ H−4 r H−3( ) ∑2 ∑i ( ) ′ ′ i−j (Bx̃x̃) (W + βVx̃x̃) (Fj,x̃x̃Φx̃z̃ + Fj,xr˜ Φrz̃)× β (Bx̃x̃) z̃H− ′ 2+i
+ (Brx̃) Q (Fj,rx̃Φx̃z̃ + Fj,rrΦrz̃)i=0 j=0

This equation can be rearranged to get the following:

∆rrH−3 = ∆x̃x̃H−4 + ∆z̃ z̃H−3∑2 (( ) ( ) )
+ ∆ psF Fi,x̃x̃ + ∆ ps ps psFrx̃ rr

Fi,rx̃ Φx̃z̃ + ∆F Fi,xr˜ + ∆F Fi,rr Φrz̃ z̃H−2+i
rx̃ rr(i=0 )

+ ∆ pol (W + βVx̃x̃) Φx̃z̃ + ∆ polQΦrz̃ zH−2F F ˜
rx̃  ( rr∑ ) )   i−j i ( ′ j=0 β (Bx̃x̃) (W + βV )  ∑ x̃x̃ Fj,x̃x̃

∆  ( )   polF i−1 ′ i−j−1 ′
β B˜ β ) QF  rx̃ + ( xx̃) (Brx̃ j,rx̃ Φx̃z̃ ∑2  j=0 ( +∆ ∑ ( polQFi,rx̃

+ Frr
′)i−j )  z̃  H−2+ii

i=1 β (Bx̃x̃) (W + βV ˜  xx̃)Fj,xr˜ 
∆ ∑j=0

pol


F i−1 ( ′) −1 + j  i− ′ 
rx̃


+ j=0 β (Bx̃x̃) β (Brx̃) QFj,rr Φ  rz̃ 

+∆ polQFi,rrFrr

where ∆r, ∆x̃ and ∆z̃ are defined in equations (B.8)-(B.10), and ∆ ps psF , ∆ pol , ∆
x̃ F Fr rr

and ∆ pol areFrx̃ rr

defined in equations (B.20)-(B.21). It follows that:

∑3 (( ) ( ) )
ps pol ps polrH−3 = Brx̃x̃H−4 + Fi,rx̃ + Fi,rx̃ Φx̃z̃ + Fi,rr + Fi,rr Φrz̃ z̃H−3+i

i=0∑3

= Brx̃x̃H−4 + (Fi,rx̃Φx̃z̃ + Fi,rrΦrz̃) z̃H−3+i (B.46)
i=0

ps pol ps polwhere Brx̃ and Φrz̃ are as above, and F1,rx̃, F1,rx̃, F1,rr and F1,rr are defined in equations (B.23)-(B.24),
ps pol ps polF2,rx̃, F2,rx̃, F2,rr and F2,rr in equations (B.35)-(B.36) and where:( )

psF3,rx̃ = ∆−1
r ∆ psF F2,x̃x̃ + ∆ psFrx̃ rr

F2,rx̃( ( ∑2 ( ′)2−j ) )
pol −1 j=0 β (Bx̃x̃) (W + βVx̃x̃)Fj,x̃x̃

F3,rx̃ = ∆r ∆ pol ∑ ( ′)1−j ′ + ∆ polQF2,rx̃Frx̃ 1 F
+ β (Bx̃x̃) β (Brx̃) QF rr( j=0 ) j,rx̃

psF3,rr = ∆−1
r ∆ psF F2,xr˜ + ∆ psF r

˜ rr
F2,r( rx ( ∑ ( )2−j ) )

2 ′
pol −1 j=0 β (Bx̃x̃) (W + βVx̃x̃)Fj,xr˜

F3,rr = ∆r ∆ polF ∑1 ( ′)1−j + ∆ pol′ QF2,rrFrx̃ + j=0 β (Bx̃x̃) β (Brx̃) QF rr
j,rr

It is then straightforward to define the law of motion for x̃H−3 using the constraint (B.40):

∑3 (( ) ( ) )˜ ˜ ps pol ps polxH−3 = Bx̃x̃xH−4 + Fi,x̃x̃ + Fi,x̃x̃ Φx̃z̃ + Fi,xr˜ + Fi,xr˜ Φrz̃ z̃H−3+i

i=0
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∑3

= Bx̃x̃x̃H−4 + (Fi,x̃x̃Φx̃z̃ + Fi,xr˜ Φrz̃) z̃H−3+i (B.47)
i=0

ps pol ps polwhere Bx̃x̃ and Φx̃z̃ are as above, and F1,x̃x̃, F1,x̃x̃, F1,xr˜ and F1,xr˜ are defined in equations (B.26)-(B.27),
ps pol ps polF2,x̃x̃, F2,x̃x̃, F2,xr˜ and F2,xr˜ in equations (B.38)-(B.39) and where:( )

psF −
3 x̃x̃ = −, Θ 1 H̃F

x̃ F2,x̃x̃ + H̃F ˜C ps
r F2,rx̃ +Hr F3,rx̃

polF3,x̃x̃ = −Θ−1H̃C pol(r F3,rx̃ )
psF ˜
3,xr = −Θ−1

˜ HF ps
x̃ F

˜F ˜C
2,xr˜ +Hr F2,rr +Hr F3,rr

polF − −1 ˜C pol
3,xr˜ = Θ Hr F3,rr

C Future loss function expressions with anticipated disturbances

This appendix derives expressions for the one-period-ahead loss functions allowing for anticipated dis-

turbances.

C.1 One period ahead loss function in period H − 1

We know that from period H + 1 onwards the environment is identical to a perfect-foresight solution

considered in Appendix A. This means that it is helpful to write the period H loss as:

′ ′LH = (x̃H) Wx̃H + (rH) QrH + βLH+1 (C.1)

We can write the loss in period H + 1 as a function of x̃H using the derivation from Appendix A, but

ignoring the constant term which drops out in a perfect-foresight environment:

LH+1 = (x̃
′

H) Vx̃x̃x̃H (C.2)

where:
′ ′ ′

Vx̃x̃ = (Bx̃x̃) WBx̃x̃ + (Brx̃) QBrx̃ + β (Bx̃x̃) Vx̃x̃Bx̃x̃ (C.3)

which means we can substitute out LH+1 in the above expression for LH to get:

˜ ′ ˜ ′LH = (xH) (W + βVx̃x̃)xH + (rH) QrH (C.4)

We can substitute out x̃H and rH using the period H laws of motion from equations (B.1)-(B.2) to get:

′LH = (Bx̃x̃x̃H−1 + Φx̃z̃ z̃H) (W + βVx̃x̃) (Bx̃x̃x̃H−1 + Φx̃z̃ z̃H)

′
+ (Brx̃x̃H−1 + Φrz̃ z̃H) Q (Brx̃x̃H−1 + Φrz̃ z̃H)

′
= (x̃

′ ′ ′ ′
H−1) Vx̃x̃x̃H−1 + (x̃H−1) V1,x̃z̃ z̃H + (z̃H) (V1,x̃z̃) x̃H−1 + (z̃H) V11,z̃z̃ z̃H (C.5)

where Vx̃x̃ is defined in equation (C.3) and:

′ ′
V1,x̃z̃ = (Bx̃x̃) (W + βVx̃x̃) Φx̃z̃ + (Brx̃) QΦrz̃ (C.6)

It is also straightforward to form an expression for V11,z̃z̃, but this constant term drops out of the

policymaker’s first order conditions and so is not needed to characterize the equilibrium laws of motion.
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C.2 One period ahead loss function in period H − 2

We can write the period H − 1 loss function as expected in period H − 2 as:

LH−1 = (x̃
′ ′

H−1) Wx̃H−1 + (rH−1) QrH−1 + βLH (C.7)

We can use the expression derived in Appendix C.1 to substitute out LH to get:

LH−1 = (x̃
′ ′

H−1) (W + βVx̃x̃) x̃H−1 + (rH−1) QrH−1

′ ′ ′ ′
+ (x̃H−1) βV1,x̃z̃ z̃H + (z̃H) β (V1,x̃z̃) x̃H−1 + (z̃H) βV11,z̃z̃ z̃H (C.8)

We can substitute out rH−1 and x̃H−1 using the period H − 1 laws of motion from equations (B.22) and

(B.25) to get:

LH−1 = (Bx̃x̃x̃
′

H−2 + Φx̃z̃ z̃H−1 + (F1,x̃x̃Φx̃z̃ + F1,xr˜ Φrz̃) z̃H) (W + βVx̃x̃)

× (Bx̃x̃x̃H−2 + Φx̃z̃ z̃H−1 + (F1,x̃x̃Φx̃z̃ + F1,xr˜ Φrz̃) z̃H)

′
+ (Brx̃x̃H−2 + Φrz̃ z̃H−1 + (F1,rx̃Φx̃z̃ + F1,rrΦrz̃) z̃H) Q

× (Brx̃x̃H−2 + Φrz̃ z̃H−1 + (F1,rx̃Φx̃z̃ + F1,rrΦrz̃) z̃H)

+ (Bx̃x̃x̃
′

H−2 + Φx̃z̃ z̃H−1 + (F1,x̃x̃Φx̃z̃ + F1,xr˜ Φrz̃) z̃H) βV1,x̃z̃ z̃H

+ (z̃
′ ′ ′

H) β (V1,x̃z̃) (Bx̃x̃x̃H−2 + Φx̃z̃ z̃H−1 + (F1,x̃x̃Φx̃z̃ + F1,xr˜ Φrz̃) z̃H) + (z̃H) βV11,z̃z̃ z̃H

= (x̃
′ ′ ′ ′ ′

H−2) Vx̃x̃x̃H−2 + (x̃H−2) V1,x̃z̃ z̃H−1 + (z̃H−1) (V1,x̃z̃) x̃H−2 + (x̃H−2) V2,x̃z̃ z̃H

+ (z̃
′ ′ ′ ′ ′ ′

H) (V2,x̃z̃) x̃H−2 + (z̃H−1) βV11,z̃z̃ z̃H−1 + (z̃H−1) βV12,z̃z̃ z̃H + (z̃H) β (V12,z̃z̃) z̃H−1˜ ′
+ (zH) βV22,z̃z̃ z̃H

= (x̃
′ ′ ′ ′ ′

H−2) Vx̃x̃x̃H−2 + (x̃H−2) V1,x̃z̃ z̃H−1 + (z̃H−1) (V1,x̃z̃) x̃H−2 + (x̃H−2) V2,x̃z̃ z̃H∑2 ∑2

+ (z̃
′ ′ ′

H) (V2,x̃z̃) x̃H−2 + (z̃H−2+i) βVij,z̃z̃ z̃H−2+j (C.9)
i=1 j=1

where Vx̃x̃ is defined in equation (C.3), V1,x̃z̃ in equation (C.6) and:

′ ′ ′
V2,x̃z̃ = (Bx̃x̃) (W + βVx̃x̃) (F1,x̃x̃Φx̃z̃ + F1,xr˜ Φrz̃) + (Brx̃) Q (F1,rx̃Φx̃z̃ + F1,rrΦrz̃) + (Bx̃x̃) βV1,x̃z̃

(C.10)

It is also straightforward to form expressions for V11,z̃z̃, V12,z̃z̃ and V22,z̃z̃, but these constant terms drop

out of the policymaker’s first order conditions and so are not needed to characterize the equilibrium laws

of motion.

