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“... liquidity—the ability to trade when and where you want to trade,
in significant size and without much cost.”

— Larry Harris, Trading & Electronic Markets:
What Investment Professionals Need to Know

(2015, p. 1)

1 Introduction
How large are trading frictions in over-the-counter (OTC) financial markets? How much do these
frictions and the associated welfare losses vary across markets and across normal and turbulent
times? What is the role of search frictions facing clients and of intermediaries’ market power in
explaining these cross-market di!erences? To provide quantitative answers to these questions, we
estimate a novel dynamic structural model of OTC market liquidity for the corporate as well as
government bond markets—two of the most important markets in the financial system.

We find that search frictions in the UK government bond market are quantitatively modest,
with the estimated welfare loss amounting to 2.38% relative to a frictionless benchmark. In
contrast, search frictions in the UK corporate bond market are more pronounced, generating a
welfare loss of 4.95%. Notably, the majority of welfare losses in both markets stem from search
delays, with intermediation frictions contributing negligibly to the welfare loss in the government
bond market and accounting for only 0.10% in the corporate bond market. In total, the welfare
impact of OTC trading frictions is 2.38% in the government bond market and 5.05% in the
corporate bond market under normal market conditions. When we re-estimate the model using
data from the COVID-19 crisis, the welfare losses rise sharply to 3.63% in the government bond
market and 11.35% in the corporate bond market.1 This increase—particularly in the role of
intermediation frictions in the corporate bond market—highlights the fragility of the OTC market
structure in times of stress.

To arrive at these estimates, our paper makes a contribution to both the theoretical and empir-
ical literatures on OTC markets. Our empirical analysis uses a non-anonymous transaction-level
dataset which covers close to the universe of all secondary market trades in the UK government
and corporate bond markets. Importantly, we are able to identify a common set of clients who are
actively trading in both markets and who drive the majority of the trading volume in the client-
dealer segment of both markets. This unique feature of the data allows us to exploit cross-market
di!erences in all three main dimensions of market liquidity: trading frequency, trade size, and
trade cost. Comparing trading frictions across markets is a hard task because client composition
is endogenous to the given market in question. Our approach of keeping the set of clients fixed in
the two markets goes a long way in addressing these selection issues, allowing for a comparison of

1For more details, see Appendix B.

2



the trading frictions that the same clients face in two di!erent markets.
The theoretical contribution of the paper is to develop a structural model of OTC trading with

two-sided search and bilateral bargaining that can be estimated using transaction-level data with
client identities. Building on the stationary version of Lagos and Rocheteau (2009), we extend
the framework along three key dimensions to better capture the realities of fixed-income markets.
First, clients in our model hold positions in two OTC-traded assets—government and corporate
bonds—allowing us to analyze cross-market interactions and conduct quantitative comparisons.
Second, we introduce a “core” of intermediaries who bargain with dealers in the inter-dealer market,
generating endogenous inter-dealer price dispersion and allowing us to quantify the passthrough of
inter-dealer market frictions to clients’ trade costs. Finally, we incorporate multi-dimensional het-
erogeneity in client characteristics, which is motivated by the substantial client-level heterogeneity
we document in both the government bond and the corporate bond market. We introduce client
heterogeneity both in the frequency of preference shocks and of the arrival of trading opportunities
that, in turn, translates into heterogeneity in clients’ endogenous trade frequencies as in the data.

In our dynamic model, clients have heterogeneous and time-varying marginal utilities for hold-
ing the two assets, leading them to prefer di!erent portfolios from one another and to adjust
their holdings over time. Clients’ marginal utility types are binary, high or low, and change over
time following client-specific continuous-time Markov chains. Thus, a given client has an ideal
high-type portfolio and an ideal low-type portfolio in mind. If a client’s current taste matches her
ideal portfolio, the client is happy and does not need to trade. However, a switch of the client’s
taste from high to low, or vice versa, makes the client want to update her portfolio accordingly.
Importantly, these two ideal portfolios and the resulting trade sizes the client wants to trade are
a!ected by how frequently she expects to switch to the opposite taste type and how frequently she
can match a dealer to trade either asset. These features represent the novel client heterogeneity
dimensions of our model relative to Lagos and Rocheteau (2009), and they are tightly linked to
our model’s two-asset structure.

Clients in our model trade exclusively with dealers in a bilateral fashion subject to search
frictions. Dealers, in turn, can o"oad undesirable inventory positions—whether long or short—to
core broker-dealers without search frictions but still via bilateral bargaining. Core broker-dealers,
however, trade amongst themselves multilaterally and without frictions. The presence of bilateral
bargaining both in the inter-dealer segment and the client-dealer segment leads to inter-dealer
price dispersion as well as client-specific bid and ask prices. When switching from the low-type
portfolio to the high-type portfolio, the client pays a negotiated ask price per share of the asset
bought from the dealer. Vice versa, when switching from the high-type portfolio to the low-type
portfolio, the client receives a negotiated bid price per share of the asset sold to the dealer. In the
end, our model generates client-specific trade frequencies, trade sizes, and prices as in the data.
This close resemblance of our model’s endogenous outcomes with the transaction-level data from
the real-world fixed-income markets allows us to identify the deep parameters of our model.

3



Despite rich heterogeneity in the model, the equilibrium can be characterized in closed form in a
special case of the model with iso-elastic utility. This allows us to derive a number of equilibrium
objects that are readily observable from the data as (distributions or integral transforms of)
closed-form expressions. These include, from each market, trading volume, client-dealer price
dispersion, inter-dealer price dispersion, average client trade cost, the distribution of client-specific
average trade frequencies, and the distribution of client-specific average trade size. We then use
these data moments to estimate some of the deep parameters of our structural model. The
estimation results reveal substantial di!erences in trading delays across the two markets. The
median client spends less than five minutes searching to trade a government bond, compared to
approximately 45 minutes for a corporate bond. At the 75th percentile, clients require about half a
day to complete a government bond transaction, and nearly 1.4 days for a corporate bond. These
findings underscore the stark contrast in search frictions between the two markets. Furthermore,
the estimated share of transaction surplus lost by clients is more than nine times higher in the
corporate bond market than in the government bond market. We then decompose these client
losses into two components: dealers’ market power and the passthrough of inter-dealer market
frictions. In the government bond market, nearly all client losses stem from the passthrough
of inter-dealer frictions. In contrast, in the corporate bond market, roughly one-third of the
lost surplus is attributable to dealer market power, and the remaining two-thirds to inter-dealer
frictions.

To fully exploit the granularity of our dataset and the rich client heterogeneity in our model,
we non-parametrically estimate the joint distribution of three client-specific characteristics: taste
shock frequency, meeting rate with government bond dealers, and meeting rate with corporate
bond dealers. We begin by formally proving that, given the market-wide parameters, observing
clients’ trading frequencies in government bonds, trading frequencies in corporate bonds, and
trade sizes in either market is su#cient to uniquely identify this joint distribution. We then
embed this identification result into a fixed-point algorithm, which becomes a core component of
our estimation strategy and enables a non-parametric recovery of the joint distribution of clients’
three-dimensional characteristics. The intuition behind this result is as follows. Let ω0 denote
a client’s taste shock frequency, ω1 her meeting rate with government bond dealers, and ω2 her
meeting rate with corporate bond dealers. A client’s government bond trade frequency increases
with ω0 and ω1, but decreases with ω2; her corporate bond trade frequency increases with ω0 and
ω2, but decreases with ω1; and her trade size in either market increases with both ω1 and ω2, but
decreases with ω0. As a result, each of the three observable client-level moments provides distinct
information about the underlying vector (ω0, ω1, ω2). This structure e!ectively yields a system of
three equations in three unknowns for each client, allowing us to identify each individual’s taste
shock frequency and matching e#ciencies in the two markets.

The identification of client-specific characteristics, as described above, forms the inner loop
of our estimation procedure. In the outer loop, we recover the market-wide parameters using a
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minimum-distance estimation strategy that leverages both market-level moments and client-level
moments not utilized in the inner loop. With both the client-level heterogeneity and market-wide
parameters in hand, we next proceed to conduct our welfare analyses.

To compare the two markets in terms of the welfare consequences of their friction levels, we
use our parameter estimates and calculate the market participants’ welfare in equilibrium, in the
first-best allocation (the solution to an unconstrained planner’s problem), and in the second-best
allocation (the solution to a constrained planner’s problem). We confirm that the first-best alloca-
tion coincides with the frictionless benchmark allocation and that the second-best coincides with
the allocation which would obtain if intermediaries did not capture any transaction surplus. This
analysis allows us to decompose the total welfare loss into a component caused by intermediation
frictions and another component caused purely by search frictions. We find that the total welfare
losses in the government and corporate bond markets are 2.38% and 5.05%, respectively, and our
decomposition implies that these losses are almost exclusively caused by search frictions in both
markets. To gauge the reliability of our welfare loss estimations, we calculate the minimum and
the maximum welfare loss implied by the 95% confidence intervals of our baseline parameter es-
timates. The resulting bounds are 2.14% and 3.00% for the welfare loss in the government bond
market and 4.36% and 6.31% in the corporate bond.

In the last part of the paper, we re-estimate the model parameters to match trading activity
during the COVID-19 crisis. Our parameter estimates imply that the total welfare losses in the
government and corporate bond markets are 3.63% and 11.35%, respectively, and our decompo-
sition implies that this loss is almost exclusively caused by search frictions in the government
bond market as in normal times, while intermediation frictions’ share in the welfare loss in the
corporate bond market increased from around 2% to 30%. Overall, these estimates imply that
the welfare losses from OTC market frictions are especially severe during turbulent times. One
counterfactual exercise we conduct is about what the resulting welfare losses would be if the OTC
market structure were not particularly fragile during turbulent times. To this end, we calculate
the welfare losses by keeping matching e#ciency and intermediation frictions exactly at the level
of normal times, but accommodating the clients’ preference parameters that reflect the COVID-19
shock. We find that the total welfare loss in the government and corporate bond markets would
be 2.54% and 5.24%, respectively. This counterfactual analysis implies that the vast majority of
the additional welfare loss during turbulent times is because of the fragility of the OTC market
structure when faced with a large negative shock.

1.1 Related Literature

There is a vast literature on empirical analysis of OTC financial markets. See, for example,
Garbade and Silber (1976), Edwards, Harris, and Piwowar (2007), Jankowitsch, Nashikkar, and
Subrahmanyam (2011), Di Maggio, Kermani, and Song (2017), O’Hara, Wang, and Zhou (2018),
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Li and Schürho! (2019), Dick-Nielsen, Poulsen, and Rehman (2021), Kondor and Pintér (2022),
and Kargar, Lester, Plante, and Weill (2023). While these papers o!er reduced-form empirical
analyses to determine stylized facts specific to OTC markets and to test some economic hypotheses
that may explain those stylized facts, we o!er a structural empirical analysis of the determinants
of OTC market liquidity through the lens of a search-based model. Hotchkiss and Jostova (2017),
Cestau, Hollifield, Li, and Schürho! (2019), and Bessembinder, Spatt, and Venkataraman (2020)
provide recent surveys of the empirical literature. Notably, Kargar, Lester, Plante, and Weill
(2023) is the only empirical study to directly measure trading delays. Their identification strategy
exploits fragmentation in the US corporate bond market with centralized auctions and decentral-
ized bilateral trade. They use the time of a failed centralized auction as the time of an investor’s
first e!ort to execute a particular decentralized transaction. In the absence of data on centralized
auctions, we follow a structural approach to measure trading delays in the UK’s government and
corporate bond markets.

A theoretical literature following Du#e, Gârleanu, and Pedersen (2005) and Lagos and Ro-
cheteau (2009, henceforth LR) that modeled OTC financial markets with a dynamic search-based
framework focused mostly on o!ering qualitative insights. See Weill (2020) for a recent survey.
Inspired by the empirical studies documenting a high level of heterogeneity among clients, we
develop an intermediated OTC market model with ex-ante heterogeneity by extending LR and
structurally estimate it.2 The list of papers that adopt an intermediated OTC market framework
featuring an inter-dealer market without search frictions similar to LR includes Lagos and Ro-
cheteau (2006), Lester, Rocheteau, and Weill (2015), Sultanum (2018), Kargar, Passadore, and
Silva (2020), Chang and Zhang (2021), Colliard, Foucault, and Ho!mann (2021), Chiu, Davoodal-
hosseini, and Jiang (2022), Cohen, Kargar, Lester, and Weill (2023), and Li (2024), among others.
These studies primarily o!er theoretical insights, with a few incorporating calibrated numerical
exercises. In contrast, we structurally estimate our model to compare the distributions of clients’
exposure levels to frictions and the dealers’ market power in the UK government bond and corpo-
rate bond markets. Accordingly, we also quantify the welfare loss from search and intermediation
frictions in these markets. In terms of theoretical contribution, to the best of our knowledge, our
paper o!ers the only LR extension with multiple interdependent assets, which is essential to shed
light on the cross-asset liquidity interactions.3

Structural estimation of dynamic decentralized trading models is an understudied but fast-
growing area. Examples include Feldhütter (2012), Albuquerque and Schroth (2015), Gavazza
(2016), Brancaccio, Li, and Schürho! (2017), Buchak, Matvos, Piskorski, and Seru (2020), Hen-
dershott, Li, Livdan, and Schürho! (2020), Liu (2020), Coen and Coen (2021), Lu, Puzzello, and

2Empirical work that studied heterogeneity among clients in OTC markets includes O’Hara, Wang, and Zhou
(2018) and Hendershott, Li, Livdan, and Schürho! (2020), among others.

3Li (2024) also studies an LR extension with multiple assets. Her model assumes independent asset payo!s, and
so, it does not result in any cross-asset interaction liquidity-wise.
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Zhu (2023), and Brancaccio and Kang (2024). Our key contribution relative to these papers is
that we develop and estimate a multi-asset model, while these papers’ model feature trading of
a single asset. A second contribution is that, with the exception of Coen and Coen (2021), Lu,
Puzzello, and Zhu (2023), and Brancaccio and Kang (2024), this literature models the trade of an
indivisible unit of an asset, while we model trading of divisible assets with trade sizes optimally
chosen. The main benefit of this modeling choice in the context of structural estimation is that
asset divisibility allows us to use information on trade sizes to identify the deep parameters of our
model.4 Trade sizes are especially important in identifying simultaneously the clients’ preference
shock frequency and matching e#ciency with dealers from transaction-level data.5 In their in-
dependent, contemporaneous work, Coen and Coen (2021) and Brancaccio and Kang (2024) also
allow for endogenous trade sizes in a decentralized market with all-to-all trading à la Üslü (2019).
As in Üslü (2019), these papers assume that all market participants split transaction surpluses in
half. This precludes the possibility of identifying dealers’ market power within the context of their
model, while it is one of our main motivations in this paper. In addition, we develop a multi-asset
model to be able to capture liquidity spillovers between the government and the corporate market,
while these papers all o!er single-asset models.

There is also a literature on structural estimation of static decentralized trading models. See,
for example, Eisfeldt, Herskovic, Rajan, and Siriwardane (2018), Allen, Clark, and Houdec (2019),
Allen and Wittwer (2021), Hendershott, Livdan, and Schürho! (2021), and Beltran (2022). Be-
cause of their static nature, these models do not feature explicit trading delays, and typically rely
on reduced-form search costs. Our dynamic model, instead, features trading delays, and search is
costly because of delayed trade, not because there are physical search costs. This is arguably a
realistic approach to search in financial markets.6 Another strand of literature estimates auction
models to analyze primary markets. In contrast, our focus is on secondary market trading in
OTC financial markets. For examples of the estimation of primary market auction models, see
Kang and Puller (2008), Hortaçsu and McAdams (2010), and Kastl (2011), among others. Clark,
Houdec, and Kastl (2021) provide a survey of this literature.

Finally, there is a tradition of estimating structural search models in labor economics, industrial
organization, and financial intermediation literatures. A non-exhaustive list of papers includes
Eckstein and Wolpin (1990) and Gautier and Teulings (2015) from labor economics; Hong and
Shum (2006), De los Santos, Hortaçsu, and Wildenbeest (2012), and Galenianos and Gavazza

4In addition, trade size heterogeneity is a prevalent empirical fact in markets for financial assets as we show in
the UK government bond and corporate bond markets and as Üslü (2019) shows in the US corporate bond market.

5For example, Gavazza (2016) can also identify simultaneously the preference shock frequency and the matching
e"ciency in the market for business aircraft, in which the traded asset is naturally indivisible and trade sizes are
fixed at one. The fraction of aircraft for sale is an observed variable in his dataset, which helps him identify the
preference shock frequency and the matching e"ciency in the absence of trade size variation. In transaction-level
data from financial markets, there is no counterpart of the fraction of aircraft for sale, but there is trade size
variation, which motivates our modeling choice.

6See Weill (2020) for a discussion.
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(2017) from industrial organization; and Hortaçsu and Syverson (2004), Woodward and Hall
(2012), and Egan (2019) from financial intermediation. See Eckstein and van den Berg (2007)
and Gavazza and Lizzeri (2021) for more comprehensive surveys. Another important feature of
our analysis—in addition to our special focus on studying and comparing di!erent markets—is
the emphasis we place on endogenous trade sizes and asset divisibility. These other contributions
model instead negotiating over an indivisible unit of labor or of a financial or consumer product.

The rest of the paper is organized as follows. Section 2 introduces the dataset we use and
provides descriptive statistics for the data moments we employ in the structural estimation stage.
Section 3 introduces the structural model environment, characterizes its equilibrium, and derives
formulae for the theoretical moments. Section 4 describes the estimation procedure, reports the
parameter estimates and the bootstrap standard errors, and presents our counterfactual analyses
regarding welfare. Section 5 concludes. Appendix A presents the formal results on the identifi-
cation of clients’ characteristics. Appendix B re-estimates the model parameters to fit data from
the COVID-19 crisis.

2 Data and Measurement

2.1 Data Source and Sample Selection

To compare trading frictions across government and corporate bond markets, we use a regulatory,
trade-level dataset, which covers close to the universe of secondary market trades in the UK
markets. A main advantage of the so-called ZEN database is that, unlike other datasets typically
employed in the literature (e.g. TRACE), it contains the identities of both counterparties for each
transaction in addition to information on the time stamp, the transaction amount and price, the
International Securities Identification Number, the account number, and buyer-seller flags.7 The
granularity of the dataset also allows us to identify clients who trade in both government and
corporate bonds in a given time period. This feature of the data enables us not only to explore
heterogeneity in search frictions across clients, but across markets as well.8

Our baseline sample covers the period between Aug 2011 and Dec 2017. We apply standard
filters to exclude duplicate trades, transactions below £1,000 par value, missing identifiers, and
erroneous entries. We identify 526 clients who are active in both markets, and whose trades
account for the majority of total client trading volume. Moreover, our definition of dealers is the
set of gilt-edged market makers (GEMMs) who perform market-making functions in both bond

7See Czech, Huang, Lou, and Wang (2021), Czech and Pintér (2020), and Kondor and Pintér (2022) for further
details and recent applications of this dataset that mainly focused on identifying informed trading in corporate and
government bond markets.

8This is a major advantage of our dataset compared to those used in the recent OTC literature using structural
search models. For example, Hendershott, Li, Livdan, and Schürho! (2020) are only able to observe a subset
(insurance companies) of clients in one market (corporate bonds) only.
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markets. Their number fluctuates around 20 in our sample.9 We end up with approximately 2.96
million trades in 57 nominal government bonds.10 Around 63% of these transactions take place
in the inter-dealer segment and 37% in the client-dealer segment. Further details on our data
construction procedure are provided in Appendix F.

Risk characteristics are an important dimension that can make the representative corporate
bond distinct from government bonds. To mitigate this issue, we aim to control for heterogeneity
in risk profiles across the two markets by excluding high-yield corporate bonds.11 In addition,
from the set of investment-grade bonds we keep the 57 bonds that have the highest number of
transactions, thereby obtaining a sample of about 229,180 corporate bond transactions that has
the same number of distinct assets as our sample of government bonds.12 The breakdown of the
transactions between the inter-dealer and client-dealer segments is respectively 35% and 65% in
this case. Our sample selection aims to minimize cross-market heterogeneity in payo! risk and
adverse selection risk, thereby facilitating a better identification of the cross-market di!erences in
search and intermediation frictions.

Moreover, identifying a common set of clients as well as dealers who operate in corporate
and government bonds also mitigates some of the selection problems that may impede any cross-
market analysis. For example, certain clients such as foreign central banks may specialize in
trading government bonds and these clients may have very di!erent characteristics as well, i.e., the
composition of clients may be endogenous to the given market, which would make the comparison
of frictions across markets more di#cult.

2.2 Data Description

Table 1 presents summary statistics of the main variables for both markets that will be used in
the empirical analysis. The variables are computed separately for each market on each trading
day.

We measure price dispersion in both the client-dealer and inter-dealer segments of the gov-
9Certain large clients (particularly in the corporate bond market) have emerged to perform market making

functions. We exclude them from our set of dealers, and focus on GEMMs in order to have a common set of dealers
across the two markets. Note that the ZEN database is maintained by the UK’s Financial Conduct Authority
(FCA), and the database contains all secondary market transactions, where at least one of the counterparties is
an FCA-regulated entity. Given that all GEMMs as well as many of the active clients are FCA-regulated, our
dataset covers virtually the entire secondary market trading activity in UK corporate and government bonds.
For further details on the identities of GEMMs, see https://www.dmo.gov.uk/responsibilities/gilt-market/market-
participants/.

10Another common name in the UK for nominal government bonds is conventional gilts. Thus, we use the gilt
market and the UK government bond market interchangeably throughout the paper.

