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1 Introduction

A persistent boom in house prices and a large increase in private indebtedness planted the seeds for

the 2008 financial crisis (Figure 1). Once house prices collapsed, the turmoil in the financial sector and

the ensuing deleveraging process caused the worst US recession since the Great Depression (Hall, 2011).

Many other countries, including Ireland, Spain, and the UK, experienced similarly long-lived booms

followed by deep recessions. To prevent the repeat of similar episodes, policy authorities around the

world have introduced macro-prudential frameworks that include both ‘lender-based’ policy tools that

primarily influence credit supply (such as capital requirements on banks) and ‘borrower-based’ tools that

primarily affect credit demand (such as limits on household borrowing).

Motivated by the rapid increase in the use of borrower-based policy instruments in recent years, this

paper focuses on one such tool—a loan-to-value (LTV) limit—and its implications for monetary policy.

In our model, the key financial friction is a collateral requirement on borrowers (Kiyotaki and Moore,

1997), which limits mortgage debt to a certain fraction of the value of housing. When we allow this

fraction, the ‘LTV limit’, to be used as a macro-prudential policy instrument, we find that the optimal

LTV policy is strongly countercyclical. In our simulation experiments, the active use of LTV limits

alleviates the burden of macroeconomic stabilization on monetary policy and can avoid a liquidity trap

that would otherwise occur in the absence of macro-prudential policy.

Our findings contribute to a growing literature exploring the conduct of macro-prudential policy

and its interaction with monetary policy. From a theoretical perspective, Farhi and Werning (2016)

and Korinek and Simsek (2016) present detailed analyses of the financial market distortions that macro-

prudential policy can address in the presence of aggregate demand externalities, such as nominal rigidities

and the zero lower bound (ZLB) on the nominal interest rate, while Davila and Korinek (2018) emphasize

the pecuniary externalities due to an endogenous collateral constraint.

We obtain our results in a simple model that builds on Cúrdia and Woodford (2016) and combines

both types of externality. As is standard in the New Keynesian literature, nominal rigidities arise because

of staggered price setting (Calvo, 1983), so that monetary policy has real effects. The key financial friction

is a collateral requirement on borrowers. As in Kiyotaki and Moore (1997), an underlying moral hazard

problem implies that lenders are only willing to lend up to a given fraction of the value of housing

collateral. We allow the macro-prudential authority to impose an LTV limit on mortgage borrowing that

is no greater than this fraction.

The model also features a second financial friction. Borrowers obtain loans through perfectly com-

petitive financial intermediaries (banks), which raise equity and deposits from savers. Banks seek to

minimize equity issuance, which is costly as in Justiniano et al. (2019), but an equity requirement places

an upper bound on their leverage. Exogenous changes in this requirement map into movements of the

spread between borrowing and deposit rates. These financial disturbances, which we label ‘credit spread

shocks’, are the exogenous source of fluctuations in our model.

The resulting framework is rich enough to generate meaningful policy tradeoffs, but sufficiently

tractable that, up to a second-order approximation, the welfare-based loss function clearly identifies how

the inefficiencies in the economy map into four policy objectives. Two of the terms in the welfare-based

loss function, inflation and the output gap, stem from nominal rigidities and are standard in the New

Keynesian literature (e.g., Clarida et al., 1999, and Woodford, 2003). The remaining two terms are due

to imperfect risk sharing between borrowers and savers. In particular, the policymaker seeks to stabilize

the differences (or ‘gaps’) in the marginal utility of non-durable consumption and housing between the

two types of household.

The welfare-based loss function shares a number of similarities with those derived in Andres et al.

(2013), Benigno et al. (2020) and Cúrdia and Woodford (2016). While those papers focus on optimal

monetary policy, our contribution is to explore its interaction with the optimal setting of LTV limits.
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Figure 1: Real house prices and mortgage debt in the United States.
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Note: Real house prices correspond to the FHFA index deflated by the CPI (normalized to 100 in 2000q1). Mortgage

debt corresponds to ‘Households and Nonprofit Organizations, One-to-Four-Family Residential Mortgages,’ expressed as a

fraction of GDP in percentage points. All data are from FRED, Federal Reserve Bank of St. Louis.

When the collateral constraint is always binding and the nominal interest rate never hits the zero lower

bound, the jointly optimal monetary and macro-prudential plan in a linear-quadratic approximation of

the model satisfies a pair of targeting rules. The optimal targeting rule for monetary policy manages the

standard tradeoff between inflation and the output gap. The optimal targeting rule for macro-prudential

policy prescribes that the marginal utility gap and the output gap co-move. Thus, LTV limits are

countercyclical, limiting consumption of borrowers relative to that of savers in a boom (and vice versa

in a recession).

Our quantitative experiments allow for occasionally binding constraints, as in Guerrieri and Iacoviello

(2017). In addition to the ZLB on the nominal interest rate, we also account for occasionally binding

constraints on macro-prudential policy. If the collateral constraint is slack, the policymaker cannot force

borrowers to hold more debt than the amount demanded at market prices (a ‘credit demand’ constraint).

At the same time, the policymaker cannot force lenders to extend credit at an LTV ratio that is higher

than the level required to avoid the underlying moral hazard problem, which creates an upper bound on

the LTV limit (a ‘credit supply’ constraint).

A slow and persistent decline in credit spreads, followed by a sharp tightening, drives our quantitative

experiments. The model generates a boom-bust cycle in house prices which captures the salient features

of the data in the US and other advanced economies before and after the 2008 financial crisis. We

compare a baseline scenario characterized by a standard interest rate rule for monetary policy and a

fixed LTV limit with a regime in which the policymaker optimally sets the nominal interest rate and the

LTV limit to minimize the welfare-based loss function. In the baseline scenario, the collateral constraint

remains slack during the boom and becomes binding in the bust, during which the economy experiences

a liquidity trap and a deep recession. Conversely, under optimal policy, the LTV limit declines markedly

during the boom, such that the collateral constraint binds tightly, and rises at the time of the crisis,

relaxing the collateral constraint. The countercyclical LTV policy avoids a large buildup in private debt

during the expansion so that, when house prices fall, the recessionary consequences of the deleveraging

process are limited. As a result, the nominal interest rate remains above the ZLB, and the economy
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avoids the recession. In this sense, the optimal setting of the LTV limit is indeed prudential, at least as

far as macroeconomic objectives are concerned.

Finally, we present two experiments that demonstrate how the efficacy of macro-prudential policies

may depend on prevailing macroeconomic conditions. The first shows that, in line with the existing

empirical evidence, the sign of the effect of an LTV limit tightening on house prices depends on whether

or not monetary policy is constrained. The second experiment shows that the benefits of setting the LTV

limit optimally only once the bust occurs are much smaller than if macro-prudential policy is active also

during the boom. The high level of debt built up during the boom limits the space for macro-prudential

policy, so that the credit supply constraint becomes binding during the bust.

Our paper contributes to a growing literature studying borrower-based macro-prudential policy tools

and their interaction with monetary policy. Rubio and Carrasco-Gallego (2014) postulate a simple rule

for LTVs while Lambertini et al. (2013) study optimized simple rules for monetary policy and LTV limits

in the context of boom-bust cycles generated by news shocks. Angelini et al. (2012) consider optimal

monetary and macro-prudential policies (including both capital requirements and LTV limits) using an

ad-hoc loss function as the policymaker’s objective. Gelain et al. (2013) evaluate the effects of tighter

LTV restrictions on household debt and output in a model that generates excess volatility by relaxing

the assumption of rational expectations.1 A distinguishing feature of our work is the combination of

the normative analysis with a welfare-based loss function and the explicit consideration of occasionally

binding constraints, including on policy instruments.

The focus on LTV limits in this paper complements a number of contributions that examine lender-

based policy tools, in particular the role of capital requirements.2 Several papers extend the analysis to

the interaction between capital requirements and monetary policy. For example, Bean et al. (2010) study

the optimal setting of capital requirements with ad-hoc loss functions in a simplified version of Gertler

and Karadi (2011). In models with bank runs, Angeloni and Faia (2013) compare alternative properties

of capital requirements that mimic the Basel I, II, and III accords, while Gertler et al. (2020a,b) study

a simple capital requirement linked to the net worth of financial intermediaries. Quint and Rabanal

(2014) specify rules for the leverage ratio that banks can afford as a function of credit aggregates in an

estimated model of the Euro Area. Collard et al. (2017) and Van der Ghote (2021) study the jointly

optimal setting of interest rates and capital requirements in environments with moral hazard frictions.

Finally, Mendicino et al. (2020) evaluate the tradeoffs associated with increasing capital requirements

depending on the state of the business cycle.

The rest of the paper is organized as follows. Section 2 documents the use of LTV limits as a macro-

prudential tool, showing the increasing use of this type of borrower-based policy instrument in recent

years. Section 3 introduces the model, focusing on the key innovations to the treatment of the household

sector. Section 4 presents the linear-quadratic framework for optimal policy analysis and derives the

targeting rules abstracting from occasionally binding constraints. Section 5 illustrates the optimal joint

conduct of monetary and macro-prudential policy with occasionally binding constraints via numerical

simulations. Section 6 concludes. The derivations and the description of the computational details are

in the appendix.
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Figure 2: LTV policy actions.
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Note: The grey bars (left scale) are the number of LTV policy actions in each quarter. The black line (right scale) is

the cumulative number of LTV policy actions over time at quarterly frequency. The data source is the IMF integrated

macro-prudential policy database (iMaPP).

2 LTV Limits as a Policy Tool

The use of LTV limits as a policy tool has a fairly long history. For example, Hong Kong introduced LTV

restrictions in 1991. Wong et al. (2011) argue that this innovation cushioned the aggregate effects of the

1997 Asian financial crisis on lenders’ resilience in the face of a 40% decline in property prices. Similarly,

the macro-prudential authority in South Korea set the maximum LTV to 60% in 2002, subsequently

tightening the limit to as low as 40%. Crowe et al. (2013) document the notable moderation in house

price appreciation that followed those policy change. Together with other measures, regulators in Canada

lowered LTV limits four times between 2008 and 2012, from 100% to 80%. Krznar and Morsink (2014)

estimate that a 1 percentage point reduction in the LTV limit reduced year-on-year credit growth by 0.4

percentage points.

By 2013, LTV limits, together with debt-to-income ratios, had become the most commonly deployed

macro-prudential instrument, both in emerging market economies and developed countries (Claessens,

2015).3 Their adoption has continued to grow ever since. Using data from the IMF integrated macro-

prudential policy database (see Alam et al., 2019, for a description), Figure 2 reports the number of

LTV policy actions in each quarter (grey bars) and their cumulative number (solid black line) globally

between 1990 and 2019. The chart shows a clear acceleration in the use of LTVs since the financial crisis.

In Europe alone, Arena et al. (2020) count 19 jurisdictions with LTV policies in place by 2018. Their

evidence shows a decline in the extension of high LTV mortgage loans following the introduction of these

1Our analysis also shares some similarities with De Paoli and Paustian (2017), though their model emphasizes
a different credit relationship (between entrepreneurs and households) and focuses on a different macro-prudential
policy instrument (a tax/subsidy on the cost of borrowing for entrepreneurs).

2A non-exhaustive list includes Van den Heuvel (2008), Gertler et al. (2012), Miles et al. (2013), Admati and
Hellwig (2014), Clerc et al. (2015), Christiano and Ikeda (2016) and Corbae and D’Erasmo (2021).

3Cerutti et al. (2017) document the relative prevalence of borrower-based instruments, including LTV limits,
in advanced economies, while emerging markets often rely additionally on foreign exchange related measures.
Institutional details on macro-prudential frameworks, both in terms of the tools available and the authorities in
charge, vary greatly across countries (Akinci and Olmstead-Rumsey, 2018).

6



controls in all countries in their sample.

A plausible explanation for these developments is that the financial crisis of 2008 brought renewed

attention to the terms and conditions governing borrowers’ access to debt finance. The importance of

housing markets and the tight links between housing net worth, household consumption and aggregate

demand called for instruments that could limit the propagation of financial shocks via the indebtedness

of the household sector. Indeed, in many advanced economies, mortgages are at the same time the single

largest asset class on the balance sheet of banks and the single largest liability class on the balance sheet

of households (Jordá et al., 2016).

As the use of LTV policies has broadened, more systematic empirical analysis has become possible.

Kuttner and Shim (2016) use data on 57 countries covering the period 1980 to 2011 for a range of

advanced and emerging market economies. Similarly, Araujo et al. (2020) conduct a meta analysis

encompassing 58 studies of a broad set of macro-prudential policy actions. Both papers find that LTV

requirements had a significant effect on household credit but not on house prices. Richter et al. (2019)

reach a different conclusion regarding the effects of LTV policies on house prices by combining a narrative

approach to identification and local projection methods for inference. Their estimates also give a sense

of the macroeconomic consequences of LTV policies. In their sample, an exogenous 10 percentage point

tightening of LTV limits generates a 1.1% decline in output and an increase in consumer prices of a

broadly similar magnitude.4

A potential explanation for these heterogeneous estimates of the effects of LTV limits on house prices

(and potentially other variables) is the role of the systematic monetary policy response to the aggregate

consequences of changes in financing conditions. The VAR evidence in Bachmann and Rüth (2020)

speaks directly to this point. Using quarterly US data spanning the period 1978 to 2008, expansionary

LTV shocks increase GDP and business investment but lead to a decline of residential investment and

house prices. Crucially, the typical response of monetary policy to these shocks is a rise in the nominal

interest rate. Through a counterfactual exercise these authors show that, if the interest rate does not

increase, the responses of residential investment and house prices change sign.

These findings illustrate that the interaction of LTVs with monetary policy has an important bearing

on their macroeconomic effects. Our analysis studies this interaction both in normal times (i.e. when

monetary policy is unconstrained) and at the zero lower bound, while also accounting for the possibility

that the LTV limit may not bind at all times.

3 Model

This section describes the key building blocks of the model. The household sector contains the key

frictions that give rise to a role for macro-prudential policy. We extend the approach of Cúrdia and

Woodford (2016) to incorporate an occasionally binding collateral constraint on household borrowing

and allow the macro-prudential policymaker to vary the LTV limit over time.

Households are ex-ante identical, but at any point in time their preferences are heterogeneous due

to stochastic realizations of the coefficient of relative risk aversion. A random switch in this utility

parameter is sufficient to deliver a separation between savers and borrowers, which is the focus of our

paper. At the beginning of time households sign state-contingent contracts, but only have access to

payoffs from those contracts in the event of a new utility parameter draw. Intermittent access to the

contract payments provides a role for financial intermediation to smooth consumption over time while

avoiding ever-diverging marginal utilities of income due to different individual histories.

The rest of the model is standard. Banks raise funds from savers through a mix of deposits and

equity, and transfer resources to borrowers. Imperfectly competitive wholesale firms set prices on a

4The response in emerging markets drives the estimated effects on output. In addition, the paper presents
some evidence of an asymmetric response (greater for a tightening).
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staggered basis. Retailers are perfectly competitive and combine intermediate inputs to produce the

final consumption good. The government conducts monetary and macro-prudential policy to address the

inefficiencies arising from nominal rigidities and imperfect risk sharing.

Below, we present the problem of each economic actor. Appendix A describes the microfoundations

of the household problem with intermittent access to state-contingent transfers and the full derivations

of the equilibrium conditions.

3.1 Households

A continuum of measure one of ex-ante identical households populate the economy. At time t, a household

can be of type b (“borrower”) or s (“saver”). Households maximize the present discounted value of utility

Vτt0 ≡ E0

{ ∞∑
t=0

βt
[

1

1− στt
(Cτtt )1−στt +

χH
1− σh

(Hτt
t )1−σh − χL

1 + ϕ
(Lτtt )1+ϕ

]}
, (1)

where τt ∈ {b, s} indicates the type at time t. The variable Cτtt denotes consumption of goods, Hτt
t

consumption of housing services (assumed to be proportional to the stock of housing), and Lτtt hours

worked. The parameter β ∈ (0, 1) is the individual discount factor, στt the coefficient of risk aversion

(with 0 < σb < σs), σh > 0 the inverse elasticity of housing demand, ϕ > 0 the inverse elasticity of labor

supply, and χH and χL are positive parameters that determine steady state housing demand and hours

worked, respectively.

The type τ evolves as an independent two-state Markov chain. With probability δ ∈ [0, 1], the

type remains unchanged. With probability 1 − δ, a household draws a new type, independently of the

previous one. The probability of drawing type τ is ξτ ∈ [0, 1]. Since we assume the economy consists

of a continuum of households of measure one, the probability of drawing a certain type corresponds to

the share of that type in the population. To simplify the notation, we set ξb = ξ, which in turn implies

ξs = 1− ξ.
Households sign state-contingent contracts with each other at time t0 ≤ 0 to insure against idiosyn-

cratic and aggregate risk. A competitive insurance agency provides the payments associated with such

contracts. These payments, however, take place if and only if a household draws a new type in period t

(and before knowing the new type).

The beginning-of-period financial wealth inclusive of transfers for a household of type τ is

Aτt ≡ Rdt−1 max{Dt−1, 0}+Ret−1 max{Et−1, 0} −Rbt−1 max{Bt−1, 0}+ T τt ,

where Dt denotes deposits that pay a gross nominal interest rate Rdt , Et equity in banks that pays a

gross nominal return Ret , Bt debt that carries a gross nominal interest rate Rbt , and T τt state-contingent

transfers.5

The budget constraint for a saver is

PtC
s
t +QtH

s
t + PtΓ

s
ht +Dt + Et + PtΓet = Ast +WtL

s
t +QtHt−1 + Ωst ,

where Pt is the consumption price index, Qt the nominal price of housing, Wt the nominal wage, and Ωτt
denotes the share of profits from intermediate goods producers accruing to a household of type τ net of

5Households who do not draw a new type at time t do not receive a transfer and simply carry their financial
wealth on from the previous period. Appendix A shows that, due to the transfers from the insurance agency,
households who have just drawn a new type start the period with zero wealth. Effectively, the insurance agency
redistributes resources across households by pooling together debts and assets of all those who draw a new type.
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taxes. The function Γet measures equity holding costs in deviations from the target level Et

Γet ≡
Ψe

2

(
Et

Et
− 1

)2

Et,

with Ψe > 0.6 As in Justiniano et al. (2019), the presence of holding costs generates a premium for

equity over deposits and a well-defined liability structure in the banks’ balance sheet, thus capturing the

idea that in practice deposits are generally more liquid and easier to adjust than equity.7

Similarly, the function Γτht measures housing holding costs, expressed in deviation from a target level

that we assume to be the symmetric steady state level of housing consumption H,

Γτht ≡
ΨhH

2

(
Hτ
t

H
− 1

)2

,

where Ψh > 0. As in Greenwald (2018) and Menno and Oliviero (2020), housing holding costs limit

the degree of reallocation between types over the business cycle. This effect introduces a simple form

of housing market segmentation, as discussed for example in Guerrieri et al. (2013) and Piazzesi and

Schneider (2016).8

The budget constraint for a borrower is

PtC
b
t +QtH

b
t + PtΓ

b
ht −Bt = Abt +WtL

b
t +QtHt−1 + Ωbt .

Borrowers do not invest in equity of banks, and thus do not face the extra cost Γet, but are subject to a

collateral constraint (Kiyotaki and Moore, 1997)

Bt ≤ γd max{Bt−1, 0}+ (1− γd)ΘtQtH
b
t , (2)

where γd ∈ [0, 1) controls the extent of debt inertia (Justiniano et al., 2015) and Θt ∈ [0,Θ] represents

the maximum LTV ratio available at time t.9 The standard interpretation of a collateral constraint like

(2) is that lenders (banks in this model) require borrowers to have a stake in a leveraged investment to

prevent moral hazard behavior.10

Our formulation of the collateral constraint contains two features that are important for the analysis.

First, the LTV limit Θt varies over time reflecting the assumption that the macro-prudential authority

may set the maximum LTV that banks can extend to borrowers. To respect the underlying incentive

compatibility constraint encoded in the collateral requirement, the LTV limit Θt cannot exceed the

6Savers take the target level of equity as given. For analytical convenience, we set Et ≡ κ̃ξBt/(1− ξ). As we
discuss below, this assumption, coupled with the exogenous leverage restriction on banks, ensures that the cost
function Γet does not have direct welfare consequences.

