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1 Introduction

Since Kilian (2009), an increasing number of papers have contributed to our understanding

of the distinct role of supply and demand shocks in driving oil price fluctuations. However,

when quantifying their relative importance, a wide range of estimates have been reported.

One set of papers, including Kilian (2009, 2020a), Kilian & Murphy (2012, 2014), Juvenal &

Petrella (2015), Antoĺın-Dı́az & Rubio-Ramı́rez (2018), Zhou (2020) and Cross, Nguyen & Tran

(2020) report that oil prices are mainly driven by demand and hence, that supply shocks are

not important. Their estimates typically attribute less than 10% of the long term variability

in oil prices to supply. On the other hand, recent papers of Baumeister & Hamilton (2019)

and Caldara, Cavallo & Iacoviello (2019) point towards a substantially larger role of supply,

estimating variance contributions of up to 37%. As discussed in Herrera & Rangaraju (2020),

most of the disagreement can be attributed to differences in the identification strategy.1 In

particular, papers that impose very small upper bounds on the short-run price elasticity of

supply find negligible effects of supply shocks. On the other hand, when the bound is replaced

with a fairly diffuse prior that allows for larger elasticities, supply shocks can become quite

important drivers of oil prices.

In this paper, I revisit the evidence based on an alternative identification strategy. In

particular, I combine the prior distributions of Baumeister & Hamilton (2019) with identifying

information from non-Gaussianity. The latter is based on the assumption that structural shocks

are mutually independent and display some degree of non-Gaussianity. As documented in this

paper, large deviations from Gaussianity characterize many oil market variables. My findings

indicate that once non-Gaussianity is incorporated in the model, the posterior distribution of

the short run oil-supply concentrates near zero and oil supply shocks are found to be minor

drivers of oil prices.

To build up intuition on the identification strategy used in this paper, consider a stylized

bivariate model for supply and demand:

supply: qt = αpt + σ1ε
s
t

(
εst
εdt

)
∼ (0, I2),

demand: qt = βpt + σ2ε
d
t

where qt and pt are changes in the (log) quantity and (log) prices, α and β are the price

elasticities of supply and demand, and σ1/2 the standard deviations of the respective structural

supply (εst) and demand shocks (εdt ). The model is not identified from the second moment

of the bivariate dataset, as there are four structural parameters but only three reduced form

covariance parameters. To achieve identification, the oil market literature has proceeded by

imposing identifying restrictions which reflect their prior on the sign and magnitudes of the

structural parameters. First and uncontroversially, the supply curve is assumed to be upward

sloping (α > 0), while the demand curve is downward sloping (β < 0). Second, since these

1As noted in Aastveit, Bjørnland & Cross (2021), the disagreement is much less pronounced once a shorter
sample is used for estimation, excluding the large oil price shocks of the 70s.

1



-0.1 -0.05 0 0.05

Change in quantity

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

C
ha

ng
e 

in
 p

ric
e

-0.1 -0.05 0 0.05

Change in quantity

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

C
ha

ng
e 

in
 p

ric
e

Figure 1: Identifying oil demand and supply curves by non-Gaussianity

sign-restrictions have been found to be fairly uninformative, restrictions on the magnitude of

elasticities are included. For example, Kilian & Murphy (2014) impose a very inelastic short run

supply curve via a tight upper bound on α ∈ (0, 0.025), while Baumeister & Hamilton (2019)

allow for substantially larger values via a truncated student-t prior α ∼ t0,∞(0.1, 0.2, 3) centred

at 0.1 and with a scale of 0.2 and 3 degrees of freedom. The exact prior choice on the magnitudes

has substantial implications for estimates of the relative importance of supply and demand

shocks. The reason is that forecast errors in oil production and prices are fairly uncorrelated,

yielding a large class of models identified by solely sign restrictions equally consistent with the

data. In such an environment, minor differences in the prior for price elasticities have large

effects on the posterior of important structural quantities such as the decomposition of oil price

movements into supply and demand.

To illustrate this point and how non-Gaussianity can help circumventing this problem, con-

sider the left panel of Figure 1. Here, a scatterplot is provided using forecast errors from a

bivariate VAR for global (log) oil prices and (log) oil production. When the distribution is

characterized by the second moments of the forecast errors (‘Gaussian Setting’), many differ-

ent models are comformable with the correlation structure. Consider two arbitrarily chosen

supply and demand schedules (A and B), which are observationally equivalent but imply very

different dynamics for the oil market. In model A, supply is fairly inelastic and demand is

elastic. Consequently, in such a model oil production would be mainly driven by supply shocks

while oil prices would be largely caused by demand shocks. In turn, for model B, the supply is

more elastic and demand is fairly inelastic, implying the exact opposite for the driving forces

of oil prices. Incorporating prior knowledge on elasticities ultimately boils down to picking a

range of models from the class of observationally equivalent models, thereby shaping the answer

2



about the drivers of oil price fluctuations a priori. At this point, narrative analysis and external

estimates from microeconometric approaches have been used to tune these priors with great

care, e.g. based on elasticity estimates provided in Newell & Prest (2019), Bjørnland, Nordvik

& Rohrer (2021) and Caldara et al. (2019). However, as pointed out in Kilian (2020b), the

microeconomic evidence remains controversial and has not been sufficiently informative to yield

conclusive evidence.

In the right panel of Figure 1 (‘Non-Gaussian Setting’), I illustrate how the irregular joint-

distribution of the reduced form errors can help discriminate among observationally equivalent

models. The solid lines correspond to contour lines of the estimated joint density implied by

the model developed in this paper. The density estimator captures the irregular distribution

and comes up with a unique supply and demand schedule consistent with the data. The model

rotates the curves such that the forecast errors cluster near the supply and demand schedule,

in line with heavy tailed structural shocks. Hereby, the non-Gaussian shape makes certain

shifts of the supply and demand curve more likely than others, this way working as a proba-

bilistic instrument (see also Rigobon (2003) for a similar interpretation in SVARs identified by

heteroskedasticity). For the data considered in the scatter plot, the statistical identifying infor-

mation points towards a very steep supply curve and rather flat demand curve. Even though

the Figure is based on a stylized bivariate model including oil price and production data, it

anticipates the main findings of this paper: supply shocks contribute very little to fluctuations

of oil prices.

As a statistical device, identification via non-Gaussianity yields a set of shocks which per

se are not useful for economic analysis. Hence, in this paper I exploit non-Gaussianity only

to sharpen identification in a weakly identified, economically meaningful model. Specifically,

I incorporate non-Gaussianity into the framework of Baumeister & Hamilton (2019) (BH19

henceforth). BH19 identify oil market shocks based on carefully tuned prior distributions for

structural parameters, some of them truncated to reflect economically sensible sign-restrictions.

Among those is the relatively diffuse student-t prior for the oil supply elasticity (α ∼ t0,∞(0.1, 0.2, 3)).

Given a Gaussian likelihood function, their posterior reflects information from a combination

of the prior and covariance structure in the data. I illustrate that once the Gaussian likelihood

is replaced with that of a non-Gaussian model, the posterior revises substantially reflecting the

additional identifying information. The revision is in line with estimated predictive densities

of oil market shocks pointing towards large degrees of skewness and excess kurtosis that can

aid identification. My results suggest that the posterior median estimate of the short-run oil

price elasticity of supply is substantially more muted in the non-Gaussian model (α̂ ≈ 0.02) as

opposed to the Gaussian model (α̂ ≈ 0.15). Consequently, oil supply shocks are found to be

less important in the statistically identified model. In terms of forecast error variance decom-

position of the real price of oil, the posterior median estimates a share of 6% for supply shocks,

as opposed to 32% in the Gaussian model. These findings are supportive of papers that impose

a strong upper bound on the supply elasticity a priori.

3



To model the marginal distributions of each structural shock flexibly and in an automated

fashion, I develop a novel non-Gaussian SVAR model. Specifically, each structural shock is

assumed to be generated by a univariate Dirichlet process mixture model (DPMM) (Escobar

& West; 1995). Much like kernel density estimators, DPMM are the workhorse model in

Bayesian non-parametric statistics to model unknown density functions. There are various

benefits from adopting this modeling approach. First, unlike many existing approaches, no prior

knowledge is required on the underlying form of non-Gaussianity which is particularly appealing

if structural parameters are to be identified by the distributional assumptions. Furthermore,

and particularly important given the focus of this paper, the Bayesian estimates for variance

decompositions are valid even under misspecification of the marginal distributions. As discussed

in Fiorentini & Sentana (2020), consistent estimation of those quantities is generally not given

in non-Gaussian SVARs if the marginals are misspecified. However, one exception arises when

likelihood inference is based on finite Gaussian mixture models. Although a formal proof is

beyond the scope of this paper, one would expect this argument to carry over to the model

considered in this paper, given that DPMMs are closely related to finite Gaussian mixture

models. In fact, as shown in Neal (2000) and illustrated later in this paper, they can be obtained

as a special limiting case when the number of mixture components is growing to infinity. A

further point in favour of the DPPM model is that assessing the amount of non-Gaussianity

in the data is a straightforward task. A simple comparison of the posterior predictive density

with the kernel of a standard normal gives an indication of how much identifying information

one can expect from the statistical properties of the shocks. Finally, as pointed out above, the

Bayesian perspective adopted in this paper yields a coherent framework to combine economically

meaningful identifying information with statistical identification.

To conduct inference, I develop a novel MCMC algorithm that iteratively draws from the

conditional distributions of the VAR parameters and those of the DPMMs. While most condi-

tionals are well known and easy to draw from, the challenging part of the algorithm is drawing

the matrix A which relates forecast errors ut to structural shocks εt via Aut = εt. Here, I make

use of the algorithm proposed originally in Waggoner & Zha (2003) and generalized by Villani

(2009) and Chan, Koop & Yu (2021). I further extend the algorithm to allow for non-zero

normalizing constraints on A. This facilitates prior elicitation on elements in A, as it separate

structural parameters from the scale of structural shocks. Furthermore, it allows the use of

unrestricted DPPMs, as otherwise one would have to restrict the resulting predictive densities

to unit variance.

With this methodology, I contribute broadly to the econometric literature on non-Gaussian

SVARs. Among classical frequentist approaches, Lanne, Meitz & Saikkonen (2017) discuss

Maximum Likelihood (ML) estimation and use a t-distribution in their empirical application

involving monetary policy shocks. In turn, Gourieroux, Monfort & Renne (2017) consider

pseudo-ML inference for independent component analysis (ICA) in general and apply it to

SVAR analysis. More recently, GMM estimation is considered by Lanne & Luoto (2019) and

Herwartz (2018) uses non-parametric dependence measures to disentangle non-Gaussian shocks.
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Closely related to this paper is also the estimator based on finite Gaussian mixture models

considered in Fiorentini & Sentana (2020) and the kernel density ICA estimator considered

in Boscolo, Pan & Roychowdhury (2004). To the best of my knowledge, the only Bayesian

approach in this literature is that of Lanne & Luoto (2020), who rely on t-distributed error

terms to capture deviations from normality.