C.3 One period ahead loss function in period H − 3

We can write the period H − 2 loss function as expected in period H − 3 as:

˜ ′ ′LH−2 = (xH−2) Wx̃H−2 + (rH−2) QrH−2 + βLH−1 (C.11)

We can use the expression derived in Section C.2 to substitute out LH−1 to get:

′ ′LH−2 = (x̃H−2) (W + βVx̃x̃) x̃H−2 + (rH−2) QrH−2˜ ′ ˜ ˜ ′ ′ ′ ′ ′
+ (xH−2) V1,x̃z̃zH−1 + (zH−1) (V1,x̃z̃) x̃H−2 + (x̃H−2) V2,x̃z̃ z̃H + (z̃H) (V1,x̃z̃) x̃H−2∑2 ∑2

+ (z̃
′

H−2+i) βVij,z̃z̃ z̃H−2+j

i=1 j=1
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∑2
′ ′ ′

= (x̃H−2) (W + βVx̃x̃) x̃H−2 + (rH−2) QrH−2 + (x̃H−2) Vi,x̃z̃ z̃H−2+i

i=1∑2 ∑2 ∑2
′ ′ ′

+ (z̃H−2+i) (Vi,x̃z̃) x̃H−2 + (z̃H−2+i) βVij,z̃z̃ z̃H−2+j (C.12)
i=1 i=1 j=1

We can substitute out rH−2 and x̃H−2 using the period H − 2 laws of motion from equations (B.34) and

(B.37) to get: ( )∑ ′2

LH−2 = Bx̃x̃x̃H−3 + (Fi,x̃x̃Φx̃z̃ + Fi,xr˜ Φrz̃) z̃H−2+i (W + βVx̃x̃)( i=0 )∑2

× Bx̃x̃x̃H−3 + (Fi,x̃x̃Φx̃z̃ + Fi,xr˜ Φrz̃) z̃H−2+i( i=0 )∑ ′2

+ Brx̃x̃H−3 + (Fi,rx̃Φx̃z̃ + Fi,rrΦrz̃) z̃H−2+i Q( i=0 )∑2

× Brx̃x̃H−3 + (Fi,rx̃Φx̃z̃ + Fi,rrΦrz̃) z̃H−2+i( i=0 )∑ ′2 ∑2

+ Bx̃x̃x̃H−3 + (Fi,x̃x̃Φx̃z̃ + Fi,xr˜ Φrz̃) z̃H−2+i Vi,x̃z̃ z̃H−2+i

i=1 i=0( )∑2 ∑2

+ (z̃
′

H−2+i) V
′
i,x̃z̃ Bx̃x̃x̃H−3 + (Fi,x̃x̃Φx̃z̃ + Fi,xr˜ Φrz̃) z̃H−2+i

i=1 i=0∑2 ∑2

+ (z̃
′

H−2+i) βVij,z̃z̃ z̃H−2+j

i=1 j=1 ∑3 ∑3˜ ′ ˜ ′ ′ ′ ′
= (xH−3) Vx̃x̃xH−3 + (z̃H−3+i) (Vi,x̃z̃) x̃H−3 + (z̃H−3+i) (Vi,x̃z̃) x̃H−3

i=1 i=1∑3 ∑3

+ (z̃
′

H−3+i) βVij,z̃z̃ z̃H−3+j (C.13)
i=1 j=1

where Vx̃x̃ is defined in equation (C.3), V1,x̃z̃ in equation (C.6), V2,x̃z̃ in equation (C.10) and:

′ ′ ′
V3,x̃z̃ = (Bx̃x̃) (W + βVx̃x̃) (F2,x̃x̃Φx̃z̃ + F2,xr˜ Φrz̃) + (Brx̃) Q (F2,rx̃Φx̃z̃ + F2,rrΦrz̃) + (Bx̃x̃) βV2,x̃z̃

(C.14)

It is also straightforward to form expressions for {{Vij,z̃z̃}3 }3j=1 i=1, but these constant terms drop out of

the policymaker’s FOC and so are not needed to characterise the equilibrium laws of motion.

D Derivation of optimal discretion with instrument bounds

D.1 Period H

In period H, there are no further shocks anticipated to arrive in future, so the laws of motion for the

endogenous variables and instruments are the same as that derived in Appendix A for the case with no

anticipated disturbances and, consistent with equations (55)-(57):

x̃H = Bx̃x,H˜ x̃H−1 + Ξ0,x̃z̃,H z̃H + γx,H˜ (D.1)

rH = Brx,H˜ x̃H−1 + Ξ0,rz̃,H z̃H + γr,H (D.2)

µH = Bµx,H˜ x̃H−1 + Ξ0,µz̃,H z̃H + γµ,H (D.3)
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where: ( )
Bx̃x,H˜ = −Θ−1 ˜

H HB
x̃ + H̃C

r Brx,H˜( )
Ξ −1 ˜ ˜C

0,x̃z̃,H = ΘH Ψz̃ −Hr Φrz̃,H( )
γ −1 ˜F
x,H˜ = −ΘH Hx̃ γx,H˜ +1 + H̃F

r γr,H+1 + H̃C
r γr,H

Brx,H˜ = Γrr,H∆x,H˜

Ξ0,rz̃,H = Γrr,H∆z̃,H

γr,H = Γrr,H∆c,H + Γrµ,HJHb

Bµx,H˜ = Γµr,H∆x,H˜

Ξ0,µz̃,H = Γµr,H∆z̃,H

γµ,H = Γµr,H∆c,H + Γµµ,HJHb

where JH is an nµ× nµ indicator matrix describing which of the constraints in binding in period H, b is

an nµ × 1 vector of constants in the instrument bound inequality constraints (54):

ΘH = H̃C ˜F ˜F
x̃ +Hx̃ Bx̃x,H˜ +1 +Hr Brx,H˜ +1

Γrr,H = ∆−1 −r,H ∆−1
r,HS

′Γ −
µµ,HJHS∆ 1

r,H

Γrµ,H = ∆−1
r,HS

′Γµµ,H

Γµr,H = −Γµµ,HJHS∆−1( r,H )−1

Γ −
µµ,H = I− JH + JHS∆ 1 ′

r,HS

∆ H̃x,H˜ = −ζ B
H x̃

∆z̃,H = ζ Ψ̃(H z̃ )
∆c,H = Θ−1 ˜ ′ ( )

H HC
r βVxγ˜ ,H+1 − ζH H̃F

x̃ γx,H˜ +1 + H̃F
r γr,H+1

where I is an nµ × nµ identity matrix and S is an nµ × nr matrix of coefficients on the instruments in

the inequality constraints (54) and:

∆ = Q+ ζ H̃C
r,H ( H )r
ζH = Θ−1 ˜ ′

H HC
r (W + βVx̃x,H˜ +1) Θ−1

H

The assumption that the steady state is characterized by a regime in which none of the constraints

is binding and that period H is the maximal horizon up to which constraints can bind in a transition

back to the steady state regime implies that the following is true:

Bx̃x,H˜ +1 = Bx̃x̃

Brx,H˜ +1 = Brx̃

γx,H˜ +1 = 0

γr,H+1 = 0

Vx̃x,H˜ +1 = Vx̃x̃

Vxγ˜ ,H+1 = 0

where Bx̃x̃, Brx̃ and Vx̃x̃ are the expressions from the unconstrained solution defined in Section B.1.
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D.2 Period H − 1

The model of the economy is represented by the same set of equations as in the variant of the problem

without bound constraints in equation (B.13). Consistent with the definition of optimal discretion and

the presence of anticipated disturbances, we can derive the effective constraint on the policymaker using

equations (D.1)-(D.2) to substitute out expectations and then rearranging to get:( )
Ψ̃−1 z̃ z̃H−1 − H̃F − H̃FΞ˜ x̃ Ξ0,x̃z̃,H z̃H r 0,rz̃,H z̃H

xH−1 = ΘH−1 −H̃Bx̃ − H̃C ˜F ˜ (D.4)
F

x̃ H−2 r rH−1 −Hx̃ γx,H˜ −Hr γr,H

where:

Θ H̃H−1 = C
x̃ + H̃F

x̃ B
˜F

x̃x,H˜ +Hr Brx,H˜ (D.5)

Given this constraint imposed by the model (with optimal behavior on the part of the policymaker in

the future embedded via agents’ expectations), the instrument bound constraints in equation (54) and

a recursive representation of the loss function (38), the policymaker’s loss-minimization problem can be

represented as a Lagrangian in the following way:  ˜ ′ xH−1) W (x̃
′

( H−1) + (rH−1) Q (rH 1) + βL  − H ′   −2µH−1 (SrH−1 − b)  
min max Ψ̃ z̃ − H̃F ˜

x̃ Ξ0,˜ z̃ F   z̃ H−1 xz̃,H H −Hr Ξ0,rz̃,H z̃H
rH−1,x̃H−1 λH−1,µH−1≥0

− ˜ C 
2 − 
λ′ xH−1 −Θ 1  −H̃B ˜  −1 H H−1 ˜ x −2 −x ˜H Hr rH−1   

−H̃F
x̃ γx,H˜ − H̃F 

r γr,H

This problem has the following first-order conditions:

′ ∂LH
r C
H−1 : 2 (r ′ ′ −1

H− ˜
1) Q+ β − 2µH−1S − 2λ

∂r H−1ΘH−1Hr = 0 (D.6)
H−1

′ ∂LH
x̃H−1 : 2 (x̃H−1) W + β − 2λ′

∂x̃ H−1 = 0 (D.7)
H−1

µH−1 : SrH−1 − b = 0 (D.8)( )˜
− − ˜F ˜F˜ 1 Ψz̃ z̃H−1 Hx̃ Ξ0,x̃z̃,H z̃H −H

λ : x −Θ r Ξ0,rz̃,H z̃H
H−1 H−1 H−1 −H̃Bx̃ − − H̃ ˜ = (D.9)

C
x̃ 2 r rH−1 − H̃

0
F

H x̃ γ
F

x,H˜ −Hr γr,H

Appendix E.1 shows that:

′ ′ ′ ′LH = (x̃H−1) Vx̃x,H˜ x̃H−1 + (x̃H−1) V1,x̃z̃,H z̃H + (V1,x̃z̃,H z̃H) x̃H−1 + (x̃H−1) Vxγ˜ ,H

′
+ (Vxγ˜ H

) x̃H−1 + Vcc,H (D.10)

where:

′ ′
Vx̃x,H˜ = (Bx̃x,H˜ ) (W + βVx̃x̃)Bx̃x,H˜ + (Brx,H˜ ) QBrx,H˜

′ ′
V1,x̃z̃,H = (Bx̃x,H˜ ) (W + βVx̃x̃) Φx̃z̃,H + (Brx,H˜ ) QΦrz̃,H

′ ′
Vxγ˜ ,H = (Bx̃x,H˜ ) (W + βVx̃x̃) γx,H˜ + (Brx,H˜ ) Qγr,H

and where Vcc,H is a composite term comprised of terms in the one-period ahead shocks, z̃H and the

constants, γx,H˜ and γr,H .

From equation (D.10), it is clear that ∂LH = 0 and:∂rH−1

∂LH ′ ′ ′
= 2 (x̃ ) 2 (˜ H−1 Vx̃x,H˜ + V1,x̃z̃,H z̃H) + 2 (Vxγ˜ ,H)

∂xH−1
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We can substitute the expression for ∂LH into the first order condition for the endogenous variables∂x̃H−1

(D.7) and rearrange to derive the following expression for the Lagrange multiplier, λ′H−1:

′ ′ ′
λH−1 = (x̃H−1) (W + βVx̃x,H˜ ) + β (V1,x̃z̃,H z̃H + Vxγ˜ ,H)

This in turn can be substituted into the first-order condition for the policy rate (D.6) to give:

′
(rH−1) Q− µ′

(
H−1S − (x̃

′ ′)
H−1) (W + βVx̃x,H˜ ) + β (V1,x̃z̃,H z̃H + Vxγ˜ ,H) Θ−1 ˜

H−1H
C
r = 0( )

Qr −1
− − S′µ − − Θ H̃

′
C

H 1 H 1 H−1 r ((W + βVx̃x,H˜ ) x̃H−1 + β (V1,x̃z̃,H z̃H + Vxγ˜ ,H)) = 0 (D.11)

Equation (D.11) takes the same form as the targeting rule in the unconstrained case in equation (B.19),

but includes additional terms in the event that any of the constraints are binding in period H − 1 or H.

We can use the constraint (D.9) to substitute out x̃H−1 in the targeting rule (D.11) and rearrange

to get: ( ( ) )
Ψ̃z̃ z̃H−1 − H̃F

′ x̃z̃,H + ˜
x HF
˜ Ξ0, r Ξ0,rz̃,H z̃H

QrH−1 − S µH−1 = ζH−1
−H̃B

x̃ x̃
C

−2 − H̃r rH−1 − H̃F − ˜FH( ) x̃ γx,H˜ Hr γr,H

+ Θ−1 ˜ ′

H−1H
C
r β (V1,x̃z̃,H z̃H + Vxγ˜ ,H)

where: ( )′
ζ = Θ−1 H̃C (W + βV ) Θ−1
H−1 H−1 r x̃x,H˜ H−1

We can write this as:

∆ ′
r,H−1rH−1 − S µH−1 = ∆x,H˜ −1x̃H−2 + ∆z̃0,H−1z̃H−1 + ∆z̃1,H−1z̃H + ∆c,H−1 (D.12)

where:

∆ C
r,H−1 = Q+ ζH− ˜

1Hr

∆ B
x,H˜ −1 = −ζH−1Hx̃

∆ ˜
z̃0,H−1 = ζH−1Ψ( z̃ )′ ( )

∆ −
˜ 1 = Θ 1 ˜

H−1H
C

z1,H r βV1,x̃z̃,H − ζ F F
− H− H̃1 x̃ Ξ0,x̃z̃ + H̃,H r Ξ0,rz̃,H( )′ ( )

∆ −
c,H−1 = Θ 1 ˜

−1H
C
r Vxγ˜ ,H −H β ζH− ˜

1 HF ˜F
x̃ γx,H˜ +Hr γr,H

We define an indicator, JH−1, as an nµ×nµ square matrix with unit entries on the diagonal elements

indexing a binding constraint in period H − 1 and zeros elsewhere. Using this indicator we can define

the following system from equation (D.12):[ ][ ] [ ] [ ] [ ]
∆r,H−1 −S′ rH−1 ∆x,H˜ −1 ∆z̃ ,H−1 ∆z̃ ,H−1

= x̃ + 0 z̃ + 1 z̃
J H

S I 2
H−1 J H− −1 H− H−1 µH−1 0 0 0[ ]

∆c,H−1
+ (D.13)

JH−1b

This system jointly determines the solution for the instruments and the Lagrange multipliers (as long as

∆r,H−1 is invertible):

rH−1 = Brx,H˜ −1x̃H−2 + Ξ0,rz̃,H−1z̃H−1 + Ξ1,rz̃,H−1z̃H + γr,H−1 (D.14)

µH−1 = Bµx,H˜ −1x̃H−2 + Ξ0,µz̃,H−1z̃H−1 + Ξ1,µz̃,H−1z̃H + γµ,H−1 (D.15)
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where:

Brx,H˜ −1 = Γrr,H−1∆x,H˜ −1

Ξ0,rz̃,H−1 = Γrr,H−1∆z̃0,H−1

Ξ1,rz̃,H−1 = Γrr,H−1∆z̃1,H−1

γr,H−1 = Γrr,H−1∆c,H−1 + Γrµ,H−1JH−1b

Bµx,H˜ −1 = Γµr,H−1∆x,H˜ −1

Ξ0,µz̃,H−1 = Γµr,H−1∆z̃0,H−1

Ξ1,µz̃,H−1 = Γµr,H−1∆z̃1,H−1

γµ,H−1 = Γµr,H−1∆c,H−1 + Γµµ,H−1JH−1b

where Γrr , Γ , Γ and Γ[,H−1 rµ,H−1 µr,H−]1 µµ,H−1 are the upper-left, upper-right, lower-left and lower-right
−1

∆r,H−1 −S′
blocks of respectively, defined as:51

JH−1S I− JH−1

Γrr,H−1 = ∆−1
r,H− −1 ∆−1 1

r,H 1S
′

− Γ −1J −
µµ,H H−1S∆r,H−1

Γrµ,H−1 = ∆−1
r,H−1S

′Γµµ,H−1

Γ 1
µr,H−1 = −Γµµ,H 1J −

− H−1S∆( r,H−1 )−1

Γµµ,H−1 = I− JH−1 + JH S∆−1
r,H−1S

′
−1

where I is n nµ × nµ identity matrix.