7Little of substance would change in the first-order accurate solution to the model that we examine if we
specified bank equity as a state-contingent claim.

8Using detailed micro data, Landvoigt et al. (2015) document a high degree of segmentation for the San Diego
metropolitan area. Justiniano et al. (2014) consider the case of full segmentation between borrowers and savers.
Poterba (1991) discusses how the segmentation between borrowers and savers that our formulation builds into
the model may be related to demographic factors.

9In principle, all households are subject to the collateral constraint. We abstract from its presence for savers
since, in equilibrium, the constraint would never bind for this type. Moreover, since borrowers who have drawn
their type at time t have their previous financial wealth reset to zero, the inertia in the collateral constraint only
applies to households who were already borrowers at t− 1 and did not draw a new type.

10In some contexts (e.g. Kiyotaki and Moore, 1997), the collateral constraint depends on expected future,
rather than contemporaneous, asset prices. As the focus of our analysis is the real estate market, current prices
are particularly suitable because the amount of mortgage loans typically depends on the current value of the
house being purchased. Appendix B.1 shows that the two formulations are essentially identical in our main
quantitative exercise. The reason is that, up to a first order approximation around a steady state in which the
collateral constraint is slack, the house price equation is the same in the two formulations.
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value Θ ∈ [0, 1], which is the maximum LTV consistent with the absence of a moral hazard problem.11

Therefore, the inequality Θt ≤ Θ (the credit supply constraint) imposes an upper bound on the LTV

limit.

Second, the collateral constraint (2) incorporates a degree of inertia governed by the parameter γd.

The inertial formulation of the collateral constraint captures, in reduced form, the idea that only a fraction

of borrowers experience a change to their borrowing limit each period, which may be associated with

moving or re-mortgaging (Guerrieri and Iacoviello, 2017). This modification generates more persistent

movements in debt and its marginal value. In particular, debt adjusts only gradually to changes in the

value of the housing stock, which is consistent with the data in Figure 1. When γd = 0, the collateral

constraint collapses to the familiar contemporaneous specification.

Appendix A reports the first-order conditions for the problems of savers and borrowers. The key

difference between this model and one with either complete markets or incomplete markets and fixed

types is that the expected future marginal utility of consumption is a weighted average of the marginal

utility conditional on no type change and the average marginal utility of the two types.12

3.2 Banks

A continuum of perfectly competitive banks raise funds from savers in the form of deposits and equity

(the banks’ liabilities), and make loans (the banks’ assets) to borrowers. Thus, the balance sheet of a

generic bank is

Bt = Dt + Et. (3)

In addition, we assume that equity must account for at least a fraction κ̃t of the total amount of loans

banks extend to borrowers

Et ≥ κ̃tBt, (4)

where the equity requirement κ̃t is an exogenous shock.

The presence of the cost function Γet in the household problem breaks down the irrelevance of the

capital structure (the Modigliani-Miller theorem). Savers demand a premium for holding equity, which

banks pass on to borrowers in the form of a higher interest rate. From the perspective of a bank, equity

is expensive, so that deposits are the preferred source of funding. In the absence of any constraint, banks

would choose to operate with zero equity and leverage would be unbounded. Equation (4) ensures finite

leverage for banks. In equilibrium, the capital requirement constraint is always binding because banks

seek to minimize their equity requirement.13

Banks’ profits are

Pt ≡ RbtBt −RdtDt −RetEt = [Rbt − (1− κ̃t)Rdt − κ̃tRet ]Bt,

where the second equality follows from substituting the balance sheet constraint (3) and the capital

requirement (4) at equality. The zero-profit condition implies that the loan rate is a linear combination

11In other words, the policymaker cannot force banks to lend to households at a higher LTV than the level
that ensures households will honor the debt contract.

12The appendix also shows that, as in Cúrdia and Woodford (2016), the marginal utility of consumption
is independent of the household type history. The same result also holds for the multiplier on the collateral
constraint, which is specific to this model.

13Since banks are identical, if the capital constraint of all banks were slack, one bank could marginally increase
its leverage, charge a lower loan rate, and take the whole market. Therefore, competition drives the banking
sector against the constraint.
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of the return on equity and the return on deposits

Rbt = κ̃tR
e
t + (1− κ̃t)Rdt ,

where the weight on the return on equity corresponds to the time-varying capital requirement. An

increase in κ̃t forces banks to delever and raises credit spreads—the difference between the loan rate Rbt
and the deposit rate Rdt . Vice versa, a relaxation of the equity requirement (a lower κ̃t) reduces spreads.

Given the mapping between the equity requirement shock and credit spreads, from now on we refer to

κ̃t as a credit spread shock, which is the key driver for the quantitative experiments that we study later.

We stress that our analysis focuses on the case in which κ̃t is exogenous, relying on the notion that

financial institutions target a certain leverage ratio due to market forces (Adrian and Shin, 2010). An

alternative interpretation would be that the macro-prudential authority sets the capital requirement on

financial institutions, and thus controls κ̃t as a policy tool. We do not pursue this approach in this paper

for two reasons. First, we believe that properly studying capital requirements, and their interaction

with monetary policy, would require a more detailed specification of the financial sector. While our

parsimonious description of financial intermediation does capture a connection between capital require-

ments and credit spreads, the model completely abstracts from a key mechanism—the accumulation of

net worth—that determines banks’ profitability and may be crucial to understand the effects of capital

requirements. Second, as discussed in the introduction, the existing literature has extensively studied

capital requirements, either in isolation or in connection with monetary policy. We aim to complement

this body of work by focusing on the implications of LTV limits for macroeconomic stability and their

interaction with monetary policy decisions, which have been relatively less explored.

3.3 Firms

A representative retailer combines intermediate goods according to a technology with constant elasticity

of substitution ε > 1

Yt =

[∫ 1

0

Yt(f)
ε−1
ε df

] ε
ε−1

,

where Yt(f) represents the intermediate good produced by firm f ∈ [0, 1]. Expenditure minimization

implies that the demand for a generic intermediate good is

Yt(f) =

[
Pt(f)

Pt

]−ε
Yt, (5)

where Pt(f) is the price of the variety produced by firm f and the aggregate price index is

Pt =

[∫ 1

0

Pt(f)1−εdf

] 1
1−ε

.

Intermediate goods producers operate in monopolistic competition, are owned by savers and bor-

rowers according to their shares in the population, and employ labor to produce variety f according

to

Yt(f) = Lt(f).

As in Calvo (1983), intermediate goods producing firms keep their price unchanged with probability

α ∈ (0, 1). Those that can adjust choose the price of their product P̃t(f) to maximize expected future

profits conditional on no further changes, taking as given the demand for their variety and their marginal

cost, which is equal to the real wage (MCt = Wt/Pt) and is independent of firm-specific characteristics.
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The optimal price setting decision for firms that adjust at time t solves

max
P̃t(f)

Et


∞∑
j=0

(αβ)j
λt+j
λt

[
(1 + τf )

P̃t(f)

Pt+j
−MCt+j

]
Yt+j(f)

 ,

subject to (5), where τf > 0 is a subsidy to make steady state production efficient. Since shares are

non-tradable and the two types of households own firms in proportion to their size in the population,

the discount factor for future profits corresponds to the average marginal utility of consumption

λt = ξλbt + (1− ξ)λst ,

where λτt = (Cτt )−σ
τ

is the marginal utility of type τ .

3.4 Market Clearing and Equilibrium

The goods market equilibrium requires that total production equals the sum of consumption of the two

types plus the resources spent for housing and equity holding costs

Yt = ξCbt + (1− ξ)Cst + Γt,

where Γt ≡ (1− ξ)Γet + ξΓbht + (1− ξ)Γsht.14

We assume housing is in fixed supply, so that the housing market equilibrium requires

H = ξHb
t + (1− ξ)Hs

t ,

where H is the total available stock of housing.

In the credit market, total bank lending must equal total household borrowing. Thus, the aggregate

balance sheet of the financial sector respects

ξBt = (1− ξ)(Dt + Et).

Finally, per-capita real private debt, derived by aggregating the budget constraint of new and existing

borrowers over their respective measures, evolves according to

Bt
Pt

= δ
Rbt−1

Πt

Bt−1

Pt−1
+
Qt
Pt

[(Hb
t −Hb

t−1) + (1− ξ)(1− δ)(Hb
t−1 −Hs

t−1)]

+ Γbht + Cbt − Yt − (1− ξ)Wt

Pt
(Lbt − Lst ).

The probability of not changing type drives the persistence of private debt. Differently from Cúrdia and

Woodford (2016), housing demand enters the law of motion of debt. In this respect, what matters for

debt is not only the change in debt of borrowers but also the difference (or ‘gap’) in the existing level of

housing between borrowers and savers, due to the switching between types.

For a given specification of monetary and macro-prudential policy, an imperfectly competitive equi-

librium for this economy is a sequence of quantities and prices such that all agents in the economy

(households, banks and firms) maximize their objectives subject to the relevant constraints and all mar-

kets clear. Appendix A.2 reports the full list of variables and equilibrium conditions for the private

sector.

14The resource constraint follows from combining the budget constraints of the two types (aggregated over
their respective measures) with the banks’ balance sheets.
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4 Optimal Policy Problem

This section derives a linear-quadratic (LQ) characterization of the jointly optimal monetary and macro-

prudential policy problem. The LQ approach allows us to derive some analytical results and is tractable

enough to study numerically cases in which the lower bound on the nominal interest rate and the collateral

constraint are occasionally binding. A second-order approximation to the welfare-based loss function

around the efficient steady state contains components reflecting the effects of distortions generated by

both nominal rigidities and imperfect risk sharing. The targeting rules demonstrate that optimal macro-

prudential policy accounts for a potential tradeoff between stabilizing the effects of the two distortions.

We proceed by presenting in turn the welfare-based loss function, the log-linearized equilibrium

conditions that constrain the optimal policy problem, and a pair of targeting rules for monetary and

macro-prudential policy abstracting from occasionally binding constraints, which we later consider in

section 5.

4.1 Loss Function

We derive the loss function for the economy by taking the average of the utility functions of borrowers and

savers, weighting each type according to their share in the population. A second-order approximation of

the resulting objective around an efficient zero-inflation steady state in which the marginal utility of the

two types is the same gives

L0 ∝
1

2
E0

[ ∞∑
t=0

βt
(
y2
t + λππ

2
t + λhh̃

2
t + λωω

2
t

)]
, (6)

where yt is output, πt is the inflation rate, h̃t ≡ hbt−hst is the housing gap between borrowers and savers,

and ωt ≡ σscst − σbcbt is the marginal utility gap.15

The loss function (6) features two sets of terms. The first includes output and inflation—the standard

variables that appear in the welfare-based loss function of a large class of New Keynesian models.16

Their presence in the loss function reflects the two distortions associated with price rigidities. First, such

rigidities open up a ‘labor wedge,’ causing the level of output to deviate from its efficient level. Second,

staggered price setting implies an inefficient dispersion in prices, which is proportional to the rate of

inflation.

The second set of terms in (6), comprising the housing gap and the marginal utility gap, arise from the

heterogeneity between household types. Incomplete financial markets prevent full risk sharing of goods

and housing consumption. The collateral constraint further limits the amount of debt that borrowers can

undertake, thus creating different marginal propensities to consume between the two types. Imperfect

risk sharing therefore becomes a source of welfare losses that a benevolent policymaker will take into

account when setting optimal monetary and macro-prudential policy.17

4.2 Log-Linearized Equilibrium Conditions

In this section, we report the set of log-linearized equilibrium conditions, expressed in terms of welfare-

relevant variables, that constrain the LQ approximation to the optimal policy problem. Appendix A.7

15From now on, all variables should be understood as log-deviations from the steady state unless otherwise
stated. The relative weights on inflation (λπ), the housing gap (λh), and the marginal utility gap (λω) in (6) are
functions of the structural parameters (see appendix A.6 for details).

16Since productivity is constant, efficient output is simply equal to its steady state value, and the efficient
output gap corresponds to the deviations of output from steady state.

17Although the choice of equity involves resource costs through the function Γet, the assumption that the
leverage ratio is an exogenous—albeit time-varying—constraint implies that its fluctuations are independent of
policy, and thus irrelevant for ranking alternative policies in terms of welfare.
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describes the derivations in detail, including the definitions of the composite parameters.

Taking the average of the Euler equations of borrowers and savers yields an aggregate demand

equation

yt = −σ̄−1(it − Etπt+1 − r∗t ) + Etyt+1, (7)

where it is the net nominal interest rate (the log-deviation of the deposit rate from steady state) and r∗t
is the equilibrium real interest rate. Differently from the baseline New Keynesian model, the equilibrium

real interest rate is endogenous and proportional to the expected quasi-difference of the marginal utility

gap

r∗t ≡ (σω + δξ)Etωt+1 − (σω + ξ)ωt. (8)

Our numerical experiments document how expansionary credit spread shocks generate a negative marginal

utility gap, as borrowers increase their consumption more rapidly than savers, thus linking a buildup of

private debt with an increase of the equilibrium real interest rate, as in Eggertsson and Krugman (2012)

and Benigno et al. (2020). Conversely, a shock that forces borrowers to cut consumption in order to

delever generates downward pressure on the equilibrium real interest rate.

The difference between the Euler equations of the two types gives an equation for the marginal utility

gap

ωt = κt + µt − βγd[δ + (1− δ)ξ]Etµt+1 + δEtωt+1, (9)

where κt is a scaled version of the equity requirement, which we interpret as a credit spread shock (see

section 5.2 for more details), and µt is the Lagrange multiplier on the collateral constraint.18

Taking the average of the housing demand equations of borrowers and savers yields a pricing equation

for housing

qt = (1− β)[σ̄yt + ξσ̃hh̃t + (ξ + σω)ωt] + β(Etqt+1 − it + Etπt+1), (10)

where qt denotes real house prices. House prices are increasing in aggregate income and expected future

house prices, and negatively related to the real interest rate, as in a standard user-cost equation. However,

since borrowers are credit constrained, house prices are also increasing in both the housing gap and the

marginal utility gap.

The difference between the housing demand equations of the two types gives an equation for the

housing gap

(1− β)σ̃hh̃t = (1− γd)Θµt − ωt + βδEtωt+1. (11)

The housing gap is positively related to the tightness of the collateral constraint and negatively to the

marginal utility gap.

The approximation of the collateral constraint gives

bt ≤ lnM+
δγd
M

(bt−1 − πt) +
(1− γd)Θηq
M

[θt + qt + (1− ξ)h̃t], (12)

where θt is the log-deviation of the LTV limit from its steady-state level (Θ) andM denotes the steady-

state ratio of the value of the collateral constraint to the real value of debt.19 Therefore, the comple-

mentary slackness conditions are (12), µt ≥ 0, and

µt

{
bt − lnM− δγd

M
(bt−1 − πt)−

(1− γd)Θηq
M

[θt + qt + (1− ξ)h̃t]
}

= 0. (13)

18The multiplier on the collateral constraint is expressed in levels, rather than as a log-deviation, since its
steady state value is zero.

19Since the collateral constraint is slack in steady state, M > 1 and hence lnM > 0.
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Real debt evolves according to

bt =
δ

β
(bt−1 + it−1 + κt−1 − πt) + (1− ξ)ηq(h̃t − δh̃t−1) + ηd

[(
$bσ̄

σb
− 1

)
yt − (1− ξ)σϕωt

]
, (14)

where we have used the equation for the nominal interest rate faced by borrowers (ibt = it + κt) that

comes from the banks’ problem.

Finally, the Phillips curve is

πt = γ[(σ̄ + ϕ)yt + σωωt] + βEtπt+1. (15)

Because of the different labor supply behavior of borrowers and savers, financial frictions affect inflation

dynamics through the marginal utility gap as in Cúrdia and Woodford (2016), thus playing the role of

an endogenous cost-push shock.

Given the sequence of policy instruments {it, θt}∞t=0, exogenous shocks {κt}∞t=0, and initial conditions

on debt, housing gap and the nominal interest rate {b−1, h̃−1, i−1}, an equilibrium for the log-linear

version of the model is a sequence {yt, πt, ωt, h̃t, qt, bt, µt}∞t=0 that satisfies (7), (9), (10), (11), (12), (14),

and (15), ∀t ≥ 0, as well as a set of inequality constraints. These inequality constraints include the

contemporary slackness condition (13) and µt ≥ 0, and the constraints on the policy instruments. In

particular, the zero lower bound requires it ≥ lnβ and the credit supply constraint requires θt ≤ 0.

4.3 Optimal Targeting Rules

This section builds intuition for the quantitative experiments, which include occasionally binding con-

straints, by studying two simplified examples. First, we consider the case in which the collateral constraint

never binds. Second, we examine optimal policy when the collateral constraint is always binding. In

both cases, we assume the nominal interest rate never violates the ZLB (it > lnβ ∀t). We focus on

the discretionary solution for comparability with the numerical experiments in the next section.20 The

main result is that, in both examples, the optimal monetary policy targeting rule is identical to the

one obtained in the baseline New Keynesian model. In addition, when the collateral constraint binds,

optimal macro-prudential policy balances a tradeoff between the stabilization of the distortions caused

by financial frictions and those caused by nominal rigidities.

We begin with the case in which the collateral constraint never binds (µt = 0 ∀t). This example

is particularly simple because the credit spread shock fully determines the marginal utility gap (from

equation 9), which in turn pins down the housing gap (from equation 11). As a consequence, the cost-

push shock component associated with the marginal utility gap in the Phillips curve becomes exogenous.

Therefore, since the marginal utility gap and the housing gap become independent of policy, the loss

function only depends on output and inflation, as in the standard New Keynesian model. Moreover,

because house prices and debt enter neither the aggregate demand equation (7) nor the Phillips curve

(15), the solution of the optimal policy problem corresponds to a standard flexible targeting rule that

trades off output and inflation

επt + yt = 0. (16)

Macro-prudential policy has no bearing on the equilibrium allocation and the optimal LTV ratio is

indeterminate. Despite its simplicity, this case clarifies that in our model macro-prudential policy is

effective only if the collateral constraint binds, is expected to bind at some point in the future, or if

the macro-prudential authority can tighten the LTV limit enough to make the constraint bind. In this

20Appendix A.8 reports the Lagrangian formulation of the optimal policy problem for the second example
and derives the optimal targeting rules under both discretion and commitment. The discussion in this section
informally summarizes the results.
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simple example, those three conditions are ruled out by assumption.

In the second case that we study analytically, we assume that the collateral constraint always binds

(µt > 0 ∀t). Since θt only enters (12), we can use this equation residually to derive the value of the LTV

limit that implements the optimal policy plan.21 Following the same logic, house prices only affect (10),

so that this equation is not a binding constraint for the optimal policy problem. In principle, debt, the

nominal interest rate and the housing gap are state variables for this problem through equation (14).

Appendix A.8 however proves that the optimal policy plan can be characterized without reference to the

law of motion of debt. Thus, the optimal policy problem is purely forward looking, and equation (14)

can be used to determine the equilibrium level of debt. This conclusion also implies that equation (7)

determines residually the nominal interest rate.

The simplified optimal policy problem then consists of minimizing (6) subject to (9), (11), and (15).

The optimal targeting rule for monetary policy follows from combining the first order conditions of the

optimal policy problem for output and inflation. The central bank continues to trade off output and

inflation exactly as in the baseline New Keynesian model and in equation (16). Distributional variables

(the marginal utility gap and the housing gap) do not enter directly the optimal targeting rule for

monetary policy.