11We match our corporate bond dataset with information on corporate bond ratings from Thomson Reuters
Eikon, covering the three major rating agencies Moody’s, Standard & Poor’s (S&P), and Fitch. Ratings of Moody’s
are used as the default option because of the firm’s large market coverage. S&P ratings are used if ratings from
Moody’s are not available for the given bond. Fitch ratings are used as a third option.

12Corporate bonds that are traded less frequently are more likely to be subject to adverse selection risk (Ronen
and Zhou, 2013; Benmelech and Bergman, 2018).
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ernment and corporate bond markets using the same approach. We first compute the absolute
deviation of each transaction price from the hourly average transaction price of a given market seg-
ment. We scale this deviation by the hourly average price so that we can compute daily averages of
the transaction-specific absolute deviations across all available bonds in the given market segment.
We compute daily average dispersion (across all available bonds) by weighting each observation
by the size of the corresponding trade (Jankowitsch, Nashikkar, and Subrahmanyam, 2011). As
shown in the first row of Table 1, average client-dealer price dispersion is about 6.4 bps in the
government bond market and about 12.3 bps in the corporate bond market.13 For inter-dealer
transactions, average price dispersion is around 6.01 bps in the government bond market and 8.3
bps in the corporate bond market.14 Since Garbade and Silber (1976), price dispersion has often
been used as a proxy for the severity of trading frictions in decentralized financial markets. The
newly documented fact that client-dealer price dispersion is almost twice as large in corporate
bonds than government bonds is suggestive of corporate bond markets being more frictional than
government bond markets. In addition, the smaller gap in price dispersion observed for inter-
dealer transactions (around 38%) is indicative of di!erent market power dynamics in each market
segment.

A complementary approach to measuring the trading frictions faced by clients is with the trad-
ing cost measure used in O’Hara and Zhou (2021) and Pintér, Wang, and Zou (2024). Specifically,
for each trade v we compute the following measure:

Costv =
[
log (Pv) → log

(
P̄

)]
↑ 1B,S,

where Pv is the transaction price, 1B,S is an indicator function equal to 1 when the client buys, and
equal to -1 when the client sells, and P̄ is a benchmark price.15 The third row of Table 1 reports
the cross-sectional average of client-specific mean trade costs in each market. The average client
trade cost is respectively 0.77 bps in the government bond market and 7.08 bps in the corporate
bond market—consistent with the evidence from the price dispersion measures that the corporate

13To link these estimates to the existing measures of price dispersion in the literature, note that Jankowitsch,
Nashikkar, and Subrahmanyam (2011) used a sample from the TRACE database to find a mean price dispersion
of about 50 bps in the US corporate bond market. Their estimate is measured in standard deviations and used
end-of-day price quotes as the benchmark price. As a cross-check, we tried to compare our results and sample
to theirs, by (i) including all available corporate bonds in our calculation, (ii) converting our absolute deviation
based measure into standard deviation, (iii) and using end-of-day price quotes as benchmark price. We find price
dispersion to be about 40 bps in government bonds and 72 bps in corporate bonds. Our choice of using higher-
frequency (hourly instead of end-of-day) benchmarks aims to mitigate the over-estimation of dispersion that can
be caused by the arrival of intra-day news in the market.

14Eisfeldt, Herskovic, and Liu (2024) report an average inter-dealer price dispersion of 40.5 bps for the US
corporate bond market. However, their measure is computed at a monthly frequency on a sample covering the
period 2004–2018—with elevated levels of price dispersion during the GFC—and includes a much larger cross-section
of bonds (10,537) than our set of 57 highly-liquid investment-grade bonds.

15We follow the methodology outlined in Equation (1) of Pintér, Wang, and Zou (2024), using the average price
of all transactions at the bond-day level as the benchmark price against which transaction costs are computed.
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bond market is more frictional than the government bond market. However, without additional
information on clients’ trading intensities and other quantities, price dispersions and client trade
costs alone are not informative on the nature of the trading frictions (search vs. intermediation
frictions) and on the exact di!erence in welfare losses due to trading frictions across the two
markets.

To measure average intensity, we compute the mean of the total number of transactions for
each of the 526 clients on each trading day. In addition, we compute intensity dispersion as the
mean of the absolute deviation of each client’s total number of transactions from average intensity.
Both measures are scaled by the number of assets (57) in each sample. The fourth and fifth rows
of Table 1 show that average intensity and intensity dispersion are 0.034 and 0.053, respectively,
in the government bond market, and they are 0.0041 and 0.0073 in the corporate bond market.
That is, average intensity and intensity dispersion are about 7-8 times larger in the government
bond market compared to corporate bonds. While the recent empirical literature (O’Hara, Wang,
and Zhou, 2018) studied intensity in corporate bond markets, the cross-market comparison in
intensities is novel. The large di!erence in intensity measures across the two markets is again
indicative of the corporate bond market being more frictional than the government bond market.
However, without a structural model and additional empirical moments, the challenge remains to
identify whether clients in corporate bond markets are unable or unwilling to trade more than in
government bond markets.

Table 1: Summary Statistics

Government Bonds Corporate Bonds
Variable Mean sd Mean sd N
Price Dispersion 0.0006445 0.0002072 0.0012262 0.0006705 1,440
Inter-dealer Price Dispersion 0.0006051 0.0001689 0.0008283 0.0009383 1,440
Clients’ Trade Costs (bps) 0.7699433 4.7900271 7.0814378 10.8234570 1,440
Average Intensity 0.0343979 0.0075582 0.0040584 0.0012159 1,440
Intensity Dispersion 0.0531009 0.0111978 0.0072671 0.0020633 1,440
Trade Volume (£) 281,460 137,987 2,744 2,645 1,440
Average Trade Size (£) 6,467,011 4,301,335 277,808 244,438 1,440

Notes: This table summarizes the empirical moments that inform our structural estimation. Price dispersion is the scaled mean

absolute deviation of transaction prices from the average transaction price in the given hour, calculated by using client-dealer trade

prices. Inter-dealer price dispersion is calculated in the same way as price dispersion, using inter-dealer trade prices. Clients’ trade

costs are calculated using the methodology of Pintér, Wang, and Zou (2024) and averaged across clients. To calculate trade costs, we

use the benchmark price computed as the average price of all transactions at the bond-day level. Average intensity is the mean of the

clients’ number of transactions. Intensity dispersion is the mean absolute deviation of clients’ number of transactions from average

intensity. Trade volume is total daily trading volume in terms of par value per bond per client. Average trade size is the mean (across

clients) of clients’ mean trade size. The sample includes 1440 trading days over the period Aug 2011 - Dec 2017.

We measure trade volume as the total daily trading volume in terms of par value, scaled by
the number of clients and the number of assets in each market. The average daily trade volume
in our sample is £281,460 per bond per client in the government bond market and £2,744 in the
corporate bond market.
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Finally, recent search models of OTC markets (LR) predict that the severity of trading frictions
faced by a client is an important determinant of the trade size demanded by the given client. To
measure average trade size, we first compute the daily mean of the nominal size of each clients’
trades, and then compute the mean across the clients. We find that the average trade size in the
government bond market is around 23 times larger than in the corporate bond market.16

3 A Model of Intermediated OTC Markets
To capture cross-market interactions, inter-dealer price dispersion, and the rich client heterogeneity
observed in fixed-income markets in practice, we extend the stationary version of LR along three
dimensions. First, clients hold positions in two OTC-traded assets as opposed to one in LR. This is
essential because we want to quantitatively compare the government bond and the corporate bond
markets. Second, although we keep the LR assumption that there are no search frictions in the
inter-dealer market, we introduce a “core” who bargain with dealers when providing intermediation
services in the inter-dealer market.17 This departure from LR o!ers two primary benefits: (i) we
obtain equilibrium inter-dealer price dispersion as in the data and (ii) we use information from
the inter-dealer price dispersion to figure out the costs dealers face for the intermediation services
they consume in the inter-dealer market. Finally, clients in our model are ex-ante heterogeneous in
the frequency at which they switch valuation types as well as the frequency at which they receive
trade opportunities.

3.1 The Economic Environment

Time is continuous and runs forever. The economy is populated by a continuum of clients, a
continuum of dealers, and a continuum of core broker-dealers. The measures of all three types of
agents are normalized to one each.

There are two long-lived assets in exogenous per-client-capita supplies A1 > 0 and A2 > 0.
Although the model treats these two as generic assets, in our quantitative analyses we associate
asset 1 with government bonds and asset 2 corporate bonds. There is also a perishable good,
called numéraire, that all agents consume and produce. Negative net consumption is allowed in
the sense that if an agent produces more numéraire good to support her purchase of an asset than

16This is consistent with Belsham, Rattan, and Maher (2017) who document that typical trade sizes in the UK
government bond market are typically 10 to 25 times larger than in the sterling-denominated investment-grade
corporate bond market. We also calculate the mean (across clients) of qi

gilt/qi
corp, where qi

k is the time-series
average of client i’s trade sizes in market k ↓ {gilt, corp}, and find that it equals 14.8085.

17This three-tiered market structure is reminiscent of that in Colliard, Foucault, and Ho!mann (2021). The
exogenously specified core of this market structure can be thought of as a reduced-form way to capture the endoge-
nous core-periphery structure and inter-dealer price dispersion of Hugonnier, Lester, and Weill (2020), Farboodi,
Jarosch, and Shimer (2018), and Üslü (2019), among others.

12



she consumes, her net consumption becomes negative. The flow utility of a client is

c + εu (a1 + ϑa2) ,

where c is her net consumption of the numéraire, ε her current taste type, and a1 and a2 her
positions in asset 1 and asset 2, respectively. The felicity function u : [→M, M ] ↔ R is twice
continuously di!erentiable, strictly increasing, strictly concave, and defined for an arbitrarily large
M > 0. The parameter ϑ > 0 is the constant marginal rate of substitution (MRS) between the
two assets.18 Clients also discount the future at rate r > 0.

Clients are heterogeneous in their taste types whose variation over time is governed by a
continuum of pair-wise independent Poisson processes. Upon an arrival, the shocked client’s new
taste type, ε→, is drawn from the uniform cdf U ({εl, εh}). That is, upon receiving a taste shock
a client preserves her current taste with probability 1/2 or switches to the opposite taste type
with probability 1/2. These Poisson taste shocks generate time-varying exogenous heterogeneity
across clients, and so, generate the fundamental motive to trade. In addition to the current taste
heterogeneity, clients are heterogeneous with respect to three permanent characteristics, ω0 > 0,
ω1 > 0, and ω2 > 0, where ω0 refers to the rate at which a client receives taste shocks and ωk the
rate at which she receives trade opportunities with dealers to trade asset k ↓ {1, 2}. We denote
with ω = (ω0, ω1, ω2) a client’s three-dimensional permanent characteristics. The cross-sectional
distribution of clients’ characteristics is represented by the joint cdf G : [ωl, ωh]3 ↔ R. We follow
Vayanos and Wang (2007) in interpreting a large-ω0 client as a liquidity trader and a small-ω0 as
a buy-and-hold trader. Similarly, for k ↓ {1, 2}, we follow O’Hara, Wang, and Zhou (2018) in
interpreting a large-ωk client as an active trader of asset k and a small-ωk as a passive trader.

Dealers’ and core broker-dealers’ utility flow is assumed to be c; i.e., they do not derive any
utility from holding the assets. Core broker-dealers can trade asset k amongst themselves in-
stantaneously in a frictionless market at the market-clearing price Pk. Accordingly, we assume
without loss of generality that core broker-dealers do not hold any position in the assets as they
do not derive any utility from holding the assets. We assume that dealers can trade with core
broker-dealers without delay but only bilaterally. That is, if a dealer has an unwanted position in
an asset, he is immediately matched with a core broker-dealer to o"oad this unwanted position.
However, the terms of trade will generically be di!erent from Pk because we assume some positive
bargaining power for the core. Nevertheless, this instantaneous access to the core allows dealers
to o"oad any unwanted position to the core instantly, and so, dealers do not hold any position
in the assets either. Finally, the end users of the assets, i.e. clients, can trade only with dealers,
infrequently, and in a bilateral fashion, i.e., with one dealer at a time. Clients receive trading

18Üslü and Velio#lu (2019) micro-found the constant marginal rate of substitution assumption in a CARA-
Brownian model with multiple assets. We, instead, hard-wire this assumption to our model with a general “warm-
glow” concave utility.
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Figure 1: The left half of the figure shows the flow of assets after a client with a selling need
meets a dealer. Vice versa, the right half of the figure shows the flow of assets after a client with
a buying need meets a dealer.

opportunities at the arrival times of a continuum of pair-wise independent Poisson processes with
client-specific arrival rates of ωk for k ↓ {1, 2}. Figure 1 demonstrates typical intermediation
(half-)chains started by a client-seller (the left side) and a client-buyer (the right side) with our
assumed three-tiered market structure.

Upon the arrival of a trade opportunity shock for asset k ↓ {1, 2}, the shocked client is matched
with a dealer picked randomly and uniformly from the pool of dealers. Simultaneously, the dealer
is matched with a core broker-dealer picked randomly and uniformly from the core. The terms of
trade is, then, set by a multilateral Pareto-optimal bargaining game during which the bargaining
parties determine a trade quantity that maximizes the joint-surplus of the trade, a trade price
between the client and the dealer, and a trade price between the dealer and the core. These two
trade prices are determined such that the maximized joint-surplus is split among the client, the
dealer, and the core. In the end, the core captures a fraction ϖc

k ↓ [0, 1] of the surplus and the
dealer ϖd

k ↓ [0, 1], while the client captures the remaining share 1 → ϖk, where ϖk ↗ ϖc
k + ϖd

k.19

Figure 2 demonstrates our assumed multilateral bargaining solution with a pie chart.

3.2 Equilibrium Definition

Let V (ε, a1, a2, ω) refer to the continuation utility of a client with the current taste type of ε,
current positions a1 and a2 in asset 1 and 2, respectively, and the permanent characteristic vector
ω. If this client meets a dealer to trade asset k ↓ {1, 2} at this moment, the dealer simultaneously
meets a core broker-dealer. Then, qk (ε, a1, a2, ω), which stands in for both the number of shares
of asset k the client buys from the dealer and the number of shares of the asset k the dealer buys

19This Pareto-optimal bargaining solution can be understood as the generalized Nash solution for multilateral
bargaining. For example, it can be derived from the cooperative bargaining problem of Lensberg (1988), Krishna
and Serrano (1996), and Suh and Wen (2006) with asymmetric bargaining powers. See Appendix C for more details.
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Figure 2: Exogenously specified surplus shares in the multilateral bargaining game in the market
for asset k

from the core, solves

max
q↑R

V (ε, ak + q, a↓k, ω) → V (ε, a1, a2, ω) → Pkq, (3.1)

where V (ε, ak + q, a↓k, ω) → V (ε, a1, a2, ω) represents the client’s contribution to surplus creation
and is equal to the change in her continuation utility after she has bought q units of asset k (or
after she has sold →q units if q is negative). The last term, →Pkq, represents the core’s contribution
to the surplus creation and is equal to the cost of obtaining q units of asset k from the frictionless
market (or the benefit of selling →q units in the frictionless market if q is negative). Note that
neither the client-dealer nor dealer-core trade price enters the joint-surplus formula because they
are simply a transfer of the numéraire from one party to another when each have a linear utility
in that.

Trade price that the client pays to the dealer per unit of the asset traded is denoted by
pk (ε, a1, a2, ω) and is equal to

pk (ε, a1, a2, ω) = Pk + ϖk
V (ε, ak + qk (ε, a1, a2, ω) , a↓k, ω) → V (ε, a1, a2, ω) → Pkqk (ε, a1, a2, ω)

qk (ε, a1, a2, ω)
(3.2)

and, similarly, trade price that the dealer pays to the core per unit of the asset traded is denoted
by pd

k (ε, a1, a2, ω) and is equal to

pd
k (ε, a1, a2, ω) = Pk + ϖc

k

V (ε, ak + qk (ε, a1, a2, ω) , a↓k, ω) → V (ε, a1, a2, ω) → Pkqk (ε, a1, a2, ω)
qk (ε, a1, a2, ω) .

(3.3)
Since the joint-surplus in the numerator of the fraction in (3.3) is non-negative by the optimal
choice of qk (ε, a1, a2, ω), this means that the core charges a markup over the frictionless price
Pk when selling the asset to the dealer (qk (ε, a1, a2, ω) > 0). Vice versa, the core obtains a
markdown when buying the asset from the dealer (qk (ε, a1, a2, ω) < 0). Similarly, pk (ε, a1, a2, ω)→
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pd
k (ε, a1, a2, ω) has the same sign as qk (ε, a1, a2, ω) because ϖk ↘ ϖc

k. This implies that the dealer
charges a markup when selling the asset to the client. Vice versa, the dealer obtains a markdown
when buying the asset from the client.

The continuation utility V (ε, a1, a2, ω) satisfies the following Hamilton-Jacobi-Bellman (HJB)
equation:

rV (ε, a1, a2, ω) = εu (a1 + ϑa2) + ω0

∑

ω→↑{ωl,ωh}

1
2 [V (ε→, a1, a2, ω) → V (ε, a1, a2, ω)]

+
∑

k↑{1,2}
ωk [V (ε, ak + qk (ε, a1, a2, ω) , a↓k, ω) → V (ε, a1, a2, ω) → qk (ε, a1, a2, ω) pk (ε, a1, a2, ω)] .

(3.4)

A client’s “flow” continuation utility, rV (ε, a1, a2, ω), equals the sum of three terms. The first
term is the client’s current utility flow from holding a1 and a2 units of asset 1 and 2, respectively,
when of taste type ε. The second term is the flow value of switching to another taste type ε→ at a
Poisson rate of ω0. The last term is the flow value of changing the position in asset k from ak to
ak +qk (ε, a1, a2, ω) by paying qk (ε, a1, a2, ω) pk (ε, a1, a2, ω) units of the numéraire, which is also an
infrequent possibility arriving at a Poisson rate of ω1 and ω2 for asset 1 and asset 2, respectively.

Let !ε (ε, a1, a2) denote the stationary joint cdf of clients’ taste types and asset positions
conditional on their permanent characteristics. The stationarity of this cdf is guaranteed by the
following inflow-outflow equation:

ω0U (ε)
ωĥ

ω

!ε (dε→, a1, a2) + ω1

M̂

↓M

M̂

↓M

ω̂

ωl

I{a1↔a→
1+q1(ω→,a→

1,a→
2,ε)}!ε (dε→, da→

1
, da→

2
)

+ ω2

M̂

↓M

M̂

↓M

ω̂

ωl

I{a2↔a→
2+q2(ω→,a→

1,a→
2,ε)}!ε (dε→, da→

1
, da→

2
)

= ω0 (1 → U (ε)) !ε (ε, a1, a2) + (ω1 + ω2) !ε (ε, a1, a2) . (3.5)

The first term of the LHS and of the RHS stand in for the inflow and the outflow due to taste
shocks, respectively. Similarly, the remaining terms stand in for the inflow and the outflow due to
trade.

To understand the first term of the LHS, note that a client with characteristics ω = (ω0, ω1, ω2),
asset positions smaller than a1 and a2, and a taste type larger than ε switches to a taste type
smaller than or equal to ε with probability U (ε) following a taste shock that occurs at rate ω0.
Thus, the multiplication of ω0, the probability U (ε), and the measure of such clients gives us
the inflow to !ε (ε, a1, a2) due to taste shocks. Similarly, the first term of the RHS, the outflow
due to tastes shocks, is equal to the multiplication of the Poisson intensity of taste shock, ω0, the
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probability, 1 → U (ε), that the new taste type is larger than ε, and the measure of clients from
whom the outflow is originating.

The second term of the LHS, the (gross) inflow to !ε (ε, a1, a2) due to trading asset 1, is the
multiplication of the Poisson intensity of opportunities to trade asset 1 for this class of clients, ω1,
and the measure of a subset of clients with characteristics ω. The indicator function inside the
integral makes sure that a candidate inflow client wants to hold a position in asset 1 less than a1

so she indeed creates an inflow. The third term has a similar interpretation but regarding asset
2. Finally, the second term of the RHS stands in for the (gross) outflow from !ε (ε, a1, a2), which
is equal to the multiplication of the Poisson rate of total trade opportunities and the measure
of clients with characteristics ω who have a positions smaller than a1 and a2 in asset 1 and 2,
respectively, and a taste type smaller than ε.

In addition to the stationarity condition (3.5), there are two additional feasibility or accounting
identities that !ε (·, ·, ·) must satisfy:

ε2ˆ
εl

ε1ˆ
εl

ε0ˆ
εl

M̂

↓M

M̂

↓M

ωĥ

ωl

!ε→ (dε, da1, da2) G (dω→
0
, dω→

1
, dω→

2
) = G (ω0, ω1, ω2) (3.6)

and
M̂

↓M

M̂

↓M

ωĥ

ωl

!ε (dε, da1, da2) = 1 (3.7)

for all ω ↓ supp (dG). Equation (3.6) implies that the equilibrium conditional distribution of
clients’ states is consistent with the exogenous distribution of client characteristics and (3.7)
follows from the fact that !ε (·, ·, ·) is a conditional cdf. Finally, the frictionless markets in which
the core broker-dealers trade amongst themselves must clear:

εhˆ
εl

εhˆ
εl

εhˆ
εl

M̂

↓M

M̂

↓M

ωĥ

ωl

ωkqk (ε, a1, a2, ω | Pk) !ε (dε, dak, da↓k) G (dω0, dω1, dω2) = 0 (3.8)

for all k ↓ {1, 2}. Equation (3.8) guarantees that all shares of the assets brought to the fric-
tionless markets by the core-broker dealers net out to zero in each market. Because this is the
market-clearing condition, we have made the dependence of qk on Pk explicit in our notation.
Mathematically, this dependence stems from the fact that the optimization problem (3.1) takes
Pk as given.