This paper is not the first to consider a statistical identification approach to study the sources

of oil price fluctuations (see also Lütkepohl & Netšunajev (2014), Herwartz & Plödt (2016) and

Lanne & Luoto (2020)). However, this paper offers some improvements towards the current

state of the art in the oil market literature. First, as opposed to the previous papers, I work with

the four variable workhorse model that additionally incorporates oil-inventories. Furthermore,

the combined identification approach adopted in this paper assures that each structural shock

is meaningful at all stages of the analysis. In turn, the aforementioned papers rely on some kind

of ex-post labelling of the shocks, which is not guaranteed to yield economically meaningful

shocks. More in the spirit of this paper is a recent study of Carriero, Marcellino & Tornese

(2021), who also consider combining the BH19 framework with statistical identification in one

of the applications. However, their paper does not look at variance decompositions of the real

oil price. Interestingly, despite relying on heteroskedasticity rather than non-Gaussianity, they

arrive at very similar estimates for the underlying structural parameters.

The paper is structured as follows. In Section 2, the non-Gaussian SVAR model is introduced

where structural shocks follow Dirichlet process mixture models (DPMM). In section 3, the

methodology is used to revisit the importance of supply and demand shocks for fluctuations in

the global crude oil market. Section 4 concludes.

2 Methodology

In this section, I introduce the non-Gaussian SVAR model endowed with Bayesian nonparamet-

ric density estimators for each structural shock. I start with a quick review of the identification

problem of SVARs and the standard identification results that arise under independent and

non-Gaussian shocks (section 2.1). In section 2.2, I proceed with a detailed description of the

nonparametric methods used to model the marginal distributions of each structural shock. The

SVAR with DPMMs is discussed in section 2.3 and Bayesian inference for this model is quickly

outlined in section 2.4.
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2.1 Non-Gaussian SVARs

The core of the model is a linear SVAR(p) specification for the conditional mean of a K-

dimensional time series vector yt:

yt = c+

p∑
j=1

Ajyt−j + ut, ut ∼ (0,Σu) , (2.1)

Aut = εt, εt ∼ (0,Σε) , (2.2)

where Σu is a full covariance matrix and Σε is diagonal. In order to match the notation of

the empirical analysis, the SVAR(p) is written as an A type of model in the terminology of

Lütkepohl (2005), meaning that orthogonal structural shocks (εt) are modelled as a linear

function of reduced form errors (ut). In this model, the reduced form covariance matrix of the

VAR forecast errors is linked to the structural parameters by Σu = A−1Σε (A
−1)

′
. Throughout

the paper, stationarity is assumed, that is:

detA(z) = det(IK − A1z − . . .− Apz
p) ̸= 0, for |z| ≤ 1.

Therefore, the SVAR(p) has a MA(∞) representation given by yt = µy +
∑∞

j=1Θjεt−j where

Θj = ΦjA
−1, Φ0 = IK , Φj =

∑j
i=1Φj−iAi for j ∈ N with Ai = 0 for i > p. The ik-th entry

of matrix Θj contains the impulse response, capturing the dynamic effect of structural shock k

on the i-th variable in yt, j periods after the shock.

Without additional assumptions, the covariance structure of the forecast errors jointly iden-

tifies A and Σε only up to orthogonal rotations. To see this, note that an alternative structural

model can be obtained yielding equivalent second moments by defining Ã = Q′Σ
−1/2
ε A and

Σ̃ε = IK for any orthogonal matrix Q satisfying QQ′ = IK and Q−1 = Q′. For this choice,

the implied covariance matrix is equivalent in that Ã−1Σ̃ε

(
Ã−1

)′
= A−1Σ

1/2
ε QQ′Σ

1/2
ε (A−1)

′
=

A−1Σε (A
−1)

′
. SVAR analysis proceeds by imposing additional restrictions to pin down the

parameter values of the structural model. Effectively, this boils down to fixing a scale of

the shocks Σε and narrowing down a set of admissible matrices Q that allows for meaningful

economic analysis. Among the most popular identification strategies are short- and long run

restrictions on the effect of structural shocks (Bernanke; 1986; Blanchard & Quah; 1989), sign

restrictions (e.g. Uhlig (2005)) or restrictions implied by external instruments (Stock & Watson;

2012; Mertens & Ravn; 2013). Alternatively, distributional assumptions have been introduced

to aid identification in SVARs, e.g. exploiting heteroskedasticity (Rigobon; 2003; Lewis; 2021)

or non-Gaussianity in the structural shocks (Lanne et al.; 2017; Gourieroux et al.; 2017).

In this paper, I will exploit statistical identifying information that arises under non-Gaussianity.

Following Lanne et al. (2017), this entails imposing additional assumptions on the joint distri-

bution of the structural shocks εt = [ε1t, . . . , εKt]
′, which are given by:

(a) The stochastic vector εt is independent and identically distributed (i.i.d) with zero mean

and each component has finite positive variance Var(εit) = σ2
i , i = 1, . . . , K.

6



(b) At least K − 1 components of εit, i = 1, . . . , K are mutually independent and have non-

Gaussian marginal distributions.

As established in Lanne et al. (2017), assumptions (a) and (b) identify the SVAR model up to

permutation, sign and scale. In other words, the set of orthogonal rotation matrices yielding

observationally equivalent models reduces to Q = PD, where P is aK-dimensional permutation

matrix and D a diagonal matrix with elements ±1.

At this point it is worth scrutinizing these identifying assumptions. First, note that the iden-

tification results are based on assuming mutual independence, which is stronger than (typically

assumed) contemporaneous uncorrelatedness and rules out higher-order dependence among

structural shocks. Generally, it seems very difficult to test this assumption and ultimately its

credibility depends on the empirical application at hand. However, econometric refinements

have evolved in this literature to relax independence. For example, Lanne & Lütkepohl (2010)

exploit a specific mixture of two normals which doesn’t require independence. Also, Lanne

& Luoto (2019) show that one can replace independence with less restrictive co-kurtosis re-

strictions that allow for different types of higher order dependence in the structural shocks.2

Second, assuming Non-Gaussian marginals is perfectly compatible with common forms of het-

eroskedasticity observed in structural shocks, induced e.g. by GARCH dynamics (Normandin

& Phaneuf; 2004; Lanne & Saikkonen; 2007) or stochastic volatility (Bertsche & Braun; 2020).

As long as the volatility model implies independent shocks, they are perfectly covered by the

identification argument exploited in this paper. Finally, note that the identifying restrictions

are of purely statistical nature and need to be combined with economic identifying information

at some point of the analysis. Typical approaches are finding an economically plausible labeling

ex post or testing economic identifying restrictions which are overidentifying in the statistically

identified model (Kilian & Lütkepohl; 2017). In the empirical analysis conducted in this paper,

I propose to instead rely on non-Gaussianity only within a model that is already weakly iden-

tified by economic restrictions. This allows interpretation of the structural shocks at all stages

of the analysis and requires no pretesting for statistical identification. Furthermore, the degree

of identifying information coming from non-Gaussianity can be easily assessed by comparing

the results to those obtained under Gaussian errors.

To exploit non-Gaussianity as an identification device in SVARs, various econometric tech-

niques have emerged over the last years. For this paper, I rely on Bayesian non-parametric

density estimators to model the non-Gaussian marginals.

2.2 Dirichlet process mixture models for structural shocks

Before stating the non-Gaussian SVAR used in this paper, I review the univariate Dirichlet

process mixture model (DPMM) used for each shock’s marginal distribution. Readers familiar

with Bayesian nonparametrics may want to skip this part. For ease of readability, I will drop

2See also Drautzburg & Wright (2021) who suggest to bound higher-order dependence within a set-identified
model.
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the i index during the subsection, and re-introduce it at a later stage. Each structural shock

will be assumed to be independent and follow the following hierarchical model for t = 1, . . . , T :

εt|θt ∼ F (θt),

θt ∼ G,

G ∼ DP(G0, α),

where F (θt) is a probability distribution parametrized by θt and can be thought of a likelihood

at time t with parameters θt. G is the corresponding prior distribution for θt and has the

unusual characteristic of being random itself, following a Dirichlet process (DP) G ∼ DP(G0, α)

(Ferguson; 1973). A Dirichlet process is uniquely characterized by a base distribution G0 and a

scalar concentration parameter α ∈ R
+. Realizations of a DP yield almost surely discrete priors

for θt, which is why the model can be though of a countably infinite mixture model. In order

to facilitate understanding of the resulting model, I will review two instructive representations

of the DPMM.

The first is named the Pólya Urn representation which goes back to Blackwell & MacQueen

(1973). The idea is to marginalize out G, as it provides a more intuitive representation of

the prior implied for θ. In particular, for t = 1, . . . , T , the distribution can be iteratively

constructed as follows:

θt|θt−1, . . . , θ1 ∼
1

t− 1 + α

t−1∑
j=1

δθj +
α

t− 1 + α
G0,

∼
k∑

j=1

nj

t− 1 + α
δθ⋆j +

α

t− 1 + α
G0,

where δ(·) is the Dirac measure and {θ⋆j , j = 1, . . . , k} are the distinct values (“clusters”) of

{θj, j = 1, . . . , t} which have cluster size nj =
∑t−1

t=1 1(θt = θ⋆j ). In words, the first line states

that at any point of time t, θt may take either the value of a previously drawn parameter or be

sampled from the base distribution G0. The Pólya Urn scheme illustrates the main properties

of the DPM prior of θt. First, the realizations are almost surely discrete. Second, there is

a “richer get richer” property implied by the model which leads to heavy clustering of the

mixing parameters θ. This is highlighted in the second line, where it becomes clear that the

probability of θt joining a certain cluster θ⋆j increases in the cluster size nj. Therefore, the

model for εt can be interpreted as a flexible yet parsimonious mixture model where the number

of components is random and increasing in the sample size T . The strength of clustering is

governed by the concentration parameter α and lower values are associated with less mixture

components (clusters) for a given sample size T . Finally, the choice of Base distribution G0

will drive the location of the clusters.

A second convenient representation of the DPMM relates the model to more frequently used

finite mixture models. As outlined in Neal (2000), a link can be established by casting a finite
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mixture model of a certain form and letting the number of mixture components grow to infinity.