The optimal targeting rule for macro-prudential policy follows from combining the first order condi-

tions for the marginal utility gap, the housing gap, and the multiplier on the collateral constraint

λωωt −
σω

σ̄ + ϕ
yt −

[1− (1− γd)Θ]λh
(1− β)σ̃h

h̃t = 0. (17)

If the collateral constraint has no inertia (γd = 0) and the steady state LTV ratio is 100% (Θ = 1), the

optimal targeting rule for macro-prudential policy only trades off the marginal utility gap and the output

gap. In particular, optimal policy requires that the two variables move in the same direction because

σω > 0.22

Optimal macro-prudential policy is therefore countercyclical. A positive output gap calls for a

positive marginal utility gap (higher marginal utility of consumption of borrowers relative to savers).

The macro-prudential authority achieves this result by tighter LTV limits, which reduce borrowers’

consumption relative to savers’ consumption. In this way, the macro-prudential authority strikes an

optimal balance between aggregate and distributional variables.

More generally (i.e., without restrictions on γd and Θ), the housing gap matters too. Since the

coefficient multiplying the housing gap is also always positive, optimal macro-prudential policy induces

positive co-movement between a combination of the housing gap and the output gap on the one hand,

and the marginal utility gap on the other. The targeting rule (17) also suggests that optimal policy does

not involve a complete separation of objectives. The presence of output in the optimal targeting rule for

macro-prudential policy implies a direct feedback effect from monetary policy.23

5 Quantitative Experiments

This section presents our main results, demonstrating the power of optimal LTV limits to stabilize

business cycle fluctuations when the lower bound on the nominal interest rate and the collateral constraint

21We also assume that the resulting LTV limit respects the feasibility constraint θt < 0.
22The sign of σω > 0 depends on the difference between $b/σb and $s/σs, where $τ ≡ Cτ/Y is the steady

state ratio between consumption and output for type τ . This difference is always positive because, by assumption,
borrowers have a lower coefficient of relative risk aversion (σb < σs), which in turn implies that their steady state
consumption share is higher ($b > $s).

23Optimal targeting rules are not unique. Indeed, inflation could replace the output gap in the optimal targeting
rule for macro-prudential policy, as substituting (16) into (17) shows, although the interpretation would not
change.
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Table 1: Parameter values.

Parameter Description Value

β Individual discount factor 0.995
ξ Fraction of borrowers 0.625
δ Probability of not changing type 0.990
σb Coefficient of risk aversion (borrowers) 0.707
σs Coefficient of risk aversion (savers) 3.537
χH Housing utility parameter 0.024
σh Inverse elasticity of substitution for housing 1.000
χL Labor utility parameter 0.985
ϕ Inverse Frisch elasticity 1.000
Θ Maximum LTV 0.750
γd Collateral constraint inertia 0.700
α Probability of keeping price unchanged 0.870
ε Elasticity of substitution among varieties 6.000
Ψh Housing holding cost 0.800

ψπ Taylor rule feedback on inflation 1.500
ψy Taylor rule feedback on output gap 0.125

b/Y Mortgage debt relative to GDP 2.880
q/b Value of real estate relative to mortgage debt 1.625

ρκ̂ Persistence of temporary spread component 0.925
ρκ̄ Persistence of quasi-permanent spread component 0.995

can be occasionally binding. A sequence of credit spread shocks generates a boom-bust scenario for house

prices and private debt similar to the dynamics observed in the United States (Figure 1), including a

recession in which the ZLB constrains the nominal interest rate. In the baseline scenario, monetary

policy follows a simple Taylor rule and the LTV limit is constant at its steady state level. Optimal policy

calls for a tightening of LTV limits during the boom phase which prevents the run-up in private debt

and mitigates the effects of the bust. Indeed, under the optimal policy plan the nominal interest rate

does not encounter the ZLB.

Before illustrating our results, we discuss the calibration of the model, including the process for the

credit spread shocks, and the simulation methodology.

5.1 Parameter Values

Table 1 reports the parameter values used in the simulations. The individual discount factor β equals

0.995 so that the annualized steady state real interest rate is 2%. The share of borrowers (ξ = 0.625)

corresponds to the fraction of mortgagors in the US from Cloyne et al. (2020), after adjusting for the

absence of renters in our model. We set the probability that the type does not change (δ) equal to 0.99 to

generate a high persistence in mortgage debt as in the data.24 Following Cúrdia and Woodford (2016),

we choose the ratio between the coefficient of risk aversion of the two types (σb/σs) equal to 0.2, and back

out their levels by imposing that the inverse elasticity of output to the real interest rate σ̄ (see appendix

A.6 for its expression) in the aggregate demand equation (7) is equal to one, a common value in the

literature (e.g. Gaĺı, 2015). Also standard is the value for the elasticity of substitution among varieties

(ε = 6), which we choose to deliver a steady state markup of 20%. While we assume the existence of

24The calibrated value of δ is slightly higher than in Cúrdia and Woodford (2016) but is consistent with the
idea that being a net borrower/saver is a persistent characteristic over the life cycle.
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a subsidy to eliminate the steady state monopolistic distortion, this parameter remains important in

governing the optimal monetary policy tradeoff between inflation and the output gap (see equation 16).

The curvature of the utility from housing services (σh) and the inertia parameter in the collateral

constraint (γd) correspond to the calibrated value and posterior mode, respectively, in Guerrieri and

Iacoviello (2017). The steady state LTV ratio (Θ) equals 75%, based on the average between 1973 and

2000 in the Federal Housing Finance Agency’s Monthly Interest Rate Survey (Table 17). We set the

parameter of the housing holding cost function (Ψh) to 0.8 in order to match the relative decline in

housing wealth between savers and borrowers between 2007 and 2010.25

We assume that the inverse elasticity of labor supply (ϕ) is equal to 1, within the range of the macro

estimates (Peterman, 2016), though closer to the estimates from micro data (Chetty et al., 2011). The

value of the probability that firms do not adjust their price in a quarter (α = 0.87) is in line with the

recent estimates in Del Negro et al. (2015).26 The baseline specification for monetary policy (discussed

in Section 5.3) is an interest rate rule with the coefficients on inflation and the output gap (ψπ = 1.5

and ψy = 0.125) set to standard values (Taylor, 1993).

Finally, we calibrate the steady-state level of mortgage debt to 45% of (annual) GDP, in line with

US data in 2000, when the housing boom began. The ratio between the value of housing and mortgage

debt, which in US data between 1995 and 2016 is 2.6, gives us a target for q/b.27

5.2 Exogenous Shocks and Simulation Methodology

In the model, up to a first-order approximation, κt corresponds to the credit spread, that is, the difference

between the interest rate on loans and on deposits (κt = ibt − it). We generate a boom-bust scenario in

house prices consistent with the US data in Figure 1 through a sequence of small unanticipated negative

credit spread shocks followed by one large positive shock. The credit spread declines persistently during

the boom before spiking at the time of the bust.

The shocks determining the persistent fall of the credit spread seek to capture the process of financial

liberalization and innovation that took place in the US starting in the second half of the 1990s (Mian

and Sufi, 2009; Boz and Mendoza, 2014). The large contractionary shock approximates the tightening

of credit standards at the onset of the recession (e.g. Chen et al., 2020).

Figure 3 plots the process for the credit spread that drives the simulations.28 We assume that κt is the

sum of two components (κ̄t and κ̂t), each following a stationary first-order autoregressive process, with

persistence ρκ̂ < ρκ̄ → 1, respectively. We calibrate ρκ̄ to 0.995 and refer to κ̄t as the near-permanent

component of spreads, while we set the persistence of the temporary component ρκ̂ to 0.925.

Negative shocks to the near-permanent component generate the secular decline in the spread. The

spike is the combination of a positive shock to the temporary component and a positive shock to the

near-permanent component that partially reverses the previous decline. The boom lasts for 32 quarters.

25Using data from the Survey of Consumer Finances, Menno and Oliviero (2020) document large differences in
the decline of housing wealth held by borrowers and savers, and separately calibrate the costs (with an identical
functional form to ours) for the two types to match those targets. For analytical tractability, we assume the same
parameter for borrowers and savers. Setting Ψh = 0.8 delivers a relative decline of borrowers and savers’ housing
wealth (measured as the ratio of the log changes in housing wealth) consistent with the data between 2007 and
2010.

26The implied slope of the Phillips curve is (σ̄ + ϕ)(1− α)(1− αβ)/α = 0.04.
27In the model, we adjust per-capita debt b by the share of borrowers ξ to ensure proper comparability with the

data. Appendix A.5 describes how we use per-capita debt/GDP and the value of housing relative to mortgage
debt to back out the constants χL and χH , and hence a number of other steady-state variables.

28In practice, housing demand shocks are likely to have contributed to the gyrations of house prices during
the first decade of the 2000s (Adelino et al., 2016). As this type of shock is more difficult to calibrate, we limit
our attention to credit spread shocks inferred from spreads. In an earlier version of the paper (Ferrero et al.,
2018), we show that credit spread and housing demand shocks have very similar consequences for macroeconomic
variables, especially in the absence of macro-prudential policy.
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Figure 3: The exogenous credit spread shock.
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Note: The figure plots the path of κt = κ̄t + κ̂t (in annualized units). Both components follow a stationary first-order

autoregressive process, with parameters ρκ̂ < ρκ̄ < 1.

The two contractionary shocks arrive in the following period and no further shocks occur thereafter.

The decline of approximately 200 basis points in our simulation is consistent with the evolution of

the spread between the average mortgage rate in the Private Label Securities Database (PLSD) and the

10-year Treasury yield between 2000 and 2007 (Justiniano et al., 2021). Over this period, the marginal

mortgagor likely belonged to this category. Unfortunately, due to the dry-up of the private label segment

of the market at the onset of the financial crisis, the data from the PLSD end in 2007. However, even

conventional mortgage rates spiked at that time. Menno and Oliviero (2020) document the dramatic rise

by about 450 basis points of the spread between the one-year adjustable rate mortgage and the federal

funds rate in 2008-2009. Fixed-rate mortgage rates also spiked at this time. For example, during the

same period, the spread between the 30-year fixed mortgage rate and the average of the 5 and 10-year

Treasury yields rose by around 150 basis points (Walentin, 2014). The calibrated increase of the spreads

in the simulation falls squarely within this range.29

We solve the model using a piecewise-linear solution method to account for the possibility that (i)

the zero lower bound on the short-term nominal interest rate becomes binding and/or (ii) the borrowers’

collateral constraint (12) becomes slack.30 This approach accounts for the possibility that the occasionally

binding constraints may apply in future periods, although not for the risk that future shocks may cause

the constraints to bind. Thus, our approach, which is based on the methods developed by Guerrieri

and Iacoviello (2015) and Harrison and Waldron (2021), abstracts from the skewness in the expected

distribution of future endogenous variables arising from the possibility of being constrained in future.

29At the time of the crisis, spreads soared pretty much in all segments of private credit markets (Gilchrist and
Zakraǰsek, 2012).

30In our model, a binding zero lower bound on the short-term nominal interest rate also implies a zero nominal
rate of return to savings. Theoretically, a zero lower bound on savings rates arises from the existence of an
unmodeled zero-interest-bearing alternative saving instrument (e.g. cash). In practice, the evidence on negative
interest rates (e.g. Eisenschmidt and Smets, 2019) suggests that deposit rates feature a hard floor at zero, although
anecdotally some banks may have introduced new fees on deposit accounts when official interest rates became
negative.
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Figure 4: Baseline scenario (constant LTV limit).

Note: All variables are scaled by 100 and plotted as log-deviations from steady state, except for the multiplier on the

collateral constraint, which is in levels. Inflation, the policy rate and equilibrium real interest rate are shown in annualized

units.

Appendix C contains a full description of the approach.

5.3 Baseline Scenario: The Pre-Crisis Consensus

This section presents our baseline scenario, which we label ‘the pre-crisis consensus’. In the pre-crisis

consensus, the central bank controls the short-term nominal interest rate to stabilize fluctuations in

inflation and output while macro-prudential policy is inactive. This policy configuration captures well

the reliance on monetary policy for macroeconomic stabilization and the general absence of macro-

prudential policy frameworks that prevailed in many economies before the financial crisis of 2008.

In the context of our model, inactive macro-prudential policy implies that the LTV limit remains

constant at its steady-state level (θt = 0, ∀t). We assume that the central bank conducts monetary

policy according to a standard nominal interest rate rule (Taylor, 1993)

it = ψππt + ψyyt, (18)

where ψπ > 1 and ψy ≥ 0 (see section 5.1 for the calibration of these two parameters).

Figure 4 shows the response of the economy to the evolution of credit spreads under the baseline

policy assumptions. The solid black lines correspond to the case in which both the collateral constraint

and the zero bound on the policy rate can be occasionally binding. To illustrate the importance of the

zero lower bound, the dashed gray lines display the results when the nominal interest rate can become

negative.

The initial decline in mortgage spreads encourages borrowers to increase their leverage and purchase
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more housing. During the boom period, house prices (panel a) go up by slightly more than 20 percentage

points while debt (panel b) rises by more than 30 percent relative to its steady state value. Borrowers

remain unconstrained during the boom period (panel c), while the housing gap becomes positive (panel

g), which reflects the increase of housing demand by borrowers relative to savers.

The large boom in house prices and the increase in debt coincides with a moderate expansion of real

economic activity. The output gap approaches two percent at the onset of the bust (panel d). Inflation

also rises above target during the boom period (panel e), though the fall of the marginal utility gap (panel

h) due to the increase in credit availability mitigates the effect of the boom acting like an endogenous

negative cost-push disturbance. During this phase, the nominal interest rate increases by about 200 basis

points (panel f). The policy rate rises alongside (albeit not exactly one for one) the equilibrium real

interest rate (panel i), which is itself inversely related to the marginal utility gap, as equation (8) shows.

The baseline scenario also captures the broad contours of the Great Recession. As house prices

collapse, borrowers start to delever. The persistence in the collateral constraint slows down the adjust-

ment, which lasts for several quarters, in line with the decoupling between house prices and mortgage

debt observed in the data. As in Eggertsson and Krugman (2012) and Guerrieri and Lorenzoni (2017),

the deleveraging process pushes the equilibrium real interest rate into negative territory. The nominal

interest rate falls all the way to zero and remains at the lower bound for four quarters.31

During this time, the economy experiences a severe recession, exacerbated by the inability of mone-

tary policy to provide full accommodation. Output falls five percentage points below trend and inflation

misses the central bank’s target by slightly more than two percentage points on an annualized basis.32

When the housing bust occurs, the collateral constraint becomes binding and the shadow value of

an additional unit of debt increases significantly. The tightening of the collateral constraint contributes

to amplifying the impact of the shock (Guerrieri and Iacoviello, 2017). The bust entails substantial

redistribution from borrowers to savers as the patterns of both the marginal utility gap and the housing

gap observed during the boom reverse sharply. The welfare-based loss (6) suggests that a monetary policy

response focused solely on inflation and the output gap, as the baseline rule prescribes, fails to address

all the costs of the recession. Once the downturn is over, the process of monetary policy normalization

is gradual, consistent with the sluggish recovery in the data.

The results from the simulation that ignores the lower bound on the interest rate shed further light

on the interplay between financial frictions and monetary policy during the housing bust. As the dashed

gray lines in Figure 4 show, allowing the policy rate to fall below zero substantially mitigates the effects

of the crisis. As the negative shock hits, the policy rule prescribes a decline of the nominal interest

rate by around 600 basis points, deep into negative territory. This response cushions the drop of output

and inflation. While the housing gap still falls sharply on impact, the recovery is much swifter and the

increase in the marginal utility gap is slightly less extreme. Similarly, the collateral constraint binds less

tightly so that house prices fall by a few percentage points less than in the baseline case.

The presence of the ZLB therefore exacerbates the effects of the debt deleveraging process on spending

and inflation (Korinek and Simsek, 2016), which reflect the relation between the equilibrium real interest

rate and the marginal utility gap.33 The ZLB limits the feasible reduction of the nominal and hence real

interest rate, thus depressing in particular borrowers’ spending, increasing the marginal utility gap, and

tightening the collateral constraint. As a result, the equilibrium real rate falls further, which creates a

negative aggregate demand loop.

31At the time of the financial crisis, market participants expected the Fed funds rate to remain at the ZLB for
one year (Moore, 2008).

32Our results are consistent with a moderate decline of inflation (and little actual deflation relative to a two
percent target) because the inflationary effect of the marginal utility gap in the Phillips curve partly compensates
the deflationary pressures associated with the decline in aggregate demand (Gilchrist et al., 2017).

33A similar channel arises in Eggertsson and Krugman (2012) and Benigno et al. (2020).
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5.4 Optimal LTV Policy

The last section highlighted how a tightening of the collateral constraint can generate large declines in

the equilibrium real interest rate and amplify the effects on aggregate demand, especially if monetary

policy is unable to adequately respond because of the zero lower bound. These results suggest that

macro-prudential policies directly affecting the collateral constraint, and hence its tightness, may be able

to mitigate the effects of a sharp increase in the cost of credit. In this section, we verify this conjecture

by allowing the policymaker to set the macro-prudential LTV limit θt during the boom-bust scenario.

A natural benchmark is the joint determination of monetary and macro-prudential policy to minimize

the welfare-based loss function (6). As we focus on time-consistent policies, the policymaker is unable to

make promises about future actions in order to improve stabilization outcomes today.34 One motivation

for studying time-consistent policies is to limit the power of monetary policy at the zero lower bound.

While optimal commitment policies can be very effective at mitigating the negative consequences of the

ZLB in standard New Keynesian models (see, for example, Eggertsson and Woodford, 2003), several

recent contributions have questioned their empirical relevance (e.g. Del Negro et al., 2012). Our setting

rules out these commitments and maximizes the potential scope for macro-prudential policies to improve

outcomes when used alongside monetary policy.35 Qualitatively, however, a jointly optimal commitment

policy delivers similar results to the time-consistent policy considered here (see appendix B.2).

Figure 5 compares the outcomes in the housing boom-bust scenario under the baseline assumptions

of a Taylor rule and a constant LTV limit (solid black lines) with the case in which a single policymaker

jointly sets the interest rate and the LTV limit to minimize the welfare-based loss function (6) (dashed

gray lines).

The key result is that the active LTV policy markedly improves stabilization of the welfare-relevant

variables during both the boom and the bust. The jointly optimal policy plan almost fully stabilizes

inflation, the output gap, and the marginal utility gap, while the volatility of the housing gap visibly

declines.

Focusing first on the boom, we observe that under optimal policy debt actually declines in response to

the reduction of credit spreads, while its shadow value rises significantly (panels b and c, respectively).

The tightness of the collateral constraint, together with an approximately constant real interest rate

(panel i), push house prices higher than under the baseline policy (panel a). This result echoes the

discussion of the empirical evidence on the effects of LTV limits on house prices in section 2.

Interestingly, output and inflation remain close to their target values (panels d and e) despite a

stable path of the nominal interest rate. The reason is that the active LTV policy stabilizes the marginal

utility gap (panel h). As a consequence, no material tradeoff between output and inflation stabilization

emerges. The only welfare-relevant variable that significantly moves away from target is the housing gap

(panel g), although its increase is somewhat smaller than in the baseline scenario.

When credit spreads reverse, so does the policy stance.36 From the macro-prudential perspective, the

34In this case, we can treat the multiplier on the collateral constraint µt as the macro-prudential instrument.
When the collateral constraint binds, a one-to-one mapping links the LTV limit and the multiplier on the
collateral constraint so that selecting µt as the policy instrument merely represents a change of variables in the
policy problem. When the collateral constraint is slack, a range of values for θt above a certain threshold is
consistent with the equilibrium. As the multiplier cannot be negative, the lower bound on µt corresponds to a
constraint on policy. This credit demand constraint rules out cases in which the policymaker forces borrowers
to hold more debt than demanded at market prices. Moreover, under this interpretation of the policy problem,
the credit supply constraint θt ≤ 0 can be recast as a time-varying lower bound on µt. Appendix C discusses the
technical details of the solution.

35Our analysis therefore contributes to an emerging literature studying monetary and macro-prudential policies
under discretion. Bianchi and Mendoza (2018) argue that the nature of financial frictions generates an inherent
time-inconsistency problem for macro-prudential policymakers. Laureys and Meeks (2018) demonstrate that
discretionary policies can generate better outcomes than a class of simple macro-prudential policy rules studied
in the existing literature.