It is then straightforward to characterise the law of motion for the endogenous variables by substi-

tuting the law of motion for the instruments into the constraint in equation (D.4):

x̃H−1 = Bx̃x,H˜ −1x̃H−2 + Ξ0,x̃z̃,H−1z̃H−1 + Ξ1,x̃z̃,H−1z̃H + γx,H˜ −1 (D.16)

where: ( )
Bx̃x,H˜ −1 = −Θ−1 ˜

H−1 HB
x̃ + H̃C

r Brx,H˜ −1( )
Ξ −1 C

0,x̃z̃,H− −1 Ψ̃1 = ΘH z̃ − H̃r Ξ0,rz̃,H−1( )
Ξ 1

1,x̃z̃,H− −Θ−1 = H−1 H̃F
x̃ Ξ F

0,˜z̃,H + H̃x r Ξ ˜C
0,rz̃,H +Hr Ξ1,rz̃,H−1( )

γ − = −Θ−1 H̃F γ + H̃F γ + H̃C
x,H˜ 1 H−1 x̃ x,H˜ r r,H r γr,H−1

D.3 Period H − 2

In period H − 2, the policymaker and private sector take the policymaker’s optimal decision rule in

period H − 1 as given and can observe the disturbances that will be realized in period H − 1 and H. We

can embed that in the period H − 2 problem by substituting out expectations in the model equations

using the laws of motion in equations (D.14) and (D.16) and then rearranging to get: 
Ψ̃z̃ z̃ H− ˜

2 −HF
x̃ (Ξ0,x̃z̃,H−1z̃H−1 + Ξ1,x̃z̃,H−1z̃H) 

x̃H−2 = Θ−1 F
H −H̃−2 r (Ξ0,rz̃,H−1z̃H−1 + Ξ1,rz̃,H−1z̃H)  (D.17)

−H̃Bx̃H−3 − ˜C − ˜F − ˜Fx̃ Hr rH−2 Hx̃ γx,H˜ −1 Hr γr,H−1

51These are the formulae for the block inverse of a 2 × 2 matrix. Γµµ,H−1 is the Schur complement of the
∆r,H−1 (upper-left) block of the coefficient matrix.
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where:

ΘH−2 = H̃C
x̃ + H̃F

x̃ Bx̃x,H˜ −1 + H̃F
r Brx,H˜ −1 (D.18)

Given this constraint and the bound constraints, the policymaker’s loss-minimisation problem can be

represented as a Lagrangian in the same way as for period H − 1:  (x̃
′

H−2) W (x̃
′ H−2) + (rH−2) Q (rH−2) + βLH−1 

′  − 2 rH−2   2µ − ( −H S b)   ˜  Ψz̃ z̃H   −2 
min max   −H̃F

x̃ (Ξ0,x̃z̃,H−1z̃H−1 + Ξ1,x̃z̃,H−1z̃H) 
rH−2,x̃H−2 λH−2,µH−2≥0     −2λ′ ˜ xH−2 −Θ−1   H 2 H−2 −H̃F

−  r (Ξ0,rz̃,H−1z̃H−1 + Ξ1,rz̃,H−1z̃H)   ˜B ˜C   −H˜ x̃   x H−3 −H rH−2   r 
−H̃F γ − ˜x,H˜ HF

x̃ −1 r γr,H−1

This problem has the following first-order conditions:

′ ∂LH−1
rH−2 : 2 (rH−2) Q+ β − 2µ′ S − 2λ′ Θ−1 H̃C = 0 (D.19)

∂r H−2 H−2 H−2 r
H−2

x̃
′ ∂LH−1

H−2 : 2 (x̃H−2) W + β − 2λ′H−2 = 0 (D.20)
∂x̃H−2

µH−2 : SrH−2 − b = 0 (D.21) 
Ψ̃z̃ z̃ −HF

H− ˜
2 x̃ (Ξ0,x̃z̃,H−1z̃H−1 + Ξ1,x̃z̃,H−1z̃ ) H

λH−2 : x̃ −1
H−2 −ΘH−2 −H̃F 

r (Ξ0,rz̃,H−1z̃H−1 + Ξ1,rz̃,H−1z̃H)  = 0 (D.22)

−H̃B − ˜C − ˜F − ˜Fx̃ x̃H−3 Hr rH−2 Hx̃ γx,H˜ −1 Hr γr,H−1

Appendix E.2 shows that:

LH−1 = (x̃
′ ′ ′

H−2) Vx̃x,H˜ −1x̃H−2 + (x̃H−2) V1,x̃z̃,H−1z̃H−1 + (V1,x̃z̃,H−1z̃H−1) x̃H−2˜ ′ ′ ′
+ (xH−2) V2,x̃z̃,H−1z̃

′
H + (V2,x̃z̃,H−1z̃H) x̃H−2 + (x̃H−2) Vxγ˜ ,H−1 + (Vxγ˜ ,H−1) x̃H−2

+ Vcc,H−1 (D.23)

where:

′ ′
Vx̃x,H˜ −1 = (Bx̃x,H˜ −1) (W + βVx̃x,H˜ )Bx̃x,H˜ −1 + (Brx,H˜ −1) QBrx,H˜ −1

′ ′
V1,x̃z̃,H−1 = (Bx̃x,H˜ −1) (W + βVx̃x,H˜ ) Ξ0,x̃z̃,H−1 + (Brx,H˜ −1) QΞ0,rz̃,H−1

′ ′ ′
V2,x̃z̃,H−1 = (Bx̃x,H˜ −1) (W + βVx̃x,H˜ ) Ξ1,x̃z̃,H−1 + (Brx,H˜ ) QΞ1,rz̃,H−1 + (Bx̃x,H˜ −1) βV1,x̃z̃,H

′ ′ ′
Vxγ˜ ,H−1 = (Bx̃x,H˜ −1) (W + βVx̃x,H˜ ) γx,H˜ −1 + (Brx,H˜ −1) Qγr,H−1 + (Bx̃x,H˜ −1) βVxγ˜ ,H

and where Vcc,H−1 is a composite comprised of terms in the one-period and two-period ahead anticipated

disturbances, z̃H−1 and z̃H , and constants, γx,H˜ −1, γr,H−1, γx,H˜ and γr,H (and, therefore, independent

of x̃H−2).
∂LFrom equation (D.23), it is clear that H−1 = 0 and:∂rH−2

∂LH−1 ′ ′ ′ ′
= 2 (x̃˜ H−2) Vx̃x,H˜ −1 + 2 (V1,x̃z̃,H−1z̃H−1) + 2 (V2,x̃z̃,H−1z̃H) + 2 (Vxγ˜ ,H−1)

∂xH−2

∂LWe can substitute the expression for H−1 into the first order condition for the endogenous variables∂x̃H−2

(D.20) and rearrange to derive the following expression for the Lagrange multiplier, λ′H−2:

′ ˜ ′ ′
λH−2 = (xH−2) (W + βVx̃x,H˜ −1) + β (V1,x̃z̃,H−1z̃H−1 + V2,x̃z̃,H−1z̃H + Vxγ˜ ,H−1)
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This in turn can be substituted into the first-order condition for the policy rate (D.19) to give:( )
′ ′ (x̃

′
H−2) (W + βVx̃x,H˜ −1)

(r ) Q− µ S − Θ−1
H− ˜

2 H−2 ′ H−2H
C
r = 0

+β (V1,x̃z̃,H−1z̃H−1 + V2,x̃z̃,H−1z̃H + V( xγ˜ ,H−1) )( )′
Qr − S′ −1 ˜C (W + βVx̃x,H˜ −1) x̃H−2

H−2 µH−2 − ΘH−2Hr = 0(D.24)
+β (V1,x̃z̃,H−1z̃H−1 + V2,x̃z̃,H−1z̃H + Vxγ˜ ,H−1)

which is the targeting rule that now includes terms in period H−1 and period H anticipated disturbances,

as well terms in the event that any of the constraints are binding in period H − 2, H − 1 or H.

We can use the constraint (D.22) to substitute out x̃H−2 in the targeting rule (D.24) and rearrange

to get:  ( ) ( ) 
F Ξ0,x̃z̃,H−1z̃H−1 F Ξ0,rz̃,H−1z̃˜ ˜ ˜

′  H−1
Ψz̃ z̃H−2 −H −

−2 − S µ −2 = ζ x̃ Hr 
QrH H H−2 +Ξ1,x̃z̃,H−1z̃H +Ξ1,rz̃,H−1z̃H 

−H̃B
x̃ x̃H−3 − H̃C

r r
F

H− ˜
2 −Hx̃ γx,H˜ H̃1 − F

− r γr,H−1( )′
+ Θ−1 ˜

H−2H
C
r β (V1,x̃z̃,H−1z̃H−1 + V2,x̃z̃,H−1z̃H + Vxγ˜ ,H−1)

where: ( )′
ζH−2 = Θ−1 ˜

−2H
C

H r (W + βVx̃x,H˜ −1) Θ−1
H−2

We can write this more compactly as:

∑2

∆r,H−2rH−2 − S′µH−2 = ∆x,H˜ −2x̃H−3 + ∆z̃s,H−2z̃H−2+s + ∆c,H−2 (D.25)
s=0

where:

∆r,H−2 = Q+ ζH− ˜
2H

C
r

∆x,H˜ −2 = −ζH−2H
B
x̃

∆ ˜
z̃0,H−2 = ζH−2Ψ( z̃ )′ ( )

∆˜ ,H = Θ−1 ˜
H−2H

C
z1 −2 r βV1,x̃z̃,H−1 − ζH−2 H̃F

x̃ Ξ ˜F
0,x̃z̃,H−1 +Hr Ξ0,rz̃,H−1( ) ( )

∆ 1
− = Θ− H̃

′
C

z̃2,H 2 H−2 r βV2,x̃z̃,H−1 − ζH− H̃F ˜F
2 x̃ Ξ1,x̃z̃,H−1 +Hr Ξ1,rz̃,H−1( )′ ( )

∆ = Θ−1 H̃C
c,H−2 H−2 βVxγ˜ ,H−1 − ζ F F

r H− H̃ H̃2 x̃ γx,H˜ −1 + r γr,H−1

We can define the following system for the period H − 2 instruments and Lagrange multipliers from

equation (D.25):[ ][ ] [ ] [ ]
∆ −S′ 2

r ∑
r,H−2 H−2 ∆x,H˜ −2 ∆ ,H

= x̃
z̃

JH I− J H− + s −2
3 z̃H−2+s

−2S H−2 µH−2 0 0[ ] s=0

∆c,H−2
+ (D.26)

JH−2b

This system jointly determines the solution for the instruments and the Lagrange multipliers:

∑2

rH−2 = Brx,H˜ −2x̃H−3 + Ξs,rz̃,H−2z̃H−2+s + γr,H−2 (D.27)
s=0
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∑2

µH−2 = Bµx,H˜ −2x̃H−3 + Ξs,µz̃,H−2z̃H−2+s + γµ,H−2 (D.28)
s=0

where:

Brx,H˜ −2 = Γrr,H−2∆x,H˜ −2

Ξ0,rz̃,H−2 = Γrr,H−2∆z̃0,H−2

Ξ1,rz̃,H−2 = Γrr,H−2∆z̃1,H−2

Ξ2,rz̃,H−2 = Γrr,H−2∆z̃2,H−2

γr,H−2 = Γrr,H−2∆c,H−2 + Γrµ,H−2JH−2b

Bµx,H˜ −2 = Γµr,H−2∆x,H˜ −2

Ξ0,µz̃,H−2 = Γµr,H−2∆z̃0,H−2

Ξ1,µz̃,H−2 = Γµr,H−2∆z̃1,H−2

Ξ2,µz̃,H−2 = Γµr,H−2∆z̃2,H−2

γµ,H−2 = Γµr,H−2∆c,H−2 + Γµµ,H−2JH−2b

where Γrr,H−2, Γrµ,H−2, Γµr,H−2 and Γµµ,H−2 are the upper-left, upper-right, lower-left and lower-right[ ]−1
∆r,H−2 −S′

blocks of respectively, defined as:
JH−2S I− JH−2

Γrr,H−2 = ∆−1
− −

−
r,H 2 ∆ 1

r,H−2S
′Γµµ,H−2JH−2S∆−1

r,H−2

Γrµ,H−2 = ∆−1
r,H−2S

′Γµµ,H−2

Γ −1
µr,H−2 = −Γµµ,H−2JH−2S∆( r,H−2 )−1

Γµµ,H−2 = I− J −2 + JH−2S∆−1
r,H 2S

′
H −

where I is an nµ × nµ identity matrix.