In particular, for the following model with k mixture components:

εt|ct, θ⋆ ∼ F (θ⋆ct) (2.3)

ct|p ∼ Discrete(p1, . . . , pk) (2.4)

p ∼ Dirichlet(α/k, . . . , α/k) (2.5)

θ⋆j ∼ G0, j = 1, 2, . . . (2.6)

where ct is a discrete assignment variable linking each observation to a certain mixture com-

ponent. Each component is associated with a unique parameter θ⋆j which are drawn from the

base distribution G0. If the mixing proportions p = (p1, . . . , pk) are given a symmetric Dirichlet

prior with concentration parameters α/k, a DPMM can be obtained when k → ∞. Exploiting

well known properties of the Dirichlet Multinomial distribution, the conditional probability of

ct given the sequence {ct−1, . . . , c1} can be shown to be (Neal; 2000):

P (ct = c|ct−1, . . . , c1) = P (ct−1, . . . , c1, ct = c)/P (ct−1, . . . , c1) =
nt,c + α/k

t− 1 + α
,

where nt,c is the number of cj for j < t equal to c, that is the size of the clusters. Hence, when

k → ∞:

P (ct = c|ct−1, . . . , c1) →
nt,c

t− 1 + αi

, (2.7)

P (ct ̸= cj for all j < t|ct−1, . . . , c1) →
α

t− 1 + α
, (2.8)

where the first line gives the probability that the t-th shock εt is associated with cluster c, while

the second line gives the residual probability that εt is associated with a cluster not observed

in {ct−1, . . . , c1}. When compared with the Pólya Urn representation, these equations yield the

same clustering behaviour and an equivalent model representation.

To get a fully operational DPMM, one needs to specify a density F (θ) and a corresponding

base distribution G0. For this paper, I adopt a simple yet very popular specification pioneered

by Escobar & West (1995), implying that F (θt) is a Gaussian distribution parametrized by

mean µt and variance σ2
t , hence θt = (µt, σ

2
t )

′. For computational convenience, a conjugate base

distribution G0 is chosen which is the normal inverse gamma (µ, σ2) ∼ N iG(s/2, S/2,m, τ) ∼
p(σ2)p(µ|σ2), where p(σ2) ∼ iG(s/2, S/2) is inverse Gamma and µ|σ2 ∼ N (m, τσ2) normal.

Besides striking a fair balance between flexibility and computational complexity, the Gaussian

mixture model benefits from the arguments outlined in Fiorentini & Sentana (2020) regarding

consistent estimation of unconditional standard deviations under misspecification of the error

term.
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For the Gaussian DPMM, it is instructive to look at the implied predictive density conditional

on a (prior or posterior) draw of the mixture parameters θ1:T = {θT , . . . , θ1}:

p(εT+1|θ1:T ) =
∫
p(εT+1|θT+1)p(θT+1|θ1:T )dθT+1

=
1

α + T

T∑
t=1

ϕ(εT+1;µt, σt) +
α

α + T
Ts(εT+1;m,M),

=
k∑

j=1

nj

t− 1 + α
ϕ(εT+1;µ

⋆
j , σ

⋆
j ) +

α

α + T
Ts(εT+1;m,M),

where ϕ(·;µ, σ2) denotes the density of the normal distribution and Ts(·;m,M) the density

of a student t with mode m, scale M1/2 for M = (1 + τ)S/s and s degrees of freedom. At

first sight, the predictive density shares some similarities with the popular Gaussian kernel

density estimator p(εT+1|ε1:T ) ∝
∑T

t=1 ϕ(εT+1; εt, H) where H is a global smoothing parameter.

However, there are a few key differences worth mentioning. First, the fact that the DP induces

heavy clustering in θt means the predictive is shrunk towards a finite set of k local modes

{µ⋆
j , j = 1, . . . , k}. Furthermore, the component variances {σ⋆

j , j = 1, . . . , k}may differ allowing

for local smoothing. Finally, the density is shrunk globally towards that of a t-distribution,

with decreasing importance as sample size increases. The global smoothing parameter α governs

both the strength of clustering (and hence sparsity) in θ1:T as well as the strength of shrinkage

towards the t- density. For more details and theoretical insights including consistency and

convergence rates see e.g. Escobar & West (1995), Ghosal, Ghosh, Ramamoorthi et al. (1999)

and Ghosh & Ramamoorthi (2003).

With respect to computational simplicity, adopting a conjugate base distribution facilitates

MCMC inference on the mixing parameters θt, t = 1, . . . , T substantially. To see this, recall

that the structural shocks εt are assumed to be independent and hence exchangeable, which

yields the following prior based on the Pólya Urn representation:

θt|θ−t ∼
1

T − 1 + α

∑
j ̸=t

δθj +
α

T − 1 + α
G0,

where θ−t = {θj, j ̸= t}. Combined with the likelihood F (εt|θt), the posterior is given by the

following mixture:

θt|θ−t, εt ∼
∑
t̸=j

qtjδθj + rtHt, (2.9)

where qtj = bF (εt|θj), rt = bα
∫
F (εt|θ)dG0(θ) and Ht posterior of θ based on G0 and εt. For

the conjugate choice G0, the posterior is analytically tractable and of known form, implying

that rt can be computed in closed form and a random sample of Ht can be readily generated.

While cycling through the conditionals in (2.9) is certainly easy, it may lead to poor conver-

gence. Hence, in this paper I rely on a refinement developed in Neal (2000) improving posterior
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mixing. Akin to the finite mixture representation (equations (2.3)-(2.6)), the algorithm exploits

that θt = θ⋆ct can be represented in terms of latent allocation variables ct and unique cluster

parameters θ⋆j . Combining the prior for ct implicit in equations (2.7)-(2.8) with the likelihood

conditional on cluster parameters, this yields the simple conditionals for t = 1, . . . , T :

P (ct = cj, j = 1, . . . , k|c−t, εt) = b
n−t,cj

T − 1 + α
F (εt|θ⋆ct), (2.10)

P (ct ̸= cj for all j ̸= t|c−t, εt) = b
α

T − 1 + α

∫
F (εt|θ)dG0(θ), (2.11)

where c−t = {cj, j ̸= t}, cj, j = 1, . . . , k are unique values in c−t of count n−t,cj and b is a

normalizing constant. In a second step, conditional on the assignment variables and exploiting

the conjugacy of G0, the (active) cluster parameters θ⋆j , j = 1, . . . , k can be drawn from known

distributions in a straightforward manner. The resulting algorithm is reliable, easy to implement

and widely used in DPMM.
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Figure 2: Top: implied prior for the number of clusters K. Base distribution is given by
N iG(s/2 = 5, S/2 = 3/5,m = 0, τ = 2). Bottom: p(εT+1|θ1:T ) based on 50 prior draws from
θ1:T .

At this stage, it is worth highlighting the crucial role of the smoothing parameter α. To

illustrate the impact of α on the complexity of the model, note Figure 2. For a given value of

α, the graph shows the implied distribution for the number of unique clusters k and a set of 50

arbitrary predictive densities obtained conditional on drawing θ1:T . The sample size underlying

the Figure is set to T = 200, reflecting typical time series lengths in macroeconomics. For

α = 1 (left column, larger value), most of the prior probability mass for k concentrates at values

below 10, with a mode between 5 and 6. The predictive densities illustrate the wide range of
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distributions that can be generated under the DPMM, displaying all kinds of multimodality,

skewness and fat tails. On the other hand, a smaller value α = 0.1 (right column) implies that

the prior mass for the number of clusters k concentrates at much lower values, with prior mode

at just one component. Obviously, this translates into the prior predictive to be much more

concentrated around unimodal shapes, although the variability remains high.

Hence, akin to the bandwidth parameter in kernel density estimation, α can be thought of as

the global smoothing parameter that governs the flexibility of the underlying density estimator.

To come up with a sensible choice for α, I follow standard practice and infer the value from

the data (Escobar & West; 1995). This can be implemented by treating α as another random

variable of the model. In this paper, the parameter is given a gamma prior α ∼ G(aα, bα),
which allows for simple posterior inference. Similarly, τ and m are treated as random in order

to let the prior adjust to different scales of the structural shocks. Conjugate hyperpriors are

specified for simplicity, that is τ ∼ iG(aτ/2, bτ/2) and m ∼ N (mm, Vm). Overall, through the

incorporation of these hyperpriors one obtains a fully automatic procedure, requiring minimal

input by the researcher.

2.3 SVAR-DPMM

The next step is to embed the DPMMs into an SVAR model, which yields the methodology used

in the empirical analysis. Let xt = [y′t−1, . . . , y
′
t−p, 1]

′ and stack the autoregressive coefficients

into the n× np+ 1 matrix A+ = [A1, A2, . . . , Ap, c]. Furthermore, denote by θit = [µit, σ
2
it] and

assume the availability of p fixed presample values y0, . . . , y−p+1. Then, the full hierarchy of

the model reads:

A(yt − A+xt) = εt, (2.12)

εit|θit ∼ N (µit, σ
2
it), (2.13)

θit ∼ Gi, (2.14)

Gi ∼ DP(Gi0, αi), (2.15)

Gi0 ∼ N iG(si/2, Si/2,mi, τi), (2.16)

for i = 1, . . . , K, t = 1, . . . , T . Here, equation (2.12) corresponds to the SVAR model (section

2.1) while equations (2.13)-(2.16) to the individual DPMM specified for each structural shock

(section 2.2). Denote by Ai• the ith row of A. The following prior distributions are considered

for the underlying model parameters, which completes the specification:

Ai• ∼ p(Ai•), (2.17)

α+ ∼ N (mα+ , Vα+), (2.18)

αi ∼ G(aα, bα), (2.19)

τi ∼ iG(aτ , bτ ), (2.20)

mi ∼ N (mm, Vm), (2.21)
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for i = 1, . . . , K and α+ = vec(A+). Similar to Baumeister & Hamilton (2015), the prior of

the structural parameters in A is allowed to take an arbitrary form, enabling the researcher

to incorporate any identifying information with high degree of flexibility. To facilitate efficient

inference, however, I assume prior independence between different rows of A. As I discuss

in Appendix A.1, this allows me to use an extension of the efficient algorithm of Waggoner

& Zha (2003) to draw from the conditional posterior of A. For the vectorized reduced form

slope parameters α+, a Gaussian prior is specified, a fairly common choice which allows for

straightforward inference. The normal prior is widely used in VAR analysis and flexible enough

to accommodate both non-informative priors as well as a variety of shrinkage priors includ-

ing the popular Minnesota prior (Litterman; 1986). Finally, the K concentration parameters

{αi, i = 1, . . . , K} are given independent Gamma prior distributions, while the Base distribution

parameters {τi,mi, i = 1, . . . , K} have respective conjugate priors, yielding a fully automatic

procedure as described in section 2.2.

When embedding DPMMs within the SVAR model, some care must be taken with respect to

identifiability of location and scale of the shocks. First, unlike Gaussian errors, the marginals

arising from DPMMs are not guaranteed to be mean zero. Hence, the intercept of the VAR

model is not identified, and can be readily dropped. Alternatively, one may simply ignore the

issue as usual quantities important for structural analysis remain unaffected, including impulse

response functions or variance decompositions. With respect to scale, a similar problem arises.