36In practice, without the boom period, the financial crisis may have never happened and spreads may have not
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Figure 5: Jointly optimal policy.

Note: All variables are scaled by 100 and plotted as log-deviations from steady state, except for the multiplier on the

collateral constraint, which is in levels. Inflation, the policy rate and equilibrium real interest rate are shown in annualized

units.

policymaker would ideally support borrowing, effectively subsidising debt by setting µt < 0. However,

the contemporary slackness conditions imply a lower bound on the multiplier (µt ≥ 0) and the credit

demand constraint binds. The policymaker cuts the nominal interest rate, though without reaching the

ZLB. The introduction of an active LTV policy mitigates the impact of the shock on the marginal utility

gap, which in turn translates into a smaller decline of the equilibrium real interest rate. The combined

monetary and macro-prudential response continues to ensure almost full stabilization of output and

inflation, as during the boom. The housing gap falls, but its movement is less than half of that in the

baseline scenario.

Figure 6 plots the level of the LTV limit (Θt) under the jointly optimal policy plan, confirming

the prediction in section 4.3 that optimal macro-prudential policy is strongly countercyclical. Indeed,

optimal policy requires an aggressive reduction of the LTV limit during the boom, which implies a

tightening of the collateral constraint. As discussed above, this tightening increases the shadow value of

debt and reduces its equilibrium level. During the bust, the credit demand constraint (µt ≥ 0) prevents

the policymaker from inducing borrowers to hold more debt and further closing the marginal utility gap.

The gray shaded area shows the range of LTV limits that are consistent with the equilibrium, in which

the collateral constraint is slack.37 The adjustments of the LTV limit required to deliver the jointly

optimal policy are substantial, although not unprecedented. For example, as noted in section 2, South

spiked. We nevertheless find it instructive to discuss the optimal policy configuration in response to an increase
in credit spreads.

37Figure 6 also clarifies that the LTV limit never exceeds its steady state limit of 75% (dotted line).
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Figure 6: LTV limit under the jointly optimal policy plan.

Note: The figure plots the level of the LTV limit under the jointly optimal policy plan. The solid line corresponds to

periods in which the collateral constraint binds. The dashed line corresponds to periods in which the collateral constraint

is slack. In these periods, any value in the shaded grey area is consistent with the equilibrium. The dotted line corresponds

to the steady-state value of the collateral constraint (75%), which the simulation treats as an upper bound.

Korea implemented similarly restrictive LTV limits shortly after their introduction as macro-prudential

tools.

Our results illustrate the extent to which LTV limits may act as a substitute for monetary policy

action. During the boom, active macro-prudential policy eliminates upward pressure on the equilibrium

real interest rate and the need for a monetary policy tightening. When credit conditions worsen, the

collateral constraint becomes slack, so that macro-prudential policy is unable to support borrowing as

to fully stabilize the equilibrium real interest rate. Nevertheless, the macro-prudential policy loosening

cushions the decline in the equilibrium real interest enough to avoid the ZLB and the associated feedback

effects on the equilibrium real rate observed in the baseline scenario.

Finally, we note that the countercyclical adjustment of the LTV limit is the main source of improve-

ment in macroeconomic outcomes relative to the baseline scenario. Appendix B.3 considers the case in

which monetary policy continues to follow the baseline Taylor rule (18), whereas the macro-prudential

policymaker sets the LTV limit to minimize the welfare-based loss function. The results for that policy

configuration are almost identical to those under jointly optimal policy shown in Figure 6, with the

exception of small differences in the paths of the output gap and inflation.38

5.5 State-Contingent Effects of LTV Limits

Two striking results emerge from the simulations in section 5.4. First, house prices rise by more during

the boom under the jointly optimal policy plan than in the baseline simulation, even though optimal

policy involves a substantial tightening of the LTV limit. Second, the active use of LTV limits is very

effective in cushioning the consequences of the bust on welfare-relevant variables, even though the credit

demand constraint somewhat limits the scope of macro-prudential policy.

In this section we use two experiments, inspired by observed macro-prudential policy actions, to

38These differences reflect the fact that the baseline policy rule implies a slightly different tradeoff between
output gap and inflation stabilization than an optimal monetary policy. See appendix B.3 for a further discussion.
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Figure 7: Macro-prudential tightening in the bust.

Note: Both variables are plotted as log-deviations from the baseline simulation. Real house prices are scaled by 100 while

the policy rate is shown in annualized percentage points.

explore the state-contingent nature of LTV limits, that is, their efficacy in relation to the broader

macroeconomic environment.

5.5.1 The Monetary Policy Response

We begin by investigating how the effects of changes in the LTV limit on house prices depend on the

response of monetary policy in an empirically relevant scenario. In this experiment, the macro-prudential

authority implements a persistent reduction of the LTV limit by 5 percentage points at the same time as

credit spreads spike. While the main objective of this experiment is simply to illustrate the importance

of the monetary policy response, the Canadian experience in 2008 provides a realistic target for the scale

of the shock (Allen et al., 2017).39

To show the importance of the monetary policy reaction to the LTV tightening, we simulate the

model with and without ZLB constraint on the policy rate. In both cases, the monetary authority follows

the baseline interest rate rule (18). We present the results for each case in deviations from the baseline

scenario constructed in section 5.3, in which the ZLB is binding. This approach permits a straightforward

comparison of the macroeconomic effects of the LTV tightening under different assumptions about the

monetary policy response.40

The solid black line in the left panel of Figure 7 shows the response of house prices in deviations

from the baseline scenario. The dashed gray line corresponds to the case in which we ignore the ZLB

constraint following the tightening of the LTV limit. The right panel plots the response of the nominal

interest rate, also in deviations from the baseline scenario.

The figure demonstrates that our model, when confronted with an empirically relevant experiment,

is consistent with the evidence in Bachmann and Rüth (2020) discussed in section 2. The sign of the

response of house prices to a tightening of the LTV limit crucially depends on the monetary policy

response. In the absence of the ZLB, house prices actually increase relative to the baseline in response to

the LTV tightening because of the large contemporaneous decline of the nominal interest rate. Conversely,

when the ZLB binds, house prices fall because monetary policy is relatively tight. This exercise therefore

documents an important dimension of the interaction between monetary and macro-prudential policy

that should be of relevance to policymakers when setting their respective instruments.

39The experiment assumes that the LTV limit θt is exogenous and follows a first-order autoregressive with high
persistence (ρθ = 0.995). A single innovation to the process at the time the bust occurs determines the size of
the calibrated initial LTV limit reduction.

40A simple LTV tightening shock starting from the steady state would require a counterfactually large shock
to make the ZLB binding. Appendix B.4 reports the full set of responses for this exercise. Unsurprisingly, the
impact of the LTV tightening on both aggregate and distributional variables in less pronounced when the ZLB
is not binding.
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Figure 8: Optimal policy activated in the bust.

Note: All variables are scaled by 100 and plotted as log-deviations from steady state, except for the multiplier on the

collateral constraint, which is in levels. Inflation, the policy rate and equilibrium real interest rate are shown in annualized

units.

5.5.2 Debt Accumulation and the Credit Supply Constraint

Our second experiment illustrates the extent to which the ability of optimal policy to cushion the economy

from the effects of the housing bust hinges upon contemporaneously preventing a substantial run up in

debt during the boom. For this purpose, we study the introduction of the jointly optimal policy plan

only at the time of the housing bust. This simulation mimics, in a stylized way, the adoption of macro-

prudential policy frameworks in the wake of the global financial crisis.

We assume that, for the duration of the boom, policy follows the baseline assumptions: the interest

rate is set according to the Taylor rule (18) and the LTV limit is fixed (θt = 0). When credit spreads

spike, policy switches to the jointly optimal policy configuration: the interest rate and the LTV limit are

set to minimize the welfare-based loss function (6).41

Figure 8 displays the results of the experiment, focusing on the responses of variables during the

bust phase of the simulation. The dashed gray lines depict the case of jointly optimal policy activated in

the bust. For comparison, the dashed-dotted red lines correspond to the case in which the policymaker

optimally sets only the LTV limit when credit spreads spike, while continuing to follow the baseline

interest rate rule for monetary policy. The solid black lines show the responses under the baseline policy

configuration during both the boom and bust.

Optimal policy seeks to loosen the collateral constraint in order to cushion the effect of the spike in

credit spreads on borrowers. Ideally, the policymaker would like to increase the LTV limit sufficiently to

41The policy ‘regime change’ is completely unanticipated. Appendix C.4 provides details of the solution method
in this case.
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Figure 9: LTV limit under optimal policy in the bust.

Note: The two panels plot the level of the LTV limit under the jointly optimal policy plan activated during the bust, and

under the optimal LTV policy activated during the bust, respectively. The solid black lines correspond to periods in which

the collateral constraint binds. The dashed black lines corresponds to periods in which the collateral constraint is slack. In

these periods, any value in the shaded grey area is consistent with the equilibrium. The dotted black lines correspond to the

steady-state value of the collateral constraint (75%), which the simulation treats as an upper bound. The dashed-dotted

red lines show the results abstracting from the upper bound on the LTV limit (the credit supply constraint).

ensure that the collateral constraint is slack, as is the case when optimal policy is in place also during

the boom. However, the baseline policy configuration followed during the boom has allowed debt to

increase by around 30 percentage points above steady state when credit spreads spike. The inertia in

the collateral constraint implies that such a large stock of debt accumulated during the boom hinders

the ability of optimal policy to mitigate the recessionary effects of the bust. In this experiment, the

collateral constraint can become slack only if the credit supply constraint is violated.

Our simulation imposes the credit supply constraint (θt ≤ 0), which forces the multiplier on the

collateral constraint µt to remain temporarily positive. Figure 9 shows that the credit supply constraint

binds when policy (either jointly or macro-prudential only) becomes optimal in the bust. In this figure,

the solid black lines depict the path of the LTV limit that respects the credit supply constraint. As

before, the dashed black lines and the shaded grey areas indicate the range of LTV limits consistent

with an optimally slack collateral constraint. Finally, the dotted-dashed red lines show the results of

a counterfactual simulation in which we ignore the credit supply constraint. In this case, the LTV

limit persistently exceeds the level consistent with avoiding the moral hazard problem underpinning the

collateral constraint.

When the jointly optimal policy plan becomes active in the bust, the LTV limit is at its upper bound

for five quarters. If only the optimal LTV limit policy becomes active, the LTV limit remains at the

upper bound for one additional quarter. While the LTV limit is constrained, the economy experiences

a slightly milder variant of the debt-deflation dynamics that also characterize the baseline simulation.

In particular, the binding collateral constraint reduces the equilibrium real interest rate, which becomes

somewhat negative. As a result, the policy rate hits the ZLB, and the inability to track the decline of

the equilibrium real interest rate generates a recession, which is significantly deeper when only the LTV

policy is optimal.

The key difference between activating only the optimal LTV policy relative to activating the jointly

optimal plan is the degree of monetary accommodation. Under the jointly optimal policy, the nominal

interest rate exits the ZLB at the same time as in the baseline scenario. In contrast, when just the

optimal LTV policy becomes active, the baseline interest rate rule prescribes an anticipated liftoff while
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the credit supply constraint (and hence the collateral constraint) is still binding. The early monetary

tightening generates a deeper recession. This experiment therefore demonstrates that a binding credit

supply constraint impairs the ability of the optimal LTV limits to deliver a similar performance to that

achieved by the jointly optimal policy.

After the credit supply constraint ceases to bind, the LTV limit lies just below the steady-state

level of 75%. From this point onward, the credit supply constraint never binds again. As a result, the

policymaker is able to adjust the LTV limit to set the desired level of µt, and the equilibrium allocations

for the welfare-relevant variables coincide exactly with those observed when the jointly optimal policy

plan is in place also during the boom.42 This experiment thus also demonstrates that the LTV limit by

itself is not necessarily a sufficient statistic to gauge the stance of macro-prudential policy.

6 Conclusion

This paper has studied the jointly optimal monetary and LTV policy in a New Keynesian model with

borrowers and savers. If the collateral constraint on borrowers either never or always binds, the monetary

policy tradeoff between output and inflation is unchanged compared to the baseline New Keynesian

model.

The interaction between monetary and macro-prudential policy becomes particularly important when

both the lower bound on the nominal interest rate and the collateral constraint can be occasionally

binding. Strongly countercyclical LTV limits can avoid a liquidity trap caused by the endogenous debt-

deleveraging response to a credit spread shock. Optimal policy prevents an excessive accumulation

of debt during a house price boom and the associated widening of the gap in the marginal utility of

consumption between borrowers and savers. As a consequence, the equilibrium real interest rate remains

roughly constant and the policymaker can stabilize output and inflation without significant changes of

the nominal interest rate.

If macro-prudential policy becomes active only after a housing bust has occurred, the LTV limit

remains at its maximum level for the duration of the liquidity trap. In this case, the nominal interest

rate reaches its lower bound even under optimal policy. However, the use of LTV limits still greatly

mitigates the effects of the recession. Conversely, an exogenous LTV tightening during a recovery,

possibly for reasons other than macroeconomic stabilization, generates a deeper recession and delays the

liftoff of the nominal interest rate from the ZLB.

Our results demonstrate the power of active borrower-based policies in containing a buildup of private

leverage arising from the housing market. Of course, LTV limits are only one of the many tools available

to macro-prudential authorities. In this paper, we have focused on their implications for monetary

policy. Going forward, the extent to which the presence of multiple instruments reduces the burden of

adjustment on LTVs certainly deserves further consideration. Research along these lines may uncover

broad-ranging policy lessons as both borrower-based and lender-based tools are likely to play major roles

in the future development of macro-prudential policy frameworks. The implications of the wide array

of macro-prudential policy actions observed in practice for the monetary policy stance, in particular

via their effects on the equilibrium real interest rate, are likely to become another area of active policy

debate. We leave the study of these questions for future research.

42The level of debt and the LTV limit however differ between the two equlibria. The policymaker adjusts the
LTV limit to deliver the optimal path for the multiplier on the collateral constraint. In turn, the exact level of
the LTV limit required to achieve a certain path for the multiplier crucially depends on the accumulated level of
debt.
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Appendix

A Derivations

This appendix presents additional derivations that complement the analysis in the paper.

A.1 Household Problem

Drawing heavily from Cúrdia and Woodford (2016) (henceforth CW), the first part describes the house-

hold problem in detail, including the assumptions and results that make endogenous variables indepen-

dent of past histories and only dependent on the current household type. The problem of banks and

firms is standard.

Let ϑt ≡ (..., ϑt−1, ϑt) denote the history of exogenous shocks (the aggregate exogenous state), where

ϑt is the vector of exogenous shocks at time t. In addition, let τ t(i) denote household i’s type history,

which can take values in {0, b, s}, where 0 represents no type change from the previous period, whereas

either b (borrower) or s (saver) enters τ t(i) if the household draws that type in any given period. As a

consequence, the current type τt(i) is the most recent non-zero element of τ t(i).

Types evolve as an independent two-state Markov chain. With probability δ ∈ (0, 1), the type

remains unchanged, while with probability 1 − δ a household draws a new type. The probability of

drawing type τ = {b, s} is ξτ , with {ξb, ξs} ∈ (0, 1). Since a continuum of household of measure one

populate the economy, to simplify the notation we set ξb = ξ, which implies ξs = 1− ξ.
Formally, the notation for a generic endogenous variables x at the individual level i ∈ [0, 1] is

x(ϑt, τ t(i)), where ϑt captures the dependency on the aggregate history and τ t(i) on the individual type

history. However, since all households are ex-ante identical, in what follows, we drop the index i. In

addition, for simplicity, we use the subscript t to denote dependency on aggregate history ϑt.

Transfers

At some initial date t0 ≤ 0, ex-ante identical households choose state-contingent transfers. In every

period, households discover if their type changes. Conditional on a type change, an insurance agency

pays out transfers before decisions are taken. Transfers are such that:

• A household does not receive a transfer if a new type is not drawn at t

Tt(τ
t−1, 0) = 0.

• Transfers cannot be contingent upon the newly drawn type

Tt(τ
t−1, b) = Tt(τ

t−1, s).

• Let T †t (τ t−1) denote the transfer a household with history τ t−1 who has access to the insurance

agency in period t independently of which type the household actually draws. Transfers then must

satisfy the intertemporal budget constraint

Et0

[ ∞∑
t=t0

∑
τt−1

p(τ t−1)P(ϑt)T †t (τ t−1)

]
= 0,

where p(τ t−1) is the time-t0 probability of reaching the type history τ t−1 and P(ϑt) > 0 is the the

time-t0 state-contingent nominal price of the transfer.
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• The transfer market clears if and only if

∑
τt−1

p(τ t−1)

∫
T †t (τ t−1)(i)di = 0.

Budget Constraints

Households’ preferences (equation (1) in the main text) are heterogeneous in terms of the coefficient of

risk aversion. Nevertheless, the first part of this section shows that the optimal choices of each household

type is independent of previous type histories.

Assumption 1: In equilibrium, every type s is a saver (Dt(τ
t) + Et(τ

t) > 0). Conversely, every

type b is a borrower (Bt(τ
t) > 0).

Households enter the period with some financial wealth (which can be positive or negative). At the

beginning of the period, before any decision is taken, households learn if their type changes or not. If

the type changes, households learn their new type and receive the transfer payment Tt(τ
t−1). Therefore,

after-transfer financial wealth is

At(τ
t−1) ≡ Rdt−1 max{Dt−1(τ t−1), 0}+Ret−1 max{Et−1(τ t−1), 0}

−Rbt−1 max{Bt−1(τ t−1), 0}+ Tt(τ
t−1).

Endowed with this definition, we can write the budget constraint for a saver as

PtCt(τ
t) +QtHt(τ

t) + PtΓh(Ht(τ
t)) +Dt(τ

t) + Et(τ
t) + PtΓe(Et(τ

t))

= At(τ
t−1) +WtLt(τ

t) +QtHt−1(τ t−1) + Ωt(τ
t),

where Γh(·) and Γe(·) are the functions that measure the costs of deviating from the housing and equity

target levels, respectively. The budget constraint for a borrower as

PtCt(τ
t) + QtHt(τ

t) + PtΓh(Ht(τ
t)) − Bt(τ

t) = At(τ
t−1) + WtLt(τ

t) + QtHt−1(τ t−1) + Ωt(τ
t).

In addition, households also face the collateral constraint

Bt(τ
t) ≤ γd max{Bt−1(τ t−1), 0}+ (1− γd)ΘtQtHt(τ

t).

While in principle all households are subject to the borrowing constraint, Assumption 1 implies the

collateral constraint is always slack for savers.

Since the per-period utility function is separable, the real marginal utility of consumption is

λt(τ
t) = Ct(τ

t)−σ
τ

.

The optimal ex-ante choice of state-contingent insurance requires that between any two states (defined

as a pair of aggregate and type history) the following condition holds

βT−t
λ†T (τT−1)

λ†t(τ
t−1)

=
PT /PT
Pt/Pt

, (19)

where λ†t(τ
t−1) is the real marginal utility of real consumption in a state (ϑt, τ t−1) in which the household
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has access to the transfer before knowing the new type

λ†t(τ
t−1) ≡ ξλt(τ t−1, b) + (1− ξ)λt(τ t−1, s). (20)

Equation (19) shows that λ†t(τ
t−1) is independent of type history τ t−1. Therefore, in what follows, we

can simply write λ†t(τ
t−1) = λ†t .
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First Order Conditions

Starting with savers, the Euler equation for the optimal choice of deposits is

λt(τ
t) = βEt

{
Rdt

Πt+1
[δλt+1(τ t, 0) + (1− δ)λ†t+1]

}
.

Assumption 2: In equilibrium, at all times

Rdt
Πt+1

<
1

βδ
,

and

0 < λt(τ
t) < λ∗ <∞.

Proposition 1: If Assumption 1 and 2 are satisfied, the real marginal utility of consumption for a

current saver is independent of prior history.

Proof. We can rewrite the Euler equation for deposits as

λt(τ
t) = β(1− δ)Et

[
Rdt

Πt+1
λ†t+1

]
+ βδEt

[
Rdt

Πt+1
λt+1(τ t, 0)

]
.