Taking stock, we define a stationary equilibrium as follows.

Definition 1. Let T = {εl, εh} ↑ [→M, M ]2 ↑ [ωl, ωh]3. A stationary equilibrium is (i) a function
V : T ↔ R for clients’ continuation utilities, (ii) a set of functions qk : T ↔ R for clients’ trade
sizes for k ↓ {1, 2}, (iii) a set of functions pk : T ↔ R for transaction prices between clients and
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dealers for k ↓ {1, 2}, (iv) a set of functions pd
k : T ↔ R for transaction prices between dealers and

the core for k ↓ {1, 2}, (v) a joint cdf !ε : {εl, εh} ↑ [→M, M ]2 ↔ R for clients’ taste types and
asset positions conditional on their characteristics ω ↓ supp (dG), and (vi) a pair of frictionless
market prices Pk ↓ R for k ↓ {1, 2} such that

• Given (ii) and (iii), (i) solves the HJB equation (3.4).

• Given (i) and (vi), (ii) maximizes the joint surplus (3.1).

• Given (i), (ii), and (vi), (iii) satisfies (3.2).

• Given (i), (ii), and (vi), (iv) satisfies (3.3).

• Given (ii), (v) satisfies the stationarity and feasibility conditions (3.5)-(3.7).

• Given (ii) and (v), (vi) satisfies (3.8).

3.3 Equilibrium Characterization

Substituting (3.2) into (3.4),

rV (ε, a1, a2, ω) = εu (a1 + ϑa2) + ω0

∑

ω→↑{ωl,ωh}

1
2 [V (ε→, a1, a2, ω) → V (ε, a1, a2, ω)]

+
∑

k↑{1,2}
ωk (1 → ϖk) [V (ε, ak + qk (ε, a1, a2, ω) , a↓k, ω) → V (ε, a1, a2, ω) → qk (ε, a1, a2, ω) Pk] .

Using (3.1) and with a change of variable,

rV (ε, a1, a2, ω) = εu (a1 + ϑa2) + ω0

∑

ω→↑{ωl,ωh}

1
2 [V (ε→, a1, a2, ω) → V (ε, a1, a2, ω)]

+
∑

k↑{1,2}
ωk (1 → ϖk) max

a→
k

{V (ε, a→
k, a↓k, ω) → V (ε, a1, a2, ω) → (a→

k → ak) Pk} .

Rearrangement implies

[r + ω0 + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)] V (ε, a1, a2, ω) = εu (a1 + ϑa2) + ω0

∑

ω→↑{ωl,ωh}

1
2V (ε→, a1, a2, ω)

+
∑

k↑{1,2}
ωk (1 → ϖk) max

a→
k

{V (ε, a→
k, a↓k, ω) → (a→

k → ak) Pk} (3.9)
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or

V (ε, a1, a2, ω) =
r ωu(a1+ϑa2)

r + ω0

∑

ω→↑{ωl,ωh}

1

2
V (ε→, a1, a2, ω)

r + ω0 + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)

+

∑

k↑{1,2}
ωk (1 → ϖk) max

a→
k

{V (ε, a→
k, a↓k, ω) → (a→

k → ak) Pk}

r + ω0 + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)
.

The auxiliary HJB equation (3.9) shows that a client’s current continuation value is equal to the
weighted average of four values: the value of holding (a1, a2) units of the assets forever while
keeping the current taste type ε, the value of keeping (a1, a2) units forever with a randomly
drawn taste type from the cdf U ({εl, εh}), and the two values associated with holding the optimal
amount of asset k ↓ {1, 2} by trading it at the frictionless price Pk while keeping the taste type
ε. The first of the four values a!ects the continuation utility because the client is impatient
(r > 0), and so, its weight is r/ (r + ω0 + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)). The second one a!ects the
continuation value because the client receives taste shocks at the Poisson rate ω0, and so, its weight
is ω0/ (r + ω0 + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)). The last two a!ect the continuation value because the
client gets to trade asset k at the Possion rate ωk. The weight of this term is, however, weighted
down by 1 → ϖk because the intermediating dealer and core broker-dealer together will capture a
share, ϖk = ϖd

k +ϖc
k, of the trade surplus. Thus, the weights of the last two terms turn out to reflect

a bargaining-adjusted Poisson rate ωk (1 → ϖk): ωk (1 → ϖk) / (r + ω0 + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)).
The first key step in characterizing the equilibrium is to solve the auxiliary HJB equation

(3.9) given some restriction on P1 and P2. This step uses standard fixed-point tools for dynamic
programming because (3.9) defines a contraction mapping, and so, we prove that there exists a
unique solution to (3.9) given P1 and P2. Then, with some additional restriction on P1 and P2,
we obtain this unique solution in closed form by following a method of undetermined coe#cients.

Proposition 1. Let ϱ = a1 + ϑa2 denote the composite asset position of a client who holds a1 and
a2 units of asset 1 and 2, respectively. Let ε̄ = (εl + εh) /2. Given P1 and P2 such that ϑP1 = P2,20

the unique solution to the auxiliary HJB equation (3.9) has the following functional form:

V (ε, ϱ, ω) = ω1 (1 → ϖ1) + ω2 (1 → ϖ2)
r + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)

P1ϱ

+ 1
r + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)

(r + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)) ε + ω0ε̄

r + ω0 + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)
u (ϱ) + C (ε, ω) (3.10)

for some C : {εl, εh} ↑ [ωl, ωh]3 ↔ R.
20This assumption is verified ex post. Namely, this restriction is implied by the market-clearing conditions in the

frictionless markets. Intuitively, because of our constant MRS assumption between the two assets, any price ratio
deviating from the MRS, ω, would lead to an excess demand for one asset and an excess supply of the other, and
so, it is necessarily the case that ωP1 = P2 in any general equilibrium.

19



Proposition 1 reveals the tractability benefit of the constant MRS between the assets. As in
Üslü and Velio$lu (2019), we are able to define the su#cient statistic ϱ for a client’s multi-asset
portfolio, even though we use a general concave utility function as opposed to CARA utility in
Üslü and Velio$lu (2019). Given the value function (3.10) in Proposition 1, one can now easily
determine the terms of trade between a client and a dealer using (3.1) and (3.2) and those between
the given dealer and the core using (3.1) and (3.3).

Applying the chain rule, the FOC of the joint surplus maximization (3.1) is

Vϖ (ε, ϱ→, ω) ϱk = Pk,

where ϱ→ is the client’s post-trade composite asset position, Vϖ (·, ·, ·) refers to the derivative with
respect to the second argument, and ϱk refers to the derivative of the composite asset position with
respect to asset k for k ↓ {1, 2}. Thus, ϱ1 = 1 and ϱ2 = ϑ. Using (3.10) and after rearranging,
one obtains that the optimal composite asset position of a client with the taste type of ε and
characteristics ω is

ϱϱ (ε, ω) = (u→)↓1

[
r + ω0 + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)

(r + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)) ε + ω0ε̄
rP1

]

, (3.11)

i.e., a client with these characteristics will end up holding positions in asset 1 and 2 that generates
ϱϱ (ε, ω) after meeting a dealer regardless of her initial asset positions a1 and a2 and no matter
which asset is being traded with this particular dealer. Thus, the bilateral trade quantity between
this client and the dealer (and, accordingly, between the dealer and the core) is

qk (ε, ϱ, ω) = 1
ϱk

{

(u→)↓1

[
r + ω0 + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)

(r + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)) ε + ω0ε̄
rP1

]

→ ϱ

}

. (3.12)

Given a client’s composite asset position ϱ, Equation (3.12) implies that the only asset-specific
determinant of trade size is ϱk. That is, the larger the ϱk, the smaller the trade size of asset k.
This also means that if ϑ > 1 (resp. ϑ < 1), asset 1 has larger (resp. smaller) trade sizes than asset
2.21 Thus, in our quantitative analyses in the next section, we will use the aggregate government
bond trade size relative to the aggregate corporate bond trade size to calibrate the parameter ϑ

based on the data.
Going back to equilibrium characterization, given P1, P2, (3.10), and (3.12), (3.2) gives the

negotiated price, pk (ε, ϱ, ω), between a given client and a dealer and (3.3) gives the negotiated
price, pd

k (ε, ϱ, ω), between the dealer and the core, where we again write the client’s composite
asset position ϱ as an argument of the pricing functions because a1 and a2 a!ect these prices only

21This is reminiscent of the Üslü and Velio#lu (2019) result that the riskier assets are traded in smaller sizes.
That is, in their CARA-Brownian model, assets’ payo! processes generate the endogenous MRS between the
assets, and so, Üslü and Velio#lu (2019) tie the assets’ systematic risks to their trade size. In our model with an
asset-in-the-utility function approach, the exogenous MRS parameter ω determines the relative trade size.
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as part of ϱ.
Taking stock, the clients’ value functions, trade sizes, and transaction prices are all a!ected by

their a1 and a2 only through their composite asset position ϱ. Therefore, instead of characterizing
the joint distribution !ε (ε, a1, a2) of clients’ taste types, positions in asset 1, and positions in
asset 2, it su#ces to characterize the joint distribution of clients’ taste types and composite
asset positions, which we denote with Fε (ε, ϱ). Equipped with (3.11) and (3.12), we derive the
stationary equilibrium distribution Fε (ε, ϱ) in closed form in Proposition 2.

Proposition 2. Let ϱϱ (·, ·) be given by (3.11), and let fε (·, ·) be the equilibrium joint probability
mass function (pmf) of taste types and composite asset positions conditional on client character-
istics. Then, for any ω ↓ supp (dG),

fε (ε, ϱ) =






0 if ϱ /↓ ” (ω)
1

4

ε0+2ε1+2ε2
ε1+ε2

if ϱ = ϱϱ (ε, ω)
1

4

ε0
ε0+ε1+ε2

if ϱ = ϱϱ (ε→, ω) for ε→ ≃= ε,

(3.13)

where
” (ω) = {ϱϱ (εl, ω) , ϱϱ (εh, ω)} .

The intuition behind Proposition 2 follows from the result (3.11) that there is a unique opti-
mal composite holding for any client (ε, ω), which implies the support ” (ω) for the equilibrium
composite holding distribution for clients with characteristics ω. Namely, any client (ε, ω) either
holds her optimal composite position ϱϱ (ε, ω) or is still stuck with a previously optimal position
ϱϱ (ε→, ω) for ε→ ≃= ε because she is yet to trade with a dealer after her latest taste shock. As a
result, the equilibrium distribution admits a simple representation, which is the conditional pmf
(3.13).

Finally, the only remaining equilibrium objects yet to be determined are the frictionless market
prices P1 and P2. To determine these, we re-write the market-clearing condition (3.8) as

ˆ ∑

ϖ↑!(ε)

∑

ω↑{ωl,ωh}
ωkqk (ε, ϱ, ω | Pk) fε (ε, ϱ) dG (ω) = 0

for k ↓ {1, 2}, with a slight abuse of notation “dG (ω) = G (dω0, dω1, dω2)”. Using (3.12) and
(3.13), this equation allows us to determine P1 and P2 in Proposition 3.

Proposition 3. Assume u→ (⇐) = 0 and u→ (0) = ⇐. Then, the unique equilibrium prices P1 and
P2 solve

ˆ ∑

ω↑{ωl,ωh}

1
2 (u→)↓1

[
r + ω0 + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)

(r + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)) ε + ω0ε̄
rP1

]

dG (ω) = A1 + ϑA2 (3.14)
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and
P2 = ϑP1.

In precis, the equilibrium defined in Definition 1 is characterized by Propositions 1–3 in closed
form up to the frictionless prices P1 and P2. With some additional parametric assumptions, P1

and P2 can be obtained in closed form as well. For example, similar to the original LR model, P1

and P2 are available in closed form when u (ϱ) = log (ϱ). In the next subsection, we assume an
iso-elastic utility function, which nests the log utility as a special case, and show that together with
our assumed binary taste-type structure it allows us to obtain explicit formulas for endogenous
liquidity measures such as trade volume, price dispersion, and clients’ trade costs.

3.4 A Special Case

We let u (ϱ) = ϖ1↑ω

1↓ς . In addition, we assume εl = 0 and εh = 2ς for some ς > 0. That is,
the distribution U has two equal mass points at ε = E [ε] ± ς, which means that one natural
interpretation for parameter ς is preference volatility.

Let us start by calculating the optimal composite holding of each client type in this special
case. Using (3.11) and our assumptions on the utility function and the taste types,

ϱϱ (E [ε] ± ς, ω) =
[

1 ± r + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)
r + ω0 + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)


ς

rP1

]1/ς

. (3.15)

Note that this optimal composite holding takes as given the frictionless price P1. Now we calculate
the equilibrium value of P1 so that we can write all equilibrium objects in terms of exogenous
parameters and distributions. Equation (3.14) can be re-written as

1
2

ˆ 
(1 + # (ω→)) ς

rP1

1/ς

dG (ω→) + 1
2

ˆ 
(1 → # (ω→)) ς

rP1

1/ς

dG (ω→) = A1 + ϑA2,

where
# (ω) ↗ r + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)

r + ω0 + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)
is the endogenous demand rescaling coe#cient that represents clients’ individually optimal re-
sponse to frictions. After rearranging,

P1 = ς

r

{
1

2 (A1 + ϑA2)

ˆ [
(1 + # (ω→))1/ς + (1 → # (ω→))1/ς

]
dG (ω→)

}ς

. (3.16)

Substituting (3.16) into (3.15), the equilibrium optimal composite holding of each client type is

ϱϱ (E [ε] ± ς, ω) = (A1 + ϑA2)
(1 ± # (ω))1/ς

1

2

´ [
(1 + # (ω→))1/ς + (1 → # (ω→))1/ς

]
dG (ω→)

, (3.17)
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and, in turn, the equilibrium trade quantity of client ω is

qk (ω) = A1 + ϑA2

ϱk

(1 + # (ω))1/ς → (1 → # (ω))1/ς

1

2

´ [
(1 + # (ω→))1/ς + (1 → # (ω→))1/ς

]
dG (ω→)

(3.18)

for k ↓ {1, 2}. Therefore, this setup provides an important simplification as there is a one-to-
one mapping between client characteristics ω and unsigned trade sizes due to binary taste types.
That is, fixing characteristics ω, a high-type client currently stuck with the low-type optimal
composite position will buy qk (ω) units of asset k upon meeting a dealer; vice versa, a low-type
client currently stuck with the high-type optimal composite position will sell qk (ω) units, where
qk (ω) ↗ [ϱϱ (2ς, ω) → ϱϱ (0, ω)] /ϱk is given by the explicit formula (3.18).

The equilibrium trade quantity (3.18) reveals the relationship between trade aggressiveness
and exposure to frictions standard in search models with divisible assets. Controlling for ω0, a
more active trader (i.e., with larger ω1 or ω2) trades in larger quantities because she is less afraid
of being stuck with a suboptimal position following a taste shock. This is represented by a larger
# (ω) as ω1 or ω2 increase. On the other hand, controlling for ω1 and ω2, a larger ω0 leads to lower
# (ω) and lower trade quantities, because a large-ω0 trader switches her taste type very frequently
and trades in a way to hedge herself against the risk of being stuck with a suboptimal position
following a taste shock. The fact that ω1 and ω2 have an e!ect on trade sizes opposing the e!ect
of ω0 makes trade size information very useful to simultaneously identify ω0, ω1, and ω2 from the
data. Other endogenous objects such as trading intensity are typically increasing in ω0. Therefore,
adding trade-size-related information for asset 1 or asset 2 (government and corporate bonds in
practice) to the list of data moments brings some unique information and helps us identify the
deep parameters of our model.

Next, we determine the equilibrium transaction prices in our special case. Let us start by
defining φk (ω) ↗ pk (2ς, ϱϱ (0, ω) , ω) and ↼k (ω) ↗ pk (0, ϱϱ (2ς, ω) , ω) as the ask and the bid
price a client of type ω faces when trading with a dealer and Ak (ω) ↗ pd

k (2ς, ϱϱ (0, ω) , ω) and
Bk (ω) ↗ pd

k (0, ϱϱ (2ς, ω) , ω) as the ask and the bid price this dealer faces when trading with the
core to o"oad the unwanted positions stemming from trading with the client-ω. We calculate
these prices using (3.2) and (3.3):

φk (ω) = (1 → ϖk) qk (ω) Pk + ϖk {V (2ς, ϱϱ (2ς, ω) , ω) → V (2ς, ϱϱ (0, ω) , ω)}
qk (ω) , (3.19)

↼k (ω) = (1 → ϖk) qk (ω) Pk + ϖk {V (0, ϱϱ (2ς, ω) , ω) → V (0, ϱϱ (0, ω) , ω)}
qk (ω) , (3.20)

Ak (ω) = (1 → ϖc
k) qk (ω) Pk + ϖc

k {V (2ς, ϱϱ (2ς, ω) , ω) → V (2ς, ϱϱ (0, ω) , ω)}
qk (ω) , (3.21)
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and
Bk (ω) = (1 → ϖc

k) qk (ω) Pk + ϖc
k {V (0, ϱϱ (2ς, ω) , ω) → V (0, ϱϱ (0, ω) , ω)}

qk (ω) (3.22)

for k ↓ {1, 2}. These formulas for bid and ask prices in the client-dealer market and the inter-
dealer market are already intuitive in their current forms.22 When the client has all the bargaining
power (ϖk ↗ ϖd

k +ϖc
k = 0), all bid and ask prices are equal to Pk, which means that there is no price

dispersion as dealers and core broker-dealers cannot capture any surplus. On the other extreme,
when the core has all the bargaining power (ϖc

k = 1), bid and ask prices are equal to the client’s
respective reservation prices, which leaves clients and dealers with zero transaction surplus and
maximizes the bid-ask spread that goes to the core. Finally, if the dealer has all the bargaining
power (ϖd

k = 1), then, the bid and ask prices in the client-dealer market are equal to the client’s
reservation prices, which leaves the client with zero transaction surplus, but there is no bid-ask
spread in the inter-dealer market as the dealer can buy and sell at Pk, which leaves the core with
zero transaction surplus as well.

3.4.1 Concluding Characterization: The Three Dimensions of Market Liquidity

So far, we have derived in closed form all the theoretical equilibrium objects including the friction-
less prices, clients’ value functions, bilateral trade quantities and prices both in the client-dealer
market and the inter-dealer market, as well as the equilibrium distribution in Proposition 2. Next,
we derive a number of equilibrium objects that are readily observable from the data as (inte-
gral transforms of) closed-form expressions, which relate to the three main dimensions of market
liquidity: trading frequencies, trade sizes, and transaction prices.

Clients’ trade frequency Equation (3.13) e!ectively shows the mass of clients who are happy
with their current composite holding and the mass of those who are unhappy with their current
composite holding. Considering that only the latter type will trade in equilibrium, the rate at
which the ω-clients trade asset k with dealers is

ωk
1
4

ω0

ω0 + ω1 + ω2

dG(ω) + ωk
1
4

ω0

ω0 + ω1 + ω2

dG(ω) = ωk
1
2

ω0

ω0 + ω1 + ω2

dG(ω),

where ωk is the per-client meeting rate, dG(ω) is the mass of those clients, and 1

2

ε0
ε0+ε1+ε2

is the
fraction of ω-clients who are unhappy with their current composite holding: Half of them are of
low taste type but holding a high composite position and the other half are of high taste type but
holding a low composite position. Thus, although a client with characteristics ω = (ω0, ω1, ω2)
meets a dealer at the exogenous Poisson intensity of ωk to trade asset k, her endogenous trading

22In Appendix D, we use the closed-form formulae of the continuation utilities and derive more explicit expressions
for these bilateral bid and ask prices, which are later used in our estimation algorithms.
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intensity is
↽k (ω) ↗ ωk

2
ω0

ω0 + ω1 + ω2

(3.23)

for k ↓ {1, 2}.

Trade sizes in the client-dealer market Equation (3.18) implies that the client-ω’s trade
sizes of asset 1 and 2 are

q1 (ω) = (A1 + ϑA2)
(1 + # (ω))1/ς → (1 → # (ω))1/ς

1

2

´ [
(1 + # (ω→))1/ς + (1 → # (ω→))1/ς

]
dG (ω→)

(3.24)

and

q2 (ω) = A1 + ϑA2

ϑ

(1 + # (ω))1/ς → (1 → # (ω))1/ς

1

2

´ [
(1 + # (ω→))1/ς + (1 → # (ω→))1/ς

]
dG (ω→)

,

respectively. That is, q1 (ω) = ϑq2 (ω) holds for all ω ↓ supp (dG). This follows from our con-
stant MRS assumption between the two assets. This result implies that the correlation coe#cient
between clients’ trade sizes in the two markets must be +1. Empirically, we find that this corre-
lation coe#cient between clients’ trade sizes in the UK’s government and corporate bond markets
is +0.8186 when we use the 57 most liquid corporate bonds and +0.8128 when we use all corpo-
rate bonds in our dataset. Therefore, although the empirical correlation is not as strong as the
model-implied one, its level is broadly comparable if treated as a non-targeted moment for our
estimation exercise below.