While in Gaussian SVARs the scale is often fixed to unity, doing so within DPMMs is rather

involved, see e.g. the approach taken in an earlier version of this paper based on methodology

developed in Yang, Dunson & Baird (2010). For this paper, I follow the model of BH19 and

identify the scale of the shocks by normalizing certain elements in A to unity. This is particularly

natural if the empirical model can be written as a simultaneous equation system, as is the case

for the oil market model considered in this paper. Finally, recall that non-Gaussianity identifies

shocks up to an arbitrary permutation (see section 2.1). In this paper, a unique labelling is

obtained through economic restrictions reflected in the prior of A.

2.4 Posterior inference

In the following, I quickly describe posterior inference. Denote the collection of parameters

φ = {A, α+, αi, τi,mi, i = 1, . . . , K} and define the collection of auxiliary mixing parameters

as θ = {θit, i = 1, . . . , K, t = 1, . . . , T}. The posterior distribution of φ based on observed

data Y is proportional to prior times likelihood p(φ|Y ) ∝ p(Y |φ)p(φ). Note that for DPMM

models, the likelihood itself is not directly available, but must be obtained by integrating out

the auxiliary parameters θ, that is p(Y |φ) =
∫
p(Y |θ, φ)p(θ|φ)dθ. Since both likelihood and

posterior are intractable, a full-scale MCMC algorithm is used in this paper to conduct posterior

inference on the augmented set of parameters ξ = {φ, θ}.
In the following, I will quickly sketch the algorithm at a high level, and refer to Appendix A.1

for a detailed description. Let ξ−x be all parameters in ξ but x, and initialize the procedure by
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choosing some arbitrary initial values. Then, the algorithm iteratively draws from the following

blocks of conditionals:

(1) Draw the SVAR structural parameters from p(A|Y, ξ−{A}) via an extension of the Algo-

rithm proposed in Waggoner & Zha (2003). This involves drawing from the conditional

distribution of each row Ai• separately. Denote by A
′
i• = wi +Wiai where ai is a vector

of ri free elements, Wi a K × ri selection matrix and wi an K × 1 vector containing con-

strained values. In Appendix A.1, I show how to draw from p(ai|Y, ξ−{ai}) when wi ̸= 0,

using either a uniform or Gaussian prior for ai. Under a more general prior, as for example

those considered in the empirical application of this paper, a Metropolis Hastings step

can be added to correct for the difference in prior density between proposed and current

value of ai. For the priors considered in the empirical application, the MH acceptance

probabilities are very high and vary between 0.89 and 0.99 depending on the row of A.

(2) Draw the VAR regression parameters from p(α+|Y, ξ−{α+}) which is available in closed

form.

(3) Draw the DPMM parameters as in Neal (2000) and the hyperparameters from their

conditionals as outlined in Escobar & West (1995).

In order to compute variance decompositions and historical decompositions in the SVAR-

DPMM model, it is necessary to back out the unconditional variance of structural shocks.

Within the MCMC algorithm, it is straightforward to recover these moments from the predictive

density. Conditional on a draw of θ, it is:

p(εi,T+1|θi,1:T ) =
k∑

j=1

nij

T − 1 + αi

ϕ(εi,T+1;µ
⋆
ij, σ

⋆
ij) +

αi

αi + T
Tsi(εi,T+1;mi,Mi),

where M = (1 + τi)Si/si. Effectively, this is a mixture of k + 1 distributions with component

weights given by wij =
nij

T−1+αi
, j ≤ k and wi,k+1 = αi

αi+T
. Corresponding component means

are µc
ij = µ⋆

ij, j ≤ k and µc
i,k+1 = mi, while variances are given by (σc

ij)
2 = (σ⋆

ij)
2, j ≤ k

and (σc
i,k+1)

2 = Mi
si

si/(si−2)
. Hence, mean and variance of the predictive can be backed out by

standard formulas for mixture models:

E(εi,T+1|θi,1:T ) = µi =
k+1∑
j=1

wijµ
c
ij, (2.22)

Var(εi,T+1|θi,1:T ) = σ2
i =

k+1∑
j=1

wij

(
(σc

ij)
2 + (µc

ij)
2 − µ2

i

)
. (2.23)

Given equations (2.22)-(2.23) and posterior draws of ξ, inference for mean and variance of the

shocks is a straightforward by-product to obtain from the algorithm.
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3 The importance of supply and demand for oil prices

In the following section, the methodology is applied to revisit the importance of supply and

demand shocks for oil price fluctuations. The empirical strategy is kept simple. Throughout the

analysis, I revisit the four variable oil market model considered in recent papers (Kilian & Mur-

phy; 2014; Baumeister & Hamilton; 2019) and recover shocks with two different identification

strategies. The first strategy closely follows the approach put forward by Baumeister & Hamil-

ton (2019) (BH19). Specifically, BH19 impose a set of sign restrictions combined with weakly

informative prior distributions on structural parameters, mainly oil price elasticities. Combined

with a Gaussian likelihood, the resulting posterior distribution reflects information of the prior

and covariance structure in the data. The second identification strategy relies on the same

identifying information but in addition, exploits non-Gaussianity in the shocks (BH19+NG).

Hence, any difference in the posteriors between the two identification approaches will reflect

the additional statistical identifying information from non-Gaussianity.

3.1 Model and identification

The model is based on the following variables, exactly mimicking BH19:

yt = [100×∆qt, 100×∆yat , 100×∆pt,∆it]
′,

where qt is the log of global crude oil production (in million barrels per day) and yat is a measure

of world economic activity proxied by the industrial production indices of OECD countries plus

6 major countries. Furthermore, pt is the log of the real oil price defined as the US Refiner’s

Acquisition Cost of oil, deflated with the US consumer price index. Finally, ∆it is a proxy for

OECD oil inventories expressed as a fraction of global crude oil production. In order to allow

for sufficient dynamics, the model includes p = 12 lags in the VAR. For estimation, monthly

data from 1974m1 until 2019m12 is considered, which is slightly longer than the data in BH19.

For more details on the model choices including a description of the dataset, I refer to the paper

of BH19.

Abstracting from lags and ∆ notation, the structural oil market model takes the form of the

following simultaneous equation system:

Supply: qt = αqppt + εst (3.1)

Economic activity yat = αpypt + εadt (3.2)

Consumption demand qt − i⋆t = βqyy
a
t + βqppt + εcdt (3.3)

Inventory demand i⋆t = ψ1qt + ψ3pt + εidt (3.4)

Measurement error: it = χi⋆t + εme
t (3.5)

where εt = [εst , ε
ea
t , ε

cd
t , ε

id
t , ε

me
t ]′ ∼ (0,Σε) are uncorrelated structural shocks, which implies that

Σε is diagonal. There are five equations that summarize the contemporaneous relations across
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the variables. First, consider equation (3.5), which reflects an assumption about additive mea-

surement error in the observed inventories variable it. Specifically, it decomposes the variable

into an unobserved “true” inventory series i⋆t and a measurement error εme
t . BH19 rationalize

this approach by noting that inventory data is only available for OECD countries, which is

arguably only a fraction χ of world inventories. Equation (3.1) characterizes the behaviour of

global oil supply, relating production to real oil prices via the coefficient αqp. Given that both

variables are expressed in log deviations, the coefficient αqp can be interpreted as the (short-run)

price elasticity of oil supply. The third equation (3.2) characterizes global economic activity

(EA), decomposing world industrial production into a component driven by oil prices and an

EA shock εeat . Equation (3.3) models consumption demand, relating quantity consumed qt − i⋆t
to world output and oil prices. Here, βqp is the oil price elasticity of demand while βqy charac-

terizes the response of demand to increased economic activity. Finally, equation (3.4) captures

residual demand for oil inventory which is related to quantity and prices via coefficients ψ1/2.

The simultaneous equation model can be written as an A type structural VAR. To see this,

define an augmented set of VAR forecast errors by ũt = [ut, u
i⋆

t ]
′, where ut = yt − A+xt are

standard VAR forecast errors of the observables and ui
⋆

t is an unobserved prediction error for

the “true” (latent) inventory series. Then, the model can be written as:
1 0 −αpq 0 0

0 1 −αpy 0 0

1 −βqy −βqp 0 −1

−ψ1 0 −ψ3 0 1

0 0 0 1 −χ


︸ ︷︷ ︸

A


uqt
uyt
upt
uit
ui

⋆

t


︸ ︷︷ ︸

ũt

=


εst
εeat
εcdt
εidt
εme
t


︸ ︷︷ ︸

εt

. (3.6)

A simple counting exercise reveals that this model cannot be identified from the data, given that

the fifth variable is unobserved. In particular, there are 12 structural parameters (7 elements

in A plus 5 elements in Σε) but there are only 10 reduced form parameters available in the

covariance matrix of the observable prediction errors ut.

To identify the model, the following two identification strategies are considered. In the

first specification (BH19), structural shocks are modelled as Gaussian. Here, identification

is obtained via a set of sign-restrictions and prior distributions. In the second specification,

the same set of sign-restrictions and prior information is used, with the additional identifying

assumption that all shocks but the measurement error (εme
t ) are mutually independent and

non-Gaussian (BH19+NG). Specifically, they are modelled by the non-parametric density es-

timators considered in section 2. Here, identification will come from a combination of statistical

identification and the economically motivated prior information.

The exact priors used for each parameter are set out in Table 1. First, consider the priors for

the structural parameters underlying A. Regarding the oil price elasticities of supply αqp and

demand βqp, BH19 make use of truncated student-t distributions concentrated around 0.1 and

−0.1 respectively, reflecting their view that they should be rather small. However, with scales
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of 0.2 and 3 degrees of freedoms, the distributions are only weakly informative. As for the

income elasticity βqy, BH19 draw on external evidence from the literature to elicit a positively

truncated student-t distribution with mode around 0.7, scale 0.2 and 3 degrees of freedom.

The effect of oil prices on economic activity αyp is judged to be rather small, reflected in a

(negatively) truncated t-distribution with mode at just −0.05. A smaller scale of 0.1 reflects

more prior certainty than for the other parameters endowed with a t-prior, but the degrees of

freedom are still set to 3, hence the distribution is relatively spread out. For the parameters of

the inventory equation ψ1/2, no prior knowledge is available, so uninformative student-t priors

are used concentrated around 0 with scale of 0.5 and 3 degrees of freedom. With respect to

χ, the fraction of inventories held by OECD countries, BH19 specify a Beta prior concentrated

around 0.6, matching roughly the share of OECD countries in world oil consumption. The

prior parameters are set in such a way that the standard deviation is equal to 0.1, reflecting a

moderate degree of uncertainty for this number.