At time t+ 1, the same equation for a saver who has not changed type is

λt+1(τ t, 0) = β(1− δ)Et+1

(
Rdt+1

Πt+2
λ†t+2

)
+ βδEt+1

[
Rdt+1

Πt+2
λt+2(τ t, 0, 0)

]
.

Replacing into the previous expression and rearranging, we obtain

λt(τ
t) = β(1− δ)

{
Et
[
Rdt

Πt+1
λ†t+1

]
+ βδEt

[
Rdt

Πt+1

Rdt+1

Πt+2
λ†t+2

]}
+ (βδ)2Et

[
Rdt

Πt+1

Rdt+1

Πt+2
λt+2(τ t, 0, 0)

]
.

After repeating the iteration, we arrive at

λt(τ
t) = β(1− δ)Et

T−1∑
j=0

(βδ)j

(
j∏

k=0

Rdt+k
Πt+k+1

)
λ†t+j+1

+ (βδ)TEt

[(
T∏
k=0

Rdt+k
Πt+k+1

)
λt+T (τ t, 0, 0, ..., 0)

]
.

In any equilibrium consistent with Assumption 2,

lim
T→∞

(βδ)TEt

[(
T∏
k=0

Rdt+k
Πt+k+1

)
λt+T (τ t, 0, 0, ..., 0)

]
= 0,

because the marginal utility of consumption is finite and the product inside the expectation consists of

43In the text, we refer to the average marginal utility of consumption simply as λt since the type-specific
marginal utilities carry the superscript τ ∈ {b, s}.
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terms which are always less than (βδ)−1. Therefore, taking the limit for T →∞ yields

λt(τ
t) = β(1− δ)Et

 ∞∑
j=0

(βδ)j

(
j∏

k=0

Rdt+k
Πt+k+1

)
λ†t+j+1

 .
The right-hand side of last expression is a function of (forecasts of) aggregate variables only. Therefore,

λt(τ
t) is the same for all type histories with current type s, and we can use λst to denote the marginal

utility of savers. Moreover, given the expression for λ†t in (20), we can conclude that λt(τ
t) is the same

also for all type histories with current type b, and use λbt to denote the marginal utility of borrowers.

Finally, given the separability of the utility function, the level of consumption for both types is also

independent of type histories, and hence use Cbt and Cst to refer to consumption of borrowers and savers,

respectively.

The Euler equation for the optimal choice of equity is

[1 + Γ′e(Et(τ
t))]λst = βEt

{
Ret

Πt+1
[δλst+1 + (1− δ)λ†t+1]

}
,

which implies that the optimal choice of equity is independent of type history (Et(τ
t) = Et). The optimal

choice of housing implies

λst
Qt
Pt

= χHHt(τ
t)−σh − λstΓ′h(Ht(τ

t)) + βEt
{

[δλst+1 + (1− δ)λ†t+1]
Qt+1

Pt+1

}
,

which implies that the optimal choice of housing for a saver (denoted with Hs
t ) is independent of history.

The first order condition for labor supply is

λst
Wt

Pt
= χLLt(τ

t)ϕ,

which implies that savers’ labor supply (denoted with Lst ) is independent of history. Finally, through the

budget constraint, the optimal choice of deposits (denoted with Dt) is also independent of the previous

type history.

Moving on to borrowers, the Euler equation for the optimal choice of debt for an existing borrower

is

λbt = µ̃t(τ
t−1, 0) + βEt

{
Rbt

Πt+1
[δλbt+1 + (1− δ)λ†t+1]− γd

Πt+1
[δµ̃t+1(τ t, 0) + (1− δ)µ†t+1(τ t)]

}
,

where µ̃t(τ
t)/Pt is the Lagrange multiplier on the collateral constraint and, consistent with the notation

for the marginal utility of consumption, µ†t(τ
t−1) denotes the multiplier on the collateral constraint for

a household who has access to the transfer. Since the collateral constraint never binds for savers, this

multiplier is actually proportional to the multiplier for a new borrower

µ†t(τ
t−1) = ξµ̃t(τ

t−1, b). (21)

Similarly, the Euler equation for the optimal choice of debt for a new borrower is

λbt = µ̃t(τ
t−1, b) + βEt

{
Rbt

Πt+1
[δλbt+1 + (1− δ)λ†t+1]− γd

Πt+1
[δµ̃t+1(τ t, 0) + (1− δ)µ†t+1(τ t)]

}
.

The last two equations imply that µ̃t(τ
t−1, 0) = µ̃t(τ

t−1, b) = µ̃t, that is, also the multiplier on the

collateral constraint is independent of previous histories. Using the result in (21), we can rewrite the
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Euler equation for debt, which holds for both new and existing borrowers, as

λbt = µ̃t + βEt
{

Rbt
Πt+1

[δλbt+1 + (1− δ)λ†t+1]− γd[δ + (1− δ)ξ] µ̃t+1

Πt+1

}
.

The optimal choice of housing for borrowers then is

[λbt − (1− γd)Θtµ̃t]
Qt
Pt

= χHHt(τ
t)−σh − λbtΓ′h(Ht(τ

t)) + βEt
{

[δλbt+1 + (1− δ)λ†t+1]
Qt+1

Pt+1

}
,

which shows that housing demand (denoted with Hb
t ) for borrowers is independent of type history. The

first order condition for labor supply is

λbt
Wt

Pt
= χLLt(τ

t)ϕ,

which shows that labor supply (denoted with Lbt) is independent of type history. Finally, the budget

constraint implies that the optimal choice of debt (denoted with Bt) is also independent of prior histories.

Following CW, we further assume that households who have access to the insurance agency all start

with the same after-transfer wealth, so that At(τ
t−1, s) = At(τ

t−1, b) = At. The insurance arrangement

implies that all households who draw a new type in period t (a fraction 1− δ of both types) pool their

financial wealth. The insurance agency then redistributes these resources across households so that every

household that draws a new type starts with the same level of wealth. Therefore, in each period, the

agency resource constraint is

(1− ξ)(RdtDt +RetEt)− ξRbtBt = At.

Note, however, that the left-hand side of the last expression is just the aggregate profit of the financial

intermediation sector. Since we assume perfect competition in the banking sector, each bank makes zero

profit, and thus the initial level of financial wealth for agents that have access to the insurance agency is

also zero. Essentially, having access to the insurance agency means resetting to zero all prior assets and

liabilities. In order to achieve this outcome, the agency transfers resources from savers to borrowers.

A.1.1 Banks

The balance sheet of a representative bank is

Bt = Dt + Et.

In addition, banks are subject to the capital requirement

Et ≥ κ̃tBt.

The bank’s profits are

Pt = RbtBt −RdtDt −RetEt.

We can use the balance sheet to substitute out deposits from the expression for profits. Denoting

with ζt the Lagrange multiplier on the capital constraint, the first order condition for loans is

(Rbt −Rdt )− ζtκ̃t = 0,
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and the first order condition for equity is

−(Ret −Rdt ) + ζt = 0.

As discussed in the text, perfect competition in the banking sector implies that, in equilibrium, the

capital requirement always binds (ζt > 0). Solving for the Lagrange multiplier from the last expression

and replacing in the previous one yields

Rbt = κ̃tR
e
t + (1− κ̃t)Rdt .

In these equilibria, changes in the capital requirements affect credit spreads.

A.1.2 Firms

Firms produce with a linear technology in labor

Yt(f) = Lt(f),

taking as given the demand for their variety from retailers

Yt(f) =

[
Pt(f)

Pt

]−ε
Yt.

Profits in real terms are

Pt(f) = (1 + τf )
Pt(f)

Pt
Yt(f)− Wt

Pt
Lt(f),

where τf > 0 is a subsidy that makes steady state production efficient. Using the production function

and the fact that cost minimization implies the real wage wt ≡ Wt/Pt equals the marginal cost of

production MCt, we can write the pricing problem as

max
P̃t(f)

Et
∞∑
j=0

(αβ)j
λ†t+j

λ†t

(1 + τf )

[
P̃t(f)

Pt+j

]1−ε

Yt+j −MCt+j

[
P̃t(f)

Pt+j

]−ε
Yt+j

 ,

where α ∈ (0, 1) is the probability of not being able to change the price in any given period, and we

have assumed that the relevant stochastic discount factor for firms is a function of the average marginal

utility of the two types.

The first order condition for the optimal pricing problem implies that the relative price is

P̃t(f)

Pt
=
X1t

X2t
,

where X1t represents the present discounted value of real costs times the markup, which we can write

recursively as

X1t =
ε

ε− 1
λ†tYtMCt + αβEt(Πε

tX1t+1),

and X2t represents the present discounted value of real revenues including the subsidy, which we can

write recursively as

X2t = (1 + τf )λ†tYt + αβEt(Πε−1
t X2t+1).

After combining the optimal relative price with the overall price index, we obtain the non-linear Phillips
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curve

X1t

X2t
=

(
1− αΠε−1

t

1− α

) 1
1−ε

.

Firms hire workers in a homogeneous labor market. Market clearing requires

ξLbt + (1− ξ)Lst =

∫ 1

0

Lt(f)df ≡ Lt.

Substituting the labor supply conditions into the expression above yields

Lt =

(
1

χL

) 1
ϕ

[ξ(λbt)
1
ϕ + (1− ξ)(λst )

1
ϕ ]

(
Wt

Pt

) 1
ϕ

.

The aggregate production function is

∆tYt = Lt,

where ∆t measures price dispersion

∆t ≡
∫ 1

0

[
Pt(f)

Pt

]−ε
df,

and evolves according to

∆t = α∆t−1Πε
t + (1− α)

(
1− αΠε−1

t

1− α

) ε
ε−1

.

A.1.3 Aggregate Debt Dynamics

Total debt at the end of period t consists of debt of existing borrowers who did not draw a new type,

and of both previous borrowers and savers who drew the borrower type. Before knowing their type and

taking decisions at time t, the latter two groups receive the insurance transfer that resets their existing

assets and liabilities.

Debt for a borrower who did not switch is

Bt = Rbt−1Bt−1 +Qt(H
b
t −Hb

t−1) + PtΓh(Hb
t ) + PtC

b
t −WtL

b
t − Ωbt ,

and the size of this group is ξδ.

Debt for new borrowers is

Bt = Qt(H
b
t −Hτ

t−1) + PtΓh(Hb
t ) + PtC

b
t −WtL

b
t − Ωbt ,

where the τ on lagged housing captures the fact that these borrowers may have been of either type in

the previous period. The size of the group of new borrowers who were borrowers in t− 1 and drew the

borrower type again is ξ2(1 − δ). The size of the group of new borrowers who were savers in t − 1 is

ξ(1−ξ)(1−δ).44 The only difference in terms of debt between the latter two groups is the initial housing

stock. Because new borrowers take decisions after receiving the transfer from the insurance agency, their

choices are identical to those of the existing borrowers. Total debt is then the sum of debt of the three

44The size of the three groups of borrowers adds up to ξ, which is the fraction of borrowers in the economy.
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groups. Therefore, we have

ξBt = ξδ[Rbt−1Bt−1 +Qt(H
b
t −Hb

t−1) + PtΓh(Hb
t ) + PtC

b
t −WtL

b
t − Ωbt ]︸ ︷︷ ︸

borrowers at t− 1 with no access to insurance

+ ξ2(1− δ)[Qt(Hb
t −Hb

t−1) + PtΓh(Hb
t ) + PtC

b
t −WtL

b
t − Ωbt ]︸ ︷︷ ︸

new borrowers who were borrowers at t− 1 with access to insurance

+ ξ(1− ξ)(1− δ)[Qt(Hb
t −Hs

t−1) + PtΓh(Hb
t ) + PtC

b
t −WtL

b
t − Ωbt ]︸ ︷︷ ︸

new borrowers who were savers at t− 1 with access to insurance

Adding up and simplifying yields

Bt = δRbt−1Bt−1 +Qt[(H
b
t −Hb

t−1) + (1− ξ)(1− δ)(Hb
t−1 −Hs

t−1)] + PtΓh(Hb
t ) + PtC

b
t −WtL

b
t − Ωbt .

Profits nets of taxes are

Ωt = PtYt − ξWtL
b
t − (1− ξ)WtL

s
t .

Substituting into the expression for debt above yields

Bt = δRbt−1Bt−1+Qt[(H
b
t−Hb

t−1)+(1−ξ)(1−δ)(Hb
t−1−Hs

t−1)]+PtΓh(Hb
t )+PtC

b
t−PtYt−(1−ξ)Wt(L

b
t−Lst ),

or in real terms

Bt
Pt

= δ
Rbt−1

Πt

Bt−1

Pt−1
+
Qt
Pt

[(Hb
t−Hb

t−1)+(1−ξ)(1−δ)(Hb
t−1−Hs

t−1)]+Γh(Hb
t )+Cbt−Yt−(1−ξ)Wt

Pt
(Lbt−Lst ).

A.2 Equilibrium

Given the monetary policy and macro-prudential policy instruments (a sequence of deposit rates and

LTV limits {Rdt ,Θt}∞t=0), the values of the credit shock {κ̃t}∞t=0, and initial conditions on the state

variables {
B−1

P−1
,∆−1, H

b
−1, H

s
−1, R

b
−1

}
,

an equilibrium for this economy is a sequence{
λbt , λ

s
t , C

b
t , C

s
t , H

b
t , H

s
t ,
Bt
Pt
, X1t, X2t, Yt, R

e
t , R

b
t ,
Qt
Pt
,Πt,MCt,∆t, µt

}∞
t=0

,

that satisfies the following equations:

1. Savers’ Euler equation for deposits:

1 = βEt
{

(1− δ)ξλbt+1 + [δ + (1− δ)(1− ξ)]λst+1

λst

Rdt
Πt+1

}
.

2. Savers’ Euler equation for equity:

1 + Ψe

(
κ̃t
κ̃
− 1

)
= βEt

{
(1− δ)ξλbt+1 + [δ + (1− δ)(1− ξ)]λst+1

λst

Ret
Πt+1

}
,

where we used the aggregate balance sheet of the financial intermediation sector

ξBt = (1− ξ)(Dt + Et),

41



and the aggregate equity requirement at equality is

(1− ξ)Et = κ̃tξBt.

These last two equations determine Dt and Et residually.

3. Savers’ housing demand:

Qt
Pt

=
χH(Hs

t )−σh

λst
−Ψh

(
Hs
t

H
− 1

)
+ βEt

{
(1− δ)ξλbt+1 + [δ + (1− δ)(1− ξ)]λst+1

λst

Qt+1

Pt+1

}
.

4. Savers’ marginal utility:

λst = (Cst )−σ
s

.

5. Borrowers’ Euler equation for debt:

1− µt = βEt
{

[δ + (1− δ)ξ]λbt+1 + (1− δ)(1− ξ)λst+1

λbt

Rbt
Πt+1

− γd[δ + (1− δ)ξ]
λbt+1

λbt

µt+1

Πt+1

}
,

where µt ≡ µ̃t/λbt .

6. Borrowers’ housing demand:

[1− (1− γd)Θtµt]
Qt
Pt

=
χH(Hb

t )−σh

λbt
−Ψh

(
Hb
t

H
− 1

)
+ βEt

{
[δ + (1− δ)ξ]λbt+1 + (1− δ)(1− ξ)λst+1

λbt

Qt+1

Pt+1

}
.

7. Aggregate borrowing constraint:

µt

[
Bt
Pt
− δγd

Bt−1

Pt−1

1

Πt
− (1− γd)Θt

Qt
Pt
Hb
t

]
= 0,

where we have rewritten debt in real terms and δ appears in front of lagged debt because a fraction

1 − δ of borrowers has received the state-contingent transfer payment at time t, and hence have

seen their debt cancelled.

8. Borrowers’ marginal utility:

λbt = (Cbt )
−σb .

9. Spreads:

Rbt = κ̃tR
e
t + (1− κ̃t)Rdt .

10. Phillips’ curve:

X1t

X2t
=

(
1− αΠε−1

t

1− α

) 1
1−ε

.

11. PDV of real costs:

X1t =
ε

ε− 1
[ξλbt + (1− ξ)λst ]YtMCt + αβEt(Πε

tX1t+1).

12. PDV of real revenues:

X2t = (1 + τf )[ξλbt + (1− ξ)λst ]Yt + αβEt(Πε−1
t X2t+1).
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13. Labor market equilibrium:

(∆tYt)
ϕ =

λ̃t
χL

MCt,

where we have used the aggregate production function ∆tYt = Lt, which pins down Lt residually. In

addition, the solution to the intermediate goods producers cost minimization problem (MCt = wt)

determines the real wage, while the definition of λ̃t links this variable to the marginal utility of

consumption of the two types

λ̃t =
[
ξ(λbt)

1
ϕ + (1− ξ)(λst )

1
ϕ

]ϕ
.

14. Price dispersion:

∆t = α∆t−1Πε
t + (1− α)

(
1− αΠε−1

t

1− α

) ε
ε−1

.

15. Debt dynamics:

Bt
Pt

= δ
Rbt−1

Πt

Bt−1

Pt−1
+
Qt
Pt

[(Hb
t −Hb

t−1) + (1− ξ)(1− δ)(Hb
t−1 −Hs

t−1)] + Γbht

+ Cbt − Yt − (1− ξ)χ−
1
ϕ

L MC
1+ϕ
ϕ

t

[
(λbt)

1
ϕ − (λst )

1
ϕ

]
,

where

Γτht =
ΨhH

2

(
Hτ
t

H
− 1

)2

,

and we used the labor supply equation for each type

MCt =
χL(Lτt )ϕ

λτt
,

which pins down hours worked by each type.

16. Housing market equilibrium:

H = ξHb
t + (1− ξ)Hs

t .

17. Resource constraint:

Yt = ξCbt + (1− ξ)Cst + (1− ξ)Γet + ξΓbht + (1− ξ)Γsht,

where

Γet =
Ψeκ̃

2

(
κ̃t
κ̃
− 1

)2
ξBt
Pt

.

A.3 Welfare Objective and Optimal Policy Problem

We assume the welfare objective for society is weighted average of utility of the two types

W0 ≡ E0

∞∑
t=0

βt

[
ξ

(Cbt )
1−σb

1− σb
+ (1− ξ) (Cst )1−σs

1− σs

+ξ
χH

1− σh
(Hb

t )1−σh + (1− ξ) χH
1− σh

(Hs
t )1−σh − ξ χL

1 + ϕ
(Lbt)

1+ϕ − (1− ξ) χL
1 + ϕ

(Lst )
1+ϕ

]
.
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We can rewrite the labor supply condition for type τ as

Lτt =

(
λτtwt
χL

) 1
ϕ

.

Using this expression, the last term of the welfare objective becomes

ξ
χL

1 + ϕ
(Lbt)

1+ϕ + (1− ξ) χL
1 + ϕ

(Lst )
1+ϕ =

1

1 + ϕ

ξχL(λbtwt
χL

) 1+ϕ
ϕ

+ (1− ξ)χL
(
λstwt
χL

) 1+ϕ
ϕ


=

(χL)−
1
ϕ

1 + ϕ

[
ξ(λbt)

1+ϕ
ϕ + (1− ξ)(λst )

1+ϕ
ϕ

]
w

1+ϕ
ϕ

t .

We can then eliminate the real wage from the labor market equilibrium condition to obtain

ξ
χL

1 + ϕ
(Lbt)

1+ϕ + (1− ξ) χL
1 + ϕ

(Lst )
1+ϕ

=
(χL)−

1
ϕ

1 + ϕ

[
ξ(λbt)

1+ϕ
ϕ + (1− ξ)(λst )

1+ϕ
ϕ

]
(χL)

1+ϕ
ϕ [ξ(λbt)

1
ϕ + (1− ξ)(λst )

1
ϕ ]−(1+ϕ)L1+ϕ

t

=
χL

1 + ϕ

[
ξ(λbt)

1+ϕ
ϕ + (1− ξ)(λst )

1+ϕ
ϕ

]
[ξ(λbt)

1
ϕ + (1− ξ)(λst )

1
ϕ ]−(1+ϕ)L1+ϕ

t .