It is then straightforward to characterize the law of motion for the endogenous variables by substi-

tuting the law of motion for the instruments into the constraint in equation (D.17):

∑2

x̃H−2 = Bx̃x,H˜ −2x̃H−3 + Ξs,x̃z̃,H−2z̃H−2+s + γx,H˜ −2 (D.29)
s=0

where: ( )
Bx̃x,H˜ −2 = −Θ−1 ˜B ˜C

H−2 Hx̃ +Hr Brx,H˜ −2( )
Ξ0,x̃z̃,H−2 = Θ−1 ˜

H−2 Ψz̃ − H̃C
r Ξ0,rz̃,H−2( )

Ξ = −Θ−1 H̃FΞ + H̃F C
1,x̃z̃,H−2 H−2 x̃ 0,x̃z̃,H−1 r Ξ0,rz̃,H−1 + H̃r Ξ1,rz̃,H−2( )

Ξ2,x̃z̃,H−2 = −Θ−1 H̃F
H−2 x̃ Ξ1,x̃z̃ −1 + H̃F

,H r Ξ1,rz̃,H−1 + H̃C
r Ξ2,rz̃,H−2( )

γx,H˜ −2 = −Θ−1 ˜
H−2 HF ˜F ˜C

x̃ γx,H˜ −1 +Hr γr,H−1 +Hr γr,H−2

D.4 A generic period, t

The preceding steps reveal the laws of motion for a generic period t, valid for t = 1 . . . H − 1.
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The constraint internalized by the policymaker is:( )˜ ˜ ˜F ∑H−t−1 ∑ t
z ˜F H− −1˜ −1 Ψz̃ t −H s=0 Ξs,x̃z̃,t+1z̃t+1+ −x̃ s Hr s=0 Ξs,rz̃,t+1z̃t+1+s

xt = Θt −H̃B
x̃ x̃t−1 − H̃

(D.30)
C
r r − H̃t H̃F

x̃ γ˜ +1 − F
x,t r γr,t+1

where:

Θt = H̃C
x̃ + H̃F

x̃ B ˜F
x̃x,t˜ +1 +Hr Brx,t˜ +1 (D.31)

Given this constraint and the bound constraints, the policymaker’s loss-minimisation problem can be

represented as a Lagrangian:  ′
) W (x̃

′ (x̃ t t) + (rt) Q (rt) + βLt+1 
2    − µ′t (Sr − b)  ∑t

min max Ψ̃ z̃ F H−t−  t Ξ z̃ − H̃ 1∑x̃ s=0 s,x̃z̃,t+1z̃t+1+s
rt,x̃t λt,µt≥0   ˜ −1 H̃

H−t−1
z̃  −2λ′tx −Θ F

t t  − r s=0 Ξs,rz̃,t+1 t+1+s  −H̃B
x̃ x̃t− − H̃C

1 r rt − H̃F γ H̃F
x,t˜ +1 −x̃ r γr,t+1

This problem has the following first-order conditions:

′ ∂Lt+1
r : 2 (r ) Q+ β − 2µ′S − 2λ′Θ−1H̃C
t t

∂r t t t r = 0 (D.32)
t

x̃
′ ∂Lt+1

t : 2 (x̃t) W + β − 2λ′ = 0 (D.33)
∂x̃ t

t

µt : Srt − b = 0 (D.34) ∑ 
Ψ̃ z̃ − H̃F H−t−1 z̃ t s=0 Ξ∑x̃ s,x̃z̃,t+1z̃t+1+s

− 
λt : x̃t −Θ 1 −H̃F H−t−1

t r s=0 Ξs,rz̃,t+1z̃t+1+s  = 0 (D.35)

−H̃B
x̃ x̃t−1 − H̃Cr − H̃F

r t x̃ γ˜ − ˜Fx,t+1 Hr γr,t+1

Appendix E.3 shows that:

H∑−t H∑−t
Lt+1 = (˜ ′ ′ ′

xt) Vx̃x,t˜ +1x̃t + (x̃t) Vs,x̃z̃,t+1z̃t+s + (Vs,x̃z̃,t+1z̃t+s) x̃t
s=1 s=1

+ (˜ ′ ′
xt) Vxγ˜ ,t+1 + (Vxγ˜ ,t+1) x̃t + Vcc,t+1 (D.36)

where:

′ ′
Vx̃x,t˜ +1 = (Bx̃x,t˜ +1) (W + βVx̃x,t˜ +2)Bx̃x,t˜ +1 + (Brx,t˜ +1) QBrx,t˜ +1 (D.37)

′ ′
Vs,x̃z̃,t+1 = (Bx̃x,t˜ +1) (W + βVx̃x,t˜ +2) Ξs−1,x̃z̃,t+1 + (Brx,t˜ +1) QΞs−1,rz̃,t+1

′
+ (Bx̃x,t˜ +1) βVs−1,x̃z̃,t+2 (D.38)

′ ′ ′
Vxγ˜ ,t+1 = (Bx̃x,t˜ +1) (W + βVx̃x,t˜ +2) γx,t˜ +1 + (Brx,t˜ +1) Qγr,t+1 + (Bx̃x,t˜ +1) βVxγ˜ ,t+2 (D.39)

with V0,x̃z̃,t+2 = 0 (relevant in equation (D.38)), and where Vcc,t+1 is a composite comprised of terms

in anticipated disturbances, {z̃ }H−t, and constants, {γ H−t H−t
t+s s=1 x,t˜ +s} {s and γr,t+s}=1 s=1 . (and, therefore,˜ ∂Lindependent of x ). From equation (D.36), it is clear that t+1

t = 0 and:∂rt

H−t
∂L ∑

t+1
= 2 (x̃

′ ′ ′
t) Vx̃ +1 +˜ x,t˜ 2 (Vs,x̃z̃,t+1z̃t+s) + 2 (Vxγ˜ ,t+1)

∂xt s=1

∂LWe can substitute the expression for t+1 into the first order condition for the endogenous variables∂x̃t
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(D.33) and rearrange to derive the following expression for the Lagrange multiplier, λ′t:( )
H∑ ′−t

λ′t = (x̃
′

t) (W + βVx̃x,t˜ +1) + β Vs,x̃z̃,t+1z̃t+s + Vxγ˜ ,t+1

s=1

This in turn can be substituted into the first-order condition for the policy rate (D.32) to give: 
(x̃

′
t) (W + βVx̃x,t˜ +1)′

(r ) Q− µ′S (
t


t − )∑ ′ 

H−t Θ−1 ˜
t HC

r = 0
+β s=1 Vs,x̃z̃,t+1z̃t+s + Vxγ˜ ,t+1( )( )′ ( (W + βVx̃x,t˜ +1) x̃t

Qrt − S′µt − Θ−1 ˜
t HC )

r ∑H−t = 0 (D.40)
+β s=1 Vs,x̃z̃,t+1z̃t+s + Vxγ˜ ,t+1

which is the generic period h targeting rule.

We can use the first-order condition for the Lagrange multiplier (D.35) to substitute out x̃t in the

targeting rule (D.40) and rearrange to get:(
F
∑ )˜ ˜ H−t−1 ∑˜

′ Ψz̃ z̃
F H−t−1

t −H Ξs,x̃z̃,t+1z̃t+1+s −H Ξs,rz̃,t+1z̃t+1+s
Qrt − S µ = ζ x̃ s=0 r s=0

t t −H̃B
x̃ x̃ H̃t − C

− ˜
1 Hr rt − F

x̃ γx,t˜ +1 − H̃F γr,t+1( ) r( ) H−t′ ∑
+ Θ−1

t H̃C
r β Vs,x̃z̃,t+1z̃t+s + Vxγ˜ ,t+1

s=1

where: ( )′
ζ = Θ−1
t H̃C

t r (W + βVx̃x,t˜ +1) Θ−1
t (D.41)

Again, this can be written more compactly as:

H∑−t
∆r,trt − S′µt = ∆x,t˜ x̃t−1 + ∆z̃s,tz̃t+s + ∆c,t (D.42)

s=0

where:

∆r,t = Q+ ζ H̃C
t r (D.43)

∆ B
x,t˜ = −ζtHx̃

∆z̃0,t = ζ ˜tΨ( z̃ )′ ( )
∆ −

˜ = Θ 1 ˜
t HC

zs,t r βV ˜F ˜F
s,x̃z̃,t+1 − ζt Hx̃ Ξs−1,x̃z̃,t+1 +Hr Ξs−1,rz̃,t+1( ) (

∆c,t = Θ− ˜ ′ )
1 C ˜F ˜F

t Hr βVxγ˜ ,t+1 − ζt Hx̃ γx,t˜ +1 +Hr γr,t+1 (D.44)

We can define the following system for the period t instruments and Lagrange multipliers from

equation (D.42), where Jt is an nµ × nµ diagonal matrix indicating which of the constraints is binding

in period t: [ ][ ] [ ] [ ] [ ]
∆r,t −S′ H

r ∑−t
t ∆x,t˜ ∆z̃ ,t ∆

= x̃
c,t

t−1 + s z̃ (D.45)
JtS I J t+s +

− t µt 0 0
s

Jtb=0

This system jointly determines the solution for the instruments and the Lagrange multipliers:

H∑−t
rt = Brx,t˜ x̃t−1 + Ξs,rz̃,tz̃t+s + γr,t (D.46)

s=0
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H∑−t
µt = Bµx,t˜ x̃t−1 + Ξs,µz̃,tz̃t+s + γµ,t (D.47)

s=0

where:

Brx,t˜ = Γrr,t∆x,t˜ (D.48)

Ξs,rz̃,t = Γrr,t∆z̃s,t

γr,t = Γrr,t∆c,t + Γrµ,tJtb

Bµx,t˜ = Γµr,t∆x,t˜

Ξs,µz̃,t = Γµr,t∆z̃s,t

γµ,t = Γµr,t∆c,t + Γµµ,tJtb (D.49)

where Γrr,h, Γ[ rµ,h, Γµr,h and Γµµ,h are the upper-left, upper-right, lower-left and lower-right blocks of]−1
∆ ′
r,h −S

respectively, defined as:
JhS I− Jh

Γrr,t = ∆−1
r,t −∆−1

r,t S
′Γµµ,tJtS∆−1

r,t (D.50)

Γrµ,t = ∆−1
r,t S

′Γµµ,t

Γ −
µr,t = −Γµµ,tJhS∆ 1

r,t( 1
Γµµ,t = I− Jt J −1 ′)−+ tS∆r,t S (D.51)

It is then straightforward to characterise the law of motion for the endogenous variables by substi-

tuting the law of motion for the instruments into the constraint in equation (D.30):

H∑−t
x̃t = Bx̃x,t˜ x̃t−1 + Ξs,x̃z̃,tz̃t+s + γx,t˜ (D.52)

s=0

where: ( )
B −1 ˜B ˜C
x̃x,t˜ = −Θt Hx̃ +Hr Brx,t˜ (D.53)( )

Ξ −1 ˜ ˜C
0,x̃z̃,t = Θt Ψz̃ −Hr Ξ0,rz̃,t( )

Ξ = −Θ−1 H̃FΞ − + H̃F
s,x̃z̃,t t x̃ s 1,xz̃,t+1 r Ξ C

˜ s−1 H̃,rz̃,t+1 + r Ξs,rz̃,t( )
γx,t˜ = −Θ−1

t H̃F
x̃ γx,t˜ +1 + H̃F

r γ
C

,t+1 + H̃r r γr,t (D.54)

E Future loss function expressions with instrument bounds

This appendix derives expressions for the one-period-ahead loss functions allowing for anticipated dis-

turbances and instrument bound constraints.