As for the diagonal elements of Σε, in the Gaussian model they are given uninforma-

tive inverse Gamma priors for all shocks but the measurement error. In the non-Gaussian

model, shock variances are indirectly parameterized. A series of hyperpriors are tabulated in-

stead for the parameters underlying the base distribution and the concentration parameters

({τi,mi, αi, i = 1, . . . , 4}). The underlying priors are chosen such that they render a fairly

automatic procedure which can adapt to different scales of each structural shock.

Finally, consider the measurement error, which in both identification strategies is assumed

to be Gaussian, that is εme
t ∼ N (0, σ2

5). Instead of a prior for σ2
5, BH19 use a prior on the

importance of the measurement error in a regression of uit on u
p
t , given by ρ =

χ−1σ2
5

σ2
3+χ−2σ2

5
. This is

motivated by the fact that, since ui⋆t is unobserved, the Algorithm developed in Baumeister &

Hamilton (2015) cannot directly be applied to the oil market model. To get around this issue,

BH19 rewrite the first four equations of (3.6) using observables. Algebraic manipulations yield

A†ut = ε†t , for

A† =


1 0 −αqp 0

0 1 −αyp 0

1 −βqy −βqy −χ−1

−ψ̃1 0 −ψ̃3 1

 ,

ψ†
1/2 = χψ1/2 and ε†t = [ε1t, ε2t, ε3t − χ−1ε5t, χε4t + ε5t]. BH19 then show that premultiplying

the system further by

Γ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 ρ 1


yields orthogonal shocks ε⋆t = Γε†t , hence allows the use of their standard algorithm for A⋆ =

ΓA†. Since by construction ρ ∈ (0, χ), they use a Beta prior centred around 0.25χ as to reflect

a moderate importance of the measurement error.
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Figure 3: Posterior predictive densities (90% credible interval) of standardized structural shocks

ε̃i,T+1 = σ
− 1

2
i (εi,T+1 − µi).

In the non-Gaussian model, however, this workaround cannot be applied since by construc-

tion the residuals of the transformed model (ε⋆t ) are not independent invalidating the identi-

fication strategy. Therefore, I incorporate an additional step into the MCMC as to infer the

latent inventory series ui⋆t . Furthermore, I include σ2
5 into the last row of A and normalize

ε5t ∼ N (0, 1), yielding A5• = [0, 0, 0, σ−1
5 ,−χσ−1

5 ]′. Finally, instead of a prior for σ2
5, I use a

Beta prior on the fraction of variance in inventories explained by the measurement error. The

resulting coefficient is given by ρ⋆ =
σ2
5

χ−2 var(ui
t)+σ2

5
∈ (0, 1), and I use pre-1974 inventory data

to set var(uit) ≈ 1.3.3 Reflecting a moderate degree of importance, I set the Beta prior such

that E(ρ⋆) = 0.25 with standard deviation 0.12. To maintain comparability with the Gaussian

model, I use the same prior for both identification strategies. The modified algorithm that

includes inference on ui⋆t is presented in Appendix A.2. Also, a description of the algorithm

used for the modified Gaussian model is described in Appendix A.3.

Finally, the prior for the autoregressive coefficients α+ are set to be uninformative centred

at zero with a fairly large variance.
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Table 1: Summary of prior distributions

Student t distribution

location scale dof sign restriction

αqp Oil supply elasticity 0.1 0.2 3 αqp > 0
αyp Effect of p on activity −0.05 0.1 3 αyp < 0
βqy Income elasticity of oil demand 0.7 0.2 3 βqy > 0
βqp Oil demand elasticity −0.1 0.2 3 βqp < 0
ψ1 Effect of q on inventories 0 0.5 3 none
ψ3 Effect of p on inventories 0 0.5 3 none

Beta distribution

mean standard deviation sign restriction

χ Fraction of inventories 0.6 0.1 0 ≤ χ ≤ 1
ρ⋆ Importance of measurement error in ui⋆t 0.25 0.12 0 ≤ ρ⋆ ≤ 1

Normal distribution

mean variance sign restriction
α+ vector of autoregressive parameters 0 100 none

Inverse Gamma distribution (only Gaussian model)

mean variance sign restriction

σ2
i , i = 1, 2, 3, 4 shock variances 1 10 σ2

i > 0

Gamma distribution (only non-Gaussian model)

mean variance sign restriction

αi, i = 1, 2, 3, 4 concentration parameter 1 1 αi > 0
τi, i = 1, 2, 3, 4 scale of base distribution 1 1 τi > 0

Normal distribution (only non-Gaussian model)

mean variance sign restriction

mi, i = 1, 2, 3, 4 location of base distribution 0 10 none

3.2 Empirical results

Before discussing standard results from structural analysis obtained under the two identifica-

tion approaches, it is useful to check if the structural shocks display non-Gaussianity in the first

place. According to the identification conditions, non-Gaussianity is required if the statistical

properties of the shocks are to be exploited for identification. In Figure 3, posterior median

estimates of the predictive densities are provided for the standardized structural shocks, along-

side 90% posterior confidence sets (shaded area). Furthermore, for comparison, the density of

a standard normal distribution is drawn in blue. Clearly, three out of four structural shocks

are displaying large degrees of non-Gaussianity in some regions of the predictive density. This

hints towards considerable identifying information that can be exploited in the context of the

oil-market application.

3A prior on ρ would be difficult to implement in the non-Gaussian framework since the implied prior for A5•

would depend on the DPMMmodel of the third shock. To see this, note that solving for σ2
5 yields σ2

5 =
ρσ2

3

χ−1−ρχ−2

and σ2
3 is a function of the DPMM mixture parameters (see section 2.4).
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Figure 4: Prior (orange line) and posterior density of key structural parameters. Top panel:
Gaussian model. Bottom panel: non-Gaussian model.

Given the large degree of non-Gaussianity in the structural shocks, one may expect that the

posterior distributions of the structural parameters differ across the two identification schemes.

In Figure 4, I plot prior and posterior distributions for key structural parameters in the model

and indeed, find considerable differences. The first column compares prior and posterior distri-

bution of αqp, the short-run oil price elasticity of supply. Under a Gaussian likelihood (top), the

prior distribution is peaking close to the prior mode, although uncertainty decreased substan-

tially. In contrast, in the non-Gaussian model, posterior mass is concentrated very close to zero.

Interestingly, the estimates obtained under non-Gaussianity supports very sharp upper-bound

restrictions used previously in the literature (Kilian & Murphy; 2014; Herrera & Rangaraju;

2020). With respect to the effect of oil prices on activity, αyp, the posterior distributions are

very similar across both identification approaches. Compared to the prior, both posteriors con-

centrate strongly around values close to zero. Stronger differences in the posteriors are visible

in the parameters underlying the consumption demand equation. With respect to the income

elasticity of oil demand (βqy), prior and posterior coincide in the Gaussian model, which may

reflect that there is very little information in the covariance structure of the data to learn about

this parameter. In the non-Gaussian model, however, the prior distribution is updated to some

extent. While the modal value is still below one, a remarkable degree of posterior mass is

attached to larger values. A similar picture arises for the oil demand elasticity (βqp). In the

Gaussian model, the prior is only slightly revised but posterior mass still concentrates around

high density regions of the prior. Instead, in the non-Gaussian model, the posterior is revised

to a much larger extent. The posterior mode indicates that the demand elasticity is estimated

to be much larger than indicated by the prior, with a modal value slightly above unity. How-

ever, posterior uncertainty remains high in the non-Gaussian model. Readers interested in the

20



remaining parameters underlying the simultaneous equation model are referred to Appendix C.

Overall, the posterior plots indicate that there is substantial identifying information that can

be exploited from the statistical properties of oil market shocks. The results suggest that once

this information is taken into account, (short-run) oil supply is estimated to be considerably

more inelastic while consumption demand is found to be more elastic.
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Figure 5: Posterior median IRFs with 90% credible intervals (shaded areas). Blue: Gaussian
model. Red: non-Gaussian model.

Differences in the posterior distribution of key structural parameters have direct implications

for structural analysis. In Figure 5, I provide (point-wise) posterior medians and 90% credible

sets for impulse response functions (IRFs) up to 16 months, each standardized to increase oil

prices by 1% on impact.4 The IRFs track the dynamic response of structural innovations on the

level of the four endogenous variables. First, consider the effects of the oil supply shock (first

row). In the non-Gaussian model, a much larger disruption in supply is required to achieve a

price increase of the same magnitude. In turn, this leads to a considerably stronger response of

4For an alternative approach involving joint inference on impulse response functions see Inoue & Kilian
(2021).
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Table 2: Forecast Error Variance Decomposition (FEVD) of the real price of oil

horizon εst εeat εcdt εidt εme
t

Gaussian Model

4
0.32 0.04 0.58 0.04 0.01

(0.17, 0.51) (0.02, 0.08) (0.38, 0.74) (0.02, 0.1) (0, 0.02)

16
0.29 0.06 0.55 0.04 0.06

(0.16, 0.47) (0.03, 0.09) (0.36, 0.68) (0.02, 0.1) (0.03, 0.09)

Non-Gaussian Model

4
0.05 0.03 0.89 0.02 0.01

(0.02, 0.1) (0.01, 0.08) (0.81, 0.94) (0, 0.04) (0, 0.02)

16
0.06 0.04 0.82 0.03 0.03

(0.03, 0.11) (0.02, 0.09) (0.74, 0.88) (0.01, 0.07) (0.01, 0.07)

The table gives posterior median estimates of the contribution of each shock to the forecast error variance

of the real oil price at 4 and 16 months horizon. Values in brackets indicate corresponding 90% posterior

credibility sets.

global economic activity and draw-down of inventories compared to the Gaussian specification.

The opposite can be found for the consumption demand shock. Here, the estimated increase in

oil produced is considerably more muted in the non-Gaussian model. No significant difference

can be observed across the identification schemes for the response of global economic activity

and oil inventories. In line with the literature, economic activity may slightly increase while

inventories are drawn-up to mitigate some of the price increase.

IRFs to an Economic Activity (EA) shock are virtually indistinguishable across both iden-

tification approaches (BH19 and BH19+NG). An EA shock that increases oil prices by 1%

is associated with a slowly increasing production, increase in global activity and decrease in

inventories. With respect to the inventory demand shock, some subtle differences are found.

First, note that the response of world activity, oil price and inventory are quite similar across

specifications. For both models, oil prices and inventories display a positive co-movement, while

global activity is barely affected. However, the impact response of global oil production differs.

While in BH19, oil production is estimated to increase for a few months before gradually de-

creasing, the impact in the non-Gaussian model is virtually zero and is estimated to decrease

afterwards. Hence, in BH19+NG, the shock behaves similar to the oil supply news shock dis-

cussed in Känzig (2021). These shocks reflect an anticipated decrease in oil production, which

is associated with a sudden precautionary build-up of oil inventories and strong increase in oil

prices. Note, however, that the effect on oil prices is more muted than documented in Känzig

(2021).