As in CW, we define

Λ̃t ≡
[
ξ(λbt)

1+ϕ
ϕ + (1− ξ)(λst )

1+ϕ
ϕ

] ϕ
1+ϕ

,

and

λ̃t ≡
[
ξ(λbt)

1
ϕ + (1− ξ)(λst )

1
ϕ

]ϕ
.

We can then rewrite the last term in the welfare objective as

ξ
χL

1 + ϕ
(Lbt)

1+ϕ + (1− ξ) χL
1 + ϕ

(Lst )
1+ϕ =

χL
1 + ϕ

(
Λ̃t

λ̃t

) 1+ϕ
ϕ

L1+ϕ
t .

Finally, using the aggregate production function, the last expression becomes

ξ
χL

1 + ϕ
(Lbt)

1+ϕ + (1− ξ) χL
1 + ϕ

(Lst )
1+ϕ =

χL
1 + ϕ

(
Λ̃t

λ̃t

) 1+ϕ
ϕ

(∆tYt)
1+ϕ.

Going back to the overall welfare objective, we finally have

W0 = E0

∞∑
t=0

βt

[
ξ

(Cbt )
1−σb

1− σb
+ (1− ξ) (Cst )1−σs

1− σs

+ξ
χH

1− σh
(Hb

t )1−σh + (1− ξ) χH
1− σh

(Hs
t )1−σh − χL

1 + ϕ

(
Λ̃t

λ̃t

) 1+ϕ
ϕ

(∆tYt)
1+ϕ

 . (22)

The optimal policy problem consists of choosing a sequence of deposit rates and LTV limits {Rdt ,Θt}∞t=0

that maximize (22) subject to the set of equations that characterize the equilibrium reported in section

A.2.

In what follows, we derive a linear-quadratic (LQ) approximation that allows us to derive analytically

the optimal targeting rules for monetary and macro-prudential policy in one special case. We use the

LQ approximation to the optimal policy problem also to study a number of numerical experiments in

which the zero lower bound on the nominal interest rate and the collateral constraint occasionally bind.
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A.4 Efficient Steady State

In order to obtain a LQ approximation to the optimal policy problem, we take a second order approxi-

mation of the welfare objective and a first order approximation of the equilibrium conditions about the

efficient steady state, which we discuss in this section.

We focus on a zero inflation steady state (Π = 1⇒ ∆ = 1) and no spread (built into the equity cost

function), in which the marginal utility of consumption is the same across the two types (λb = λs =

λ = λ̃). As a consequence, from the labor supply relations, we also obtain Ls = Lb = L. For analytical

convenience in deriving the quadratic approximation of the welfare objective, we ensure that steady state

output is efficient by setting the subsidy τf = (ε− 1)−1, which implies MC = 1.

From the savers’ Euler equations, we obtain Rd = Re = R = 1/β. In turn, from the spread equation,

we have Rb = R, and, from the borrowers’ Euler equation, we obtain µ = 0. The steady state borrowing

constraint, therefore, must be slack.

From the housing demand equations we can then conclude that housing consumption must also be

symmetric (Hs = Hb). If we normalize the total stock of housing to one (H = 1), from the resource

constraint we obtain Hs = Hb = 1. The borrowing constraint thus requires

(1− δγd)b
(1− γd)Θq

≤ 1,

where q ≡ Q/P is the steady state real price of housing

q =
χH

(1− β)λ
, (23)

and steady state real debt b ≡ B/P follows from the debt accumulation equation

b =
β($b − 1)

β − δ
Y, (24)

with $τ ≡ Cτ/Y .

The steady state resource constraint is

ξCb + (1− ξ)Cs = Y. (25)

Since in steady state λb = λs, we have (Cb)−σ
b

= (Cs)−σ
s

, which implies Cs = (Cb)%, where % ≡ σb/σs.
Using this relation in the resource constraint, we can solve for the level of steady state output as a

function of the borrowers’ consumption share

Y =

[
1− ξ$b

(1− ξ)($b)%

] 1
%−1

. (26)

Finally, we can back up the marginal utility (and, hence, the level) of consumption from the steady state

labor market equilibrium relation

Y ϕ =
λ

χL
. (27)

A.5 Calibration of χL and χH

Table 1 in the text reports the parameter values used in the simulation exercises. Here we describe the

calibration strategy to pin down the utility parameters χL and χH .

Given the calibrated steady state level of mortgage debt as a fraction of GDP, and the values of β

and δ, we can back out the steady state consumption-GDP ratio for borrowers ($b) from (24) and the

correspondent variable for savers from the resource constraint (25).
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Given the calibrated value of σb/σs and the value of $b, we can calculate steady state output from

(26). We can then back out the level of consumption for both types from $τ and the steady state

marginal utility of consumption (which is equal across types) given the values of στ . Steady state output

and the marginal utility of consumption, together with the calibrated value of ϕ, allow us to obtain the

value of χL consistent with the steady state labor market equilibrium condition (27).

Finally, we back out the value of χH by taking the ratio between the value of housing (23) and

mortgage debt (24), both expressed as a fraction of GDP, which in US data between 1995 and 2016 is

just below 2.5.

A.6 Second Order Approximation of the Welfare Objective

This appendix derives a second order approximation of the welfare objective (22). For convenience, we

break up the per-period function in three terms. The first is the utility from consumption of goods of

the two types

W1
t ≡ ξ

(Cbt )
1−σb

1− σb
+ (1− ξ) (Cst )1−σs

1− σs
.

The second is the utility from consumption of housing of the two types

W2
t ≡

χH
1− σh

[
ξ(Hb

t )1−σh + (1− ξ)(Hs
t )1−σh

]
.

Finally, the third is the disutility from labor of the two types

W3
t ≡ −

χL
1 + ϕ

(
Λ̃t

λ̃t

) 1+ϕ
ϕ

(∆tYt)
1+ϕ.

In the next three subsections we proceed to take a second order approximation of each term.

A.6.1 First Term W1
t

Starting with the first term in W1
t , we can write

ξ
(Cbt )

1−σb

1− σb
≈ ξ(Cb)−σ

b

(Cbt − Cb)−
1

2
ξσb(Cb)−σ

b−1(Cbt − Cb)2 + t.i.p.+O(‖ε‖3)

= ξ(Cb)1−σb
[
Cbt − Cb

Cb
− 1

2
σb
(
Cbt − Cb

Cb

)2
]

+ t.i.p.+O(‖ε‖3),

where t.i.p. stands for “terms independent of policy” (that is, terms up to the second order not involving

endogenous variables) and O(‖ε‖3) collects terms of order three or higher. Up to the second order

Cbt − Cb

Cb
≈ cbt +

1

2
(cbt)

2 ⇒
(
Cbt − Cb

Cb

)2

≈ (cbt)
2,

where lower-case variables denote log-deviations from steady state (e.g., cbt ≡ ln(Cbt /C
b) in the case

of borrowers’ consumption) and we dropped the notation for terms independent of policy and of order

higher than two. Replacing in the expression above, we obtain

ξ
(Cbt )

1−σb

1− σb
≈ ξ(Cb)1−σb

[
cbt +

1

2
(1− σb)(cbt)2

]
.
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Since the approximation of the second term is similar, we can write

W1
t ≈ ξ(Cb)1−σb

[
cbt +

1

2
(1− σb)(cbt)2

]
+ (1− ξ)(Cs)1−σs

[
cst +

1

2
(1− σs)(cst )2

]
.

Given the equality of marginal utilities across groups in steady state, we can rewrite

W1
t ≈ λ

{
ξCb

[
cbt +

1

2
(1− σb)(cbt)2

]
+ (1− ξ)Cs

[
cst +

1

2
(1− σs)(cst )2

]}
.

A second order approximation of the resource constraint gives

Yt − Y
Y

= ξ
Cb

Y

Cbt − Cb

Cb
+ (1− ξ)C

s

Y

Cst − Cs

Cs
+

Ψh

2
[ξ(Hb

t − 1)2 + (1− ξ)(Hs
t − 1)2] + t.i.p.,

where t.i.p. appears because the cost of deviating from target in terms of equity in the resource constraint

is quadratic in κ̃t − κ̃, which is exogenous under our assumption. Rewriting the approximation in log-

deviations from steady state, we have

yt +
1

2
y2
t = ξ$b

[
cbt +

1

2
(cbt)

2

]
+ (1− ξ)$s

[
cst +

1

2
(cst )

2

]
+

Ψh

2
[ξ(hbt)

2 + (1− ξ)(hst )2],

and, up to the first order,

yt = ξ$bcbt + (1− ξ)$scst .

Going back to the expression for W1
t , we can then rewrite

W1
t ≈ λY

{
ξ$b

[
cbt +

1

2
(cbt)

2

]
+ (1− ξ)$s

[
cst +

1

2
(cst )

2

]
− 1

2

[
ξ$bσb(cbt)

2 + (1− ξ)$sσs(cst )
2
]}

= λY

{
yt +

1

2
y2
t −

Ψh

2
[ξ(hbt)

2 + (1− ξ)(hst )2]− 1

2

[
ξ$bσb(cbt)

2 + (1− ξ)$sσs(cst )
2
]}

.

Next, we note that for marginal utilities, we have

λ̂τt = −στ cτt .

Therefore, we can alternatively rewrite the resource constraint, up to the first order, as

yt = −ξ$
b

σb
λ̂bt −

(1− ξ)$s

σs
λ̂st = −

[
ξ$b

σb
+

(1− ξ)$s

σs

]
λ̂bt +

(1− ξ)$s

σs
ωt

=
σb

σ̄
cbt +

(1− ξ)$s

σs
ωt,

where ωt ≡ λ̂bt − λ̂st is the marginal utility gap relative to steady state marginal utility λ and

σ̄−1 ≡ ξ$b

σb
+

(1− ξ)$s

σs
.

Therefore, we can rewrite borrowers’ consumption as

cbt =
σ̄

σb
yt −

(1− ξ)$sσ̄

σbσs
ωt.

With similar steps, we can derive an expression for savers’ consumption

cst =
σ̄

σs
yt +

ξ$bσ̄

σbσs
ωt.
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Using the last two results, we can write

ξ$bσb(cbt)
2 + (1− ξ)$sσs(cst )

2 =
ξ$b

σb

[
σ̄yt −

(1− ξ)$sσ̄

σs
ωt

]2

+
(1− ξ)$s

σs

[
σ̄yt +

ξ$bσ̄

σb
ωt

]2

= σ̄

[
y2
t +

ξ$b

σb
(1− ξ)$s

σs
ω2
t

]
.

Plugging back into the expression for the first term, we get

W1
t ≈ λY

[
yt +

1

2
(1− σ̄)y2

t −
Ψh

2
[ξ(hbt)

2 + (1− ξ)(hst )2]− 1

2

ξ$b

σb
(1− ξ)$s

σs
σ̄ω2

t

]
.

A.6.2 Second Term W2
t

A second order approximation of the second term gives

W2
t ≈ ξχH(Hb

t − 1) + (1− ξ)χH(Hs
t − 1)− σh

2
ξχH(Hb

t − 1)2 − σh
2

(1− ξ)χH(Hs
t − 1)2.

We can then rewrite

W2
t ≈ χH

{
ξhbt + (1− ξ)hst +

1

2
(1− σh)[ξ(hbt)

2 + (1− ξ)(hst )2]

}
.

From the housing market clearing condition, up to a second order approximation, we have

0 = ξ

[
hbt +

1

2
(hbt)

2

]
+ (1− ξ)

[
hst +

1

2
(hst )

2

]
,

and, up to the first order,

0 = ξhbt + (1− ξ)hst .

Replacing these two results into the approximation for the second and third term, we have

W2
t ≈ −

1

2
σhχH

[
ξ(hbt)

2 + (1− ξ)(hst )2
]
.

Finally, again from the housing resource constraint, we have

hbt = (1− ξ)(hbt − hst ) and hst = −ξ(hbt − hst ).

Using this result, we conclude

W2
t ≈ −

1

2
σhξ(1− ξ)χH h̃2

t ,

where h̃t ≡ hbt − hst is the housing gap.
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A.6.3 Third Term W3
t

We now move to the third term. To begin, we notice that in steady state Λ̃ = λ̃ = λ and ∆ = 1. In

addition, as showed later (and well known) ∆t is of order two. Therefore, we can write

W3
t ≈ −χLY 1+ϕ

 1

ϕ

(
Λ̃t − λ
λ

)
+

1

2ϕ2

(
Λ̃t − λ
λ

)2

− 1

ϕ

(
λ̃t − λ
λ

)
+

1

2ϕ2

(
λ̃t − λ
λ

)2

−1 + ϕ

ϕ2

(
Λ̃t − λ
λ

)(
λ̃t − λ
λ

)
+

1 + ϕ

ϕ

(
Λ̃t − λ
λ

)(
Yt − Y
Y

)
− 1 + ϕ

ϕ

(
λ̃t − λ
λ

)(
Yt − Y
Y

)

+

(
Yt − Y
Y

)
+

1

2
ϕ

(
Yt − Y
Y

)2

+ (∆t − 1)

]
.

Collecting terms and simplifying, we can then write

W3
t ≈ −χLY 1+ϕ

[
1

ϕ
(
ˆ̃
Λt −

ˆ̃
λt) +

1

2ϕ

(
1 + ϕ

ϕ

)
(
ˆ̃
Λt −

ˆ̃
λt)

2 +

(
1 + ϕ

ϕ

)
(
ˆ̃
Λt −

ˆ̃
λt)yt + yt +

1

2
(1 + ϕ)y2

t + ∆̂t

]
,

where
ˆ̃
Λt ≡ ln(Λ̃t/λ) and

ˆ̃
λt ≡ ln(λ̃t/λ).

Next, we focus on the approximation of Λ̃t and λ̃t. Starting with Λ̃t, we have

ˆ̃
Λt +

1

2
ˆ̃
Λ

2

t ≈ ξ[λ̂bt +
1

2
(λ̂bt)

2] + (1− ξ)[λ̂st +
1

2
(λ̂st )

2] +
1

2ϕ
ξ(1− ξ)(λ̂bt)2 +

1

2ϕ
ξ(1− ξ)(λ̂st )2

− 1

ϕ
ξ(1− ξ)λ̂bt λ̂st .

For λ̃t, we have

ˆ̃
λt +

1

2
ˆ̃
λ

2

t ≈ ξ[λ̂bt +
1

2
(λ̂bt)

2] + (1− ξ)[λ̂st +
1

2
(λ̂st )

2] +
1− ϕ

2ϕ
ξ(1− ξ)(λ̂bt)2 +

1− ϕ
2ϕ

ξ(1− ξ)(λ̂st )2

− 1− ϕ
ϕ

ξ(1− ξ)λ̂bt λ̂st .

Note that up to the first order,
ˆ̃
Λt =

ˆ̃
λt. Therefore, we also have

ˆ̃
Λ

2

t =
ˆ̃
λ

2

t . Taking the difference between

the two approximations and using the equality above, we can then write

ˆ̃
Λt −

ˆ̃
λt ≈

1

2
ξ(1− ξ)ω2

t .

Since
ˆ̃
Λt −

ˆ̃
λt is of order two, its square in W3

t drops out. Therefore, we can rewrite

W3
t ≈ −χLY 1+ϕ

[
yt +

1

2
(1 + ϕ)y2

t + ∆̂t +
1

2ϕ
ξ(1− ξ)ω2

t

]
.

Approximation of the Price Dispersion Term

Lastly, we take a second order approximation of the price dispersion index, which yields

∆̂t = α∆̂t−1 +
1

2

αε

1− α
π2
t .
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Solving the previous difference equation backward, we have

∆̂t = α∆̂−1 +
1

2

αε

1− α

t∑
j=0

αjπ2
t−j ,

for some initial level of price dispersion ∆̂−1. We are interested in the present discounted value of the

previous expression, that is
∞∑
t=0

βt∆̂t =
1

2

αε

1− α

∞∑
t=0

βt
t∑

j=0

αjπ2
t−j ,

where we have dropped the initial level of price dispersion as it is independent of policy. Let us now

focus on the double sum on the right-hand side of the last expression, which we can expand to obtain

∞∑
t=0

βt
t∑

j=0

αjπ2
t−j = π2

0 + β(απ2
0 + π2

1) + β2(α2π2
0 + απ2

1 + π2
2) + ...

=

∞∑
j=0

(βα)jπ2
0 + β

∞∑
j=0

(βα)jπ2
1 + β2

∞∑
j=0

(βα)jπ2
2 + ...

= π2
0

∞∑
j=0

(βα)j + βπ2
1

∞∑
j=0

(βα)j + β2π2
2

∞∑
j=0

(βα)j + ...

=

∞∑
t=0

βtπ2
t

∞∑
j=0

(βα)j =
1

1− βα

∞∑
t=0

βtπ2
t .

Therefore, we can write
∞∑
t=0

βt∆̂t =
1

2

αε

(1− α)(1− βα)

∞∑
t=0

βtπ2
t .

Plugging back into the approximation of the third term, we arrive at

W3
t ≈ −χLY 1+ϕ

[
yt +

1

2
(1 + ϕ)y2

t +
1

2

αε

(1− α)(1− βα)
π2
t +

1

2ϕ
ξ(1− ξ)ω2

t

]
.

A.6.4 Putting the Pieces Together

We begin by summing W1
t and W3

t

W1
t +W3

t = λY

[
yt +

1

2
(1− σ̄)y2

t −
ξ(1− ξ)Ψh

2
h̃2
t −

1

2
ξ(1− ξ)$

b

σb
$s

σs
σ̄ω2

t

]
− χLY 1+ϕ

[
yt +

1

2
(1 + ϕ)y2

t +
1

2

αε

(1− α)(1− βα)
π2
t +

1

2

ξ(1− ξ)
ϕ

ω2
t

]
,

where we have used the relations between hτt and h̃t. In the efficient steady state, λ = χLY
ϕ. Therefore,

we can rewrite

W1
t +W3

t = −λY
2

[
(σ̄ + ϕ)y2

t + ξ(1− ξ)Ψhh̃
2
t + ξ(1− ξ)

(
1

ϕ
+
$b

σb
$s

σs
σ̄

)
ω2
t +

αε

(1− α)(1− βα)
π2
t

]
.

Finally, we add the second term

W1
t +W2

t +W3
t = −λY

2

[
(σ̄ + ϕ)y2

t + ξ(1− ξ)
(

Ψh +
σhχH
λY

)
h̃2
t + ξ(1− ξ)

(
1

ϕ
+
$b

σb
$s

σs
σ̄

)
ω2
t

+
αε

(1− α)(1− βα)
π2
t

]
,
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or, more compactly,

W1
t +W2

t +W3
t = −Ξ

2
(y2
t + λhh̃

2
t + λωω

2
t + λππ

2
t ),

where

Ξ ≡ λY (σ̄ + ϕ)

λh ≡ ξ(1− ξ)
σ̄ + ϕ

(
Ψh +

σhχH
χLY 1+ϕ

)
λω ≡ ξ(1− ξ)σϕ

σ̄ + ϕ

λπ ≡ ε

γ(σ̄ + ϕ)

γ ≡ (1− α)(1− βα)

α

σϕ ≡
(

1

ϕ
+
$b

σb
$s

σs
σ̄

)
.

A.7 First-Order Approximation of the Equilibrium Conditions

In this section, we derive a first-order approximation to the set of equilibrium conditions that constitute

the constraints of the linear-quadratic optimal policy problem. For all variables, we take a log-linear

approximation around the efficient steady state with zero inflation and equal marginal utility of con-

sumption between borrowers and savers. The exception is the Lagrange multiplier on the collateral

constraint, which is equal to zero in steady state, for which we take a linear approximation.