We utilize the relation q1 (ω) = ϑq2 (ω) to calibrate the parameter ϑ as the ratio of the aggregate
trade size in the government bond market to the aggregate trade size in the corporate bond market.
The previous two equations imply

2q1 (ω) = 2ϑq2 (ω) = q1 (ω) + ϑq2 (ω) =

2 (A1 + ϑA2)
(1 + # (ω))1/ς → (1 → # (ω))1/ς

1

2

´ [
(1 + # (ω→))1/ς + (1 → # (ω→))1/ς

]
dG (ω→)

↗ q̄ (ω) , (3.25)

which reveals that trade sizes provide us with essential information to recover each client’s ω0, ω1,
and ω2 from the transactions data. Namely, given r, A1, A2, ϑ, ⇀, ϖ1, and ϖ2 and the empirical
counterparts of ↽1 (ω), ↽2 (ω), and q̄ (ω), the system implied by (3.23) and (3.25) provides us with
three equations to pin down ω0, ω1, and ω2.23 Note that r and ϑ are calibrated parameters. Below
we design a minimum-distance estimation procedure to estimate the inverse elasticity, ⇀, of the
utility function, the asset-specific bargaining power parameters, ϖ1 and ϖ2, and the number of
tradable shares of each asset, A1, A2, by using additional aggregate and client-specific moments.

23Lemma 3 in Appendix A shows that this system of equations has a unique positive real solution for ε0, ε1,
and ε2.
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Hence, given these parameters, our model allows us to recover the client-specific parameters en-
tirely transparently by using data on clients’ trade frequencies and composite trade size.

Clients’ trade costs Because of dealers’ and core broker-dealers’ ability to extract rents, clients
trade at prices di!erent from the frictionless price at which the core can trade amongst themselves,
which means clients face endogenous trade costs in our model. To quantify these costs, we calculate
the theoretical counterpart of the trade cost measure of Pintér, Wang, and Zou (2024) averaged
across all clients:

⇁k =
ˆ ∑

ϖ↑!(ε)

∑

ω↑{ωl,ωh}
(log pk (ε, ϱ, ω) → log Pk)

(
I{ω=ωh} → I{ω=ωl}

)
fε (ε, ϱ) dG (ω) .

And, using the fact that half of the transactions happen at client-specific bid prices and the other
half at client-specific ask prices thanks to our symmetric binary taste-type assumption,

⇁k =
ˆ log φk (ω) → log ↼k (ω)

2 dG (ω) . (3.26)

Hence, the aggregate trade cost equals half the spread between the logged ask and logged bid
prices, averaged across clients.

Price dispersion in the client-dealer market In our model and in the data, di!erent dealer-
client pairs trade at di!erent prices. The magnitude of this deviation from the law of one price
is quantified by price dispersion. We calculate the equilibrium price dispersion as the trade size-
weighted mean absolute deviation of dealer-client transaction prices from the frictionless core price
normalized by the frictionless core price:

ςpk
=

´ ∑

ϖ↑!(ε)

∑

ω↑{ωl,ωh}
ωkqk (ω) |pk (ε, ϱ, ω) → Pk| fε (ε, ϱ) dG (ω)

Pk

´ ∑

ϖ↑!(ε)

∑

ω↑{ωl,ωh}
ωkqk (ω) fε (ε, ϱ) dG (ω) .

And, using the fact that half of the transactions happen at client-specific bid prices and the other
half at client-specific ask prices thanks to our symmetric binary taste-type assumption,

ςpk
=
´

↽k (ω) qk (ω) φk(ε)↓↼k(ε)

2
dG (ω)

Pk

´
↽k (ω) qk (ω) dG (ω) .

Hence, in the client-dealer market, the equilibrium price dispersion is equal to the half of (a
weighted average of) the realized bid-ask spreads.
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Price dispersion in the inter-dealer market Following the same steps as in the previous
paragraph, one can show that the equilibrium price dispersion in the inter-dealer market is

ςd
pk

=
´

↽k (ω) qk (ω) Ak(ε)↓Bk(ε)

2
dG (ω)

Pk

´
↽k (ω) qk (ω) dG (ω) .

Hence, in the inter-dealer market, the equilibrium price dispersion is equal to the half of (a weighted
average of) the realized bid-ask spreads that dealers face when trading with core broker-dealers.

By using (3.19), (3.20), (3.21), and (3.22), one finds that

ςd
pk

ςpk

= ϖc
k

ϖc
k + ϖd

k

. (3.27)

That is, the ratio of the inter-dealer price dispersion to the client-dealer price dispersion observed
in the data is informative about how the parameter ϖk = ϖd

k + ϖc
k is distributed across dealers and

the core. More precisely, let DRk = ςd
pk

/ςpk
denote this price dispersion ratio observed in the

data. Then, ϖd
k = (1 → DRk) ϖk and ϖc

k = DRkϖk. In our estimation exercises below, we will utilize
these two identities to separately determine the market power that dealers have against clients
and the market power that dealers face when trading in the inter-dealer market.

3.4.2 Welfare

One of our main motivations to write this model of OTC markets is to quantify the welfare loss
caused by the frictions characteristic of these markets. Accordingly, we calculate various measures
of social welfare in our model environment. Naturally, the first one is social welfare evaluated at
the equilibrium allocation:

WEq ↗ 1
r

ˆ ∑

ϖ↑!(ε)

∑

ω↑{ωl,ωh}
εu (ϱ) fε (ε, ϱ) dG (ω) → 1

r

∑

ω↑{ωl,ωh}

1
2εu (A1 + ϑA2) . (3.28)

Let us highlight the key properties of our model environment that make WEq a sensible measure
of social welfare. The first term represents the present value of all utility benefits stemming from
clients’ asset holdings. Any transfers of numéraire between clients and dealers and those between
dealers and the core net out to zero thanks to quasi-linear and transferable utility, and so, the
welfare is generated by clients’ utility flows only. In our model, clients’ utility flows change over
time due to exogenous time variation in their ε and endogenous time variation in their ϱ = a1+ϑa2.
However, the distribution of utility flows across clients stays the same in the stationary equilibrium.
Hence, the present value calculation reduces to dividing the aggregate utility flow by the discount
rate r.24 Because we want WEq to capture the welfare created by OTC trading opportunities,

24To be more precise, we make use of the equality 1
r =

→́

0
e↑rtdt for r > 0.
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we subtract a baseline level of welfare from the first term of WEq. Our choice of baseline welfare
is the level of welfare in an “autarky” allocation in which every client’s holding of asset 1 and 2
are always equal to the assets’ respective per-capita supplies, A1 and A2, and none of the clients
trades as they switch from one taste type to another. That is, our baseline welfare measures the
level of welfare obtained when clients forego all the gains from trade.

The second welfare measure we calculate is the unconstrained e#cient or first-best welfare, i.e.,
the level of welfare when a benevolent social planner decides the allocation of assets across agents
without any constraint apart from the usual resource constraints:

WF B ↗ max
a1(ωl),a1(ωh),a2(ωl),a2(ωh)

1
r

∑

ω↑{ωl,ωh}

1
2εu [a1 (ε) + ϑa2 (ε)] → 1

r

∑

ω↑{ωl,ωh}

1
2εu (A1 + ϑA2) ,

subject to
∑

ω↑{ωl,ωh}

1
2a1 (ε) = A1,

∑

ω↑{ωl,ωh}

1
2a2 (ε) = A2,

and
→M ⇒ ak (ε) ⇒ M

for all ε ↓ {εl, εh} and k ↓ {1, 2}. Again, in writing down this welfare measure, we use the fact
that how numéraire is allocated across agents is irrelevant to social welfare due to transferable
utility and the fact that the distribution of taste types across clients is stationary.

The third welfare measure we calculate is a constrained e#cient or second-best welfare, i.e.,
the level of welfare when a benevolent social planner can modify only the terms of trade when
agents get to trade, but otherwise is subject to the constraints stemming from the OTC market
structure as well as the usual resource constraints:

WSB ↗
↗̂

0

e↓rt






ˆ M̂

↓M

M̂

↓M

∑

ω↑{ωl,ωh}
εu (a1 + ϑa2) !↘

ε (ε, da1, da2 | t) dG (ω)





dt→1

r

∑

ω↑{ωl,ωh}

1
2εu (A1 + ϑA2) .

(3.29)
The planner maximizes WSB with respect to controls, qk (ε, a1, a2, ω | t), subject to the laws of
motion for the state variables, !↘

ε (ε, da1, da2 | t), and to the feasibility conditions of asset reallo-
cation, ˆ M̂

↓M

M̂

↓M

∑

ω↑{ωl,ωh}
ω1q1 (ε, a1, a2, ω | t) !↘

ε (ε, da1, da2 | t) dG (ω) = 0 (3.30)
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and ˆ M̂

↓M

M̂

↓M

∑

ω↑{ωl,ωh}
ω2q2 (ε, a1, a2, ω | t) !↘

ε (ε, da1, da2 | t) dG (ω) = 0. (3.31)

Note that using prices as control variable is redundant for the usual reason that any transfer of the
numéraire good from one agent to another does not a!ect WSB because of quasi-linear preferences.

The next proposition presents these three welfare notions as functions of model primitives.

Proposition 4. In our special case with iso-elastic utility, the values of social welfare evaluated
at the first-best, the second-best, and the equilibrium allocations are

WF B = ς

r

(A1 + ϑA2)1↓ς

1 → ⇀

(
21↓ς → 1

)
,

WSB = ς

r

(A1 + ϑA2)1↓ς

1 → ⇀

↑





´ (
2r+ε0+2ε1+2ε2

r+ε0+ε1+ε2

) 1
ω ↓1 ε1+ε2+ε0/2

ε1+ε2+ε0
+

(
ε0

r+ε0+ε1+ε2

) 1
ω ↓1 ε0/2

ε1+ε2+ε0


dG (ω)


1

2

´ (
2r+ε0+2ε1+2ε2

r+ε0+ε1+ε2

)1/ς
+

(
ε0

r+ε0+ε1+ε2

)1/ς


dG (ω)
1↓ς → 1



 ,

and

WEq = ς

r

(A1 + ϑA2)1↓ς

1 → ⇀

↑





´ (
2r+ε0+2ε1(1↓↽1)+2ε2(1↓↽2)

r+ε0+ε1(1↓↽1)+ε2(1↓↽2)

) 1
ω ↓1 ε1+ε2+ε0/2

ε1+ε2+ε0
+

(
ε0

r+ε0+ε1(1↓↽1)+ε2(1↓↽2)

) 1
ω ↓1 ε0/2

ε1+ε2+ε0


dG (ω)


1

2

´ (
2r+ε0+2ε1(1↓↽1)+2ε2(1↓↽2)

r+ε0+ε1(1↓↽1)+ε2(1↓↽2)

)1/ς
+

(
ε0

r+ε0+ε1(1↓↽1)+ε2(1↓↽2)

)1/ς


dG (ω)
1↓ς → 1



 ,

respectively.

One lesson from Proposition 4 is that the e#ciency implications of LR apply to our generalized
setup as well. That is, the second-best welfare would obtain in equilibrium if clients’ share of
transaction surplus were 100%. As in the model of LR, clients in our model reduce their trade
quantities by ine#ciently large amount because they cannot internalize all the gains from trade
due to ϖk > 0. This means that while the source of ine#ciency in this model is search frictions
(ω1 < ⇐ and ω2 < ⇐), the source of constrained ine#ciency is intermediation frictions (ϖ1 > 0 or
ϖ2 > 0).

In our quantitative analysis below, Proposition 4 plays a key role. After we estimate the
model parameters for the gilt market and the UK corporate bond market, we use Proposition 4 to
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calculate WF B, WSB, and WEq. This allows us to understand and compare the extent to which
OTC market frictions a!ect the participants’ well-being in two of Europe’s largest fixed-income
markets. In particular, we calculate

(
WF B → WEq

)
/WF B to quantify the welfare loss from the

real-world frictions relative to what would obtain in a perfect world. Then, we decompose this
relative welfare loss to a component due to intermediation frictions,

(
WSB → WEq

)
/WF B, and a

component due purely to search frictions,
(
WF B → WSB

)
/WF B.

4 Estimating the Model

4.1 Bringing the Model to the Data

In what follows, we estimate the special case of our model with iso-elastic utility presented in
Section 3.4 for the gilt market (asset 1) and the UK corporate bond market (asset 2). We have to
determine ten parameters, r, ς, ⇀, ϑ, A1, A2, ϖd

1
, ϖd

2
, ϖc

1
, and ϖc

2
and one distribution, G (ω0, ω1, ω2).

4.1.1 Summary of Model Equations for Calibration and Estimation

The equations for the observable empirical objects to be used in the estimation are:

↽k (ω) = ωk

2
ω0

ω0 + ω1 + ω2

, (4.1)

q̄ (ω) = 2 (A1 + ϑA2)
(1 + # (ω))1/ς → (1 → # (ω))1/ς

1

2

´ [
(1 + # (ω→))1/ς + (1 → # (ω→))1/ς

]
dG (ω→)

, (4.2)

Vk =
ˆ

↽k (ω) qk (ω) dG (ω)

=
ˆ 

↽k (ω) A1 + ϑA2

ϱk

(1 + # (ω))1/ς → (1 → # (ω))1/ς

1

2

´ [
(1 + # (ω→))1/ς + (1 → # (ω→))1/ς

]
dG (ω→)



 dG (ω) , (4.3)

⇁k =
ˆ log φk (ω) → log ↼k (ω)

2 dG (ω) , (4.4)

ςpk
=
´

↽k (ω) qk (ω) φk(ε)↓↼k(ε)

2
dG (ω)

Pk

´
↽k (ω) qk (ω) dG (ω) , (4.5)

ςd
pk

=
´

↽k (ω) qk (ω) Ak(ε)↓Bk(ε)

2
dG (ω)

Pk

´
↽k (ω) qk (ω) dG (ω) . (4.6)

Going over the endogenous measures listed above, the entire distribution G is necessary to cal-
culate any quantity-based or price-based moment. Therefore, we try to determine it entirely. In
particular, we estimate G “non-parametrically” by calculating the three-dimensional characteris-
tics (ω0, ω1, ω2) of each of the 526 clients in our sample. Lemma 3 of Appendix A shows that, given
r, A1, A2, ϑ, ⇀, ϖ1, and ϖ2, the equation system implied by (4.1) and (4.2) is su#cient to uniquely
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pin down ω0, ω1, and ω2 for each client, under mild regularity conditions.25 As the empirical
counterpart of q̄ (ω), we rely solely on corporate bond trade sizes, q̄ (ω) = 2ϑq2 (ω), together with
a calibrated value of ϑ. Then, we let the empirical government bond trade sizes, q1 (ω), inform the
estimation of market-wide parameters.

More precisely, to estimate five market-wide deep parameters, ⇀, ϖ1, ϖ2, A1, and A2, we use
information from 529 di!erent data moments: (i) trade volume, V1, calculated as above in (4.3) for
the government bond market, (ii) aggregate trade cost, ⇁1, in the government bond market, (iii)
aggregate trade cost, ⇁2, in the corporate bond market, and (iv) time-series average of government
bond trade sizes, q1 (ω), for each of the 526 clients in our sample.

The remaining parameters are the preference parameters and the MRS between the two assets:
r, ς, and ϑ, as well as the decomposed bargaining powers for dealers and the core, ϖd

1
and ϖc

1
in

the gilt market and ϖd
2

and ϖc
2

in the corporate bond market. We determine these parameters by
calibration. We set r equal to 2.5% per annum, which approximately equals the yields on AAA-
rated corporate bonds in our sample. This choice reflects the view that the government bond yield
is a poor estimate for the true risk-free rate because of government bonds’ convenience yield.26

The MRS parameter, ϑ = 14.8085, is calibrated to match the ratio of the aggregate trade size
in the government bond market to the aggregate trade size in the corporate bond market. More
precisely, we set ϑ equal to the mean (across clients) of qi

1
/qi

2
, where qi

k is the time-series average
of client i’s trade sizes in market k. Given the estimated ϖ1 and ϖ2, we calibrate ϖd

1
, ϖc

1
, ϖd

2
, and ϖc

2

to match the ratio of the inter-dealer price dispersion to the client-dealer price dispersion, that we
name DRk, both in the government bond and the corporate bond markets by using the model-
implied identities ϖd

k = (1 → DRk) ϖk and ϖc
k = DRkϖk. It is straightforward to infer DR1 = 0.9389

and DR2 = 0.6755 from Table 1. What remains to be determined is the preference volatility
parameter, ς. It is easy to see that the only role of ς is to scale up and down all the price levels,
φk (ω), ↼k (ω), Ak (ω), Bk (ω), and Pk. Hence, it does not a!ect our trade cost and price dispersion
measures (4.4), (4.5), and (4.6), and so, it does not a!ect any of the endogenous moments we
match in our estimation procedures. Similarly, the welfare measures stated in Proposition 4 are
only scaled up or down by ς, and so, the relative welfare measures we are interested in are not
a!ected by ς either. Therefore, we leave the parameter ς out of our estimation.

4.1.2 Estimation

We set up a minimum-distance estimation to estimate the (non-calibrated) parameters of our
two-asset equilibrium model. Remember that we associate asset 1 with the gilt market and asset

25More precisely, Lemma 3 states two su"cient conditions for uniqueness. First, the intertemporal elasticity of
substitution, 1/ϑ, must be less than 1. This assumption is well-supported by empirical studies in macroeconomics
and asset pricing. See Vissing-Jørgensen (2002) and Hansen, Heaton, Lee, and Roussanov (2007), among others.
Second, the highest values of q̄ (ε) should not be too large relative to the per-capita supplies of the assets. Our
estimation algorithm is designed to ensure that these theoretical bounds are satisfied at the estimated parameters.

26We thank Thanasis Geromichalos for this suggestion.

31



2 the corporate bond market. We have 529 moment conditions to estimate the parameter vector
ψ =

(
⇀, ϖ1, ϖ2, Ā

)
, which consists of four elements, where Ā ↗ A1 + ϑA2.27 Mathematically, ψ

solves
min
⇀↑”

[(m̂ (ψ) → mS) ⇑ mS]→ Ŵ [(m̂ (ψ) → mS) ⇑ mS] , (4.7)

where ⇑ is Hadamard division, m̂ (ψ) is the vector of theoretical moments computed from the
model evaluated at the parameter vector ψ, mS is the vector of corresponding sample moments,
and Ŵ is a weighting matrix. Note that we follow Gavazza (2016) in using moments in percentage
deviation from their empirical targets to ensure that they have the same scale.

Our theoretical moments consist of three market-wide moments and 526 client-level moments.
The three market-wide moments are trade volume in the government bond market and trade
costs in the government bond and the corporate bond markets, computed according to (4.3)
and (4.4). The 526 client-level moments are each client’s government bond trade size computed
according to (3.24). The sample moments, mS, are computed at daily frequency, yielding 1440
observations for each moment condition. Given the relatively small sample, we follow Altonji and
Segal (1996) in avoiding to estimate the optimal weighting matrix, which can exhibit poor finite
sample properties.28 More specifically, we “hand select” a diagonal matrix, where Ŵii = 1 for
aggregate moments and Ŵjj = 1/N2 ⇓ 1 for client-level moments. The logic behind this choice
is that client-level moments are already used for non-parametric exact identification of client
characteristics, ω. The goal of the minimum-distance estimation stage is to identify the market-
wide parameters, ψ. Hence, we place greater emphasis on market-wide moments by explicitly
down-weighting client-level moments. This approach is in the spirit of macroeconomic studies
that incorporate micro-level heterogeneity. Such studies often explicitly or implicitly give more
weight to aggregate moments (e.g., GDP growth, inflation, aggregate investment) because these
are often the primary targets of the model, and micro moments (e.g., household consumption
distribution) are treated as secondary. See, for example, Browning, Hansen, and Heckman (1999),
Guvenen (2009), and Kaplan and Violante (2014).

4.2 Empirical Results

As our structural model is a two-market model, the estimation is conducted jointly for the gov-
ernment and corporate bond markets. The parameter estimates are shown in Table 2 along with
bootstrap standard errors in parentheses. Three observations are in order regarding the estimated
parameters. First, the implied intertemporal elasticity of substitution (IES), 1/⇀, is approxi-
mately 0.025, indicating that UK fixed-income clients exhibit an exceptionally low willingness to
intertemporally substitute their asset holdings. Second, clients’ lost surplus share as measured

27Going over the endogenous measures (4.1)-(4.6), one sees that A1 + ωA2 shows up always as a block because
of the constant MRS property of our model. Thus, it is possible to estimate Ā, but not A1 and A2 separately.

28See Altonji and Segal (1996) as well as Honore, Jorgensen, and de Paula (2020) for a recent discussion.
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by ϖ is substantially higher in the corporate bond market. More specifically, because they lack
direct access to “frictionless” markets and must trade through intermediaries, clients lose 4% and
38% of trade surpluses in the government and corporate bond markets, respectively. Finally, the
estimated number of tradable shares of the composite asset, Ā = A1 + ϑA2, is around 38% of
the total supply of composite assets in our dataset (the sum of the supply of government bonds
and ϑ times the supply of corporate bonds).29 This aligns with the common view of fixed-income
markets that once bonds exit their on-the-run stage, most holdings are locked away in the vaults
of buy-and-hold investors, leaving little free float available to the clients who trade more actively.

Table 2: Parameter Estimates

ϑ – Curvature of the utility function 42.296
(6.068)

ϖ1 – Lost surplus share in gilt (ϖc
1 + ϖd

1) 0.0415
(0.096)

ϖ2 – Lost surplus share in corporate (ϖc
2 + ϖd

2) 0.383
(0.139)

Ā – Tradable portion of the asset supply (composite) 2.6715 ↑ 107

(2.2476 ↑ 107)
Notes: This table reports the estimates of the parameters. The sample contains 1440 trading days covering the period 2011m8-2017m12.

The parameter estimates are obtained by minimizing the objective function (4.7). Bootstrap standard errors, shown in parentheses,

are based on 200 simulated datasets.