E.1 One period ahead loss function in period H − 1

We can write the period H loss as:

LH = (x̃
′

H) Wx̃
′

H + (rH) QrH + βLH+1 (E.1)

Given the assumption that there are no constraints binding in any period beyond H (which means that

the loss in period H+ 1 is the same as the case without instrument bound constraints), we can write the
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loss in period H + 1 as a function of x̃H using the derivation from Appendix A:

LH+1 = (x̃
′

H) Vx̃x̃ (x̃H) (E.2)

where Vx̃x̃ is defined in equation (C.3). We can substitute out LH+1 in the above expression for LH to

get:
′LH = (x̃H) (W + βVx̃x̃) x̃

′
H + (rH) QrH (E.3)

And then we can substitute out x̃H and rH using the period H laws of motion from equations (D.1)-(D.2)

to get:

′LH = (Bx̃x,H˜ x̃H−1 + Ξ0,x̃z̃,H z̃H + γx,H˜ ) (W + βVx̃x̃) (Bx̃x,H˜ x̃H−1 + Ξ0,x̃z̃,H z̃H + γx,H˜ )˜ ′
+ (Brx,H˜ xH−1 + Ξ0,rz̃,H z̃H + γr,H) Q (Brx,H˜ x̃H−1 + Ξ0,rz̃,H z̃H + γr,H)

= (x̃
′ ′ ′ ′ ′

H−1) Vx̃x,H˜ x̃H−1 + (x̃H−1) V1,x̃z̃,H z̃H + (V1,x̃z̃,H z̃H) x̃H−1 + (x̃H−1) Vxγ˜ ,H + (Vxγ˜ ,H) x̃H−1

′
+ V1,γz̃,H z̃

′
H + (V1,γz̃,H z̃H) + (z̃H) V11,z̃z̃,H z̃H + Vγγ,H˜ ′ ˜ ˜ ′ ′ ′ ′

= (xH−1) Vx̃x,H˜ xH−1 + (xH−1) V1,x̃z̃,H z̃H + (V1,x̃z̃,H z̃H) x̃H−1 + (x̃H−1) Vxγ˜ ,H + (Vxγ˜ ,H) x̃H−1

+ Vcc,H (E.4)

where:

′ ′
Vx̃x,H˜ = (Bx̃x,H˜ ) (W + βVx̃x̃)Bx̃x,H˜ + (Brx,H˜ ) QBrx,H˜ (E.5)

′ ′
V1,x̃z̃,H = (Bx̃x,H˜ ) (W + βVx̃x̃) Ξ0,x̃z̃,H + (Brx,H˜ ) QΞ0,rz̃,H (E.6)

′ ′
Vxγ˜ ,H = (Bx̃x,H˜ ) (W + βVx̃x̃) γx,H˜ + (Brx,H˜ ) Qγr,H (E.7)

and where Vcc,H is a composite comprised of terms in the one-period ahead anticipated disturbances,

z̃H , and constants, γx,H˜ and γr,H (and, therefore, independent of x̃H−1).

E.2 One period ahead loss function in period H − 2

The period H − 1 loss can be written as:

′LH−1 = (x̃H−1) Wx̃
′

H−1 + (rH−1) QrH−1 + βLH (E.8)

We can substitute out LH using equation (E.4) to get:

′ ′LH−1 = (x̃H−1) (W + βVx̃x,H˜ ) x̃H−1 + (rH−1) QrH−1˜ ′ ˜ ˜ ′ ′ ′
+ (xH−1) βV1,x̃z̃,HzH + (βV1,x̃z̃,HzH) x̃H−1 + (x̃H−1) βVxγ˜ ,H + (βVxγ˜ ,H) x̃H−1

+ βVcc,H (E.9)

We can substitute out rH−1 and x̃H−1 using the period H − 1 laws of motion from equations (D.14) and

(D.16) to get:

′LH−1 = (Bx̃x,H˜ −1x̃H−2 + Ξ0,x̃z̃,H−1z̃H−1 + Ξ1,x̃z̃,H−1z̃H + γx,H˜ −1) (W + βVx̃x,H˜ )

× (Bx̃x,H˜ −1x̃H−2 + Ξ0,x̃z̃,H−1z̃H−1 + Ξ1,x̃z̃,H−1z̃H + γx,H˜ −1)˜ ˜ ′
+ (Brx,H˜ −1xH−2 + Ξ0,rz̃,H−1zH−1 + Ξ1,rz̃,H−1z̃H + γr,H−1) Q

× (Brx,H˜ −1x̃H−2 + Ξ0,rz̃,H−1z̃H−1 + Ξ1,rz̃,H−1z̃H + γr,H−1)

+ (Bx̃x,H˜ −1x̃
′

H−2 + Ξ0,x̃z̃,H−1z̃H−1 + Ξ1,x̃z̃,H−1z̃H + γx,H˜ −1) βV1,x̃z̃,H z̃H
′

+ (βV1,x̃z̃,H z̃H) (Bx̃x,H˜ −1x̃H−2 + Ξ0,x̃z̃,H−1z̃H−1 + Ξ1,x̃z̃,H−1z̃H + γx,H˜ −1)
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′
+ (Bx̃x,H˜ −1x̃H−2 + Ξ0,x̃z̃,H−1z̃H−1 + Ξ1,x̃z̃,H−1z̃H + γx,H˜ −1) βVxγ˜ ,H

′
+ (βVxγ˜ ,H) (Bx̃x,H˜ −1x̃H−2 + Ξ0,x̃z̃,H−1z̃H−1 + Ξ1,x̃z̃,H−1z̃H + γx,H˜ −1)

+ βVcc,H˜ ′ ′ ′
= (xH−2) Vx̃x,H˜ −1x̃H−2 + (x̃H−2) V1,x̃z̃,H−1z̃H−1 + (V1,x̃z̃,H−1z̃H−1) x̃H−2

′ ′ ′ ′
+ (x̃H−2) V2,x̃z̃,H−1z̃H + (V2,x̃z̃,H−1z̃H) x̃H−2 + (x̃H−2) Vxγ˜ ,H−1 + (Vxγ˜ ,H−1) x̃H−2

+ Vcc,H−1 (E.10)

where:

′ ′
Vx̃x,H˜ −1 = (Bx̃x,H˜ −1) (W + βVx̃x,H˜ )Bx̃x,H˜ −1 + (Brx,H˜ −1) QBrx,H˜ −1 (E.11)

′ ′
V1,x̃z̃,H−1 = (Bx̃x,H˜ −1) (W + βVx̃x,H˜ ) Ξ0,x̃z̃,H−1 + (Brx,H˜ −1) QΞ0,rz̃,H−1 (E.12)

′ ′
V2,x̃z̃,H−1 = (Bx̃x,H˜ −1) (W + βVx̃x,H˜ ) Ξ1,x̃z̃,H−1 + (Brx,H˜ ) QΞ1,rz̃,H−1

′
+ (Bx̃x,H˜ −1) βV1,x̃z̃,H (E.13)

′ ′ ′
Vxγ˜ ,H−1 = (Bx̃x,H˜ −1) (W + βVx̃x,H˜ ) γx,H˜ −1 + (Brx,H˜ −1) Qγr,H−1 + (Bx̃x,H˜ −1) βVxγ˜ ,H(E.14)

and where Vcc,H−1 is a composite comprised of terms in the one-period and two-period ahead anticipated

disturbances, z̃H−1 and z̃H , and constants, γx,H˜ −1, γr,H−1, γx,H˜ and γr,H (and, therefore, independent

of x̃H−2).

E.3 One period ahead loss function in period h

The generic period h expressions for the one-period ahead loss function, valid for period h = 1 . . . H − 2

is as follows. The period h+ 1 loss can be written as:

Lh+1 = (˜ ′ ′
xh+1) Wx̃h+1 + (rh+1) Qrh+1 + βLh+2 (E.15)

We substitute out Lh+2 using a generic variant of equation (E.10) to get:

′ ′Lh+1 = (x̃h+1) (W + βVx̃x,h˜ +2) x̃h+1 + (rh+1) Qrh+1( )′H∑−h−1 H∑−h−1
′

+ (x̃h+1) β Vs,x̃z̃,h+2z̃h+1+s + β Vs,x̃z̃,h+2z̃h+1+s x̃h+1

s=1 s=1˜ ′ ′
+ (xh+1) βVxγ˜ ,h+2 + (βVxγ˜ ,h+2) x̃h+1

+ βVcc,h+2 (E.16)

We can substitute out rh+1 and x̃h+1 using the period h+ 1 laws of motion to get:( )∑ ′H−h−1

Lh+1 = Bx̃x,h˜ +1x̃h + Ξs,x̃z̃,h+1z̃h+1+s + γx,h˜ +1 (W + βVx̃x,h˜ +2)( s=0 )
H∑−h−1

× Bx̃x,h˜ +1x̃h + Ξs,x̃z̃,h+1z̃h+1+s + γx,h˜ +1( s=0 )
H∑ ′−h−1

+ Brx,h˜ +1x̃h + Ξs,rz̃,h+1z̃h+1+s + γr,h+1 Q( s=0 )
H∑−h−1

× Brx,h˜ +1x̃h + Ξs,rz̃,h+1z̃h+1+s + γr,h+1

s=0
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( )∑ ′H−h−1 H∑−h−1

+ Bx̃x,h˜ +1x̃h + Ξs,x̃z̃,h+1z̃h+1+s + γx,h˜ +1 β Vs,x̃z̃,h+2z̃h+1+s( s=0 ) s=1

H∑ ′( )−h−1 H∑−h−1

+ β Vs,x̃z̃,h+2z̃h+1+s Bx̃x,h˜ +1x̃h + Ξs,x̃z̃,h+1z̃h+1+s + γx,h˜ +1( s=1 s=0)′H∑−h−1

+ Bx̃x,h˜ +1x̃h + Ξs,x̃z̃,h+1z̃h+1+s + γx,h˜ +1 βVxγ˜ ,h+2( s=0 )
H∑−h−1

′
+ (βVxγ˜ ,h+2) Bx̃x,h˜ +1x̃h + Ξs,x̃z̃,h+1z̃h+1+s + γx,h˜ +1

s=0

+ βVcc,h+2

H∑−h H∑−h
= (x̃

′ ′ ′
h) Vx̃x,h˜ +1x̃h + (x̃h) Vs,x̃z̃,h+1z̃h+s + (Vs,x̃z̃,h+1z̃h+s) x̃h

s=1 s=1

′ ′
+ (x̃h) Vxγ˜ ,h+1 + (Vxγ˜ ,h+1) x̃h + Vcc,h+1 (E.17)

where:

′ ′
Vx̃x,h˜ +1 = (Bx̃x,h˜ +1) (W + βVx̃x,h˜ +2)Bx̃x,h˜ +1 + (Brx,h˜ +1) QBrx,h˜ +1 (E.18)

′ ′
Vs,x̃z̃,h+1 = (Bx̃x,h˜ +1) (W + βVx̃x,h˜ +2) Ξs−1,x̃z̃,h+1 + (Brx,h˜ +1) QΞs−1,rz̃,h+1

′
+ (Bx̃x,h˜ +1) βVs−1,x̃z̃,h+2 (E.19)

′ ′ ′
Vxγ˜ ,h+1 = (Bx̃x,h˜ +1) (W + βVx̃x,h˜ +2) γx,h˜ +1 + (Brx,h˜ +1) Qγr,h+1 + (Bx̃x,h˜ +1) βVxγ˜ ,h+2(E.20)

with V0,x̃z̃,h+2 = 0, and where Vcc,h+1 is a composite comprised of terms in anticipated disturbances,

{z̃h+s}H−h, and constants, { }s=1 γ H−h
x,h˜ +s s=1 and {γ H−h

r,h+s}s=1 (and, therefore, independent of x̃h).

F Applicability of the Holden and Paetz (2012) approach for

optimal discretion

This appendix explores the relationship between the Brendon, Paustian, and Yates (2010) (‘BPY’) and

the Holden and Paetz (2012) (‘HP’) approach to implementing occasionally binding constraints when

policy is set optimally under discretion. It should be re-emphasized that this analysis does not represent

a criticism of Holden and Paetz (2012): their methods are designed to handle particular cases and they

do not claim that optimal discretionary policy is among those cases.

A simple two-period example is used to make the algebra tractable, together with the following

simplifying assumptions:

1. There is a single instrument and a single bound constraint.

2. The steady state is characterized by a regime in which the constraint is not binding.

3. There is a unit coefficient on the instrument in the constraint – i.e. that S = 1 in the inequality

constraint in equation (54).

4. There are no shocks – i.e. the constraints bind because of the value of the initial condition, x̃0.

The rest of this appendix proceeds as follows. Section F.1 demonstrates that application of the HP

routine produces identical results to the BPY routine if the constraint binds in period 1 only. Section

F.2 demonstrates that the HP routine fails to replicate BPY in the case where the constraint is expected

to bind in period 2 (but not in period 1), except in the case of purely forward-looking models. It then

discusses the source of the failure and, on that basis, shows that the HP routine can be ‘corrected’ to
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replicate BPY. Unfortunately, the correction requires knowledge of when the constraint is and is not

binding and is, therefore, not useful in practice because it would require iterating over guesses for that

in exactly the same way as BPY.

F.1 Constraint binds in period 1 only

Consider first the case in which the constraint binds in period 1 only. In periods 2 and onwards, it is

assumed that the constraint does not bind and so the solution in those periods is time invariant and

identical to the unconstrained problem (i.e. Dennis (2007)).