Up to the first order, the savers’ Euler equation becomes

λ̂st = it − Etπt+1 + (1− δ)ξEtλ̂bt+1 + [δ + (1− δ)(1− ξ)]Etλ̂st+1.

where it ≡ ln(Rdt /R
d) is approximately equal to the net nominal interest rate. Similarly, the savers’

Euler equation for equity gives

λ̂st + Ψeκt = iet − Etπt+1 + (1− δ)ξEtλ̂bt+1 + [δ + (1− δ)(1− ξ)]Etλ̂st+1,

where, using the same notation as for the return on deposits, iet is approximately equal to the nominal

net return on equity. The savers’ housing demand equation becomes

qt = (1− β)(−σhhst − λ̂st )− Ψ̃hh
s
t + β

{
(1− δ)ξEtλ̂bt+1 + [δ + (1− δ)(1− ξ)]Etλ̂st+1 − λ̂st + Etqt+1

}
,

where Ψ̃h ≡ Ψh/q. Savers’ marginal utility is

λ̂st = −σscst .

For borrowers, the Euler equation for debt is

λ̂bt = ibt − Etπt+1 + [δ + (1− δ)ξ]Etλ̂bt+1 + (1− δ)(1− ξ)Etλ̂st+1 + µt − βγd[δ + (1− δ)ξ]Etµt+1,
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where ibt is the net nominal borrowing rate. Borrowers’ housing demand gives

qt = (1− β)(−σhhbt − λ̂bt)− Ψ̃hh
b
t + (1− γd)Θµt

+ β
{

[δ + (1− δ)ξ]Etλ̂bt+1 + (1− δ)(1− ξ)Etλ̂st+1 − λ̂bt + Etqt+1

}
.

Borrowers’ marginal utility is

λ̂bt = −σbcbt .

We rewrite the collateral constraint as

Bt
Pt
≤ Dt ≡ δγd

Bt
Pt−1

1

Πt
+ (1− γd)Θt

Qt
Pt
Hb
t .

In log-deviations from steady state, the previous equation becomes

bt − D̂t ≤ ln

(
D
b

)
≡ lnM,

where

M≡ D
b

= δγd + (1− γd)
Θq

b
.

Up to the first order, we have

D̂t =
δγd
M

(bt−1 − πt) + (1− γd)
Θq

D
(θt + qt + hbt).

The equation for the lending rate becomes

ibt = κ̃iet + (1− κ̃)it.

The Phillips curve is

πt = γmct + βEtπt+1.

Up to the first order, the labor market equilibrium condition gives

ϕyt = λ̂t +mct,

where average marginal utility is

λ̂t = ξλ̂bt + (1− ξ)λ̂st .

The resource constraint gives

yt = ξ$bcbt + (1− ξ)$scst .

The housing market equilibrium condition gives

0 = ξhbt + (1− ξ)hst .

Finally, the law of motion of debt is

bt =
δ

β
(bt−1 + ibt−1−πt) +

q

b
[(hbt −hbt−1) + (1− ξ)(1− δ)(hbt−1−hst−1)] +

Y

db

(
$bcbt − yt −

1− ξ
ϕ

ωt

)
.
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A.7.1 Gap Representation

In this section, we express the equilibrium conditions in terms of welfare-relevant gaps. Combining the

resource constraint and the expression for the average marginal utility we can write

λ̂t = −σ̄
[
yt + ξ(1− ξ)

(
$b

σb
− $s

σs

)
ωt

]
.

Replacing into the first order approximation of the labor market equilibrium, we obtain

mct = (σ̄ + ϕ)yt + σωωt,

where

σω ≡ ξ(1− ξ)σ̄
(
$b

σb
− $s

σs

)
.

Therefore, we can rewrite the Phillips curve as

πt = γ[(σ̄ + ϕ)yt + σωωt] + βEtπt+1.

Taking the difference between the savers’ Euler equations for deposits and equity we obtain

iet = it + Ψeκt.

Combining this expression with the zero profit condition for banks we get

ibt = it + κt,

where we have normalized Ψeκ̃ to one.45 Next, taking a population-weighted average of the savers’ Euler

equation for deposits and the borrowers’ Euler equation for debt, we obtain

λ̂t = it − Etπt+1 + Etλ̂t+1 + ξ{κt + µt − βγd[δ + (1− δ)ξ]Etµt+1}.

Using the relation between the average marginal utility of consumption, output and marginal utility gap

at the beginning of this section, we can rewrite the last expression as

σ̄yt + σωωt = −(it − Etπt+1) + σ̄Etyt+1 + σωEtωt+1 − ξ{κt + µt − βγd[δ + (1− δ)ξ]Etµt+1}.

Taking the difference between the two Euler equations yields

ωt = κt + µt − βγd[δ + (1− δ)ξ]Etµt+1 + δEtωt+1,

which shows that the wedge in aggregate Euler equation (the term in the curly bracket) is proportional

to the quasi-difference in the marginal utility gap. We can use this expression to eliminate the wedge

and rearrange to get

yt = −σ̄−1(it − Etπt+1 − r∗t ) + Etyt+1,

where the equilibrium real interest rate is

r∗t ≡ σ̄[(σω + δξ)Etωt+1 − (σω + ξ)ωt].

The equilibrium real interest rate is endogenous in this model, and in particular is a function of the

45The normalization is innocuous since Ψκ̃ always pre-multiplies κt in the log-linear approximation of the
model.
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quasi-difference of the marginal utility gap.

Next, we take a population-weighted average of the housing demand equations to obtain

qt = −(1− β)λ̂t + β(Etqt+1 − it + Etπt+1) + ξ[(1− γd)Θµt + β(δEtωt+1 − ωt)],

where we have used the savers’ and borrowers’ Euler equation to substitute for expected future marginal

utilities of consumption, and housing costs disappear using the housing resource constraint. If we take

the difference between the two housing demand equations, we get

[(1− β)σh + Ψ̃h]h̃t = (1− γd)Θµt − ωt + βδEtωt+1.

We can use this second expression, together with the expression for the average marginal utility of

consumption, to eliminate the last term in the previous one and rewrite

qt = (1− β)[σ̄yt + ξσ̃hh̃t + (ξ + σω)ωt] + β(Etqt+1 − it + Etπt+1),

where σ̃h ≡ σh + Ψ̃h/(1− β).

We can rewrite the law of motion of debt as

bt =
δ

β
(bt−1 + it−1 + κt−1 − πt) + (1− ξ)ηq(h̃t − δh̃t−1) + ηd

[(
$bσ̄

σb
− 1

)
yt − (1− ξ)σϕωt

]
,

where

ηq ≡
q

b
=

χHηd
(1− β)χLY 1+ϕ

,

and

ηd ≡
Y

b
=

β − δ
β($b − 1)

.

Finally, the borrowing constraint is

bt ≤ lnM+
δγd
M

(bt−1 − πt) +
(1− γd)Θηq
M

[θt + qt + (1− ξ)h̃t].

Given the policy instruments {it, θt}∞t=0, the exogenous shocks {κt}∞t=0, and initial conditions {b−1, h̃−1, i−1},
an approximated equilibrium for this economy is a sequence {yt, πt, ωt, h̃t, qt, bt, µt}∞t=0 that satisfies:

1. Phillips curve

πt = γ[(σ̄ + ϕ)yt + σωωt] + βEtπt+1.

2. Aggregate demand

yt = −σ̄−1(it − Etπt+1 − r∗t ) + Etyt+1,

where

r∗t ≡ (σω + δξ)Etωt+1 − (σω + ξ)ωt.

3. House prices:

qt = (1− β)[σ̄yt + ξσ̃hh̃t + (ξ + σω)ωt] + β(Etqt+1 − it + Etπt+1).

4. Housing gap:

(1− β)σ̃hh̃t = (1− γd)Θµt − ωt + βδEtωt+1.
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5. Debt dynamics:

bt =
δ

β
(bt−1 + it−1 + κt−1 − πt) + (1− ξ)ηq(h̃t − δh̃t−1) + ηd

[(
$bσ̄

σb
− 1

)
yt − (1− ξ)σϕωt

]
,

6. Borrowing constraint:

µt

{
bt − lnM− δγd

M
(bt−1 − πt)−

(1− γd)Θηq
M

[θt + qt + (1− ξ)h̃t]
}

= 0.

7. Lagrange multiplier:

ωt = κt + µt − βγd[δ + (1− δ)ξ]Etµt+1 + δEtωt+1.

A.8 Optimal Targeting Rules

In this section we focus on the case in which the nominal interest rate is always positive (it > lnβ) and

the collateral constraint is always binding (µt > 0). The optimal joint monetary and macro-prudential

policy problem consists of maximizing

W0 = −Ξ

2
E0

[ ∞∑
t=0

βt(y2
t + λhh̃

2
t + λωω

2
t + λππ

2
t )

]
,

subject to the constraints 1. to 7. at the end of last section plus the definition of r∗t .

A.8.1 Discretion

The state variables for the optimal policy problem are h̃t, bt and it. The Lagrangian under discretion is

Lt(h̃t−1, bt−1, it−1) = y2
t + λhh̃

2
t + λωω

2
t + λππ

2
t + βEtLt+1(h̃t, bt, it)

− 2φ1t[πt − γ(σ̄ + ϕ)yt − γσωωt − βFπt]

− 2φ2t{yt + σ̄−1[it −Fπt − (σω + δξ)Fωt + (σω + ξ)ωt]−Fyt}

− 2φ3t{qt − (1− β)[σ̄yt + ξσ̃hh̃t + (ξ + σω)ωt]− β(Fqt − it + Fπt)}

− 2φ4t[(1− β)σ̃hh̃t − (1− γd)Θµt + ωt − βδFωt]

− 2φ5t

{
bt −

δ

β
(bt−1 + it−1 + κt−1 − πt)− (1− ξ)ηq(h̃t − δh̃t−1)

−ηd
[(

$bσ̄

σb
− 1

)
yt − (1− ξ)σϕωt

]}
− 2φ6t

{
bt − lnM− δγd

M
(bt−1 − πt)−

(1− γd)Θηq
M

[θt + qt + (1− ξ)h̃t]
}

− 2φ7t {ωt − κt − µt − δFωt + βγd[δ + (1− δ)ξ]Fµt} ,

where φjt, for j = {1, ..., 7}, are Lagrange multipliers and Fzt = Etzt+1, with z = {π, y, q, ω, µ}, are

time−t expectation terms that the policymaker takes as given. Time-consistency requires the policy-

makers to take into account the consequences of its current policy decisions on future losses via the state

variables.

55



The first order condition for output is

yt + γ(σ̄ + ϕ)φ1t − φ2t + (1− β)σ̄φ3t + ηd

(
$bσ̄

σb
− 1

)
φ5t = 0.

The first order condition for inflation is

λππt − φ1t −
δ

β
φ5t −

δγd
M

φ6t = 0.

The first order condition for the marginal utility gap is

λωωt + γσωφ1t − σ̄−1(σω + ξ)φ2t + (1− β)(σω + ξ)φ3t − φ4t − ηd(1− ξ)σϕφ5t − φ7t = 0.

The first order condition for the housing gap is

λhh̃t + βEt
∂Lt+1

∂h̃t
+ (1− β)ξσ̃hφ3t − (1− β)σ̃hφ4t + (1− ξ)ηqφ5t +

(1− γd)Θηd
M

(1− ξ)φ6t = 0,

where for simplicity we have omitted the arguments of the Lagrangian function at t+ 1. The first order

condition for debt is

βEt
∂Lt+1

∂bt
− φ5t − φ6t = 0.

The first order condition for the nominal interest rate is

βEt
∂Lt+1

∂it
− σ̄−1φ2t − βφ3t = 0.

The first order condition for the multiplier on the borrowing constraint is

(1− γd)Θφ4t + φ7t = 0.

The first order condition for house prices is

−φ3t +
(1− γd)Θηd

M
φ6t = 0.

Finally, the first order condition for the LTV ratio is

(1− γd)Θηd
M

φ6t = 0.

The envelope condition with respect to the housing gap is

∂Lt
∂h̃t−1

= −(1− ξ)ηdδφ5t.

The envelope condition with respect to debt is

∂Lt
∂bt−1

=
δ

β
φ5t +

δγd
M

φ6t.

The envelope condition with respect to the nominal interest rate is

∂Lt
∂it−1

=
δ

β
φ5t.

Since the first order condition for the LTV ratio gives us φ6t = 0, from the first order condition for
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house prices, we obtain φ3t = 0. In addition, combining the result with the envelope condition for debt

and plugging in the first order condition for that variable, we can see that the only stable solution is

φ5t = 0, which implies that also the derivatives of the continuation values with respect to the housing gap

and the nominal interest rate are also zero. Furthermore, from the first order condition for the nominal

interest rate, we obtain φ2t = 0.

The collateral constraint and the aggregate demand equations residually determine the macro-

prudential policy and monetary policy instruments, respectively, that implement the optimal policy

plan. The equations for house prices and debt determine the value of those two variables consistent with

the equilibrium under optimal policy.

The simplified system of equations that characterize the optimal policy plan then reduces to five

equations:

yt + γ(σ̄ + ϕ)φ1t = 0

λππt − φ1t = 0

λωωt + γσωφ1t − φ4t − φ7t = 0

λhh̃t − (1− β)σ̃hφ4t = 0

(1− γd)Θφ4t + φ7t = 0.

Combining the first two, we obtain the standard targeting rule for monetary policy under discretion

επt + yt = 0,

where we also used the definition of the relative weight on inflation.

We can use the fourth condition to express φ4t as a function of h̃t

φ4t =
λh

(1− β)σ̃h
h̃t.

Replacing the result into the fifth equation, we can then also express φ7t as a function of h̃t

φ7t = − (1− γd)Θλh
(1− β)σ̃h

h̃t.

Finally, from the first, we can express φ1t as a function of yt

φ1t = − 1

γ(σ̄ + ϕ)
yt.

Substituting these three multipliers into the third condition we obtain

λωωt −
σω

σ̄ + ϕ
yt −

[1− (1− γd)Θ]λh
(1− β)σ̃h

h̃t = 0.

We interpret this equation as the optimal targeting rule for macro-prudential policy. If the collateral

constraint has no inertia and the steady state LTV ratio is 100%, the optimal targeting rule for macro-

prudential policy only trades off the marginal utility gap and the output gap. In particular, optimal

policy requires that the two variables move in the same direction since σω > 0. More generally, the

housing gap matters too. Since the coefficient in front of the housing gap is always positive, macro-

prudential policy moves the marginal utility gap and a combination of the output gap and the housing

gap in the same direction.
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A.8.2 Commitment

In order to write the optimal policy problem under commitment, we leverage the result that the collateral

constraint, the house price equation, the debt equation and the aggregate demand equation are residual

for the optimal policy problem as demonstrated in the previous section. For simplicity, we focus on the

case γd = 0 (no inertia in the collateral constraint). The Lagrangian for the optimal policy problem

under commitment is then

L0 = E0

∑∞
t=0 β

t
{

(y2
t + λhh̃

2
t + λωω

2
t + λππ

2
t )

−2κ1t[πt − γ(σ̄ + ϕ)yt − γσωωt − βEtπt+1]

−2κ2t[(1− β)σ̃hh̃t −Θµt + ωt − βδEtωt+1]

−2κ3t[ωt − µt − κt − δEtωt+1} ,

where κ`t, with ` = {1, 2, 3}, are Lagrange multipliers.

The first order condition for output is

yt + γ(σ̄ + ϕ)κ1t = 0.

The first order condition for inflation is

λππt − κ1t + κ1t−1 = 0.

Combining these two expressions, we obtain the standard optimal targeting rule for monetary policy

under commitment

επt + yt − yt−1 = 0.

The same expression would also hold under commitment in the case in which the collateral constraint is

always slack.

The first order condition for the marginal utility gap is

λωωt + γσωκ1t − κ2t + δκ2t−1 − κ3t +
δ

β
κ3t−1 = 0.

The first order condition for the housing gap is

λhh̃t − (1− β)σ̃hκ2t = 0.

Finally, the first order condition for the multiplier on the collateral constraint is

Θκ2t + κ3t = 0.

We can solve for κ2t from the first order condition for the housing gap

κ2t =
λh

(1− β)σ̃t
h̃t.

Using the result in the first order condition for the multiplier on the collateral constraint yields

κ3t = − λhΘ

(1− β)σ̃t
h̃t.

Substituting the expressions for these two Lagrange multipliers and the solution for κ1t from the first
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order condition for output into the first order conditions for the marginal utility gap gives

λωωt −
σω

σ̄ + ϕ
yt −

λh
(1− β)σh

[
(1−Θ)h̃t − δ

(
1− Θ

β

)
h̃t−1

]
= 0.

If the LTV ratio is 100%, the contemporaneous housing gap disappears from the optimal targeting

rule as in the case of discretion. However, a lagged housing gap remains, which captures the standard

state-dependency of the commitment solution (this effect disappears only in the special case Θ = β).
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B Additional Results

In this section, we report a number of additional results. First, we look at a different specification of

the collateral constraint. Second, we compare optimal policy under commitment to the discretionary

outcome in the boom-bust numerical example. Third, we show that most of the welfare gains associated

with the jointly optimal policy plan depend on setting LTVs optimally. Fourth, we report the full set of

responses to a tightening in the collateral constraint during the housing bust.

B.1 Expected Value of Housing in the Collateral Constraint

The formulation of the collateral constraint in the main text is

Bt ≤ γd max {Bt−1, 0}+ (1− γd) ΘtQtH
b
t ,

and the borrower’s first order condition for housing consumption is

Qt
Pt
− (1− γd) Θtµt

Qt
Pt

=
χH
(
Hb
t

)−σh
λbt

− Φh

(
Hb
t

H
− 1

)
+ Et

{
[δ + (1− δ) ξ]λbt+1 + (1− δ) (1− ξ)λst+1

λbt

Qt+1

Pt+1

}
. (28)

These two equations are the only equilibrium conditions that are influenced by the nature of the

collateral constraint. In particular, the second term on the left-hand side of (28) captures the marginal

effect on the collateral constraint of the choice of housing.

Suppose the collateral constraint depends instead on the expected value of housing (as in e.g. Ia-

coviello and Neri, 2010), that is

Bt ≤ γd max {Bt−1, 0}+ (1− γd) ΘtEtQt+1H
b
t . (29)

The first order condition (28) then becomes

Qt
Pt
− (1− γd) Θtµt

EtQt+1

Pt
=
χH
(
Hb
t

)−σh
λbt

− Φh

(
Hb
t

H
− 1

)
+ Et

{
[δ + (1− δ) ξ]λbt+1 + (1− δ) (1− ξ)λst+1

λbt

Qt+1

Pt+1

}
. (30)

Since the collateral constraint is slack in steady state (µ = 0), the first-order approximation to (28)

and (30) are identical. Therefore, the effect of including the expected value of housing in the collateral

constraint, rather than its current value, is negligible, at least when the collateral constraint is slack

and expected to remain slack in the near future. When the collateral constraint binds, the alternative

formulation of the constraint (29) influences the value of the multiplier µt.

Figure 10 demonstrates these results by plotting the baseline simulation under the two formulations

of the collateral constraint, with the contemporaneous value of housing (solid black lines) and with

its expected value (dashed gray lines). During the boom the collateral constraint is slack, and the two

simulations coincide. The bust displays some small differences between the two cases, due to the different

implications for the multiplier µt (panel c), but the broad contours of the two simulations remain very

similar.

The result is even stronger under optimal policy. Figure 11 shows that macroeconomic outcomes are

identical under the jointly optimal policy plan regardless of the specification of the collateral constraint.

This finding follows from the fact that the jointly optimal policy problem can be cast as one in which
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Figure 10: Baseline simulation with expected housing value in the collateral constraint.

Note: All variables are scaled by 100 and plotted as log-deviations from steady state, except for the multiplier on the

collateral constraint (µ) which is in levels. Inflation, the policy rate and equilibrium real interest rate are shown in

annualized units.

µt is the macro-prudential policy instrument. As discussed in the main text, the collateral constraint

determines the LTV ratio that supports the optimal setting of µt.
46

46As a result, the alternative specification of the collateral constraint only manifests itself in terms of the optimal
path of the LTV limit. However, the differences between the LTV limits (available on request) are quantitatively
small (indistinguishable to the naked eye). This result reflects the high persistence of house prices under these
policy specifications, which implies that Etqt+1 ≈ qt, particularly during the bust when jointly optimal policy
implies an almost flat profile for qt.
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Figure 11: Jointly optimal policy with expected housing value in collateral constraint.