To illustrate the fit of the estimated model, Table 3 shows the moments computed from the data
as well as those implied by the model evaluated at the estimated parameters. The distributions
of government bond trade intensities, corporate bond trade intensities, and corporate bond trade
sizes are exactly matched. This results from the non-parametric exact identification of the joint
distribution of client characteristics by using Lemma 3. In other words, 526 ↑ 3 client-based
data moments are used to identify 526 ↑ 3 client-specific parameters in the model and Lemma
3 guarantees that the identification relies on a system of equations with unique solution. Then,
the remaining 526 client-specific moments and three aggregate moments determine the remaining
four aggregate parameters. Two of these aggregate moments, average trade cost in each market,
are almost exactly matched. This is because these two moments are uniquely important for the
identification of ϖ1 and ϖ2. Finally, ⇀ and Ā are identified by the remaining 526 + 1 moments,
the client-specific government bond trade sizes and the total trade volume of government bonds.
Given the substantial over-identification of the system, the alignment of the moment conditions is
necessarily imperfect. The misalignment is most pronounced in the client-based moments, owing
to their relatively low weighting in the specification of our minimum-distance objective function
(4.7).

29The supply of government bonds is 4.9127 ↑ 107 per client per bond. The supply of corporate bonds is
1.3815 ↑ 106 per client per bond. These imply a supply of composite assets of 6.9585 ↑ 107 per client per composite
bond.
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Table 3: Model Fit

Government Bonds Corporate Bonds
Moments Empirical Theoretical Empirical Theoretical

(1) (2) (3) (4)
Trade Intensities

Median 0.0068 0.0068 0.0007 0.0007
p25 0.0022 0.0022 0.0002 0.0002
p75 0.0221 0.0221 0.0031 0.0031

Trade Sizes
Median 2,236,224 4,067,963 274,704 274,704
p25 365,051 819,130 55,315 55,315
p75 6,954,749 10,875,793 734,427 734,427

Average Trade Cost 0.7699 0.7699 7.0814 7.0815
Trade Volume 281,460 258,758 – –

Notes: This table reports the values of the empirical moments and of the theoretical moments calculated at the estimated parameters.

Columns (1)-(2) and Columns (3)-(4) show the results for the government bond and corporate bond markets, respectively.

While Table 3 illustrates the fit of the targeted moments, Figure 3 plots the entire distribution
of trade costs in the cross section of clients in both markets, which are non-targeted functions
apart from their implied first moments. Figure 3 shows that the distributions of clients’ trade cost
in both markets are highly skewed both in the data and in our theory evaluated at the estimated
parameters. This implies that our exogenous structural assumptions (e.g., market-wide bargaining
power parameters and common preference parameters, instead of client-specific ones) do a good
job in generating realistically skewed distributions of endogenous trade cost in both markets.

Figure 3: Probability Density Functions of Clients’ Trade Costs

Notes: This figure shows the theoretical and empirical probability density functions (pdf) of client-specific average trade costs for the

gilt market in the left panel and for the UK corporate bond market in the right. Theoretical pdfs are the pdf of the endogenous

object (log φk (ε) ↓ log ↼k (ε)) /2 as seen inside the integral (3.26), implied by the estimated parameter values (as reported in Table 2).

Empirical pdfs are one-dimensional kernel density estimates of the cross-sectional empirical variable which is the time-series average of

each client’s daily average trade cost.
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Although Figure 3 visually demonstrates the close alignment between the theoretical and em-
pirical distributions of clients’ trade costs, we also estimate the following cross-sectional regression
to convey this match more rigorously:

theoretical ⇁i
k = ↼k ↑

(
empirical ⇁i

k

)
+ εi

k, (4.8)

where ⇁i
k is client i’s trade cost in market k. We run the regression separately for the government

bond (k = gilt) and the corporate bond markets (k = corp). Note that a perfect alignment of the
theoretical and empirical trade costs would imply ↼gilt = 1 and ↼corp = 1, which constitute our
null hypotheses in this regression analysis. Figure 4 presents the regression results. The coe#cient
estimates, ↼̂gilt = 0.75 and ↼̂corp = 1.55, are both in the ballpark of one. Moreover, the value of
one falls within the 95% confidence intervals for both markets’ regressions, indicating that our null
hypotheses are not rejected. We interpret this as strong evidence of the model’s ability to match
the distribution of clients’ trade costs—despite these being non-targeted moments. Notably, our
estimation procedure only targets the average trade cost in the cross section of clients. Thus,
any theoretical client heterogeneity our model estimation captures are based on clients’ trade
frequencies and trade sizes as well as market-wide moments including the average trade cost in
the cross section of clients. However, as demonstrated in Figures 3 and 4, the model realistically
reproduces the entire distribution of clients’ trade costs as well.

Figure 4: Regression Estimates with 95% Confidence Intervals

Notes: Regression estimates of theoretical ⇁i
on empirical ⇁i

for gilt and corporate bonds as defined in (4.8). For gilt bonds, the

coe!cient estimate is 0.75 with a robust standard error of 0.17, a 95% confidence interval of [0.43, 1.08], and an R2
of 0.724. For

corporate bonds, the coe!cient estimate is 1.55 with a robust standard error of 0.35, a 95% confidence interval of [0.86, 2.24], and an

R2
of 0.517. Error bars denote 95% confidence intervals based on robust standard errors.
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4.2.1 Estimated Client Characteristics

In this section, we present the results related to the estimated joint distribution of clients’ taste
shock intensity, meeting rate with dealers to trade government bonds, and meeting rate with
dealers to trade corporate bonds. Table 4 provides the summary statistics for the marginal distri-
butions of these three client characteristics. The median client’s daily taste shock rate is 0.0275,
which implies that the median client wants to trade a particular government or corporate bond
once every 36 days. The average taste shock rate is about 4.2 times as large as the median taste
shock rate, implying a right-skewed distribution. When we look at the meeting rates, the median
client gets to meet a gilt dealer 6.77 times per day and a corporate bond dealer 0.56 times a
day. The averages are substantially higher than their respective medians in each market, which
again imply substantial right-skewness. This can also be easily confirmed with the substantial
asymmetries of the 25th percentile and the 75th percentile from their respective medians in each
market. That is, the median meeting rate is closer to the 25th percentile than the 75th percentile
in each market.

Table 4: Distribution of Client Characteristics

Variable Taste Shock Rate Gilt Meeting Rate Corporate Meeting Rate
(1) (2) (3)

Average 0.11688 4,350,993 199,241
Standard Deviation 0.23721 1.41 ↑ 107 744,350
Median 0.027535 6.7716 0.56291

p25 0.0090767 0.033986 0.012819
p75 0.10694 1,195,102 39,966

Notes: This table summarizes the marginal distributions for each of the three dimensions of clients’ characteristics, recovered by our

estimation algorithm. Columns (1), (2), and (3) report summary statistics for the marginal distribution of clients’ taste shock intensity

(ε0), clients’ meeting rate with dealers to trade a government bond (ε1), and clients’ meeting rate with dealers to trade a corporate

bond (ε2), respectively.

Note that our structural model treats all three dimensions of client characteristics as exogenous
parameters, and we estimate these client-specific parameters by e!ectively “letting the data speak”
on the stage set by our structural model. However, one could take a step back and argue that
clients must have some degree of control over their meeting rates. In fact, the literature provides
micro-foundations for endogenous meeting rates. For example, Vayanos and Wang (2007) model
endogenous market segmentation, allowing agents with di!erent taste shock intensities to choose
the market segment in which they trade. They show that an asymmetric equilibrium emerges
in which high-intensity agents trade in more liquid segments, while low-intensity agents trade
in less liquid ones. Similarly, Hendershott, Li, Livdan, and Schürho! (2020) endogenize client-
dealer relationships by allowing clients to choose the number of dealers in their network. In their
model, the optimal number of dealer relationships increases with taste shock intensity, enabling
high-intensity clients to trade more frequently than those with lower intensity. We next analyze
whether our estimated client characteristics are consistent with these theories.
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Table 5 presents results for regressions where we used taste shock intensity as the explanatory
variable for meeting rates in the government and corporate bond markets. Panel 1 and 3 confirm
that clients, who have a higher exposure to taste shocks, are likely to receive more trading oppor-
tunities in both markets, compatible with existing OTC market theories of endogenous meeting
rates. Panel 2 and 4 investigate if the relation between taste shock intensity and meeting rates
is concave or convex. The negative slope coe#cients for ω2

0
imply that the relation is concave

in both markets. We then use the slope coe#cients reported in Panel 2 and 4 and determine
the level of taste shock intensities, ωgϱ

0 ⇔ 1.1 and ωcϱ
0

⇔ 1.5, as maximizing the meeting rate in
the government bond and the corporate bond market, respectively. This implies that taste shock
intensity has a positive impact on meeting rates for more than 95% of clients in the government
bond market and for more than 99% of clients in the corporate bond market. Hence, we conclude
that the relation between taste shock intensity and meeting rates is positive and concave, but not
really hump-shaped.

Table 5: Explaining Meeting Rates

Gilt Meeting Rate (ε1) Corporate Meeting Rate (ε2)
(1) (2) (3) (4)

ε0 2.62 ↑ 107 5.43 ↑ 107 1, 165, 433 1, 881, 284
(3.72) (3.85) (3.23) (2.59)

ε2
0 →2.47 ↑ 107 →629, 419.3

(-1.95) (-0.90)
Intercept 1, 290, 179 →270, 156 63, 025.05 23, 304.65

(2.62) (-0.47) (2.14) (0.74)
Observations 526 526 526 526
R2 0.1953 0.2394 0.1379 0.1481

Notes: This table presents OLS regression estimates examining the relationship between meeting rates and the variables ε0 and ε2
0,

with separate models for gilt meeting rates (ε1) and corporate meeting rates (ε2). Columns (1) and (2) report estimates for gilt

meeting rates, while columns (3) and (4) report estimates for corporate meeting rates. The t-statistics are based on robust standard

errors and shown in parentheses.

4.3 Quantitative Assessment of Frictions and Welfare

A main advantage of using our structural model to study OTC markets is that we can estimate
two key objects that characterize the severity of trading frictions: average trading delays and
intermediaries’ bargaining power. Table 6 shows the results for the two markets. Trading delays
are measured in days, while bargaining power is defined as the fraction of trade surplus captured
by the agent. Mathematically, the expected trading delay of a client before she trades some
government bond is 1/ (57ω1) and the share of transaction surplus she loses to intermediaries is
ϖ1 = ϖd

1
+ ϖc

1
. The same numbers in the corporate bond market are 1/ (57ω2) and ϖ2 = ϖd

2
+ ϖc

2
,

respectively.
Trading delays in the UK government bond market are minimal, typically on the order of
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minutes. The median client searches for less than five minutes to trade a representative gilt,
rendering such delays negligible—consistent with the calibration results of Vayanos and Weill
(2008) for the US government bond market. In contrast, trading delays in the corporate bond
market are more pronounced: the median client spends approximately 45 minutes searching to
trade a representative corporate bond. Moreover, trading delays vary significantly across clients
in both markets. At the 25th percentile, clients face virtually no delay in either market. However,
at the 75th percentile, clients require half a day to execute a gilt transaction and nearly 1.4 days
to execute a corporate bond transaction.

Table 6: Welfare Results I: Estimated Trading Delays and Dealers’ Bargaining Power

Government Bonds Corporate Bonds
(1) (2)

Average Trading Delays
Median 0.0026 0.0314
p25 0.0000 0.0000
p75 0.5162 1.3686

Client’s Lost Surplus Share 4.15% 38.30%
Dealer’s Bargaining Share 0.25% 12.43%
Core Broker-Dealer’s Barg. Share 3.89% 25.87%

Notes: This table reports summary statistics for trading delays (upper panel) and dealers’ bargaining power (lower panel), implied by

the theoretical model evaluated at the estimated parameter values (as reported in Table 2). Trading delays are expressed as a fraction

of a day.

The lower panel of Table 6 shows the estimated shares of transaction surplus captured by dealers
and core broker-dealers in each market, which we refer to as intermediaries’ bargaining power in
short. The respective estimates of ϖ1 = 4.15% and ϖ2 = 38.3% for intermediaries’ bargaining power
in the gilt and the corporate bond market confirm the common view that intermediaries generally
have larger market power in corporate bond markets than in government bond markets.30 If the
interdealer market were frictionless, the estimates of clients’ lost surplus shares in the two markets
would fully reflect the market power dealers exert over their clients. However, the substantial
inter-dealer price dispersion documented in Table 1 for both the government and corporate bond
markets indicates that interdealer trading is itself subject to frictions. In our theoretical model,
we capture this with a non-zero bargaining share that goes to core-broker dealers as dealers
o"oad unwanted positions in the interdealer market. Using equation (3.27), the lower panel of
Table 6 decomposes the clients’ lost surplus share into the bargaining shares of dealers and core
broker-dealers. The quantitative results suggest that the trade costs faced by clients in the UK’s
fixed-income markets arise primarily from frictions in the interdealer market, rather than from
dealers exercising market power over clients.

Table 7 estimates the relative welfare loss caused by the presence of OTC market frictions.
30See Di Maggio, Kermani, and Song (2017), Biais and Green (2019), and Hendershott, Li, Livdan, and Schürho!

(2020) for a discussion.
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To calculate the welfare loss separately for each bond market, we use the single-asset counterpart
of the formulas presented in Proposition 4. More precisely, when calculating the welfare loss in
the gilt market, we set all clients’ ω2s and the tradable shares of corporate bonds A2 to zero, as
well as halving each client’s ω0. Similarly, when calculating the welfare loss in the corporate bond
market, we set all clients’ ω1s and the tradable shares of gilts A1 to zero, as well as halving each
client’s ω0.

The top panel of Table 7 reports a “95% confidence interval” for the welfare loss relative to the
first-best benchmark in each market. These intervals are calculated by finding the minimum and
the maximum welfare loss that a set of parameter combinations from the 95% confidence intervals
of our parameter estimates can generate. The medium panel reports the relative welfare loss levels
in both markets implied by the estimated parameter values exactly. These estimates imply that
the welfare loss caused by OTC frictions is quite sizable in both markets, while it is significantly
larger (more than twice) in the corporate bond market than in the gilt market.

We also decompose the welfare loss into two parts with di!erent economic meanings: the part
attributed to technological constraints that cannot be relaxed unless the market structure itself is
changed (i.e., the welfare loss caused by the search frictions, characteristic of OTC markets) and
the remaining part that is due to intermediation frictions including imperfect competition between
dealers and interdealer market frictions. The bottom panel of Table 7 shows that, in both markets,
almost the entire loss can be attributed to search frictions with dealers’ market power making a
small contribution.

Table 7: Welfare Results II: Estimated Welfare Losses

Government Bonds Corporate Bonds
(1) (2)

Min. - Max. Welfare Loss 2.14% - 3.00% 4.36% - 6.31%
Welfare Loss 2.3778% 5.0463%

Due to Search Frictions 2.3774% 4.9464%
Extensive Margin 2.3774% 4.9464%
Intensive Margin 0.0000% 0.0000%

Due to Intermediation Frictions 0.0004% 0.0999%
Notes: This table reports the welfare losses in the government bond and corporate bond markets implied by the estimated parameter

values and standard errors (as reported in Table 2). The top panel reports the minimum and the maximum possible relative welfare

loss in each market implied by the 95% confidence intervals of the estimated parameter values. The medium panel reports the relative

welfare loss levels in each market implied by the estimated parameter values exactly. The bottom panel reports various decompositions.

The final exercise using our estimation is to further decompose the welfare loss arising purely
from search frictions into two components. The first is an intensive margin e!ect, which captures
the clients’ endogenous demand cutting behavior in response to search frictions. The second is
an extensive margin e!ect, which reflects the fact that some clients remain stuck with suboptimal
asset positions for a period of time—even if they choose trade quantities as though they were
trading in a Walrasian market. Our estimates suggest that in both markets, the intensive margin
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e!ect is negligibly small. This indicates that the main source of welfare loss is the inevitable delay
between a client experiencing a taste shock and her next meeting with a willing dealer.

Taking stock, Table 7 underscores two key insights. First, even if the estimated median trading
delays sound reasonably small (a few minutes in the gilt market), the welfare loss caused by them
can be sizable. In line with the findings in Table 6, a significant share of the welfare loss arises from
clients in the 75th percentile and above in terms of trading delays. This highlights the importance
of incorporating client heterogeneity into structural models to ensure accurate counterfactual and
normative analyses. Second, in the UK’s fixed-income markets, the primary source of welfare loss
arises from the extensive margin of search frictions, while frictions a!ecting trade sizes—namely,
the intensive margin of search frictions and intermediation frictions—contribute negligibly. This
is due to the remarkably low estimate of the IES, 1/⇀ = 0.0236, which implies that even in the
absence of frictions, clients would already prefer to avoid aggressive trading; as a result, frictions
do not a!ect trade sizes in a way that substantially contributes to welfare losses. This low IES
estimate is consistent with the findings of Hall (1988) and Campbell and Mankiw (1989), who
report that household consumption-saving behavior implies an IES statistically indistinguishable
from zero.31

4.4 Sources of Identification for the Market-wide Parameters

Search-based models typically follow a general equilibrium approach. While individual agents take
the equilibrium distribution as given in calculating the option value of continuing search, their
individual actions generate the equilibrium distribution in question. As a result, a model structure
emerges whereby (almost) all exogenous parameters a!ect all endogenous outcomes, as pointed
out by Eckstein and van den Berg (2007) and Gavazza (2016). Although this is the case in our
model as well, it is instructive to study how model parameters a!ect certain key moments to get a
better understanding of the sources of identification. To that end, in Figures 5–8, we inspect how
the four (sets of) moment conditions change as we perturb a given parameter around its estimated
value.

31More moderate estimates of the IES appear in the macroeconomics and finance literature. For instance, Yogo
(2004) estimates values between 0.03 and 0.06 (for the US), while Vissing-Jørgensen (2002) reports values in the
range of 0.3 to 0.4. Accordingly, in Appendix G, we conduct a robustness exercise by recalculating welfare losses for
IES values of 0.05 (ϑ = 20) and 0.5 (ϑ = 2), holding all other parameters constant. Although total welfare losses are
higher under these alternative values, intermediation frictions and the intensive margin of search frictions continue
to contribute only marginally. Thus, even an IES as high as 0.5 is su"ciently low to preserve the robustness of our
qualitative welfare conclusions.
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Figure 5: Gilt Dealers’ Market Power (ϖ1)

Note: This figure shows how the theoretical moments change as we perturb the surplus share, ↽1, that clients lose to dealers and

core-broker dealers when bargaining to trade a government bond around its estimated value, while keeping all the other parameters

fixed at their estimated values. The top-left, top-right, bottom-left and bottom-right panels show the results for the distribution of

clients’ trade size in the gilt market, total trade volume in the gilt market, average trade cost in the gilt market, and average trade cost

in the corporate bond market, respectively.

Figure 6: Corporate Dealers’ Market Power (ϖ2)

Note: This figure shows how the theoretical moments change as we perturb the surplus share, ↽2, that clients lose to dealers and

core-broker dealers when bargaining to trade a corporate bond around its estimated value, while keeping all the other parameters fixed

at their estimated values. The top-left, top-right, bottom-left and bottom-right panels show the results for the distribution of clients’

trade size in the gilt market, total trade volume in the gilt market, average trade cost in the gilt market, and average trade cost in the

corporate bond market, respectively.

41



To begin with, Figure 5 illustrates how the theoretical moments respond to perturbations in the
gilt dealers’ market power parameter, ϖ1, around its estimated value, holding all other parameters
constant. Similarly, Figure 6 shows the sensitivity of the theoretical moments to variations in the
corporate bond dealers’ market power parameter, ϖ2, again keeping all other parameters fixed at
their estimated values. The bottom panels of both figures demonstrate that increasing either ϖ1

or ϖ2 leads to higher average trade costs in both markets. In contrast, the top panels indicate
that changes in ϖ1 or ϖ2 have negligible e!ects on clients’ trade sizes and total trade volume in
the gilt market. This pattern suggests that the average trade cost moments in the two markets
are the primary identifiers of ϖ1 and ϖ2. Indeed, as also shown in Table 3, the empirical average
trade costs closely align with their theoretical counterparts. Figures 5 and 6 confirm that this
close match is achieved precisely because the estimation algorithm successfully recovers the true
values of ϖ1 and ϖ2.

The remaining two parameters to be determined are the curvature parameter of the utility
function, ⇀, and the tradable portion of the composite asset, Ā.32 Figures 7 and 8 show that
these parameters are jointly identified by the distribution of clients’ trade sizes in the gilt market
and the total trade volume in the gilt market. As implied by Equations (3.18) and (4.3), each
client’s gilt trade size and the aggregate gilt trade volume scale proportionally with A1 +ϑA2. This
relationship is reflected in the top panel of Figure 8, where an increase in the tradable portion of
the assets results in a rightward shift of the cdf of trade sizes and a corresponding rise in total gilt
trade volume. In contrast, the bottom panel of Figure 8 shows that changes in Ā have a negligible
e!ect on average trade costs in both markets. We therefore conclude that the identification of Ā

relies primarily on the distribution of trade sizes and the total volume in the gilt market, rather
than on trade cost moments.

Finally, Figure 7 demonstrates that the distribution of trade sizes and the total volume in the
gilt market contribute to the identification of the curvature parameter of clients’ utility function,
⇀. An increase in ⇀ makes the utility function more concave, rendering clients more reluctant
to deviate from a “balanced” asset holding. Accordingly, the top panel of Figure 7 shows that a
higher ⇀ reduces both individual gilt trade sizes and aggregate gilt trade volume. Taken together
with Figure 8, we conclude that ⇀ and Ā are jointly identified by the distribution of clients’ trade
sizes and the total volume in the gilt market. The bottom panel of Figure 7 indicates that changes
in ⇀ also influence average trade costs in both the gilt and corporate bond markets. However, since
these price-based moments—i.e., average trade costs—are primarily informative for identifying ϖ1

and ϖ2, we regard the size- and volume-based moments as the key drivers for the identification of
⇀.