Table 2 contains the forecast error variance decomposition of the real price of oil at 4 and

16 months horizon. Once more, the main difference across the two identification approaches is

found along the effects of supply- and consumption demand shocks (highlighted in bold). As

for the supply shocks, they are found to be much more important in the Gaussian model than
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the non-Gaussian model. In particular, posterior median estimates indicate that in the BH19

model, supply shock explain around one third of the variance observed in real oil prices, with

90% credible sets covering anything between 16% and 51%. On the contrary, if non-Gaussianity

is exploited as additional identification device, posterior median estimates suggest that supply

shocks explain only a very small fraction of oil price movements, with median estimates at just

6%. In this identification scheme, posterior credibility sets are substantially more narrow and

indicate that supply shocks are unlikely to explain more than 11% of the variation. Hence,

estimates within the BH19+NG model are more in line with previously reported values (Kilian

& Murphy; 2012, 2014). My findings suggest that even with a relatively diffuse prior for the

oil supply elasticity, one may end up with similar results if non-Gaussianity is exploited. As

for demand shocks, the opposite effect can be documented. Here, 90% posterior credible sets

suggest that in the Gaussian model, consumption demand shocks explain between 36% and

74% of the variation. This contrasts sharply with much larger estimates associated with the

non-Gaussian model. Specifically, posterior credible sets cover values between 74% and 94%.

3.3 Robustness

It is fair to say that for many experts in the oil market literature, the posterior of the short-run

price elasticity of demand (βqp) obtained under non-Gaussianity seems too large in absolute

terms. Typically, values below −0.8 have been considered unreasonable in various papers,

a value that corresponds to estimates of the long-run elasticity of demand (see for example

Hausman & Newey (1995)). In this case, the prior used in Table 1 is not appropriate, since

it attaches considerable mass to large negative values. A priori, the truncated t prior of table

1 implies p(βqp < −.8) ≈ 0.03. Also, the low degrees of freedom in the student-t prior is

not overly informative at the tails. To address this concern, I follow Kilian & Murphy (2012)

and Baumeister & Peersman (2013) and restrict βqp from below at −0.8, effectively truncating

the prior to lie on the interval (−0.8, 0). To maintain comparability, both Gaussian and non-

Gaussian model are re-estimated under the double truncated prior for βqp. Under the label

R1, posterior estimates for αqp, βqp and the contribution of εst to the FEVD of the real price

of oil are reported in Table 3. First, note that the estimates for the Gaussian model are not

affected under the alternative prior. This is not a surprise given that the bulk of the posterior

mass of βqp already lies above −0.8 in the baseline results (see Figure 4). In the non-Gaussian

model, 90% posterior credibility sets of βqp are now between −0.6 and −0.79 reflecting the

additional constraint. Other than that, imposing the alternative prior does not materially

affect the posterior of αqp nor estimates of the supply shocks contribution to the forecast error

variance of the oil price. While estimates are slightly higher than reported under the baseline

results, supply shocks still play a minor role. Point estimates suggest that only 10% of price

variation is driven by supply shocks.

In a second robustness check, I assess the sensitivity of the results to the large outliers

observed in crude oil production in the earlier part of the sample (see Figure C.13 for a time

series plot of the data). Therefore, I re-estimate the model using data from January 1985 to
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December 2019. Corresponding results are labeled as R2 in Table 3. Under the shorter sample,

the posterior of the Gaussian model point towards smaller elasticities (in absolute terms) of

supply and demand, which resembles findings of Aastveit et al. (2021). A similar pattern

applies to the results obtained by the non-Gaussian model. While the posterior for αqp is still

very close to zero, 90% credibility sets of βqp lie between −0.19 and −0.44. This is much

lower than observed in the full sample, and confirm earlier findings in the literature regarding a

possible break around 1985 (Baumeister & Peersman; 2013). Regarding the contribution of εst
to the FEVD of the real price, point estimates of around 18% obtained under the non-Gaussian

model are considerable higher than in the baseline specification. However, the same pattern is

observed in that once non-Gaussianity is introduced into the model, supply shocks become less

important than in the Gaussian model.

Table 3: Robustness analysis for the main empirical findings.

Gaussian Non-Gaussian
Panel A: Posterior αqp

5% 50% 95% 5% 50% 95%

R1 0.07 0.12 0.20 0.01 0.02 0.04
R2 0.03 0.07 0.13 0.01 0.03 0.05

Panel A: Posterior βqp

5% 50% 95% 5% 50% 95%

R1 -0.50 -0.32 -0.20 -0.79 -0.74 -0.60
R2 -0.28 -0.17 -0.10 -0.44 -0.29 -0.19

Panel C: Contribution of εst to the FEVD of the real price of oil
Gaussian Non-Gaussian

h = 4 h = 16 h = 4 h = 16

R1 0.31 0.29 0.09 0.1
(0.17, 0.5) (0.16, 0.46) (0.06, 0.15) (0.07, 0.16)

R2 0.32 0.29 0.18 0.18
(0.16, 0.54) (0.16, 0.47) (0.1, 0.29) (0.1, 0.28)

For robustness check R1, the model is re-estimated based on a student-t prior of βqy truncated on

the interval (−0.8, 0). For robustness check R2, the model is re-estimated based on a shortened sample

covering January 1985 to December 2019. In panel C, the values in brackets give 90% posterior confidence

sets.

4 Conclusion

In this paper, new evidence is provided on the relative importance of supply and demand shocks

for oil price fluctuations. To identify their effects, non-Gaussianity is exploited in addition to

a set of sign restrictions and weakly informative prior distributions spelled out directly on

structural parameters (Baumeister & Hamilton; 2019). The empirical findings indicate that

once the statistical properties of oil-market shocks are exploited for identification, oil supply
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shocks become minor drivers of oil prices. The results are able to confirm estimates obtained

previously in the literature (Kilian; 2009; Kilian & Murphy; 2012, 2014; Antoĺın-Dı́az & Rubio-

Ramı́rez; 2018), however, without the need of very strong identifying restrictions on underlying

structural parameters.

From an econometric point of view, this paper offers a novel Bayesian estimator for non-

Gaussian SVAR models. Specifically, each structural shock’s marginal density is modeled

non-parametrically using Bayesian infinite mixture models. The benefit from pursuing a non-

parametric approach is that one ends up with a fully automatic procedure, requiring no prior

knowledge on the form of non-Gaussianity a priori. The flexible density estimators are perfectly

able to exploit deviations from normality at any region of the sample space, and hence cap-

ture excess kurtosis, skewness or other type of non-Gaussianity often documented in structural

shocks.
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Appendix A Bayesian inference

A.1 Markov chain Monte Carlo algorithm

This part of the Appendix covers a generic MCMC algorithm to conduct inference for an

A type of SVAR model where shocks follow Dirichlet Process mixture models (DPMM). Let

α+ = vec(A+), Ai• the i-th row of A. Further, let A
′
i• = wi+Wiai where ai is a vector of ri free

elements, Wi a K × ri selection matrix of zeros and ones, and wi an K × 1 vector containing

either zero or the constrained values. Then, following section 2, the full hierarchical model

(including prior distributions) reads for i = 1, . . . , K and t = 1, . . . , T :

A(yt − A+xt) = εt, (A.1)

εit|θit ∼ N (µit, σ
2
it), (A.2)

ai ∼ p(ai) (A.3)

α+ ∼ N (mα+ , Vα+), (A.4)

θit ∼ Gi, (A.5)

Gi ∼ DP(Gi0, αi), (A.6)

Gi0 ∼ N iG(si/2, Si/2,mi, τi), (A.7)

αi ∼ G(aα, bα), (A.8)

τi ∼ iG(aτ/2, bτ/2), (A.9)

mi ∼ N (mm, Vm), (A.10)

where xt = [y′t−1, . . . , y
′
t−p, 1]

′ and A+ = [A1, A2, . . . , Ap, c].

Define the set of parameters by φ = {α+, ai, αi, τi,mi, i = 1, . . . , K} and the collection

of auxiliary mixing parameters by Θ = {θit, i = 1, . . . , K, t = 1, . . . , T}. Also, define the

augmented set of parameter by ξ = {φ,Θ}, and denote by ξ−x all parameter in ξ but x. Based

on arbitrary initial values, the following MCMC algorithm eventually generates draws ξ(l), l =

1, 2, . . . from the posterior distribution of p(ξ|Y ), by cycling through blocks of conditionals

distributions of subsets in ξ. The algorithm involves the following steps:

1. For i = 1, . . . , K, draw from the mixture parameters θit, t = 1, . . . , T . To achieve better

mixing properties of the Markov Chain, this step is performed using Algorithm 2 of Neal

(2000). Neal further splits the mixing parameters into two components: θit = θ⋆i,cit , where
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cit are latent discrete assignment variables and θ⋆ij are unique cluster parameters. The

algorithm involves drawing from two separate conditionals:

(a) First, consider the conditional of the assignment variables p(cit|Y, ξ−cit) for t =

1, . . . , T . These are discrete probability distributions given by:

P (cit = cij, j = 1, . . . , ki|ci,−t, εt) = b
n−t,cij

T − 1 + αi

F (εit|θ⋆i,cit),

P (cit ̸= cij for all j ̸= t|ci,−t, εt) = b
α

T − 1 + αi

∫
F (εit|θ)dG0(θ),

where ci,−t = {cij, j ̸= t}, cij, j = 1, . . . , ki are the unique values in ci,−t each of

count n−t,cij . Furthermore, b is a normalizing constant. Given the conjugate Base

distribution G0, the integral
∫
F (εit|θ)dG0(θ) is tractable and given in closed form.

Hence, drawing from the distribution is straightforward.

(b) The second conditional is that of the (active) cluster parameters p(θ⋆ij|Y, ξ−θ⋆ij
), j =

1, . . . , ki, which are given by:

σ⋆
ij
2 ∼ iG

(
aij, bij

)
µ⋆
ij ∼ N

(
mij, σ

⋆
ij
2V ik

)
with moments defined as follows:

aij =
si + Tij

2
, with Tij =

T∑
t=1

1{cit = j},

bik = 0.5

(
Si +

m2
i

τi
+
∑

t:cit=j

εit
2 −

m2
ij

V ij

)
,

V ij =

(
1

τi
+ Tij

)−1

,

mij = V ij

(
mi

τi
+
∑

t:cit=j

εit

)
.

2. The next step is to sample the hyperparameters {αi,mi, τi} (i = 1, . . . , K) from their

conditionals, which exactly follows Escobar & West (1995).