F.1.1 BPY solution

Given an assumption that the constraint binds in period 1 (J1 = 1), but not in any future period (and

given the particular assumptions described above), the BPY solution for the instrument is:

r1 = Brx,˜ 1x̃0 + γr,1

= b (F.1)

which follows from:

Brx,˜ 1 = Γrr,1∆x,˜ 1 (F.2)

γr,1 = Γrr,1∆c,1 + Γrµ,1J1b (F.3)

and: ( )
−

Γ − 1
= ∆−1

(
I− I− J + J 1

)
∆ J ∆−1

rr,1 r,1 1 1 r,1 1 r,1

= 0 (F.4)
−− 1

Γr 1 = ∆ 1
(

µ, − −1
)

r,1 I J1 + J1∆r,1

= 1 (F.5)( )′ ( )
∆ = Θ−1H̃C

t H̃c,1 1 r βVxγ˜ ,2 − ζ F
x̃ γx,˜ 2 + H̃F

r γr,2

= 0 (F.6)

From this, it follows that:

x̃1 = Bx̃x,˜ 1x̃(0 + γx,˜ 1 )
= −Θ−1 ˜

1 HB
x̃ x̃0 + H̃C

r b( )
= −Θ−1 H̃B

x̃ x̃0 + H̃C
r b (F.7)

which follows from application of the formulae for Bx̃x,t˜ and γx,t˜ with Brx,t˜ = 0 and γr,t = b, and from

the observation that the constraint does not bind from period 2 onwards, meaning that the solution is

identical to the time-invariant unconstrained Dennis (2007) solution so that Θ1 = Θ.

It is also possible to derive an expression for the Lagrange multiplier using the same logic:

µ1 = Bµx,˜ 1x̃0 + γµ,1

= −∆x,˜ 1x̃0 + ∆rb

= −∆x̃x̃0 + ∆rb (F.8)
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which follows from:

Bµx,t˜ = Γµr,1∆x,˜ 1 (F.9)

γµ,1 = Γµr,1∆c,1 + Γµµ,1J1b (F.10)

and: ( −1
)−

Γµr,1 = − I− J1 + J 1
1∆r,1 J1∆−1

r,1

= −1 (F.11)( )
Γµµ,1 = I− J1 + J −1

1∆−1
r,1

= ∆r,1 (F.12)

and that ∆c,1 = 0 as demonstrated above and that ∆x,˜ 1 = ∆x̃ and ∆c,1 = ∆c.

F.1.2 HP-implied solution

As a starting point for application of the HP routine in this example, consider equation (70) which

defines a law of motion for the instruments as part of the BPY solution. Given the assumptions (in

particular, that S = 1 and that there are no constraints binding in any future period), the definitions of

the coefficients in that equation allow it to be written as:

r −1 −1
1 = ∆r ∆x̃x̃0 + ∆r µ1 (F.13)

Note that time subscripts have been dropped, consistent with the objective for exploring whether use

of the HP algorithm would obviate the requirement to use BPY (and the time variation in the laws of

motion that comes with it). Indeed, note that the equation can be rewritten as:

r1 = Brx̃x̃0 + Φrµµ1 (F.14)

where:

Brx̃ = ∆−1
r ∆x̃ (F.15)

Φrµ = ∆−1
r (F.16)

Since r1 = b by assumption, the equation can be rearranged to define the Lagrange multiplier, µ1 as:

µ1 = −∆x̃x̃0 + ∆rb (F.17)

which is identical to the expression from application of the BPY solution above. We also know that:

x̃1 = Bx̃x̃x̃0 + Φxµ˜ µ1 (F.18)

where: ( )
B −1 ˜B ˜C
x̃x̃ = −Θ Hx̃ +Hr Brx̃ (F.19)

Φxµ˜ = −Θ−1H̃C
r Φrµ (F.20)
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which means that:

x̃1 = Bx̃x̃x̃0 + Φxµ˜ µ( 1 )
= −Θ−1 H̃B

x̃ + H̃C
r Brx̃ x̃0 −Θ−1H̃C

r Φrµµ1( )
= −Θ−1 H̃B + H̃C∆−1 −1 ˜C −1

x̃ r r ∆x̃ x̃0 −Θ Hr ∆r µ1( )
= −Θ−1 H̃B 1

˜ x −
x + H̃C −

r ∆ 1
r ∆x̃ ˜0 −Θ−1H̃C

r ∆r (∆rb−∆x̃x̃0)( )
= −Θ−1 H̃B

x̃ x̃ ˜C
0 +Hr b (F.21)

which is identical to the expression from the BPY solution.

This demonstrates that the HP routine can be used to replicate BPY for a single instrument with a

single constraint binding for one period.

F.2 Constraint binds in period 2 only

This section uses the same example, but assumes that the constraint binds in period 2 (and not in period

1). Once period 2 arrives, the solution is the same as that detailed in Section F.1. This is useful since it

means that it will be straightforward to substitute out period 1 expectations for period 2 outcomes. It

also means that the source of any difference between the BPY solution and application of the HP routine

can be attributed to expectations being incorrectly imputed in the HP routine.

F.2.1 BPY solution

Given an assumption that the constraint binds in period 2, but not period 1 (J1 = 0 and J2 = 1), the

BPY solution for the instrument is:

r1 = Brx,˜ 1x̃0 + γr,1 (F.22)

where:

Brx,˜ 1 = Γrr,1∆x,˜ 1 (F.23)

γr,1 = Γrr,1∆c,1 + Γrµ,1J1b

= Γrr,1∆c,1 (F.24)

and: ( ( )
Γrr = ∆−1

)
,1 r,1 I− I− J −1

1 + J −1
1∆r,1 J1∆−1

r,1

= ∆−1( r,1 )
= Q+ ζ ˜ −1

1H
C
r (F.25)

∆x,˜ 1 = −ζ ˜1H
B
x̃ (F.26)( )′ ( )

∆ , H̃c, = −1 ˜
1 HC

1 Θ r βVxγ˜ 2 − ζ F
1 x̃ γx,˜ 2 + H̃F

r γr,2 (F.27)

and: ( )
ζ = Θ−1H̃

′
C (W + βV ) Θ−1

1 1 r x̃x,˜ 2 1 (F.28)

Θ1 = H̃C
x̃ + H̃F

x̃ Bx̃x,˜ 2 + H̃F
r Brx,˜ 2 (F.29)
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and, given that the constraint is binding in period 2, we can use the results from Section F.1.1 to define

Brx,˜ 2, Bx̃x,˜ 2, γr,2 and γx,˜ 2 as:

Brx,˜ 2 = 0 (F.30)

Bx̃x,˜ 2 = −Θ−1H̃B
x̃ (F.31)

γr,2 = b (F.32)

γ = −Θ−1H̃C
x,˜ 2 r b (F.33)

and, finally, applying the recursive formulae for the loss function coefficients, along with the fact that

the constraint is known to not be binding from period 3 and onwards:

′ ′
Vx̃x,˜ 2 = (Bx̃x,˜ 2) (W + βV )B + (B( ) x̃x,˜ 3 x̃x,˜ 2 rx,˜ 2) QBrx,˜ 2˜ ′

= Θ−1HB B
x̃ (W + βV˜x̃) Θ−1H̃x x̃ (F.34)

′ ′ ′
Vxγ˜ ,2 = (Bx̃x,˜ 2) (W + βVx̃x,˜ 3) γx,˜ 2 + (B( ) rx,˜ 2) Qγr,2 + (Bx̃x,˜ 2) Vxγ˜ ,3

= Θ−1H̃
′

B −1 ˜C
x̃ (W + βVx̃x̃) Θ Hr b (F.35)

Putting this together (i.e. substituting the relevant expressions through) gives:

Brx,˜ 1 = Γrr,1∆( x,˜ 1 )−1

= − Q+ ζ1H̃
C
r ζ ˜1H

B
x̃ (F.36)

and:

γr,1 = Γrr,1∆c,1( ) ( )
−1 ( )˜ ˜ ′ ( )

= Q+ ζ HC
r Θ−1

1 HC
1 r βV ˜F ˜F

xγ˜ ,2 − ζ1 Hx̃ γx,˜ 2 +Hr γr,2( ) (
−1 ( )′ ( ) )

= Q+ ζ H̃C Θ−1H̃C
1 r 1 β xγ˜ ,2 + ζ ˜F −1 ˜C ˜F

r V 1 Hx̃ Θ Hr −Hr b (F.37)

The solution for the non-instrument endogenous variables follows (relatively straightforwardly) from

this. It is assumed that if the HP algorithm produces an identical solution for the instrument, then it will

also produce an identical solution for the other endogenous variables. Conversely, if application of the

HP algorithm does not reproduce the solution for the instrument, then the solution must be incorrect.

F.2.2 HP-implied solution

To isolate the steps that gives rise to the source of the failure of the HP routine to replicate BPY, the

HP-implied solution is derived from first principles.

The policymaker’s problem is to minimize the loss function subject to the constraint imposed by the

model and subject to the ‘shadow shocks’, which are known to exist in period 2, given the assumption

that the instrument is constrained in period 2. The model equations can be written as:

H̃F
x̃ x̃2 + H̃C

x̃ x̃1 + H̃B
x̃ x̃0 + H̃F

r r2 + H̃C
r r1 = 0 (F.38)

Given the assumption that the constraint is binding in period 2 only, the law of motion for x̃2 and r2 is

the same as in the one-period only binding constraint case from Section F.1.2. These observations can
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be used to substitute out x̃2 and r2 and rearrange to get:(( ) )
x̃1 = −Θ−1 H̃F H̃x̃ Φxµ˜ + F

r Φ µ µ2 + H̃B
r x̃ x̃0 + H̃C

r r1 (F.39)

where:

Θ = H̃C
x̃ + H̃F

x̃ B H̃x̃x̃ + F
r Brx̃ (F.40)

This can be embedded in the policymaker’s loss minimization problem:

min W (˜ ′
(x̃

′
1) x1) + (r1) Q (r1) + βL2

x̃1,r1 ( (( ) ))
−2λ′1 x̃ Θ−1 H̃F

x̃ Φxµ˜ + H̃F
1 + r Φrµ µ2 + H̃B

x̃ x̃0 + H̃C
r r1 (F.41)

The first-order conditions are:

′ ∂L2
r1 : 2 (r1) Q+ β − 2λ′ HC

1Θ−1 ˜
r = 0 (F.42)

∂r1

x̃1 : 2 (x̃
′ ∂L2

1) W + β − 2λ′
∂x̃ 1 = 0 (F.43)(( 1 ) )

λ1 : x̃1 + Θ−1 H̃F
x̃ Φxµ˜ + H̃F

r Φ µ H̃r µ2 + B
x̃ x̃0 + H̃C

r r1 = 0 (F.44)

The results in Appendix E imply that:

L2 = (x̃
′

1) Vx̃x̃x̃
′ ′ ′

1 + (x̃1) Vxµ˜ µ2 + (µ2) (Vxµ˜ ) x̃1 + C (F.45)

where:

′ ′ ′
Vx̃x̃ = (Bx̃x̃) WBx̃x̃ + (Brx̃) QBrx̃ + β (Bx̃x̃) Vx̃x̃Bx̃x̃ (F.46)

′ ′
Vxµ˜ = (Bx̃x̃) (W + βVx̃x̃) Φxµ˜ + (Brx̃) QΦrµ (F.47)

and C is a constant that is a function of µ2 only. It is straightforward to see that ∂L2 = 0. It is also∂r1

straightforward to see that:
∂L2 ′ ′

= 2 (x̃
′

1) Vx̃x̃ + 2 (µ2) (V )
x̃

xµ˜ (F.48)
∂ 1

This expression can be substituted into the FOC for the endogenous variables and the result rearranged

to give an expression for λ′1:

λ′1 = (x̃
′ ′ ′

1) (W + βVx̃x̃) + (µ2) β (Vxµ˜ ) (F.49)

This in turn can be substituted into the FOC for the instrument to get:

′ ( ′ )
(r1) Q− (x̃

′ ′
1) (W + βVx̃x̃) + (µ2) β (Vxµ˜ ) Θ−1H̃C

r = 0( )′ ( )′
Qr1 − Θ−1H̃C −

r (W + βVx̃x̃) x̃1 − Θ 1H̃C
r βVxµ˜ µ2 = 0 (F.50)

Substituting for x̃1 using the FOC for the Lagrange multiplier (i.e. the constraint implied by the model

combined with the period 2 solution) gives:(( ) ) ( )
Qr1 + ζ H̃

′
F
x̃ Φ + ˜F

xµ˜ Hr Φrµ µ + H̃B
2 x̃ x̃0 + H̃Cr − Θ−1H̃C

r 1 r βVxµ˜ µ2 = 0 (F.51)

where: ( )′
ζ = Θ−1H̃C

r (W + βVx̃x̃) Θ−1 (F.52)
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which can be written as:

r1 = Brx̃x̃0 + Ξrµµ2 (F.53)

where: ( )
Brx̃ = − Q+ ζH̃

−1
C
r ζH̃B

x̃ (F.54)( ) (
− ))

= Q+ ζ ˜ 1 ( ) (
Ξ HC Θ−1H̃

′
C

rµ r βVxµ˜ − ζ H̃F
˜ Φxµ˜ + ˜F

r x Hr Φrµ (F.55)

It is clear that Brx̃ is not the same as Brx,˜ 1 from the BPY solution above. Does this mean that

the HP approach cannot replicate the (correct) BPY solution and is, therefore, not a valid method

for imposing instrument bound constraint when policy is set optimally under discretion? That is not

immediately obvious. In particular, the algebra in Section F.1.2 demonstrated that:

µ2 = −∆x̃x̃1 + ∆rb (F.56)

Since x̃1 is a function of x̃0, it is no longer obvious that the coefficient on x̃0 in a law of motion for

r1 with the period 2 shadow shocks substituted out (as is implicitly the form of the BPY solution) is

necessarily different to the BPY solution. To proceed, the simultaneity between the shadow shocks in

period 2 (µ2) and outcomes in period 1 (r1 and x̃1) must be eliminated.