32In this section and the accompanying tables, we scale the number of tradable shares of the composite asset
by the empirical supply of composite assets, which is 6.9585 ↑ 107 per client per composite bond. Accordingly, Ā
should be interpreted as the fraction of assets that are in free float.
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Figure 7: Curvature of the Common Utility (⇀)

Note: This figure shows how the theoretical moments change as we perturb the curvature parameter, ς, of clients’ common utility

function around its estimated value, while keeping all the other parameters fixed at their estimated values. The top-left, top-right,

bottom-left and bottom-right panels show the results for the distribution of clients’ trade size in the gilt market, total trade volume in

the gilt market, average trade cost in the gilt market, and average trade cost in the corporate bond market, respectively.

Figure 8: Tradable Portion of the Assets (Ā)

Note: This figure shows how the theoretical moments change as we perturb the tradable portion, Ā, of the assets around its estimated

value, while keeping all the other parameters fixed at their estimated values. The top-left, top-right, bottom-left and bottom-right

panels show the results for the distribution of clients’ trade size in the gilt market, total trade volume in the gilt market, average trade

cost in the gilt market, and average trade cost in the corporate bond market, respectively.
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4.5 Monte Carlo Evidence

To assess whether the four market-wide parameters in our model are recoverable by minimizing
(4.7), we have conducted a series of Monte Carlo simulations. Table 8 reports the details of an
example. In this particular simulation, we simulate 100 trade-level datasets, whereby each dataset
consists of 20 days, with 526 clients trading in each dataset. We use the parameter values described
by column 1 of Table 8. To gauge whether our estimation is robust to small levels of unobserved
heterogeneity, we simulated the Monte Carlo datasets from an extended version of our model in
which clients are also heterogeneous in their utility function parameter ⇀.

Table 8: Monte Carlo Results

True Values Median of Rec. Mean of Rec. Std of Rec.
(1) (2) (3) (4)

ϑ – Curvature of the utility function 42 40.0060 40.0168 10.2517
ϖ1 – Lost surplus share in market 1 0.04 0.0371 0.0371 0.0048
ϖ2 – Lost surplus share in market 2 0.38 0.3586 0.3592 0.045
Ā – Tradable portion of the assets 2.642 ↑ 107 2.7458 ↑ 107 2.7617 ↑ 107 2.1829 ↑ 107

Notes: This table shows the results from a Monte Carlo simulation, where the data generation used the parameters shown in column

1, with the client-specific utility function parameters drawn from U ([40, 44]). The median (column 2), mean (column 3), and standard

deviation (column 4) of recovered parameters are based on the 100 Monte Carlo simulated samples.

We set the parameters ϖ1, ϖ2, and Ā to values stated in column 1 of Table 8. We also set
each client’s characteristics, ω, to our point estimates from the actual data. For each dataset,
each client’s utility curvature ⇀ is simulated from the uniform distribution on the interval [40, 44].
That is, while clients have the same characteristics, ω, in each dataset, their ⇀ di!ers from dataset
to dataset, with its cross-sectional distribution U ([40, 44]) staying constant. For each market, on
each day and in each dataset, the simulation proceeds in four steps: (i) the Poisson arrival rates
implied by clients’ ω0 parameters are used to simulate client-specific taste shock processes; (ii) the
Poisson arrival rates implied by clients’ ω1 and ω2 parameters are used to simulate client-specific
random times of trade opportunities in the two markets; (iii) assuming random initial asset holding
across clients consistent with the stationary equilibrium distribution, the information obtained in
steps (i)-(ii) is used to simulate the time-series of transactions (trade size and trading costs) of
each client, on each day in each market and in each dataset; (iv) the simulated datasets are used
to compute the 526 ↑ 4 client-specific and three market-wide moments that correspond to the
empirical moments used in our baseline estimation in Section 4.1.2.

Columns 2-4 of Table 8 present the results from the Monte Carlo exercise. We find that mini-
mizing (4.7) is su#cient to recover the four market-wide parameters with reasonable precision.33

Compared to the bootstrap standard errors reported in Table 2, the Monte Carlo estimates exhibit
33Note that our estimation strategy exactly recovers the client-specific parameters, ε0, ε1, and ε2, for each client

in each dataset.
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smaller standard deviations for ϖ1, ϖ2, and Ā, but a larger standard deviation for ⇀. This discrep-
ancy arises because the simulated data incorporate “noisy” client-specific values of ⇀, whereas the
estimation model used to minimize (4.7) assumes a common ⇀ across all clients. These results
also suggest that while unobserved heterogeneity in client preferences may introduce noise into the
empirical estimate of ⇀, the extent of this heterogeneity in the actual data is likely less pronounced
than in our Monte Carlo setup, which assumes a uniform distribution over an interval of length 4.

5 Conclusion
A theoretical literature following Du#e, Gârleanu, and Pedersen (2005) and Lagos and Rocheteau
(2009) generated a wealth of qualitative insights into the role of search and intermediation frictions
in OTC financial markets. We have developed a dynamic structural model that uses transaction-
level data with client identities and quantifies the search and intermediation frictions in question.
Utilizing data on the UK government and corporate bond markets, we find that the median client’s
search time in the corporate bond market is 12 times longer than that in the government bond
market. Our estimates imply that clients lose approximately 4% of the transaction surplus in
government bonds and 38% in corporate bonds. That is, government bond clients experience
relatively small losses, mostly due to the passthrough of inter-dealer frictions, while corporate
bond clients are exposed to both more susbtantial passthrough of inter-dealer frictions and dealers’
market power. Furthermore, we find that the welfare losses from frictions in the government and
corporate bond markets are 2.38% and 5.05%, respectively, and our decomposition implies that
these welfare losses are almost exclusively caused by search frictions in both markets. Finally,
using data from the COVID-19 crisis period, we find that the welfare losses might more than
double during turbulent times—rising to 3.63% in the government bond market and 11.35% in
the corporate bond market—with intermediation frictions playing a much larger role in the latter.
These estimates underline the fragility of the OTC market structure in the face of large aggregate
shocks.34

A future avenue for research is to incorporate additional inter-dealer market frictions into our
framework to study the role of dealers’ costs and benefits in intermediation provision incentives
and the liquidity and welfare implications of regulations imposed on them. Another related avenue
is to leverage the dealer identities provided in the ZEN dataset to see how heterogeneous dealer
characteristics translate into their endogenous intermediation provision behavior or to understand
the contribution of dealer heterogeneity vis-a-vis client heterogeneity to market-wide liquidity
measures such as price dispersion.

34For more details, see Appendix B.
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A Identification of Clients’ Characteristics
Lemma 1. Assume ⇀ > 1. Let Lς = max

0↔y↔21/ω
yς↓1 (2 → yς)

1
ω ↓1. Let q̂ : [ωl, ωh]3 ↔ [0, Q] be a

bounded measurable function for Q < 1↓Lω

1+Lω
. Then, there exists a unique # : [ωl, ωh]3 ↔ [0, 1] that

solves

q̂ (ω) = (1 + # (ω))1/ς → (1 → # (ω))1/ς

´ [
(1 + # (ω→))1/ς + (1 → # (ω→))1/ς

]
dG (ω→)

. (A.1)

Proof. Define ▷ (ω) ↗ (1 + # (ω))1/ς and h (y) ↗ (2 → yς)1/ς. Then, (A.1) can be re-written as

▷ (ω) = h [▷ (ω)] + q̂ (ω)
ˆ

{▷ (ω→) + h [▷ (ω→)]} dG (ω→) . (A.2)

Define the operator T acting on ▷ as

T ▷ (ω) ↗ h [▷ (ω)] + q̂ (ω)
ˆ

{▷ (ω→) + h [▷ (ω→)]} dG (ω→) .

The functional equation (A.2) can now be written as

T ▷ = ▷.

To prove the existence and uniqueness of ▷, one must analyze whether T is a contraction mapping
under the stated conditions. Let B→ =


f : [ωl, ωh]3 ↔ [0, 1]


. Note that h is Lipschitz continuous

with the Lipschitz constant Lς < 1 for ⇀ > 1. Consider an arbitrary pair ▷1, ▷2 ↓ B→ and fix
ω ↓ [ωl, ωh]3. Then,

|T ▷1 (ω) → T ▷2 (ω) |

=
∣∣∣∣∣h

[
▷1 (ω)

]
→ h

[
▷2 (ω)

]
+ q̂ (ω)

ˆ 
▷1 (ω→) → ▷2 (ω→) + h

[
▷1 (ω→)

]
→ h

[
▷2 (ω→)

]
dG (ω→)

∣∣∣∣∣

⇒
∣∣∣h

[
▷1 (ω)

]
→ h

[
▷2 (ω)

]∣∣∣ + |q̂ (ω)|
ˆ ∣∣∣▷1 (ω→) → ▷2 (ω→)

∣∣∣ +
∣∣∣h

[
▷1 (ω→)

]
→ h

[
▷2 (ω→)

]∣∣∣


dG (ω→)

⇒ Lς

∣∣∣▷1 (ω) → ▷2 (ω)
∣∣∣ + Q

ˆ ∣∣∣▷1 (ω→) → ▷2 (ω→)
∣∣∣ + Lς

∣∣∣▷1 (ω→) → ▷2 (ω→)
∣∣∣


dG (ω→)

= Lς

∣∣∣▷1 (ω) → ▷2 (ω)
∣∣∣ + Q (1 + Lς)

ˆ ∣∣∣▷1 (ω→) → ▷2 (ω→)
∣∣∣ dG (ω→)

⇒ [Lς + Q (1 + Lς)] ↖▷1 → ▷2↖,

where ↖·↖ denotes the sup norm. Taking the sup over [ωl, ωh]3 on the left-hand side of the inequality
above, we get ↖T ▷1 →T ▷2↖ ⇒ [Lς + Q (1 + Lς)] ↖▷1 →▷2↖, where Lς +Q (1 + Lς) ↓ [0, 1). Choosing
▷2 = 0, we have T : B→ ↔ B→. Since Lς + Q (1 + Lς) ↓ [0, 1), T is a contraction with modulus
Lς + Q (1 + Lς) on B→. Since (B→, ↖ · ↖) is complete (because the set of bounded functions with the
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usual sup norm is complete), it follows from the Banach fixed-point theorem that T has a unique
fixed point ▷ ↓ B→ (Theorem 3.2 of Stokey and Lucas, 1989, p. 50).

Lemma 2. Let ω = (ω0, ω1, ω2). Let # : [ωl, ωh]3 ↔ [0, 1], ↽1 : [ωl, ωh]3 ↔
[
0, ε1

2

]
, and ↽2 :

[ωl, ωh]3 ↔
[
0, ε2

2

]
be bounded measurable functions for ωl > 0 arbitrarily close to zero and ωh < ⇐

arbitrarily large. Then, the unique solution (ω0, ω1, ω2) ↓ [ωl, ωh]3 to the system of following three
equations,

# (ω) = r + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)
r + ω0 + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)

, (A.3)

↽1 (ω) = ω1

2
ω0

ω0 + ω1 + ω2

, (A.4)

and
↽2 (ω) = ω2

2
ω0

ω0 + ω1 + ω2

, (A.5)

is

ω0 = [2# (ω)]↓1

{

2# (ω) ↽1 (ω) R (ω) + (1 → # (ω)) (r + 2↽1 (ω) D (ω))

+
√

8r↽1 (ω) D (ω) [1 → # (ω)]2 + [2# (ω) ↽1 (ω) R (ω) + (1 → # (ω)) (→r + 2↽1 (ω) D (ω))]2
}

,

(A.6)

ω1 = [2D (ω) (1 → # (ω))]↓1

{

2# (ω) ↽1 (ω) R (ω) + (1 → # (ω)) (→r + 2↽1 (ω) D (ω))

+
√

8r↽1 (ω) D (ω) [1 → # (ω)]2 + [2# (ω) ↽1 (ω) R (ω) + (1 → # (ω)) (→r + 2↽1 (ω) D (ω))]2
}

,

(A.7)

and
ω2 = ↽2 (ω)

↽1 (ω)ω1, (A.8)

where
R (ω) ↗ 1 + ↽2 (ω)

↽1 (ω)
and

D (ω) ↗ 1 → ϖ1 + ↽2 (ω)
↽1 (ω) (1 → ϖ2) .

Proof. Equations (A.4) and (A.5) imply (A.8). That is, given inputs, determining ω1 is su#cient
to determine ω2. Then, we need to determine ω0 and ω1 uniquely to complete the proof. Re-write
(A.3) and (A.4):

# (ω) = r + ω1D (ω)
r + ω0 + ω1D (ω) (A.9)
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and
↽1 (ω) = ω1

2
ω0

ω0 + ω1R (ω) . (A.10)

Rearranging (A.9) implies

ω0 = 1 → # (ω)
# (ω) (r + ω1D (ω)) . (A.11)

By plugging into (A.10), one obtains a quadratic equation in ω1, which has two real solutions.
Its positive solution is given by (A.7). Then, (A.6) follows from (A.11), which completes the
proof.

Lemma 3. Assume ⇀ > 1. Let ω = (ω0, ω1, ω2) and Lς = max
0↔y↔21/ω

yς↓1 (2 → yς)
1
ω ↓1. Let q̄ :

[ωl, ωh]3 ↔ [0, 4 (A1 + ϑA2) Q], ↽1 : [ωl, ωh]3 ↔
[
0, ε1

2

]
, and ↽2 : [ωl, ωh]3 ↔

[
0, ε2

2

]
be bounded

measurable functions for Q < 1↓Lω

1+Lω
, ωl > 0 arbitrarily close to zero, and ωh < ⇐ arbitrarily large.

Then, the three-equation system implied by (4.1) and (4.2) has a unique solution (ω0, ω1, ω2) ↓
[ωl, ωh]3.

Proof. The result follows immediately from Lemma 1 and Lemma 2 by letting

q̂ (ω) = q̄ (ω)
4 (A1 + ϑA2)

.

B Frictions during Turbulent Times
As an application of our framework, we present an analysis of the COVID-19 episode in the UK
through the lens of our structural model. Specifically, we first calculate how the empirical moments
used in the baseline estimation changed during February-April 2020. We then re-estimate the
model parameters, and quantify how trading delays, dealers’ bargaining power, and the resulting
welfare losses from these frictions have changed during that turbulent period.

Background and literature The spread of the COVID-19 pandemic in early 2020 presented
a major shock to the global financial system, particularly fixed-income markets. The crisis was
characterized by large and persistent selling pressures across many asset classes. Recent studies
documented that these selling pressures were driven by bond mutual funds that su!ered large
outflows (Falato, Goldstein, and Hortacsu, 2021; Ma, Xiao, and Zeng, 2022). Other papers em-
phasized the inability of the dealer sector to absorb inventory onto their balance sheets (Kargar,
Lester, Lindsay, Liu, Weill, and Zuniga, 2021). As a consequence, liquidity dried up both in gov-
ernment bond markets (Du#e 2020; He, Nagel, and Song 2022) and in corporate bond markets
featuring large increases in trading costs (O’Hara and Zhou, 2021). Only the quick and large-scale

55



interventions by central banks across the world helped restore liquidity and avoid a prolonged
worsening of financing conditions (Haddad, Moreira, and Muir 2021).

In what follows, we utilize our structural framework to understand how clients’ preferences and
trading delays they face as well as dealers’ bargaining power changed in the UK government and
corporate bond markets. This provides us with a unique opportunity to quantitatively assess the
resilience of di!erent market structures to the large negative shocks to the financial system such
as the COVID-19 shock.

Data and stylized facts To conduct this analysis, we employ the MiFID II bond transaction
data, which covers the period from January 2018 to May 2020. While ZEN is the predecessor of
the MiFID II database, di!erences in reporting requirements preclude a consistent merge with our
baseline sample. To obtain empirical moments for re-estimating the model during the COVID-19
period, we proceed as follows. We compute how much each of our empirical moments changed from
the 2018-2019 period to the February-April 2020 period. We then use these percentage changes to
adjust the moment values from our baseline sample (reported in Table 1 and Table 3). For scalar
moments, we simply calculate the percentage di!erence between the pre-COVID-19 period and
during the COVID-19 crisis. For vector-based moments (i.e., the vector of clients’ trade intensities
and the vector of clients’ trade sizes), we run the following cross-sectional regression separately
for clients’ trade intensities and trade sizes in each market:

Covid mi
k = ↼k ↑

(
Pre-covid mi

k

)
+ εi

k,

where mi
k is client i’s trade intensity (resp. trade size) in market k.

Table 9: Empirical Moments during COVID-19

Government Bonds Corporate Bonds
Variable Change Implied Moment Change Implied Moment

(1) (2) (3) (4)
Dispersion Ratio -34.6% 0.6140406 +16.1% 0.78425550
Average Trade Cost (bps) +208.7% 2.3771544 +297.6% 28.1582863
Average Intensity +22.9% 0.0422750 -11.6% 0.0035871
Intensity Dispersion +22.9% 0.0652610 -11.6% 0.0064232
Trade Volume +20.8% 339,912 -16.0% 2,304
Average Trade Size -37.5% 4,041,558 -19.7% 223,008

Notes: This table summarizes the empirical moments that are used for the structural estimation for the COVID-19 period (Feb-April

2020). Column (1) and (3) summarize how much the moments changed from the period 2018-2019 to the period February-April 2020.

Column (2) and (4) report the implied moments for the COVID-19 period. Dispersion ratio is the ratio between interdealer and dealer-

to-client price dispersion. Clients’ trade costs are calculated using the methodology of Pintér, Wang, and Zou (2024) and averaged

across clients. To calculate trade costs, we use the benchmark price computed as the average price of all transactions at the bond-day

level. Average intensity is the mean of the clients’ number of transactions. Intensity dispersion is the mean absolute deviation of clients’

number of transactions from average intensity. Trade volume is total daily trading volume in terms of par value per bond per client.

Average trade size is the mean (across clients) of clients’ mean trade size.

Table 9 reports the corresponding changes in our estimation moments during the COVID-19
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crisis. Average trade costs experienced the largest change with 208.7% and 297.6% increases in the
government and corporate bond markets, respectively. Clients’ trade intensities in the gilt market
increased (+22.9%), but clients’ trade intensities decreased in corporate bonds (-11.6%). Similarly,
trade volume in the gilt market increased while it decreased in the corporate bond market. Clients’
trade sizes decreased in both markets, but the decline was more pronounced in government bonds.
Finally, the ratio between interdealer and dealer-to-client price dispersion decreased in gilts, while
it increased in corporates.

The large increase in clients’ trade costs is indicative of substantial worsening of trading frictions
during the crisis, with some notable cross-market di!erences emerging: (i) the relative increase
in average trade cost was more than 40% larger in corporate bonds; (ii) the corporate bond
trade intensity fell while an increase in intensity in government bonds was observed; and (iii)
the corporate bond volume and trade size only moderately adjusted compared to the changes
in the government bond market. The combination of these facts and the intuition behind the
identification properties of our structural model (see Section 4.4) suggest that the worsening of
trading frictions during the COVID-19 crisis was likely more severe in the corporate bond market,
compared to the government bond market which likely absorbed selling pressures to a larger extent.
To quantify these e!ects, we now turn to structural estimation.

Estimation results Using the moments reported in Table 9, we re-estimate our structural
model. Because clients’ trade sizes changed during the COVID-19 crisis, we update the calibrated
MRS parameter, ϑ = 11.5288, to match the ratio of the aggregate trade size in the government
bond market to the aggregate trade size in the corporate bond market during the COVID-19
period. Our baseline estimation strategy of minimizing (4.7) “fails” in this case. That is, it
returns ϖ2 = 1 because the model is not able to match extremely high average trade cost in the
corporate bond market during the COVID-19 crisis. This mechanically leads to an extremely
high welfare loss in the corporate bond market because clients lose all the gains from trade due
to dealer sector becoming e!ective monopolists. To overcome this issue, we add a penalty term,
+0.01/ (1 → ϖ2)2, to the objective function (4.7).35

The parameter estimates for the turbulent COVID-19 period is reported in Table 10. In
addition, Table 11 shows the fit of the model for this period.

A comparison of trading delays in Table 12 reveals that dealers significantly refrained from
immediacy provision in both markets. Average trading delay of the median client increased by
400% and 316% in the gilt and the corporate bond market, respectively. This finding lends support
to the view that the OTC market structure is not su#ciently resilient to large negative shocks
such as the COVID-19 period around March 2020.

Moreover, dealers were able to exert more market discrimination during the COVID-19 crisis
35In the appendix section H, we repeat our COVID-19 estimation with a significantly smaller penalty term,

+0.0001/ (1 → ϖ2)2, and find that results change only slightly.
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Table 10: Parameter Estimates for the COVID-19 Period

Normal Turbulent
(1) (2)

ϑ – Curvature of the utility function 42.296 42.5759
ϖd

1 – Gilt dealers’ bargaining power 0.0025 0.0482
ϖc

1 – Gilt core broker-dealers’ barg. power 0.0389 0.0767
ϖd

2 – Corp. dealers’ bargaining power 0.1243 0.2005
ϖc

2 – Corp. core broker-dealers’ barg. power 0.2587 0.7290
Ā – Tradable portion of assets 2.6715 ↑ 107 2.4134 ↑ 107

Notes: This table reports the estimates of the parameters. The parameter estimates are obtained by minimizing the objective function

(4.7) augmented with an additional penalty term, +0.01/ (1 ↓ ↽2)
2
. Results in columns (1) and (3) are based on empirical moments

from the period 2011m8-2017m12, as reported in Table 1 and Table 3. Results in columns (2) and (4) are based on empirical moments

from the COVID-19 period as reported in Table 9.