(a) With respect to αi, the procedure is given as foolows. First, draw an auxiliary

variable di and conditional on di, the concentration parameters αi for i = 1, . . . , K:

p (di|αi) ∼ Beta(αi + 1, T ),

p (αi|Y, ξ−α, di) ∼ πdiG (aα + ki, bα − log (di))

+ (1− πdi)G (aα + ki − 1, bα − log (di)) ,
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where πdi is defined as:
πdi

1− πdi
=

aα + ki − 1

T (bα − log (di))
.

(b) Draw p (mi|Y, ξ−mi
) ∼ N (mm,i, V m,i) where V m,i = τixσ⋆

i
Vσ⋆

i
, mm,i = (1− xσ⋆

i
)mm +

xσ⋆
i
Vσ⋆

i

(∑ki
j=1 σ

⋆
ij
−2µ⋆

ij

)
for V −1

σ⋆
i

=
∑ki

j=1 σ
⋆
ij
−2, and xσ⋆

i
= Vm/

(
mm + τiVσ⋆

i

)
(c) Draw p (τi|Y, ξ−τi) ∼ G(aτ,i, bτ,i) where aτ,i = aτ+ki

2
and bτ,i =

bτ+
∑ki

j=1(µ⋆
ij−mi)/σ⋆

ij
2

2
.

3. The third step involves drawing from each row in A via an independent Metropolis

Hastings step which is exact under a uniform prior. Recall that each row is given by

A
′
i• = wi+Wiai, where ai is a vector of ri free elements, Wi a K× ri selection matrix and

wi an K × 1 vector containing constrained values. To develop a proposal distribution,

I assume that the prior was uniform, that is p⋆(ai) ∝ c. Let U = [u1 : . . . : uT ]
′ for

ut = yt − A+xt, µi = [µi1, . . . , µiT ]
′ and Σi = diag ([σ2

i1, . . . , σ
2
iT ]). Then, the conditional

posterior is proportional to:

p⋆(ai|Y, ξ−ai) ∝ |A|T exp

(
−T
2
(ai − µai)

′ Ω−1
ai

(ai − µai)

)
,

where Ω−1
ai

= T−1W ′
iUΣ

−1
i UWi, µai = (W ′

iU
′Σ−1

i UWi)
−1W ′

iY
′(µi − Uwi). Chan et al.

(2021) derive an efficient way to sample from p⋆(ai|Y, ξ−ai) for wi = 0, which builds

on previous work of Waggoner & Zha (2003) and Villani (2009). In the following, I

generalize the sampling scheme for wi containing non-zero elements. Hereby, I closely

follow the exposition and notation of Villani (2009):

Definition 1. A random variable X follows the generalized absolute normal distribution

GAN(a, b, µ, ρ) if it has density function:

pGAN(x; a, b, µ, ρ) = c|a+ bx|
1
ρ exp

(
− 1

2ρ
(x− µ)2

)
, x ∈ R

where c is a normalizing constant, ρ ∈ R+, a ∈ R, b ∈ R, and µ ∈ R

Note that for a = 0, the absolute normal distribution is obtained as defined in Villani

(2009).

In the following, denote B−i the matrix B with the ith column deleted, B⊥ the or-

thogonal complement of B, and chol(B) the Choleski decomposition of B such that

chol(B)chol(B)′ = B. Also, denote by || · || the Euclidean norm and
d
= equality in

distribution.

Proposition 1. Under prior p⋆(ai), the conditional posterior p⋆(ai|Y, ξai) is given by:

ai
d
= Ri

ri∑
j=1

γjvj, (A.11)

31



where Ri = chol(Ωai), γ1 ∼ GAN(â, b̂, γ̂1, T
−1), γj ∼ N (γ̂j, T

−1) for j = 2, . . . , ri, γ̂j =

µ′
ai
R

′−1
i vj, v1 = RiW

′
i (A)−i⊥/||RiW

′
i (A)−i⊥||, (v2, . . . , vri) = v1⊥, â = det([A′

1•, . . . , wi, . . . , A
′
K•])

and b̂ = det([A′
1•, . . . ,WiRiv1, . . . , A

′
K•]).

Proof. For the decomposition ai = Ri

∑ri
j=1 γjvj, Waggoner & Zha (2003) shows that:

p⋆(ai|Y, ξai) ∝ |A|T exp

(
−T
2

[
ri∑
j=1

(γj − γ̂j)
2

])

where γ̂j = µ′
ai
R

′−1
i vj. Next, note that the determinant A is given by:

|A| = det

[
A′

1•| · · · |wi +WiRi

ri∑
j=1

γjvj| · · · |A′
K•

]

= det [A′
1•| · · · |wi| · · · |A′

n•] +

ri∑
j=1

γj det

[
A′

1•| · · · |WiRi

ri∑
j=1

vj| · · · |A′
K•

]

= det [A′
1•| · · · |wi| · · · |A′

K•]︸ ︷︷ ︸
â

+det

[
A′

1•| · · · |WiRi

ri∑
j=1

v1| · · · |A′
K•

]
︸ ︷︷ ︸

b̂

γ1

where the last line follows by construction of (v2, . . . , vri) spanning the same space than

(A′)−i. The result follows that:

p⋆(ai|Y, ξ−ai) ∝ |â+ b̂γ1|T exp

(
−T
2
(γ1 − γ̂1)

2

) ri∏
j=2

exp

(
−T
2
(γj − γ̂j)

2

)

In order to sample efficiently from p⋆(ai|Y, ξ−ai), I follow Villani (2009) and use a mixture

of two Gaussians to approximate γ1 ∼ GAN(â, b̂, γ̂1, T
−1). The motivation for the ap-

proximation follows from the fact that GAN(a, b, µ, ρ) is bimodal. Specifically, two roots

are given at:
bµ− a±

√
((a− bµ)2 + 4b(aµ+ b))

2b
,

Corresponding curvature is given by:

−
[
d2

dx2
ln pGAN(x; a, b, µ, ρ)

]−1
∣∣∣∣∣
x=x0

= ρ
(a+ bx0)

2

a2 + 2abx0 + b2x20 + b2
.

Hence the following normal approximation:

pGAN(x; a, b, µ, ρ) ≈ wN (x, µ1, σ
2
1) + (1− w)N (x, µ2, σ

2
2),
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where µ1 =
bµ−a+

√
((a−bµ)2+4b(aµ+b))

2b
, µ2 =

bµ−a−
√

((a−bµ)2+4b(aµ+b))

2b
, σ2

i = ρ (a+bµi)
2

a2+2abµi+b2µ2
i+b2

,

i = 1, 2 and w = pGAN (µ1;a,b,µ,ρ)∑2
j=1 pGAN (µj ;a,b,µ,ρ)

is set to take into account different heights of the

density at the modes. Similar to Villani (2009), I find that this approximation work

extremely well in practice and can be taken as exact. If desired, however, one might

obtain an exact sampler by correcting for the approximation error in the Metropolis

Hastings step.

In any case, such a step is necessary when working with a more general prior for p(ai) than

the uniform used to derive p⋆(ai|Y, ξai). In most cases, it will suffice to use a Metropolis

Hastings step that corrects for the fact that p⋆(ai|Y, ξai) is missing the information from

a non-uniform prior p(ai). Denote by a
(l−1)
i the current state of the Markov chain and

by a′i ∼ p⋆(ai|Y, ξai) the proposed value under a uniform prior. Then, the MH algorithm

proceeds setting a
(l)
i = a′i with probability αMH = min

{
1,

p(a′i)
p(a

(l−1)
i )

}
. If the proposed draw

is not accepted, a
(l)
i = a

(l−1)
i .5

4. The forth block draws from the conditional distribution of the VAR autoregressive pa-

rameters. Let µt = [µ1t, . . . , µKt]
′ and Σt = diag ([σ2

1t, . . . , σ
2
Kt]) The conditional posterior

of α+ is given by:

p(α+|Y, ξ−α+) ∼ N
(
µA, V A

)
, (A.12)

where

V α+ =

(
V −1
α+

+
T∑
t=1

(xt ⊗ IK)
(
A′Σ−1

t A
)
(x′t ⊗ IK)

)−1

, (A.13)

µα+
= V α+

(
V −1
α+
mα+ +

T∑
t=1

(xt ⊗ IK)
(
A′Σ−1

t A
)
ỹt

)
, (A.14)

for ỹt = yt − A−1µt.

A.2 Adjustments to inference for the oil market model

The algorithm outlined in Appendix A.1 is not directly applicable to the oil-market model

outlined in section 3. The reason is that ui
⋆

t , the forecast error of the scaled up oil inventories,

is an unobserved latent variable. To get around this problem, I include ui
⋆

t into the set of latent

variables and infer it from the data within the MCMC algorithm. Specifically, the forth block

is altered as to draw from p(α+, u
i⋆|Y, ξ{−α+,−ui⋆}), where u

i⋆ = [ui
⋆

1 , . . . , u
i⋆

T ]
′. Specifically, I

5The average acceptance probability varies with the strength of the prior. For priors of the type considered
in the empirical application, the probability is between 0.88− 0.98, depending on the row.
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make use of the possibility to marginalize over ui
⋆
when sampling α+. The adjusted forth block

of the MCMC algorithm draws from:

p(α+, u
i⋆ |Y, ξ{−α+,−ui⋆}) = p(α+|Y, ξ{−α+,−ui⋆})︸ ︷︷ ︸

normal

p(ui
⋆
t |α+, Y, ξ{−α+,−ui⋆})︸ ︷︷ ︸

normal

.

In words, first a draw of α+ is generated from the conditional posterior marginal of ui
⋆
. The

second step draws ui
⋆
conditional on α+. To derive both steps, note that one may readily

marginalize out ui
⋆

t to obtain the likelihood function of the observed forecast errors. Conditional

on auxiliary mixture parameters in Θ, the model is given as:

A

(
yt − A+xt

ui
⋆

t

)
= εt, εt ∼ N (µ̃t, Σ̃t).