Start by writing x̃1 as:

x̃1 = Bx̃x̃x̃0 + Ξxµ˜ µ2 (F.57)

where: ( )
B = −Θ−1 H̃B + H̃C
x̃x̃ x̃ r Brx̃ (F.58)( )

Ξ = −Θ−1 H̃FΦ + H̃F
xµ˜ x̃ xµ r Φrµ + H̃C

˜ r Ξrµ (F.59)

This can be substituted into the expression for µ2. Doing so and rearranging gives:

−1
µ2 = − (1 + ∆x̃Ξxµ˜ ) (∆x̃Bx̃x̃x̃0 −∆rb) (F.60)

which exploits the assumption that there is only one instrument constraint (i.e. that nµ = 1). This in

turn can be substituted into the law of motion for the instrument to get:

† †r1 = Brx,˜ 1x̃0 + γr,1 (F.61)

where:

† −1
Brx,˜ 1 = Brx̃ − Ξrµ (1 + ∆x̃Ξxµ˜ ) ∆x̃Bx̃x̃ (F.62)

† −1
γr,1 = Ξrµ (1 + ∆x̃Ξxµ˜ ) ∆rb (F.63)

Thus, the question of whether or not application of HP can replicate BPY boils down to the question
† † †of whether or not Brx,˜ 1 = Brx,˜ 1 and γr,1 = γr,1. First consider γr,1 and suppose (temporarily) that

(1 + ∆x̃Ξxµ˜ ) = 1. In that case:

†γr,1 = Ξrµ∆rb( ) (
−1 ( )

= Q+ ζH̃C
r Θ−1H̃

′ ( ))
C
r βVxµ˜ − ζ H̃F H̃x̃ Φxµ˜ + F

r Φrµ ∆rb( ) (
−1 ( ) )

′ ( )
= Q+ ζH̃C Θ−1H̃C βV + ζ H̃FΘ−1H̃C F

x ∆−1 ˜
r r ˜ r r +Hr ∆−1

xµ ˜ r ∆rb (F.64)
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This is similar to the expression for γr,1 (reproduced below), but not identical. In particular, it would

be identical if: Θ = Θ1, ζ = ζ1 and Vxµ˜ ∆rb = Vxγ˜ ,2. It is straightforward to verify that that is not the

case. ( ) (( ) ( ) )
−

γ = Q+ ζ H̃
1 ′

C Θ−1H̃C βV + ζ H̃FΘ−1H̃C ˜F
r,1 1 r 1 r xγ˜ ,2 1 x̃ r −Hr b

Of course, there is no reason why (1 + ∆x̃Ξxµ˜ ) = 1 and, in general, it will not. A general expression for
†γr,1 can be derived by substituting in the expression for Ξxµ˜ . That expression is clearly different to the

†correct BPY solution. A similar conclusion can be drawn from comparison of Brx,˜ 1 with Brx,˜ 1. This

demonstrates for this example that application of the HP routine to the problem of optimal discretionary

policy with instrument bound constraints will not yield the correct solution.

F.2.3 A special case

The analysis above suggests that there is a special case in which application of the HP algorithm correctly

replicates the BPY solution. That is the case of a purely forward-looking model or, more precisely, a

model in which the optimal discretionary targeting rule is static (i.e. one in which there is no effect of
†choices today on losses in the future). In this special case, Brx,˜ 1 = Brx,˜ 1 = 0. The constant in the BPY

solution for the instrument in the two-period example (with the constraint binding in period 2) becomes

the following: ( ) (
−1 ( )′ ( ) )

γ = Q+ ζ1H̃
C −1 ˜C

r,1 r Θ1 Hr βV + ζ H̃FΘ−1H̃C − H̃F
xγ˜ ,2 1 x̃ r r b( (( ) ) )

′−1 ( ) −1
−

= Q+ H̃
1

C H̃x̃ − F
x̃ Θ−1H̃B H̃C

r W H̃C ˜F −1 ˜B ˜C
x̃ x̃ −Hx̃ Θ Hx̃ Hr(( ) )′˜ ˜ ˜ −1 ( )−1 ( )

× HC −HFΘ−1HB H̃C W H̃C − H̃FΘ−1H̃B −1
x H̃F
˜ x̃ x̃ r x̃ x̃ x̃ x̃ Θ H̃C

r − H̃F
r b (F.65)

which follows from: ( )′
ζ1 = Θ−1

1 H̃C
r (W + βVx̃x,˜ 2) Θ−1

1( )
= Θ−1 ˜ ′

1 HC
r WΘ−1

1 (F.66)

Θ = H̃C
1 x̃ + H̃F F

˜ Bx̃x,˜ 2 + H̃x r Brx,˜ 2

= H̃C − H̃FΘ−1H̃B
x̃ x̃ x̃ (F.67)

and:

Brx,˜ 2 = 0 (F.68)

B −1 ˜B
x̃x,˜ 2 = −Θ Hx̃ (F.69)

Application of the HP routine yields the following equivalent:

† −1
γr,1 = Ξrµ (1 + ∆x̃Ξxµ˜ ) ∆rb

†γr,1 = Ξrµ∆rb( (( ) ) )( ) −1′−1 −1

= Q+ H̃C − H̃FΘ−1H̃B H̃C W H̃C ˜F −1 ˜B ˜C
x̃ x̃ x̃ r x̃ −Hx̃ Θ Hx̃ Hr(( ) )′−1 ( )− ( )

× H̃
1

C
x̃ − H̃F

x̃ Θ−1H̃B ˜
x̃ HC W ˜C

r Hx̃ − H̃F −1 ˜B ˜F −1 ˜C ˜F
x̃ Θ Hx̃ Hx̃ Θ Hr −Hr b (F.70)
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where the second line follows from ∆x̃ = 0 (which is by virtue of the assumption that the model is either

purely forward looking or that any lags in the system are not relevant for optimal policy) and:

( ) (( )
−

Ξrµ = Q ζH̃
1 )′ ( )

+ C
r Θ−1H̃C H̃r βVxµ˜ − ζ F

x̃ Φxµ˜ + H̃F
r Φrµ( (( ) ) ( ) )−1

= Q+ H̃C − H̃FΘ−1H̃B H̃
′

C
˜ x̃ r W H̃C
x x̃ x̃ − H̃F −

x Θ 1H̃B ˜
˜ ˜ HC

x r(( ) )′ ( )( )
× H̃C − H̃FΘ−1H̃B H̃C W H̃C − H̃FΘ−1H̃B H̃FΘ−1H̃C − H̃F −

x̃ x̃ x̃ r x̃ x̃ x̃ x̃ r r ∆ 1
r (F.71)

which in turn follows from: ( )˜ ′
ζ = Θ−1HC

r (W + βVx̃x̃) Θ−1( )′
= Θ−1H̃C

r WΘ−1 (F.72)

Θ = H̃C
x̃ + H̃F ˜F

x̃ Bx̃x̃ +Hr Brx̃

= H̃C
x̃ − H̃F

x̃ Θ−1H̃B
x̃ (F.73)

and:

Brx̃ = 0 (F.74)

B = −Θ−1H̃B
x̃x̃ x̃ (F.75)

Φ = −Θ−1H̃C
xµ˜ r Φrµ (F.76)

Φrµ = ∆−1
r (F.77)

which is identical to the (correct) BPY solution.

This demonstrates that in the two-period example at least, application of the HP routine is valid

for imposing instrument bound constraints under optimal discretionary policy when the model yields

a static targeting condition. While the proof given here was not general, tests using forward-looking

models for problems in which instrument constraints bind for multiple periods suggests that the proof

could be generalized to multi-period settings. It is also worth noting that this special case in which the

HP routine is valid is the same special case as that in which the standard rational expectations solution

for the forward loadings on anticipated shocks is also valid – see Section 4.2 for a discussion.

F.2.4 Why is application of the HP routine invalid away from this special case?

The reason why the HP routine is valid in the special case of models that yield a static targeting rule

is that optimal decisions today are irrelevant for future losses. For the same reason, the value of the

shadow shock necessary to impose the instrument bound constraint in period 2 is independent of period

1 optimal decisions. This suggests that the source of the failure of application of the HP routine in the

general case is that it does not take account of the endogeneity of the future shadow shocks with respect

to today’s choices – the logic of the HP routine is based on the idea that shadow shocks are isomorphic

to anticipated shocks and those are, by definition, assumed to be exogenous.

This reasoning can be formalized and tested. This section repeats the derivation in F.2.2, but

proceeds on the basis that the policymaker accounts for the endogeneity of the period 2 shadow shocks

with respect to period 1 decisions. In particular, application of the one-period only binding constraint

case from Section F.1.2 implies that:

µ2 = −∆x̃x̃1 + ∆rb (F.78)

The endogeneity of µ2 can be embedded into the policymaker’s optimal decisions by substituting out the
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shadow shocks in the rearranged model equations (F.39) from Section F.2.2 and then rearranging the

result to get:52 (( ) )
x̃1 = −κ−1 ˜

1 HF
x̃ Φ ˜F ˜B ˜C

xµ˜ +Hr Φrµ ∆rb+Hx̃ x̃0 +Hr r1 (F.79)

where:

κ1 = H̃C ˜F ˜F
x̃ +Hx̃ (Bx̃x̃ − Φxµ˜ ∆x̃) +Hr (Brx̃ − Φrµ∆x̃) (F.80)

This can be embedded in the policymaker’s loss minimisation problem as before:

min (x̃
′ ′

1) W (x̃1) + (r1) Q (r1) + βL2
x̃1,r1 ( (( ) ))
−2λ′1 x̃1 + κ−1 H̃F

x̃ Φxµ˜ + H̃F
1 Φrµ ∆rb+ H̃B

r x̃ x̃0 + H̃C
r r1 (F.81)

The first-order conditions are:

′ ∂L2
r1 : 2 (r1) Q+ β − 2λ′

∂r 1κ
−1 ˜
1 HC

r = 0 (F.82)
1

x̃1 : 2 (˜ ′ ∂L2
x1) W + β − 2λ′

∂x̃ 1 = 0 (F.83)(( 1 ) )
λ1 : x̃1 + κ−1

1 H̃F H̃x̃ Φxµ˜ + F
r Φrµ ∆rb+ H̃B

x̃ x̃ H̃0 + C
r r1 = 0 (F.84)

The recognition that the shadow shocks are endogenous also has implications for the marginal effect

of current decisions on future losses. Losses in period 2 can be written as:

′
2 = (x̃

′L 2) W (x̃2) + (r2) Q (r2) + βL3 (F.85)

Given that the instrument is unconstrained from period 3, it is the case that:

L3 = (x̃
′

2) Vx̃x̃ (x̃2) (F.86)

Substituting this into the expression for L2 gives:

L2 = (x̃
′ ′

2) (W + βVx̃x̃) (x̃2) + (r2) Q (r2) (F.87)

and using the period 2 laws of motion for x̃2 and r2, having substituted out µ2 and rearranging gives:53

˜ ′ ˜ ˜ ′ ( )′L2 = (x V ∗x̃x,˜ 2x1 + (x1) ∗ ∗
1) Vxµ,˜ 2 + Vxµ,˜ 2 x̃1 + C (F.88)

where:

V ∗
′ ′

x̃x,˜ 2 = (Bx̃x̃ − Φxµ˜ ∆x̃) (W + βVx̃x̃) (Bx̃x̃ − Φxµ˜ ∆x̃) + (Brx̃ − Φrµ∆x̃) Q (Brx̃ − Φrµ∆x̃)(F.89)

V ∗
′ ′

xµ,˜ 2 = (Bx̃x̃ − Φxµ˜ ∆x̃) (W + βVx̃x̃) Φxµ˜ ∆rb+ (Brx̃ − Φrµ∆x̃) QΦrµ∆rb (F.90)

and C is a constant that is a function of b and parameters only. It is straightforward to see that ∂L2 = 0.∂r1

It is also straightforward to see that:

∂L2 ′ )′
= 2 (x̃

x̃
1) V ∗

(
x̃x,˜ 2 + 2 V ∗

∂ xµ,˜ 2 (F.91)
1

52Note that κ has a time subscript reflecting that it would, in general, depend on the number (and precise
sequence) of future periods in which the instrument bound constraint is expected to bind.