Table 11: Model Fit (COVID-19)

Government Bonds Corporate Bonds
Moments Empirical Theoretical Empirical Theoretical

(1) (2) (3) (4)
Trade Intensities

Median 0.0084 0.0084 0.0006 0.0006
p25 0.0028 0.0028 0.0001 0.0001
p75 0.0272 0.0272 0.0027 0.0027

Trade Sizes
Median 1,397,528 2,511,444 217,841 217,841
p25 228,139 505,708 43,865 43,865
p75 4,346,370 9,655,933 837,548 837,548

Average Trade Cost 2.3771 2.3966 28.1583 17.7264
Trade Volume 339,912 247,365 – –

Notes: This table reports the values of the empirical moments and of the theoretical moments calculated at the estimated parameters.

Columns (1)-(2) and Columns (3)-(4) show the results for the government bond and corporate bond markets, respectively.

according to the comparison of the bargaining power estimates from Table 12. Clients’ lost surplus
share approximately triples in both markets. However, the decomposition of the clients’ lost
surplus share reveals that the change was mainly caused by dealers’ exerting more market power
over clients in the gilt market, while it was mainly caused by core broker-dealers’ exerting more
market power over dealers in the corporate bond market. Empirically, this is evident from the
decline in the ratio between interdealer and dealer-to-client price dispersion in gilts during the
COVID-19 crisis, while the same ratio increased in corporates.

Taking stock, in terms of the relative change of trading delays and clients’ lost surplus shares
between the pre-COVID-19 period and during COVID-19, the two markets appear to be roughly
equally fragile. This then raises the question: could one conclude that the two markets are equally
fragile from a welfare perspective as well? Our results in Table 13 shed some light on this question.
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Table 12: Welfare Results I: Estimated Trading Delays and Dealers’ Bargaining Power (COVID-
19)

Government Bonds Corporate Bonds
Normal Turbulent Normal Turbulent

(1) (2) (3) (4)
Average Trading Delays

Median 0.0026 0.0130 0.0314 0.1306
p25 0.0000 0.0000 0.0000 0.0000
p75 0.5162 0.4849 1.3686 1.9279

Client’s Lost Surplus Share 4.15% 12.48% 38.30% 92.96%
Dealer’s Bargaining Share 0.25% 4.82% 12.43% 20.05%
Core Broker-Dealer’s Barg. Share 3.89% 7.67% 25.87% 72.90%

Notes: This table reports summary statistics for trading delays (upper panel) and dealers’ bargaining power (lower panel), implied by

the theoretical model evaluated at the estimated parameter values. Trading delays are expressed as a fraction of a trading day. Results

in columns (1)-(4) are based on parameter values from the respective columns of Table 10.

Table 13: Welfare Results II: Estimated Welfare Losses (COVID-19)

Government Bonds Corporate Bonds
Normal Turbulent Normal Turbulent

(1) (2) (3) (4)
Welfare Loss 2.3778% 3.6338% 5.0463% 11.3484%

Due to Search Frictions 2.3774% 3.6277% 4.9464% 7.9122%
Due to Intermediation Frictions 0.0004% 0.0061% 0.0999% 3.4362%

Notes: This table reports the welfare losses in the government bond and corporate bond markets implied by the estimated parameter

values. The top panel reports the relative welfare loss levels in each market implied by the estimated parameter values exactly. The

bottom panel reports various decompositions. Results in columns (1)-(4) are based on parameter values from the respective columns

of Table 10.

Table 13 shows that the relative welfare loss increased by 53% in the government bond market,
while it more than doubled in the corporate bond market. By looking at the decomposition of the
welfare loss, it is evident that this asymmetry is mostly due to intermediation frictions becoming
an important contributor to the welfare loss in the corporate bond market, while it is still a
marginal contributor in the gilt market. Given the changes in clients’ trade frequencies and trade
sizes, the model interprets the empirical four-fold increase in the corporate bond trade costs as
being “too high” so it can be rationalized only by clients’ losing close to entirety of transaction
surpluses. This, in turn, implies an almost 3.5% welfare loss from intermediation frictions in the
corporate bond market during the COVID-19 crisis, while it was only 0.1% during normal times.
Hence, from a relative welfare perspective, the corporate bond market overall appears to be more
fragile than the government bond market during turbulent times.

Counterfactual analysis Now that we have estimated the deep parameters of our model for the
COVID-19 period, we turn to a counterfactual analysis to investigate how resilient the OTC market
structure is when faced with a large negative shock. Table 10 shows that clients’ preferences and
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market frictions both changed during the COVID-19 crisis. Two natural questions are, then, how
much of the additional welfare losses in turbulent times can be explained by the change in clients’
preferences and how much of it is caused by the worsening of the OTC markets’ functioning. To
shed light on these questions, we calculate the welfare losses in the government and corporate
bond markets in a counterfactual scenario.

Table 14: Estimated Welfare Losses (Counterfactual)

Government Bonds Corporate Bonds
(1) (2)

Welfare Loss 2.5132 % 5.2389%
Due to Search Frictions 2.5128% 5.1356%
Due to Dealers’ Market Power 0.0004% 0.1033%

Notes: This table reports the welfare losses in the government bond and corporate bond markets implied by the parameter values

chosen for our counterfactual analysis. In both markets, parameters ς and Ā and each client’s ε0 are from the COVID-19 estimates,

parameters ↽1 and ↽2 and each clients’ ε1 and ε2 are from the baseline estimates for normal times.

Table 14 shows the welfare losses that would have realized in the government and corporate
bond markets during the COVID-19 period if market frictions had not intensified. More specif-
ically, we use clients’ preference parameters (i.e., the elasticity of clients’ utility function and
the distribution of clients’ taste shock intensity) and the tradable portion of assets Ā from the
COVID-19 period to reflect the change in clients’ inherent trading needs during turbulent times,
but we keep market friction parameters (i.e., clients’ lost surplus shares in each market and the
distribution clients’ meeting rates with dealers in each market) the same as normal times. Com-
paring Table 13 and Table 14 implies that the welfare loss would increase from 2.38% to 2.51% in
the government bond market and from 5.05% to 5.24% in the corporate bond market, if the OTC
market structure were fully resilient to large negative shocks like the COVID-19 shock of 2020.
Considering that welfare losses actually rose to 3.63% and 11.35%, the majority of the additional
welfare losses during turbulent times occurs because OTC market intermediaries are not as able
or willing to supply liquidity as they are during normal times.

Note that our analysis is mainly concerned with quantifying search and intermediation fric-
tions but is essentially agnostic about the sources of these frictions. Therefore, while we can
quantitatively demonstrate that the quality of intermediation for clients’ trades worsens during
turbulent times, understanding the role of OTC market dealers’ incentives, of frictions they face
in inter-dealer trade, and of regulations imposed on them goes beyond the scope of this paper and
is subject of an ongoing research agenda (e.g. Coen and Coen, 2021; Chiu, Davoodalhosseini, and
Jiang, 2022; Cohen, Kargar, Lester, and Weill, 2023).
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Supplement to “Comparing Search and Intermediation
Frictions Across Markets”

This online appendix contains proofs and additional empirical results omitted
from the printed manuscript.

Gábor Pintér1 Semih Üslü2 Jean-Charles Wijnandts3

C Multilateral Bargaining

In this appendix, we show how our assumed bargaining solution (3.1)-(3.3) could be obtained as
the generalized Nash solution for multilateral bargaining. Mathematically, we define the following
cooperative bargaining solution:


qk (ε, a1, a2, ω) , pk (ε, a1, a2, ω) , pd

k (ε, a1, a2, ω)


= arg max
q,p,pd

[V (ε, ak + q, a↓k, ω) → V (ε, a1, a2, ω) → pq]1↓↽c
k↓↽d

k

[
pq → pdq

]↽d
k

[
pdq → Pkq

]↽c
k , (C.1)

subject to
V (ε, ak + q, a↓k, ω) → V (ε, a1, a2, ω) → pq ↘ 0,

pq → pdq ↘ 0,

and
pdq → Pkq ↘ 0,

where these three constraints are the individual rationality constraints of the client, the dealer,
and the core broker-dealer, respectively. The multilateral Nash product (C.1) is defined similarly
to Theorem 1 of Lensberg (1988), Theorem 1’ of Krishna and Serrano (1996), and Proposition 5
of Suh and Wen (2006) with two crucial di!erences. First, (C.1) allows for asymmetric bargaining
powers, while those papers study the symmetric Nash solution. Second, while these papers study
bargaining games with a fixed total surplus (i.e. splitting a “fixed pie”), our bargaining problem
has a variable total surplus and the determinant, q, of the size of the total surplus is bargained
over as well.

1Bank for International Settlements, e-mail: gabor.pinter@bis.org
2Carey Business School, Johns Hopkins University, e-mail: semihuslu@jhu.edu
3Bank of England, e-mail: jean-charles.wijnandts@bankofengland.co.uk
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In anticipation of the function V (ε, ·, a↓k, ω) being continuously di!erentiable and strictly
concave for all ε, a↓k, and ω, we set up the Lagrangian of the optimization problem (C.1) and
find the first-order necessary and su#cient conditions (see Theorem M.K.2, p. 959, and Theorem
M.K.3, p. 961, in Mas-Colell, Whinston, and Green (1995)) for optimality by di!erentiating the
Lagrangian. After simplification, the first-order condition with respect to q implies that the trade
size, qk (ε, a1, a2, ω), solves

Vk (ε, ak + q, a↓k, ω) = Pk, (C.2)

where Vk (ε, ·, a↓k, ω) refers to the first derivative of the function V (ε, ·, a↓k, ω) given ε, a↓k, and
ω. The continuous di!erentiability and strict concavity of V (ε, ·, a↓k, ω) guarantees the existence
and uniqueness of the trade quantity qk (ε, a1, a2, ω). Notice that the quantity that solves (C.2)
is also the maximizer of the total trade surplus (3.1), which also verifies the Pareto optimality of
our assumed bargaining solution. Then, the first-order conditions with respect to p and pd imply
that the transaction prices, pk (ε, a1, a2, ω) and pd

k (ε, a1, a2, ω), are determined such that the total
trade surplus is split among the parties to reflect their Nash bargaining powers, which yields (3.2)
and (3.3).

D Bid and Ask Prices in Our Special Case

As an intermediate step, note that Equation (3.10) implies

V (ε, ϱϱ (2ς, ω) , ω) → V (ε, ϱϱ (0, ω) , ω) = ω1 (1 → ϖ1) + ω2 (1 → ϖ2)
r + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)

Pkqk (ω)

+ 1
r + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)

(r + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)) ε + ω0ς

r + ω0 + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)
$u (ω) ,

where

$u (ω) ↗ [ϱϱ (2ς, ω)]1↓ς

1 → ⇀
→ [ϱϱ (0, ω)]1↓ς

1 → ⇀

= 1
1 → ⇀



 A1 + ϑA2

1

2

´ [
(1 + # (ω→))1/ς + (1 → # (ω→))1/ς

]
dG (ω→)




1↓ς [

(1 + # (ω))
1
ω ↓1 → (1 → # (ω))

1
ω ↓1

]
.

Thus, the ask and the bid price in the client-dealer market are
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φk (ω) = (1 → ϖk) Pk

+ ϖk

r + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)



(ω1 (1 → ϖ1) + ω2 (1 → ϖ2)) Pk + (1 + # (ω)) ς
$u (ω)
qk (ω)



and

↼k (ω) = (1 → ϖk) Pk

+ ϖk

r + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)



(ω1 (1 → ϖ1) + ω2 (1 → ϖ2)) Pk + (1 → # (ω)) ς
$u (ω)
qk (ω)



,

respectively, and the ask and the bid price in the inter-dealer market are

Ak (ω) = (1 → ϖc
k) Pk

+ ϖc
k

r + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)



(ω1 (1 → ϖ1) + ω2 (1 → ϖ2)) Pk + (1 + # (ω)) ς
$u (ω)
qk (ω)



and

Bk (ω) = (1 → ϖc
k) Pk

+ ϖc
k

r + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)



(ω1 (1 → ϖ1) + ω2 (1 → ϖ2)) Pk + (1 → # (ω)) ς
$u (ω)
qk (ω)



,

respectively.
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E Proofs

E.1 Proof of Proposition 1

First, we establish in Lemma 4 that the functional equation (3.9) admits a unique real solution,
taking as given the frictionless market prices P1 and P2. Our argument is adapted from the
existence and uniqueness proofs of the earlier models with unrestricted asset holdings, especially
Lagos and Rocheteau (2006), and uses the standard fixed point tools for dynamic programming.

Lemma 4. Given P1 and P2, the auxiliary HJB equation (3.9) has a unique solution.

Proof. Rewrite (3.9) as

V (ε, a1, a2, ω) =
εu (a1 + ϑa2) + ω0

∑

ω→↑{ωl,ωh}

1

2
V (ε→, a1, a2, ω)

r + ω0 + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)

+

∑

k↑{1,2}
ωk (1 → ϖk) max

a→
k↑[↓M,M ]

{V (ε, a→
k, a↓k, ω) → (a→

k → ak) Pk}

r + ω0 + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)
. (E.1)

From (E.1), one can define the mapping O such that

(OV ) (ε, a1, a2, ω) = 1
r + ω0 + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)



εu (a1 + ϑa2)+ω0

∑

ω→↑{ωl,ωh}

1
2V (ε→, a1, a2, ω)

+
∑

k↑{1,2}
ωk (1 → ϖk) max

a→
k↑[↓M,M ]

{V (ε, a→
k, a↓k, ω) → (a→

k → ak) Pk}


. (E.2)

Then, showing (3.9) has a unique solution is equivalent to showing O has a unique fixed point. Let
T = {εl, εh} ↑ [→M, M ]2 ↑ [ωl, ωh]3 and let C (T ) = {g : T ↔ R | g (ε, a1, a2, ω) is bounded and
continuous in a1 and a2}. Suppose V ↓ C (T ), then the theorem of the maximum implies that
the maximization on the RHS of (E.2) has a solution continuous in a1 and a2. (Theorem 3.6
of Stokey and Lucas, 1989, p. 62). Then, because u(·) is a continuous function defined on a
compact set [→M, M ], O : C (T ) ↔ C (T ). Consider the metric space (C (T ) , ↖ · ↖), where ↖ · ↖
denotes the sup norm. We next show that O is a contraction mapping on (C (T ) , ↖ · ↖). To
this end, we follow the usual procedure of checking the Blackwell’s su#cient conditions for a
contraction, i.e., we show that O satisfies monotonicity and discounting properties. To establish
monotonicity, we need to show that V A ⇒ V B implies OV A ⇒ OV B. Fix (ε, a1, a2, ω) and let
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ai
k ↓ arg max

a→
k↑[↓M,M ]

{V i (ε, a→
k, a↓k, ω) → (a→

k → ak) Pk} for i ↓ {A, B}. Then, V A ⇒ V B implies

(
OV A

)
(ε, a1, a2, ω) = 1

r + ω0 + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)



εu (a1 + ϑa2)

+ ω0

∑

ω→↑{ωl,ωh}

1
2V A (ε→, a1, a2, ω) +

∑

k↑{1,2}
ωk (1 → ϖk)


V A

(
ε, aA

k , a↓k, ω
)

→
(
aA

k → ak

)
Pk

 

⇒ 1
r + ω0 + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)



εu (a1 + ϑa2)

+ ω0

∑

ω→↑{ωl,ωh}

1
2V B (ε→, a1, a2, ω) +

∑

k↑{1,2}
ωk (1 → ϖk)


V B

(
ε, aA

k , a↓k, ω
)

→
(
aA

k → ak

)
Pk

 

⇒ 1
r + ω0 + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)



εu (a1 + ϑa2)

+ ω0

∑

ω→↑{ωl,ωh}

1
2V B (ε→, a1, a2, ω) +

∑

k↑{1,2}
ωk (1 → ϖk)


V B

(
ε, aB

k , a↓k, ω
)

→
(
aB

k → ak

)
Pk

 

=
(
OV B

)
(ε, a1, a2, ω) ,

which establishes monotonicity. To verify discounting, consider c ↘ 0. Then,

[O (V + c)] (ε, a1, a2, ω) ⇒ (OV ) (ε, a1, a2, ω) + ↼c,

where
↼ = r + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)

r + ω0 + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)
↓ (0, 1).

To prove that O is a contraction mapping, consider two arbitrarily chosen functions V A, V B ↓
C (T ). By the definition of sup norm,

V A ⇒ V B + ↖V A → V B↖.

Since O has the monotonicity property,

OV A ⇒ O
(
V B + ↖V A → V B↖

)
.

Using the discounting property,

OV A ⇒ OV B + ↼↖V A → V B↖.
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Applying the same procedure in reverse establishes

OV B ⇒ OV A + ↼↖V A → V B↖.

Therefore,
↖OV A → OV B↖ ⇒ ↼↖V A → V B↖,

which implies that O is a contraction mapping, with modulus ↼, on the complete metric space
(C (T ) , ↖ · ↖). Hence, it follows from the Banach fixed-point theorem that O has a unique fixed
point V ↓ C (T ) (Theorem 3.2 of Stokey and Lucas, 1989, p. 50).

We next assume ϑP1 = P2 and follow a guess-and-verify approach to determine the unique
value function V . We conjecture that

V (ε, a1, a2, ω) = C (ε, ω) + D (ε, ω) u (a1 + ϑa2) + E (ω) a1 + H (ω) a2,

where C (ε, ω), D (ε, ω), E (ω), and F (ω) are the coe#cients to be determined. Because ◁0 (ε, ω)
does not interact with the asset position, it does not a!ect the terms of trade as will be clear
shortly. Thus, we primarily focus on determining D (ε, ω), E (ω), and F (ω).

One can apply the envelope theorem to the auxiliary HJB equation (3.9) to obtain:

[r + ω0 + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)] Vk (ε, a1, a2, ω) = εu→ (a1 + ϑa2) ϱk

+ ω0

∑

ω→↑{ωl,ωh}

1
2Vk (ε→, a1, a2, ω) + ωk (1 → ϖk) Pk + ω↓k (1 → ϖ↓k) Vk

(
ε, ak, a→

↓k, ω
)

,

where a→
↓k solves V↓k

(
ε, ak, a→

↓k, ω
)

= P↓k; Vk (·, ·, ·, ·) refers to the derivative with respect to ak;
and ϱ1 = 1 and ϱ2 = ϑ. By using our conjectured value function and matching coe#cients, we
obtain

H (ω) = ω1 (1 → ϖ1) + ω2 (1 → ϖ2)
r + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)

ϑP1,

E (ω) = ω1 (1 → ϖ1) + ω2 (1 → ϖ2)
r + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)

P1,

and
D (ε, ω) = 1

r + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)
(r + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)) ε + ω0ε̄

r + ω0 + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)
,

which complete the proof.
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E.2 Proof of Proposition 2

Let fε (ε, ϱ) = lim
h≃0

Ḿ

↓M

ϖ↓ϑa2´
ϖ↓ϑa2↓h

ώ

ω↓h

!ε (dε, da1, da2) for ε ↓ {εl, εh}. Using the optimal trading rule

(3.12), the stationarity condition (3.5) implies

ω0

1
2

∑

˜̃ω↑{ωl,ωh}
fε

(
˜̃ε, ε̃

)
→ (ω0 + ω1 + ω2) fε (ε, ε̃) = 0 (E.3)

for ε ≃= ε̃ and

ω0

1
2

∑

˜̃ω↑{ωl,ωh}
fε

(
˜̃ε, ε

)
+ (ω1 + ω2)

∑

˜̃ω↑{ωl,ωh}
fε

(
ε, ˜̃ε

)
→ (ω0 + ω1 + ω2) fε (ε, ε) = 0, (E.4)

where (ε, ε̃) refers to the individual state of the client who is currently of type ε but holding the
target position associated with type ε̃. One can use (E.3) and (E.4) to derive fε (εl, εl), fε (εl, εh),
fε (εh, εl), and fε (εh, εh). Then, by re-writing, one obtains (3.13).

E.3 Proof of Proposition 3

Lemma 5. In any general equilibrium, ϑP1 = P2.

Proof. Applying the envelope theorem to the auxiliary HJB equation (3.9) implies:


r + ω0

2 + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)


Vk (ε, a1, a2, ω) = εu→ (a1 + ϑa2) ϱk

+ ω0

2 Vk (ε↓, a1, a2, ω) + ωk (1 → ϖk) Pk + ω↓k (1 → ϖ↓k) Vk

(
ε, ak, a→

↓k, ω
)

,

where a→
↓k solves V↓k

(
ε, ak, a→

↓k, ω
)

= P↓k; Vk (·, ·, ·, ·) refers to the derivative with respect to ak;
and ϱ1 = 1 and ϱ2 = ϑ. Also letting a→

k solve Vk (ε, a→
k, a↓k, ω) = Pk,


r + ω0

2 + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)


Vk (ε, a1, a2, ω) = εu→ (a1 + ϑa2) ϱk

+ ω0

2 Vk (ε↓, a1, a2, ω) + ωk (1 → ϖk) Vk (ε, a→
k, a↓k, ω) + ω↓k (1 → ϖ↓k) Vk

(
ε, ak, a→

↓k, ω
)

.