Since the measurement error ε5t ∼ N (0, σ2
5) is Gaussian, we have that µ̃t = [µ′

t, 0]
′, and Σ̃t =

diag ([v′t, σ
2
5]

′). Manipulating the equation, the reduced form can be obtained:(
yt

ui
⋆

t

)
=

(
A+xt

0

)
+A−1µ̃t + η̃t, εt ∼ N (0,A−1Σ̃tA

−1′), (A.15)

which defines the joint likelihood of Y and ui
⋆

t . Define J s.t. ut = Jũt. Then, using standard

results of multivariate Gaussian densities, the marginal likelihood is simply given:

p(Y |α+, ξ{−α+,−ui⋆}) ∝ |Ωt|−T/2 exp

(
T∑
t=1

(ỹt − A+xt)
′Ω−1

t (ỹt − A+xt)

)
(A.16)

for ỹt = yt − JA−1µ̃t and Ωt = JA−1Σ̃tA
−1′J ′. Given the likelihood, its straightforward to

obtain the conditional posterior p(α+|Y, ξ{−α+,−ui⋆}) ∼ N (µA, V A)

V A =

(
V −1
A +

T∑
t=1

(xt ⊗ IK) Ω
−1
t (x′t ⊗ IK)

)−1

, (A.17)

µA = V A

(
V −1
A mα+ +

T∑
t=1

(xt ⊗ IK) Ω
−1
t ỹt

)
, (A.18)

The second step involves drawing from p(ui
⋆
t |α+, Y, ξ{−α+,−ui⋆}) which can be obtained using

standard results for multivariate normal distributions. Define

A−1Σ̃tA
−1′ = Ω̃t =

(
Ω̃t,11 Ω̃t,12

Ω̃t,21 Ω̃t,22

)
,
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and J2 a 1× (K +1) vector s.t. J2ũt = ui
⋆

t . Then, for t = 1, . . . , T , this conditional is given as:

p(ui
⋆
t |α+, Y, ξ{−α+,−ui⋆}) ∼ N (ui

⋆

t , V ui⋆
t
)

ui
⋆

t = J2A
−1µ̃t + Ω̃t,21Ω̃

−1
t,11(ỹt − A+xt − JA−1µ̃t)

V ui⋆
t
= Ω̃t,22 − Ω̃t,21Ω̃

−1
t,11Ω̃t,12

A.3 Markov chain Monte Carlo algorithm for the Gaussian oil mar-

ket model

The MCMC algorithm for the Gaussian model is derived in the following. First, note the model

which is given as follows:

Ãũt = εt, εt ∼ (0, IK+1),

where Ã = AΣ
−1/2
ε , ũt = [u′t, u

i⋆

t ]
′ and ut = yt − A+xt. Let γA be the underlying parameters

of Ã with prior distribution p(γA). As previously, the autoregressive parameters α+ = vec(A+)

are given a normal prior α+ ∼ N (mα+ , Vα+). Then, the MCMC algorithm generates random

draws from the following posterior distribution:

p(γA, α+, u
i⋆|Y ) = p(γA|Y )︸ ︷︷ ︸

unknown→RW-MH

p(α+|γA, Y )︸ ︷︷ ︸
normal

p(ui
⋆|γA, α+, Y )︸ ︷︷ ︸
normal

.

As in Baumeister & Hamilton (2019), draws from p(γA|Y ) are generated via an Random

Walk Metropolis Hastings algorithm, while conditional on these draws, p(α+|γA, Y ) and then

p(ui
⋆|γA, α+, Y ) are simple normal distributions and readily available.

To run the Random Walk MH algorithm, it is necessary to evaluate p(γA|Y ). This is derived

in the following. First, note the likelihood is given as a special case of equation (A.16):

p(Y |γA, α+) ∝ |Ω|−T/2 exp

(
T∑
t=1

(yt − A+xt)
′Ω−1 (yt − A+xt)

)
.

for Ω = JÃ−1Ã−1′J ′ is a function of γA. Based on Bayes theorem, the marginal posterior

p(Y |γA) can be obtained as follows:

p(γA|Y ) ∝ p(γA)× p(Y |γA) (A.19)

∝ p(γA)×
p(Y |γA, α+)p(α+)

p(α+|γA, Y )
, (A.20)
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which can be evaluated at any α+. The missing ingredient is p(α+|γA, Y ), the conditional

posterior of α+. As in the non-Gaussian model, this a normal p(α+|γA, Y ) ∼ N (µα+
, V α+)

with moments given as:

V α+ =

(
V −1
α+

+
T∑
t=1

(xt ⊗ IK) Ω
−1 (x′t ⊗ IK)

)−1

, (A.21)

µα+
= V α+

(
V −1
α+
mα+ +

T∑
t=1

(xt ⊗ IK) Ω
−1yt

)
, (A.22)

In practice, I evaluate the right hand side of (A.20) at α+ = µA, yielding

p(γA|Y ) ∝ p(γA)
|Ω|−T/2|Vα+ |−1/2

|V A|−1/2
exp

(
−0.5

T∑
t=1

û′tΩ
−1ût − 0.5 (µA − µA)

′ V −1
α+

(µA − µA)

)
.

for ût = yt − (x′t ⊗ IK)µA. For large systems of equations or VAR models with many lags,

substantial computational gains can be obtained by using a prior of the form p(α+|γA) ∼
N (µA,Ω⊗Vα+), circumventing the need of inverting a K(Kp+1) square matrix V

−1

A to obtain

µA.

Finally, p(ui
⋆

t |γA, α+, Y ) is derived as in Appendix A.2. That is, defining

Ã−1Ã−1′ = Ω̃ =

(
Ω̃11 Ω̃12

Ω̃21 Ω̃22,

)

the conditional posterior is normal given as follows:

p(ui
⋆

t |γA, α+, Y ) ∼ N (ui
⋆

t , V ui⋆
t
),

ui
⋆

t = Ω̃21Ω̃
−1
11 (yt − A+xt),

V ui⋆
t
= Ω̃22 − Ω̃21Ω̃

−1
11 Ω̃12.

Appendix B Convergence Properties MCMC

To study the convergence properties of the MCMC, I simulate artificial data of size T = 500

from the following stylized bivariate model of supply and demand:

qt =αqppt + σ1ε1t

qt =βqppt + σ2ε2t

where εt ∼ (0, I2). Regarding the error term, I set εit =
√

ν
ν−2

ε̃it, i = 1, 2 for ε̃it ∼ tη where tη

is the student-t distribution with η degrees of freedom. The values of the parameters are set

to αqp = 0.05, βqp = −0.35, σ1 = 1 and σ2 = 0.5. When estimating the model, the following

prior is used for A: p(αqp) ∼ t0,∞(0.1, 0.2, 3) and p(βqp) ∼ t0,∞(−0.1, 0.2, 3), that is truncated
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t distributions with modes at 0.1 and −0.1, scale of 0.2 and 3 degrees of freedom. In this

scenario, generating 1000 random draws from the MCMC algorithm takes about 13 seconds

using a standard i5 Laptop processor.6 To contrast the results to those of a Gaussian model,

the model is also estimated using the methodology of Baumeister & Hamilton (2015).

B.1 Strong identification via non-Gaussianity

I start with simulating data using η = 3 degrees of freedom, which corresponds to strong

identification from non-Gaussianity. First, Figure B.6 shows the simulated structural shocks

(top panel) along with estimated 90% posterior credibility sets for the corresponding predictive

density obtained in the non-Gaussian model. The latter, highlighted by red dashed lines,

demonstrate that the DPMM-SVAR can capture well the strong non-Gaussian shape in the

data. Particularly the second shock has strong outliers leading to very heavy tails.

Second, Figure B.7 shows a Markov chain of length 100000 for αqp and βqp obtained by saving

every 10th draw. For both models, Gaussian and Non-Gaussian, visual inspection indicates that

the MCMC seems to have converged reasonably well. As a summary statistic of the underlying

autocorrelation, Gewekes Relative Numerical Efficiency (RNE) statistics are printed into each

subplots title. As described in Geweke (1992), the RNE carries the interpretation of the ratio

of number of replications required to achieve the same efficiency than drawing iid from the

posterior. The RNE values documented for the Algorithm suggest a fairly high autocorrelation

in the draws even after the thinning of the Markov Chain by factor of 10. This suggest that

similar to the algorithm of Baumeister & Hamilton (2015), one should consider a relatively

large Markov chain of 100000 to obtain comparably precise results of at least 1000 iid draws.

Finally, Figure B.8 compares the priors used to the posterior distribution obtained in the

Gaussian (top panel) and non-Gaussian model (bottom panel). In the Gaussian model, the data

seems to be totally uninformative about the value of αqp, while the value of βqp is estimated

fairly precisely. As expected, once non-Gaussianity is taken into account, posterior mass shifts

towards the true value of αqp, and further narrows down the value of βqp.

6For the computations in this paper, a Intel(R) Core(TM) i5-6300U CPU with 2.40GHz was used.
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Figure B.6: Simulated structural shocks (top panel) and estimated posterior predictive densities
under the non-Gaussian model. Red dashed lines indicate 90% posterior credibility sets, the
black line that of a unit variance standardized t3 distribution, and the blue line gives the
standard normal density.
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Figure B.7: Markov Chain Monte Carlo output of length 100’000. Top panel: Gaussian model
with MCMC as in Baumeister & Hamilton (2015). Bottom panel: MCMC of non-Gaussian
model as described in Appendix A.1.
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Figure B.8: Prior (orange line) and posterior density of the two structural parameters αqp and
βqp. Top panel: Gaussian model. Bottom panel: non-Gaussian model.

B.2 Weak identification via non-Gaussianity

In the second case I use η = 10 degrees of freedom, which should yield considerably less

identifying information from non-Gaussianity. As evident in Figure B.9, the simulated shocks

are closer to normality and estimated 90% posterior credibility sets of the posterior predictive

distribution includes the Gaussian bell curve. Regarding MCMC efficiency, visual inspection

of the Markov Chains printed in Figure B.10 suggests no apparent problem with the MCMC.

However, the RNE values deteriorates somewhat, which is to be expected for Gibbs sampler

type MCMC algorithms under weak identification. Finally, Figure B.11 shows that under

weaker identification by non-Gaussianity, the posterior is naturally less informative about the

structural parameters. However, given a more concentrated posterior of αqp near zero, some

additional information is contained in the likelihood if compared to the Gaussian model.
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Figure B.9: Simulated structural shocks (top panel) and estimated posterior predictive densities
under the non-Gaussian model. Red dashed lines indicate 90% posterior credibility sets, the
black line that of a unit variance standardized t10 distribution, and the blue line gives the
standard normal density.
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Figure B.10: Markov Chain Monte Carlo output of length 100’000. Top panel: Gaussian model
with MCMC as in Baumeister & Hamilton (2015). Bottom panel: MCMC of non-Gaussian
model as described in Appendix A.1.
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Figure B.11: Prior (orange line) and posterior density of the two structural parameters αqp and
βqp. Top panel: Gaussian model. Bottom panel: non-Gaussian model.

B.3 Empirical application

As a last exercise, Figure B.12 provides a plot of the Markov Chains corresponding to each

element of A in the empirical application (section 3). It is fair to say that one might expect a

slightly slower convergence given the additional complexity that comes with inferring the latent

inventory series. Visual inspection suggest good convergence of the algorithm, however. Still,

large RNE suggest a fairly high autocorrelation in the draws justifying the use of very long

Markov Chain.
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Figure B.12: Markov Chain Monte Carlo output of each element of A obtained under the non-
Gaussian model of section 3.

Appendix C Supplementary Figures
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Figure C.13: Oil market dataset
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Figure C.14: Prior (orange line) and posterior density of the remaining structural parameters.
Top panel: Gaussian model. Bottom panel: non-Gaussian model.
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