53Again, V ∗ ∗
x̃x,˜ 1 and Vxµ,˜ 1 have time subscripts in recognition of the fact that these coefficients depend on the

number (and sequence) of future periods in which the instrument bound constraints are expected to bind.
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This expression can be substituted into the FOC for the endogenous variables and the result rear-

ranged to give an expression for λ′1:

λ′1 = (x̃
′ ( ′

1) W + βV ∗
) ′ ( ∗ )

x̃x,˜ 2 + (µ2) β Vxµ,˜ 2 (F.92)

This in turn can be substituted into the FOC for the instrument to get:( )
′ ′ ( ) ( )′

(r1) Q− (x̃ W + βV ∗1) x̃x,˜ 2 + β V ∗ −1 ˜C
xµ,˜ 2 κ1 Hr = 0( )′−1

( ) ( )
Qr1 − κ ˜ ′

1 HC
r W + βV ∗x̃x,˜ 2 x̃1 − κ−1 ˜

1 HC
r βV ∗xµ,˜ 2 = 0 (F.93)

Similarly, x̃1 can be eliminated using the FOC for the Lagrange multiplier to get:(( ) ) ( )˜ ˜ ˜ ′
Qr1 + χ1 HF +HF

xµ r Φrµ ∆rb+HB
x̃ Φ˜ x̃ x̃0 + H̃C − κ−1 ˜C

r r1 1 Hr βV ∗xµ,˜ 2 = 0 (F.94)

where: ( )
χ = κ−1H̃

′ (
C V ∗

)
W + β κ−1

1 1 r x̃x,˜ 2 1 (F.95)

which can be rearranged and written as:

r1 = B∗ ∗
r,x,˜ 1x̃0 + γr,1 (F.96)

where: ( )−1

B∗r,x,˜ 1 = − Q+ χ H̃C
1 r χ ˜

1H
B
x̃ (F.97)( ) (( ) ( ) )

γ∗ = Q+ χ H̃
−1

C κ−1H̃
′

C βV ∗ − χ H̃FΦ + H̃F
r,1 1 r 1 r xµ,˜ 2 1 x̃ xµ˜ r Φrµ ∆rb( ) ( )˜ −1 ( )′ ( )

= Q+ χ HC
1 r κ−1

1 H̃C
r βV ∗xµ,˜ 2 + χ1 H̃F

x̃ Θ−1H̃C
r − H̃F

r b (F.98)

where the third line follows from substituting in the known expressions for Φxµ˜ and Φrµ from Section

F.1.2.

The equivalent BPY expressions copied from Section F.2.1 are:( )
Brx,˜ 1 = − Q+ ζ ˜ −1

1H
C
r ζ1H̃

B
x̃ (F.99)( ) ( )

γr,1 = Q+ ζ H̃
−1 ( )′ ( )

C
1 r Θ−1 ˜C

1 Hr βVxγ˜ ,2 + ζ ˜
1 HF −1 ˜C ˜F

x̃ Θ Hr −Hr b (F.100)

It is clear that these expressions are identical if: V ∗xµ,˜ 2 = Vxγ˜ ,2, χ1 = ζ1 and κ1 = Θ1. The (correct)

BPY expressions from Section F.2.1 are: ( )
Vxγ˜ ,2 = Θ−1H̃

′
B
x̃ (W + βVx̃x̃) Θ−1H̃C

r b (F.101)( )
ζ1 = Θ−1 ˜ ′

1 HC
r (W + βVx̃x,˜ 2) Θ−1

1 (F.102)

Θ = H̃C F
1 ˜ + H̃F ˜

x x̃ Bx̃x,˜ 2 +Hr Brx,˜ 2

= H̃C
x̃ − H̃F

x̃ Θ−1H̃B
x̃ (F.103)

where the final line substitutes in Brx,˜ 2 = 0 and B −1 ˜B
x̃x,˜ 2 = −Θ Hx̃ and where:( )′

Vx̃x,˜ 2 = Θ−1H̃B
x̃ (W + βV 1

˜x̃) Θ− ˜
x HB

x̃ (F.104)
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Starting with V ∗xµ,˜ 2, application of a variant of the HP method extended to recognize the endogeneity of

µ gives:

′ ′
V ∗xµ,˜ 2 = (Bx̃x̃ − Φxµ˜ ∆x̃) (W + βVx̃x̃) Φxµ˜ ∆rb+ (Brx̃ − Φrµ∆x̃) QΦrµ∆rb( ( ) )′

= Θ−1 H̃B + H̃C∆−1∆ −Θ−1H̃C∆−1
x̃ r r x̃ r r ∆x̃ (W + βV −1 ˜C −1

x̃x̃) Θ Hr ∆r ∆rb( ′
+ ∆−1 − )

r ∆x̃ −∆ 1
r ∆x̃ Q∆−1( ) r ∆rb

= Θ−1H̃
′

B −1 ˜C
x̃ (W + βVx̃x̃) Θ Hr b (F.105)

where the second and third lines substitute in the expressions for Φxµ˜ , Φrµ, Bx̃x̃ and Brx̃. This expression

is identical to the BPY equivalent. A necessary condition for χ1 = ζ1 is that V ∗x̃x,˜ 2 = V ∗x̃x̃.

First, V ∗x̃x,˜ 2 can be written as:

V ∗
′ ′

x̃x,˜ 2 = (Bx̃x̃ − Φxµ˜ ∆x̃) (W + βVx̃x̃) (Bx̃x̃ − Φxµ˜ ∆x̃) + (Brx̃ − Φrµ∆x̃) Q (Brx̃ − Φrµ∆x̃)( )′ ( )′
= Θ−1H̃B

x (W + βVx̃x̃ Θ−1H̃B
˜ ) x̃ (F.106)

which follows from the same substitutions as into V ∗xµ,˜ 2 and is also identical to the BPY expression.

Turning to χ1 and κ1, the ‘endogenous HP’ expression for χ1 is:( )˜ ′ (
χ κ−1

1 HC
1 = r W + βV ∗

) −1
x̃x,˜ 2 κ1 (F.107)

Since it has already been established that V ∗ ∗
x̃x,˜ 2 = Vx̃x̃, χ1 is identical to ζ1 if κ1 = Θ1. The expression

for κ1 can be written as:

κ1 = H̃C
x̃ + H̃F

x̃ (B x) F
x̃x̃ − Φxµ˜ ∆˜ + H̃r (Brx̃ − Φrµ∆x̃)

= H̃C − H̃FΘ−1H̃B
x̃ x̃ x̃ (F.108)

which is identical to the BPY expression for Θ1, thereby proving, in this two-period example at least,

that the source of the failure of application of the HP algorithm for imposing bound constraints in the

case of optimal discretionary policy is a failure to take into account the endogeneity of future shadow

shocks with respect to current decisions. Intuitively, a policymaker can seek to mitigate the impact of a

bound constraint on the discounted sum of future losses in the optimal decisions they make. In treating

the shadow shocks as exogenous (and isomorphic to anticipated shocks), an unadjusted application of

the HP routine fails to take that into account.

F.3 Summary

Do the preceding investigations imply that an ‘endogenous HP’ routine (that corrects for the dependence

of future µ on current and future states) could be used in place of BPY to more efficiently compute

solutions in which instrument bound constraints may occasionally bind? Unfortunately, the answer is

‘no’. In making the endogenous correction to the HP algorithm, in line with the particular example

studied above, it was assumed that it was known that the constraint was binding in period 2, but not

in any other periods. Thus, to apply a correction to the HP algorithm in a case in which the periods in

which any constraints are binding are unknown would require a conjecture for the periods in which the

constraints bind. As a result, such an approach would require the same ‘guess and verify’ inefficiency

inherent in the BPY approach.
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G Optimal commitment solution with non-policy OBCs

The solution is analogous to those for optimal discretion with anticipated disturbances and follows a

backward induction approach. The starting point is the structural form of the model given in equation

(83), and repeated here for convenience:

HF
y yt+1 +HC

y,tyt +HB
y yt−1 = Ψ̂ẑ ẑt + Ψµµt (G.1)

G.1 Period H

The assumption that the model is in the ‘baseline’ state from period H + 1 onwards implies that:

yH+1 = ByyH

where By is the rational expectations solution matrix derived in Section 3.

Using this result in the structural form of the model for date H implies that:

yH = By,HyH−1 + Φ̂H ẑH + Φµ,HµH

where ( )−1
By,H = − HF

y B
B

+1 + C
y,H Hy,H Hy( )

Φ̂
−1

H = HF C ̂
y By,H+1 +Hy,H Ψẑ( )−1

Φµ,H = HF
y By,H+1 +HC

y,H Ψµ

G.2 Period H − 1

In period H − 1, the structural form of the model is:

HF y +HC y − +HBy − ̂
y H y,H−1 H 1 y H 2 = Ψẑ ẑH−1 + ΨµµH−1

Using the solution from period H gives:( )
HF
y By,HyH−1 + Φ̂H ẑH + Φµ,HµH +HC

y,H−1y
B ̂

H−1 +Hy ŷH−2 = Ψẑ ẑH−1 + ΨµµH−1

which implies that the solution for yH−1 satisfies:

yH− = B ̂
y,T−1y ̂

1 H−2 + ΦH−1ẑH−1 + FH−1,1ΦH ẑH + Φµ,H−1µH−1 + FH−1,1Φµ,HµH

where ( )−1
By,H−1 = − HF

y B
B

y HC
,H + y,H−1 Hy( )̂ −1

Φ F C
H− Ψ̂1 = Hy By,H +Hy,H−1 ẑ( )−1

Φ = HFB +HC
µ,H−1 y y,H y,H−1 Ψµ( )−1
FH−1,1 = − HF

y By,H +HC
y,H−1 HF

y
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G.3 Period H − 2

The structural form is:

HF
y yH−1 +HC

y,H−2y
B ̂

H−2 +Hy yH−3 = Ψẑ ẑH−2 + ΨµµH−2

and plugging in the solution for yH−1 gives:( )
HF
y By,H−1y ̂ ̂

H−2 + ΦH−1ẑH−1 + FH−1,1ΦH ẑH + Φµ,H−1µH−1 + FH−1,1Φµ,HµH

+HC
y,H−2y

B ̂
H−2 +Hy yH−3 = Ψẑ ẑH−2 + ΨµµH−2

so that:

yH−2 = By,H−2yH−3 + Φ̂H− ̂
2ẑH−2 + FH−2,1ΦH−1ẑH−1 + F Φ̂H−2,2 H ẑH

+ Φµ,H−2µH−2 + FH−2,1Φµ,H−1µH−1 + FH−2,2Φµ,HµH

where ( )−1
By,H−2 = − HF

y B
C

y,H−1 +Hy,H−2 HB
y( )−

Φ̂
1

H−2 = HF
y By,H−1 +HC ̂

y,H−2 Ψẑ( )−1
Φµ,H−2 = HFBy,H−1 +HC

y y,H−2 Ψµ( )−1
FH−2,1 = − HF C

y By,H−1 +Hy,H−2 HF
y( )−1

F F C F
H−2,2 = − Hy By,H−1 +Hy,H−2 Hy FH−1,1

G.4 Period H − 3

Using the H − 2 solution in the H − 3 structural form implies that:( )
F By,H−2yH−3 + Φ̂H−2ẑH−2 + FH− ̂

2,1ΦH−1ẑH−1 + F ̂
H−2,2ΦH ẑH

Hy
+Φµ,H−2µH−2 + FH−2,1Φµ,H−1µH−1 + FH−2,2Φµ,HµH

+HC
y,H−3y

B ̂
H−3 +Hy yH−4 = Ψẑ ẑH−3 + ΨµµH−3

so that:

y Φ̂H−3 = By,H−3yH−4 + H−3ẑH−3 + FH− Φ̂3,1 H−2ẑH−2 + FH− ̂
3,2ΦH−1ẑ ̂

H−1 + FH−3,3ΦH ẑH

+ Φµ,H−3µH−3 + FH−3,1Φµ,H−2µH−2 + FH−3,2Φµ,H−1µH−1 + FH−3,3Φµ,HµH

where ( )−1
BH−3 = − HF

y B
C B

y,H−2 +Hy,H−3 Hy( )
Φ̂

−1
H−3 = HF

y B Ψ̂2 +HC
y,H− y,H−3 ẑ( )−1

Φ = HFB +HC
µ,H−3 y y,H−2 y,H−3 Ψµ( )−1
F = − HFB C F
H−3,1 y y,H−2 +Hy,H−3 Hy( )−1
F = − HFB +HC HF
H−3,2 y y,H−2 y,H−3 y FH−2,1( )−1
FH−3,3 = − HFBy,H−2 +HC F

y y,H−3 Hy FH−2,2
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G.5 Period t

The preceding recursions reveal that the the general solution in period t is given by:

H∑−t H∑−t
yt = By,ty 1 + F ̂

t− t,hΦt+hẑt+h + Ft,hΦµ,t+hµt+h
h=0 h=0

where ( )−1
By,t = − HFBy,t+1 +HC B

y y,t Hy( )
Φ̂

−1
t = HF

y By,t+1 +HC ̂
y,t Ψẑ( )−1

Φµ,t = HF
y By,t+1 +HC

y,t Ψµ

and

By,H+1 = By

where By is the rational expectations solution from equation (14).

For h > 1, the F matrices are given by:

Ft,h = ΥtFt+1,h−1

with

Ft,0 = I

which implies that Ft,1 = Υt, where ( )−1
Υt ≡ − HF

y By,t+1 +HC
y,t HF

y
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