Letting k = 1 and k↓ = 2, one obtains


r + ω0

2 + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)


V1 (ε, a1, a2, ω) = εu→ (a1 + ϑa2)

+ ω0

2 V1 (ε↓, a1, a2, ω) + ω1 (1 → ϖ1) V1 (ε, a→
1
, a2, ω) + ω2 (1 → ϖ2) V1 (ε, a1, a→

2
, ω) (E.5)
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and


r + ω0

2 + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)


V2 (ε, a1, a2, ω) = εu→ (a1 + ϑa2) ϑ

+ ω0

2 V2 (ε↓, a1, a2, ω) + ω1 (1 → ϖ1) V2 (ε, a→
1
, a2, ω) + ω2 (1 → ϖ2) V2 (ε, a1, a→

2
, ω) . (E.6)

Multiplying the former with ϑ and subtracting it from the latter, one obtains

ϑ
[
(r + ω0

2 + ω1 (1 → ϖ1) + ω2 (1 → ϖ2))V1(ε, a1, a2, ω) → ω0

2 V1(ε↓, a1, a2, ω)

→ ω1 (1 → ϖ1) V1(ε, a→
1
, a2, ω) → ω2 (1 → ϖ2) V1(ε, a1, a→

2
, ω)

]

= (r + ω0 + ω1 + ω2)V2(ε, a1, a2, ω) → ω0

2 V2(ε↓, a1, a2, ω)

→ ω1 (1 → ϖ1) V2(ε, a→
1
, a2, ω) → ω2 (1 → ϖ2) V2(ε, a1, a→

2
, ω).

The structure of the equation indicates symmetry between V1 and V2 with identical weights. For
the equality to hold for arbitrary (ε, a1, a2, ω), the terms must align identically. This symmetry
implies that:

V1(ε, a1, a2, ω)ϑ = V2(ε, a1, a2, ω). (E.7)

Evaluating (E.5) at a1 such that V1 (ε, a1, a2, ω) = P1,


r + ω0

2 + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)


P1 = εu→ (a1 + ϑa2)

+ ω0

2 V1 (ε↓, a1, a2, ω) + ω1 (1 → ϖ1) P1 + ω2 (1 → ϖ2)
P2

ϑ
,

which holds for all a2. Similarly, evaluating (E.6) at a2 such that V2 (ε, a1, a2, ω) = P2,


r + ω0

2 + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)


P2 = εu→ (a1 + ϑa2) ϑ

+ ω0

2 V2 (ε↓, a1, a2, ω) + ω1 (1 → ϖ1) P1ϑ + ω2 (1 → ϖ2) P2,

which holds for all a1. Then, evaluating the last two equations jointly at a1 and a2 such that
V1 (ε, a1, a2, ω) = P1 and V2 (ε, a1, a2, ω) = P2, (E.7) implies P1ϑ = P2, which proves the Lemma.

Lemma 5 justifies the closed-form formula (3.10) and the resulting optimal composite holding
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(3.11). Then, the frictionless markets clear if and only if ϱd (P1) = A1 + ϑA2, where

ϱd (P1) ↗
ˆ ∑

ω↑{ωl,ωh}

1
2 (u→)↓1

[
r + ω0 + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)

(r + ω1 (1 → ϖ1) + ω2 (1 → ϖ2)) ε + ω0ε̄
rP1

]

dG (ω) .

An application of the inverse function theorem implies that ϱd is strictly decreasing because u is
strictly concave. Hence, the frictionless price P1 such that ϱd (P1) = A1 + ϑA2 is unique whenever
it exists. From the standard Inada limit conditions on u stated in the proposition, ϱd (0) = ⇐
and ϱd (⇐) = 0 and hence the existence of P1 ↓ (0, ⇐) is guaranteed by the intermediate value
theorem. Finally, P2 is pinned down by Lemma 5: P2 = ϑP1.

E.4 Proof of Proposition 4

The formula for WEq follows easily by substituting (3.13), (3.17) and u (ϱ) = ϖ1↑ω

1↓ς into (3.28).
To calculate WF B, we solve the problem of an unconstrained planner. Because we are in our

special case, the planner’s problem is:

WF B (εl)

= max
a1(0),a1(2σ),a2(0),a2(2σ)

εl

r

[a1 (0) + ϑa2 (0)]1↓ς

1 → ⇀

1
2 + 2ς

r

[a1 (2ς) + ϑa2 (2ς)]1↓ς

1 → ⇀

1
2 → ς

r

(A1 + ϑA2)1↓ς

1 → ⇀
,

(E.8)

subject to
1
2 (ak (0) + ak (2ς)) = Ak,

→M ⇒ ak (0) ⇒ M,

and
→M ⇒ ak (2ς) ⇒ M

for all k ↓ {1, 2}. In our special case εl = 0 for simplicity, but setting up the planner’s problem
directly for this special case would be unnatural and create “discontinuities” with respect to
frictional welfare measures, because the planner would not care for the asset position of the low-
type clients. But this is true only for εl = 0, and the planner would have interior solution for
low-type clients for any other εl > 0. Thus, we first solve the planner’s problem for a generic
εl > 0. Then, we calculate the limit WF B ↗ lim

ωl≃0
WF B (εl).

Because M is an arbitrarily large number that can be chosen to allow for interior solutions,
we are fine as long as ak (0) , ak (2ς) < ⇐. Because the second term on the RHS of (E.8) does not
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depend on the control variables, the Lagrangian is

LF B = εl

r

[a1 (0) + ϑa2 (0)]1↓ς

1 → ⇀

1
2 + 2ς

r

[a1 (2ς) + ϑa2 (2ς)]1↓ς

1 → ⇀

1
2

+ µ1

(
A1 → 1

2 (a1 (0) + a1 (2ς))
)

+ µ2

(
A2 → 1

2 (a2 (0) + a2 (2ς))
)

.

The FOCs for interior solution are

εl

2r
[a1 (0) + ϑa2 (0)]↓ς → µ1

2 = 0,

εl

2r
[a1 (0) + ϑa2 (0)]↓ς ϑ → µ2

2 = 0,

ς

r
[a1 (2ς) + ϑa2 (2ς)]↓ς → µ1

2 = 0,

and
ς

r
[a1 (2ς) + ϑa2 (2ς)]↓ς ϑ → µ2

2 = 0.

Then,

a1 (0) + ϑa2 (0) =


εl

µ1r

1/ς

,

a1 (2ς) + ϑa2 (2ς) =


2ς

µ1r

1/ς

,

and
µ2 = ϑµ1.

Then, using the resource constraints, the Lagrange multiplier µ1 is

µ1 = 1
r



ε1/ς
l + (2ς)1/ς

2 (A1 + ϑA2)




ς

,

which in turn implies

a (0) = 2 (A1 + ϑA2)
ε1/ς

l

ε1/ς
l + (2ς)1/ς

and
a (2ς) = 2 (A1 + ϑA2)

(2ς)1/ς

ε1/ς
l + (2ς)1/ς

.
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Substituting into (E.8),

WF B (εl) = εl

2r

21↓ς (A1 + ϑA2)1↓ς

1 → ⇀



 ε1/ς
l

ε1/ς
l + (2ς)1/ς




1↓ς

+21↓ς (A1 + ϑA2)1↓ς

1 → ⇀

ς

r



 (2ς)1/ς

ε1/ς
l + (2ς)1/ς




1↓ς

→ ς

r

(A1 + ϑA2)1↓ς

1 → ⇀
.

By taking the limit as εl ↔ 0, one obtains WF B stated in the proposition.
What remains to show is the formula for WSB in the proposition. Since the endogenous

conditional asset holding distribution can be continuous as well as the exogenous distribution of
ω, we potentially have a continuum of control variables as in Üslü (2019) and Farboodi, Jarosch,
and Shimer (2018); we follow these papers in appealing to van Imho! (1982) and interpret the
integrals in the objective function as summation over discrete intervals with lengths dε and da

approaching zero.
Keeping in mind van Imho! (1982)’s interpretation and because the second term of (3.29) does

not depend on the control variables, the planner’s current-value Hamiltonian can be written as

LSB (q1, q2|!) =
ˆ M̂

↓M

M̂

↓M

∑

ω↑{ωl,ωh}
εu (a1 + ϑa2) !ε (ε, da1, da2) dG (ω)

+ ω0

∑

ω→↑{ωl,ωh}

ˆ M̂

↓M

M̂

↓M

∑

ω↑{ωl,ωh}

1
2 (0 (ε→, a1, a2, ω) → 0 (ε, a1, a2, ω)) !ε (ε, da1, da2) dG (ω)

+
∑

k↑{1,2}

ˆ M̂

↓M

M̂

↓M

∑

ω↑{ωl,ωh}
ωk {0 (ε, ak + qk (ε, a1, a2, ω) , a↓k, ω) → 0 (ε, a1, a2, ω)} !ε (ε, da1, da2) dG (ω)

→
∑

k↑{1,2}
1k

ˆ M̂

↓M

M̂

↓M

∑

ω↑{ωl,ωh}
ωkqk (ε, a1, a2, ω) !ε (ε, da1, da2) dG (ω) ,

0 (ε, a1, a2, ω) denotes the current-value co-state variable associated with !ε (ε, da1, da2); and 11

and 12 are the Lagrange multipliers associated with the conditions (3.30) and (3.31), respectively.
The FOC for optimization is

0k (ε, ak + qk (ε, a1, a2, ω) , a↓k, ω) = 1k, (E.9)

if ωk > 0, !ε (ε, da1, da2) > 0, and dG (ω) > 0.
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In any optimum (qe
1
, qe

2
), the co-state variables must satisfy the ODEs,

↙n(ω,a1,a2,ε)LSB (qe
1
, qe

2
|!) = r0 (ε, a1, a2, ω) →

.
0 (ε, a1, a2, ω) , (E.10)

where n (ε, a1, a2, ω) is the degenerate measure which puts all the probability on the type (ε, a1, a2, ω)
and ↙n denotes the Gâteaux di!erential in the direction of measure n:

↙nLSB (qe
1
, qe

2
|!) = lim

ε≃0

LSB (qe
1
, qe

2
|! + εn) → LSB (qe

1
, qe

2
|!)

ε
.

For small ε, we obtain up to second-order terms:

LSB (qe
1
, qe

2
|! + εn) → LSB (qe

1
, qe

2
|!) = ε

ˆ M̂

↓M

M̂

↓M

∑

ω↑{ωl,ωh}
εu (a1 + ϑa2) n (ε, da1, da2, dω)

+ εω0

∑

ω→↑{ωl,ωh}

ˆ M̂

↓M

M̂

↓M

∑

ω↑{ωl,ωh}

1
2 (0 (ε→, a1, a2, ω) → 0 (ε, a1, a2, ω)) n (ε, da1, da2, dω)

+ ε
∑

k↑{1,2}

ˆ M̂

↓M

M̂

↓M

∑

ω↑{ωl,ωh}
ωk {0 (ε, ak + qe

k (ε, a1, a2, ω) , a↓k, ω) → 0 (ε, a1, a2, ω)} n (ε, da1, da2, dω)

→ ε
∑

k↑{1,2}
1k

ˆ M̂

↓M

M̂

↓M

∑

ω↑{ωl,ωh}
ωkqk (ε, a1, a2, ω) n (ε, da1, da2, dω) .

Thus,

↙n(ω,a1,a2,ε)LSB (qe
1
, qe

2
|!) = εu (a1 + ϑa2) + ω0

∑

ω→↑{ωl,ωh}

1
2 (0 (ε→, a1, a2, ω) → 0 (ε, a1, a2, ω))

+
∑

k↑{1,2}
ωk {0 (ε, ak + qe

k (ε, a1, a2, ω) , a↓k, ω) → 0 (ε, a1, a2, ω) → 1kqe
k (ε, a1, a2, ω)} .

Using (3.30), (3.31), (E.10), and the FOC (E.9), the following ODE for the co-state variables
obtains in any optimum:

r0 (ε, a1, a2, ω) →
.
0 (ε, a1, a2, ω) = εu (a1 + ϑa2) + ω0

∑

ω→↑{ωl,ωh}

1
2 (0 (ε→, a1, a2, ω) → 0 (ε, a1, a2, ω))

+
∑

k↑{1,2}
ωk max

qk↑[↓M,M ]

{0 (ε, ak + qk, a↓k, ω) → 0 (ε, a1, a2, ω) → 1kqk}
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s.t. ˆ M̂

↓M

M̂

↓M

∑

ω↑{ωl,ωh}
ωkqk (ε, a1, a2, ω) !ε (ε, da1, da2) dG (ω) = 0.

Checking that the planner’s optimality conditions do not coincide with the equilibrium con-
ditions is easy. More specifically, the comparison with (3.9) reveals that the planner’s optimality
conditions and the equilibrium conditions would be identical if ϖk = 0 and Pk = 1k in the equilib-
rium condition, which means that the e#ciency implications of LR apply to our generalized setup
as well. It also means WSB stated in the proposition obtains by substituting ϖ = 0 into WEq.

F Data Construction

The primary data source for our baseline estimation is the ZEN dataset which was the UK’s
transaction reporting system administered by the Financial Conduct Authority during our sample
period 2011m8-2017m12. Since ZEN is not publicly available, it has been used only sparingly in
the academic literature (recent exceptions include Benos and Zikes (2018), Czech, Huang, Lou,
and Wang (2021), and Kondor and Pintér (2022)). The structure of the ZEN dataset is similar
to the TRACE dataset often used to study the US corporate bond market, with the important
exception that almost all trade reports in the ZEN include the identities of the counterparties.
(See Ivanov, Orlov, and Schihl (2021) for a recent comparison between the ZEN dataset and the
TRACE dataset, using a common set of corporate bonds traded in both the UK and US.)

All secondary market trades are reported in the ZEN dataset, where at least one of the coun-
terparties is an FCA-regulated entity. We drop duplicate trade reports, trade reports with missing
client identifiers, trades of less than £1,000 in par value, and remove trades with erroneous price
entries. Risk characteristics are an important dimension that can make the representative corpo-
rate bond distinct from government bonds. To mitigate this issue, we exclude high-yield corporate
bonds and keep the 57 bonds that have the highest number of transactions.4 We also want to
avoid biasing the empirical moments by incorporating days with low trading activity such as trad-
ing days around the end-of-year holidays. We adopt a data-driven approach to identify these low
trading activity days. For inter-dealer transactions, we keep only days where the number of active
dealers is larger than half of the maximum number of daily active dealers observed on a trading
day during our sample.5 We follow the same approach for client-dealer transactions, but using

4Information on corporate bond ratings is from Thomson Reuters Eikon, which covers the three major rating
agencies Moody’s, Standard & Poor’s (S&P), and Fitch. Ratings of Moody’s are used as the default option because
of the firm’s large market coverage. S&P ratings are used if ratings from Moody’s are not available for the given
bond. Fitch ratings are used as a third option.

5For the government bond market, the maximum number of dealers trading in the inter-dealer market is 26,
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the number of active clients instead.6 The final sample comprises 1,440 trading days satisfying
these four criteria and we end up with 2,958,554 and 229,180 transactions in the government and
corporate bond markets, respectively. The breakdown between the inter-dealer and client-dealer
segments is 63% and 37% for the government bond market, and 35% and 65% for the corporate
bond market. We identify 526 clients active in both markets over the sample period, and whose
trades cover the majority of total client trading volume.

We use these two samples of government and corporate bonds (each including trades for 57
assets) to compute the empirical moments of the main variables that will be used in the anal-
ysis. First, we compute price dispersion in the inter-dealer and client-dealer segments of each
market. We keep trading hours with at least two transactions occurring in that time window ac-
cording to the time stamp of the trade report. For the inter-dealer segment, this leaves 1,749,693
transactions in the government bond market and 37,393 transactions in the corporate bond mar-
ket. The corresponding numbers for the client-dealer segment are respectively 953,257 and 59,353
transactions. Then, we obtain daily measures of price dispersion by first computing (normalized)
absolute deviations from the hourly average transaction price, and then averaging within the day
these deviations using the size of the trade as weights.

Second, we compute a series of measures from the client-dealer segment of each market, includ-
ing average trading costs, average client intensity and intensity dispersion, average daily trading
volume, and average trade size. For average trading costs, we follow the approach outlined in
Pintér, Wang, and Zou (2024) and use the average price of all transactions at the bond-day level
as the benchmark price against which transaction costs are calculated. To compute the intensity-
based measures, days in which a client does not trade enter as zeros. Average client intensity is
calculated as the mean of the total number of transactions for each of the 526 clients on each
trading day. Intensity dispersion is then computed as the mean of the absolute deviation of each
client’s total number of transactions from average intensity. Both intensity measures are scaled
by the number of assets (57) in each sample. Total daily trading volume is computed in terms
of par value, scaled by the number of clients and the number of assets in each market. Finally,
average trade size is calculated by first computing the daily mean of the nominal size of each
client’s trades, and then averaging across clients.

while for the corporate bond market it is 21.
6The maximum number of clients trading in the client-dealer market on any given day is 190 for the government

bond market and 132 for the corporate bond market. Given the higher incidence of low trading activity days in
the dealer-client segment of the corporate bond market, we set the threshold to 25% of the maximum number of
active clients in this case.
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G Robustness to Alternative IES Values

Table 15: Counterfacual Welfare Losses (⇀ = 20)

Government Bonds Corporate Bonds
(1) (2)

Welfare Loss 4.3596% 7.7865%
Due to Search Frictions 4.3590% 7.6573%

Extensive Margin 4.3590% 7.6573%
Intensive Margin 0.0000% 0.0000%

Due to Intermediation Frictions 0.0006% 0.1291%
Notes: This table reports the counterfactual welfare losses in the government bond and corporate bond markets implied by the estimated

parameter values as reported in Table 2, apart from the counterfactual utility curvature ς = 20. The top panel reports the relative

welfare loss levels in each market. The bottom panel reports various decompositions.

Table 16: Counterfacual Welfare Losses (⇀ = 2)

Government Bonds Corporate Bonds
(1) (2)

Welfare Loss 32.1538% 38.7879%
Due to Search Frictions 32.1520% 38.4990%

Extensive Margin 31.1741% 36.9335%
Intensive Margin 0.9779% 1.5655%

Due to Intermediation Frictions 0.0018% 0.2889%
Notes: This table reports the counterfactual welfare losses in the government bond and corporate bond markets implied by the estimated

parameter values as reported in Table 2, apart from the counterfactual utility curvature ς = 2. The top panel reports the relative

welfare loss levels in each market. The bottom panel reports various decompositions.

H Robustness of the COVID-19 Estimation Results

Table 17: Parameter Estimates for the COVID-19 Period

Normal Turbulent
(1) (2)

ϑ – Curvature of the utility function 42.296 42.5752
ϖd

1 – Gilt dealers’ bargaining power 0.0025 0.0475
ϖc

1 – Gilt core broker-dealers’ barg. power 0.0389 0.0756
ϖd

2 – Corp. dealers’ bargaining power 0.1243 0.2125
ϖc

2 – Corp. core broker-dealers’ barg. power 0.2587 0.7723
Ā – Tradable portion of assets 2.6715 ↑ 107 2.4134 ↑ 107

Notes: This table reports the estimates of the parameters. The parameter estimates are obtained by minimizing the objective function

(4.7) augmented with an additional penalty term, +0.0001/ (1 ↓ ↽2)
2
. Results in columns (1) and (3) are based on empirical moments

from the period 2011m8-2017m12, as reported in Table 1 and Table 3. Results in columns (2) and (4) are based on empirical moments

from the COVID-19 period as reported in Table 9.
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Table 18: Model Fit (COVID-19)

Government Bonds Corporate Bonds
Moments Empirical Theoretical Empirical Theoretical

(1) (2) (3) (4)
Trade Intensities

Median 0.0084 0.0084 0.0006 0.0006
p25 0.0028 0.0028 0.0001 0.0001
p75 0.0272 0.0272 0.0027 0.0027

Trade Sizes
Median 1,397,528 2,511,444 217,841 217,841
p25 228,139 505,708 43,865 43,865
p75 4,346,370 9,655,933 837,548 837,548

Average Trade Cost 2.3771 2.3982 28.1583 19.0470
Trade Volume 339,912 247,365 – –

Notes: This table reports the values of the empirical moments and of the theoretical moments calculated at the estimated parameters.

Columns (1)-(2) and Columns (3)-(4) show the results for the government bond and corporate bond markets, respectively.

Table 19: Welfare Results I: Estimated Trading Delays and Dealers’ Bargaining Power (COVID-
19)

Government Bonds Corporate Bonds
Normal Turbulent Normal Turbulent

(1) (2) (3) (4)
Average Trading Delays

Median 0.0026 0.0130 0.0314 0.1228
p25 0.0000 0.0000 0.0000 0.0000
p75 0.5162 0.4672 1.3686 1.8523

Client’s Lost Surplus Share 4.15% 12.31% 38.30% 98.48%
Dealer’s Bargaining Share 0.25% 4.75% 12.43% 21.25%
Core Broker-Dealer’s Barg. Share 3.89% 7.56% 25.87% 77.23%

Notes: This table reports summary statistics for trading delays (upper panel) and dealers’ bargaining power (lower panel), implied by

the theoretical model evaluated at the estimated parameter values. Trading delays are expressed as a fraction of a trading day. Results

in columns (1)-(4) are based on parameter values from the respective columns of Table 17.

Table 20: Welfare Results II: Estimated Welfare Losses (COVID-19)

Government Bonds Corporate Bonds
Normal Turbulent Normal Turbulent

(1) (2) (3) (4)
Welfare Loss 2.3778% 3.6080% 5.0463% 15.1916%

Due to Search Frictions 2.3774% 3.6021% 4.9464% 7.8237%
Due to Intermediation Frictions 0.0004% 0.0059% 0.0999% 7.3669%

Notes: This table reports the welfare losses in the government bond and corporate bond markets implied by the estimated parameter

values. The top panel reports the relative welfare loss levels in each market implied by the estimated parameter values exactly. The

bottom panel reports various decompositions. Results in columns (1)-(4) are based on parameter values from the respective columns

of Table 17.
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