Note: All variables are scaled by 100 and plotted as log-deviations from steady state, except for the multiplier on the

collateral constraint (µ) which is in levels. Inflation, the policy rate and equilibrium real interest rate are shown in

annualized units.
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B.2 Jointly Optimal Commitment Policy

Figure 12: Jointly optimal policy under commitment.

Note: All variables are scaled by 100 and plotted as log-deviations from steady state, except for the multiplier on the

collateral constraint (µ) which is in levels. Inflation, the policy rate and equilibrium real interest rate are shown in

annualized units.

Figure 12 compares the results under jointly optimal policy with commitment (dashed grey lines) with

the case of discretion (solid black lines) discussed extensively in the text. We compute the commitment

solution using the algorithm presented in section 3 of Harrison and Waldron (2021).

The figure shows minimal quantitative differences for most variables. Under commitment, the poli-

cymaker limits the volatility of output and inflation even more than under discretion, both during the

boom and the bust, while debt is slightly higher. Commitment involves a marginally more accommo-

dating monetary policy stance during the recession while the path of the LTV limit essentially coincides

with the case of discretion.

B.3 Optimal LTV Limits vs. Jointly Optimal Policy

To explore the relative contribution of monetary and macro-prudential policy to the improved stabiliza-

tion outcomes under the jointly optimal plan relative to the baseline scenario, figure 13 compares the

jointly optimal policy plan (solid black lines) with the case in which the policymaker only sets the LTV

limit optimally (dashed gray lines). In this configuration, the policymaker chooses the LTV limit to

minimize the welfare-based loss (6) under discretion, taking as given the nominal interest rate, which

follows the baseline Taylor rule (18).

As mentioned in the text, the figure demonstrates that the paths of most variables are virtually

identical, with only perceptible differences in the responses of inflation and the output gap during the

‘bust’ phase of the scenario. Under the jointly optimal policy, the policymaker favors the stabilization of
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Figure 13: Optimal LTV limits.

Note: All variables are scaled by 100 and plotted as log-deviations from steady state, except for the multiplier on the

collateral constraint (µ) which is in levels. Inflation, the policy rate and equilibrium real interest rate are shown in

annualized units.

inflation relative to the output gap. Since in our calibration (and, more generally, in models with price

stickiness à la Calvo, 1983) λπ is much greater than the relative weight on inflation in the Taylor rule

(φπ/πy), the inflation-output tradeoff under the jointly optimal policy generates smaller welfare losses

than those obtained under the baseline monetary policy rule. The paths for the LTV limits under the

two policy configurations are nearly identical.
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B.4 LTV Tightening in the Bust

Figure 14: Macro-prudential tightening in the bust.

Note: All variables are scaled by 100 and plotted as log-deviations from the baseline simulation, apart from the policy

rate, inflation and the multiplier µ which are plotted as an absolute deviation and the LTV limit which is plotted as a level

(in per cent). Inflation and the policy rate is shown in annualized units.

Figure 14 shows the responses of all variables, measured relative to the baseline simulation, for the

case of a macro-prudential tightening at the time of the spike in credit spreads considered in section

5.5.1. The solid black lines account for the ZLB on the nominal interest rate while the dashed grey lines

do not. Unsurprisingly, the presence of the the ZLB generates a much deeper recession.
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C Computational Details

This appendix describes the implementation of optimal monetary and macro-prudential policy in the

linear-quadratic approximation of the model, accounting for occasionally binding constraints. We apply

the methods developed by Harrison and Waldron (2021), who present a toolkit for analyzing optimal

policy problems in this type of setting.

The toolkit permits the analysis of optimal time-consistent policies (‘discretion’) and optimal com-

mitment policies. The equilibrium concept under discretion is a Markov-perfect policy equilibrium. In

each period, the policymaker acts as a Stackelberg leader with respect to private agents and future

policymakers. The current policymaker takes the decision rules of future policymakers as given. In equi-

librium, the decisions of policymakers in the current period satisfy the decision rule followed by future

policymakers.

The piecewise linear solution method applies the ‘perfect foresight’ assumption. Agents account for

the effects of occasionally binding constraints on the most likely future trajectory of the economy, but not

for the risk that those constraints may bind on other possible future trajectories. As such, the piece-wise

linear solution concept is identical to that studied by Guerrieri and Iacoviello (2015) in their ’OccBin’

toolkit.47

C.1 Baseline Policy Configuration

The baseline policy configuration studied in section 5.3 is a simple Taylor rule, which has fixed coeffi-

cients. Therefore, the method in Holden and Paetz (2012) accurately computes the effects of anticipated

disturbances to the model equations.

In order to impose that the zero lower bound on the monetary policy rate may be occasionally

binding, a ‘proxy shock’ augments the policy rule to ensure that the contemporary slackness condition

holds

(it − ψππt − ψyyt) (it − lnβ) = 0.

Specifically, the Taylor rule is written as:

it = ψππt + ψyyt + δit

where δi is the ‘proxy shock’ used to ensure that the contemporary slackness condition is satisfied. Thus,

if ψππt+ψyyt > lnβ, the ‘shock’ takes the value of zero. Otherwise, δit is set equal to the value necessary

to ensure that it = lnβ.

Similarly, to impose that the collateral constraint is occasionally binding, we add a ‘proxy shock’

δdt = µt that we use to enforce the contemporary slackness condition

µt

{
bt − lnM− δγd

M
(bt−1 − πt)−

(1− γd)Θηq
M

[θt + qt + (1− ξ)h̃t]
}

= 0.

When the borrowing constraint is slack, δdt = 0, which implies that µt = 0. When the borrowing

constraint binds, an appropriate choice of δdt ensures that

bt − lnM− δγd
M

(bt−1 − πt)−
(1− γd)Θηq
M

[θt + qt + (1− ξ)h̃t] = 0,

and the borrowing constraint determines the level of debt.

As in Harrison and Waldron (2021), we use the algorithm in Holden and Paetz (2012) to find the

47The key innovation in Harrison and Waldron (2021) is to allow for flexible specifications of a variety of
optimal policy behaviors.
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required values of the ‘proxy shocks’. The approach requires writing the structural equations of the

model (the equilibrium conditions describing the private sector behavior plus first order conditions of

the optimal policy problem) as

HFEtxt+1 +HCxt +HBxt−1 = Ψεεt + Ψδδt. (31)

The matrices HF , HC , and HB collect the coefficients on the endogenous variables. The matrix Ψε

collects the coefficient on the exogenous shocks, which are in the vector εt. The vector δt contains the

‘proxy shocks’ to impose the occasionally binding constraints. These shocks enter the model equations

with coefficient matrix Ψδ.

To solve for the values of δt that impose the occasionally binding constraints, we first obtain the

rational expectation solution of (31) using the algorithm of Anderson and Moore (1985)

xt = Bxt−1 + Φεεt +

∞∑
i=0

F iΦδEtδt+i. (32)

Secondly, we apply the method in Holden and Paetz (2012) to (32) in order to construct a mapping from

the proxy shocks δt+i to the set of constrained variables (a subset of xt). The algorithm uses a quadratic

programming approach to find the sequence of shocks {δt}Tt=1 that impose the contemporary slackness

conditions for periods t = 1, . . . , T , where T is the last period when the constraint binds.

While the quadratic programming approach is typically efficient for solving such problems, in some

cases a variant of the ‘inversion’ algorithm in the MAPS toolkit described in Burgess et al. (2013)

improves the computational speed. In our case, the Holden-Paetz method turned out to be fast and

reliable for the cases in which the collateral constraint alone was binding. For simulations in which

both the collateral constraint and zero bound were binding, we used the MAPS inversion approach and

verified that the shocks derived from that approach minimized the objective function of the Holden-Paetz

quadratic programming problem.

C.2 Jointly Optimal Policy and Optimal LTV Limits

The main text shows that, when the collateral constraint is always binding, the policymakers uses LTV

policy alongside monetary policy to minimize the welfare-based loss function (6). In this case, the optimal

targeting rules are

επt + yt = 0

λωωt −
σω

σ̄ + ϕ
yt −

[1− (1− γd)Θ]λh
(1− β)σ̃h

h̃t = 0,

Though both of these targeting rules are static, the second one, which characterizes optimal macro-

prudential policy, includes an endogenous state variable (the housing gap). When we introduce occa-

sionally binding constraints, we employ the method in Harrison and Waldron (2021), which solves the

optimal policy problem using a finite-horizon value function iteration method. The policy instruments

are the nominal interest rate, it ≥ lnβ, and the multiplier on the collateral constraint, µt ≥ 0. This

formulation exploits the one-to-one mapping between µt and the value of θt discussed in the text, pro-

vided the LTV constraint consistent with the equilibrium respects the upper bound Θt ≤ Θ (θt ≤ 0 in

log-deviations). The next section offers further details on this additional requirement.

To implement the dynamic programming solution, Harrison and Waldron (2021) write the model as

H̃F
x̃ Etx̃t+1 + H̃C

x̃ x̃t + H̃B
x̃ x̃t−1 + H̃F

r Etrt+1 + H̃C
r rt = Ψ̃z̃ z̃t,
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which corresponds to equation (31) in partitioned form. Specifically, the vector of endogenous variables

xt is partitioned into a vector of non-policy variables x̃t and a vector of policy instruments rt. The shock

vector z̃t stacks the vectors of shocks εt and the vector of proxy shocks δt. The coefficient matrices

exclude the equations for the policy instruments by deleting the relevant rows of the coefficient matrices

in (31).

The policy instruments are set to minimize a loss function of the form

Lt ≡ Et
∞∑
i=0

βi
{

(x̃t+i)
′
W (x̃t+i) + (rt+i)

′
Q (rt+i)

}
,

subject to inequality constraints on the policy instruments expressed as

Srt ≥ b, (33)

where S is a conformable matrix and b is a vector that collects the bounds on the policy instruments.

Harrison and Waldron (2021) show that the optimal time consistent policy can be written as

x̃t = Bx̃x̃,tx̃t−1 +

T−t∑
s=0

Ξs,x̃z̃,tz̃t+s + γx̃,t (34)

rt = Brx̃,tx̃t−1 +

T−t∑
s=0

Ξs,rz̃,tz̃t+s + γr,t (35)

ϑt = Bϑx̃,tx̃t−1 +

T−t∑
s=0

Ξs,ϑz̃,tz̃t+s + γϑ,t, (36)

where ϑt are the Lagrange multipliers on (33). Their paper also provides recursive formulas to compute

the terms in (34), (35) and (36). These formulas depend on an assumption about the periods in which the

constraints on the instruments in (33) are binding.48 In particular, section 5.1 in Harrison and Waldron

(2021) shows how the time-variation in the matrices that relate the variables to the state variables (Bx̃x̃,t,

Brx̃,t and Bϑx̃,t) is determined by whether the constraints on the policy instruments are binding in period

t.

C.3 Imposing the LTV Limit Feasibility Constraint

In some cases, the implicit value for the LTV limit required to implement the optimal policy for µt may

be infeasible. To respect the underlying incentive compatibility constraint embodied in the collateral

requirement, the level of the LTV limit Θt can be no greater than the steady-state level Θ. In log-

deviation terms, the constraint is θt ≤ 0.

To appreciate the interaction of the various constraints, first recall that the value of the borrowing

limit in deviations from steady state can be written as

D̂t =
δγd
M

(bt−1 − πt) + (1− γd)
Θηq
M

[
θt + qt + (1− ϑ) h̃t

]
.

The distance between actual debt and the borrowing limit is then

bgapt = bt − D̂t.
48The equilibrium is the result of a guess-and-verify procedure. Given a guess for the number of periods in

which the instrument constraints bind, the algorithm computes the equilibrium and checks the contemporary
slackness conditions. If these conditions are satisfied, the algorithm stops and the initial guess is a valid solution.
Otherwise, the algorithm updates the guess and iterates the procedure until convergence.
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Since the borrowing limit is occasionally binding, we require that

bgapt ≤ lnM,

and that bgapt = lnM when the borrowing limit is binding.

We can define the level of the borrowing limit that would apply when the LTV limit is at its maximal

level (and hence θt = 0) as

D̂maxt ≡ δγd
M

(bt−1 − πt) + (1− γd)
Θηq
M

[
qt + (1− ϑ) h̃t

]
.

The corresponding gap between debt and this value of the borrowing limit is

bgapmaxt = bt − D̂maxt .

The variable bgapmaxt is the ‘maximal debt gap’. The feasibility constraint θt ≤ 0 implies that Dmaxt ≥ D̂t
and hence that bgapmaxt ≤ bgapt.

Notice also that, when the constraint is binding (at a feasible value of θt), we have

lnM = bt − D̂t = bt −Dmaxt − (1− γd)
Θηq
M

θt,

which implies

θt =
M

(1− γd) Θηq
(bt −Dmaxt − lnM) =

M
(1− γd) Θηq

(bgapmaxt − lnM) .

The last equation means that the constraint θt ≤ 0 requires

bgapmaxt ≤ lnM.

Several combinations of constraints may occur at any date t:

1. The collateral constraint binds with a valid LTV (i.e., lower than its steady state value)

(a) µt > 0

(b) bgapt = lnM

(c) θt < 0

2. The collateral constraint is slack

(a) µt = 0

(b) bgapt < lnM

(c) A range of θt ≤ 0 are compatible with equilibrium

3. The collateral constraint binds with the maximum LTV

(a) µt > 0

(b) bgapt = bgapmaxt = lnM

(c) θt = 0.

To allow for case 3 and impose θt ≤ 0 as an occasionally binding constraint, we first define an

‘augmented multiplier’ as

µ̂t ≡ µt − δµt
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where δµt is a ‘proxy shock’. This formulation allows us to treat the augmented multiplier µ̂t as the policy

instrument. Imposing a zero lower bound on the multiplier µ̂t ≥ 0 corresponds to imposing that µt ≥ δµt .

In this way, we can impose a time-varying and positive lower bound on the feasible µt, reflecting the

upper bound on θt.

To implement the upper bound on θt requires use to choose the correct sequence of {δµt }
T
t=1 to ensure

that θt ≤ 0. To do so we use the representation of the equilibrium given by equations (34), (35) and

(36). Our method for imposing the upper bound on θt involves finding the sequence of proxy shocks

that ensures that θt = 0 in the relevant periods when the upper bound is binding. Conditional on these

values, the equilibrium for non-policy variables x̃t and instruments rt can be computed using (34) and

(35).

Based on the observations of the properties of the constraints when θt = 0 (case 3 above), we compute

the values of the proxy shocks δµt that ensure that bgapmaxt = lnM in the relevant periods. The starting

point is a simulation in which proxy shocks are set to zero in all periods (δµt = 0, ∀t) and µ̂t ≥ 0 is

the policy instrument in the optimal policy problem, imposing in addition the ZLB on the policy rate.

The outcome of this first step is what we call the ‘initial simulation’. We denote the solution for the

non-policy variables associate with the initial simulation as
{
x̃0
t

}T
t=1

.

We can then check the initial simulation to determine whether the equilibrium is always consistent

with cases 1 and 2 detailed above. In particular, if we observe periods in which the collateral constraint

is slack, but bgapmax,0t > lnM, then the initial simulation violates the upper bound on θt, since the

LTV limit cannot be increased enough to ensure that the collateral constraint becomes slack. To enforce

this constraint, we use the proxy shocks to impose a time-varying, positive lower bound on µt. To find

the required values of the shocks, we compute their effects on bgapmaxt , since enforcing bgapmaxt ≤M is

equivalent to ensuring that the optimal policy is constrained by the upper bound on θt.

From (34), the effects of the shocks {δµt }
T
t=1 on the maximal debt gap in period 1 of the simulation

are given by

∆bgapmax1 = C

T−1∑
s=0

Ξs,x̃δ,1δ
µ
s+1, (37)

where Ξs,x̃δ,1 is the column of Ξs,x̃z̃,1 that corresponds to the proxy shock δµt and C is a matrix that

selects bgapmaxt from the vector of non-policy variables.

We can then develop a recursive scheme for building a matrix that maps the effects of δt, for t =

1, . . . , T , on to the maximal debt gap in each period. The first (block) row of the matrix follows from

expanding (37)

∆bgapmax1 = C
[

Ξ0,x̃δ,1 . . . Ξk−1,x̃δ,1 . . . ΞT−1,x̃δ,1

]
︸ ︷︷ ︸

≡ω1



δµ1
...

δµk
...

δµT


︸ ︷︷ ︸
≡δ

,

so that ωtδ denotes the effects of current and future proxy shocks on the maximal debt gap at horizon
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t. The weights ωt on current and future policy shocks at horizon t are then

ω2 =
[

0 Ξ0,x̃δ,2 . . . Ξk−2,x̃δ,2 . . . ΞT−2,x̃δ,2

]
. . .

ωk =
[

0 0 . . . Ξ0,x̃δ,k . . . ΞT−k,x̃δ,k

]
. . .

ωT =
[

0 0 . . . 0 . . . Ξ0,x̃δ,H

]
.

Equation (34) then implies that the effects of past and future proxy shocks on all non-policy variables

at horizon t are given by

Xt = Bx̃x̃,hXt−1 + ωt,

for t = 1, . . . , T and with X0 = 0. More compactly, the effect on the maximal debt gap in period t is

given by CXt, which we can write as a matrix mapping the proxy shocks δt shocks to the maximal debt

gap:

∆ =Wδ

where

∆ =



∆bgapmax1

...

∆bgapmaxk
...

∆̂bgapmaxT


, W =



CX1

...

CXk
...

CXT


Let the initial simulation for the level of the maximal debt gap be defined as

B0 =



bgapmax,01

...

bgapmax,0k
...

bgapmax,0T


.

So far we have recorded the initial simulation for the level of the maximal debt gap (B0), and the

marginal effects of the proxy shocks (δ) on the maximal debt gap (∆). These computations assume that

the shocks are applied over the entire simulation horizon (t = 1, . . . , T ) and the marginal effects of those

shocks are computed for all periods in the simulation horizon. However, the upper bound on θt may

only bind in some periods within the full simulation horizon. Let P be a j × T matrix that selects the

j periods in which the upper bound on θt is violated in the initial simulation (and therefore needs to

be enforced).49 The effects of these j shocks only on the maximal debt gap are given by WP ′Pδ, since

the post-multiplication of W by P ′ selects the relevant columns on W and pre-multiplication of δ by

P selects the relevant rows of δ. Thus, δ̃ ≡ Pδ represents the j × 1 vector of proxy shocks required to

enforce the upper bound on θt.

To compute the set of proxy shocks that will enforce the upper bound on θt requires finding δ̃ such

that

PB0 + PWP ′δ̃ = 1 lnM
49Each row of P contains a single unit entry in the relevant column corresponding to a period in which the

upper bound on θt is violated. All other elements are zero.
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where 1 is a j × 1 unit vector. The solution to this equation is

δ̃ = (PWP ′)−1 (
1 lnM−PB0

)
(38)

The solution method therefore consists of the following steps:

1. Use the algorithm in Harrison and Waldron (2021) to construct an initial simulation under jointly

optimal policy assuming:

(a) µ̂t is the macro-prudential policy instrument, subject to a lower bound of µ̂t ≥ 0;

(b) it is the monetary policy instrument, subject to a lower bound of it ≥ lnβ;

(c) the proxy shocks are zero in all periods (δµt = 0 for t = 1, . . . , T ).

2. Record the maximal debt gap in the simulation B0 and compute the matrices necessary to find

the values of the proxy shocks.

(a) Form the matrices W and δ using the solution outputs from the algorithm in Harrison and

Waldron (2021) as described above.

(b) Construct the matrix P to select the periods in which the proxy shocks should be applied to

enforce the upper bound on θt.

3. Solve for the proxy shocks using (38).

4. Apply the proxy shocks to the initial solution and re-compute the equilibrium using the algorithm

in Harrison and Waldron (2021).

The method relies on the fact, already noted above, that the solution characterized by equations

(34), (35) and (36) depends on an assumption about the periods in which the instrument bounds (33)

are binding (in our case, µ̂t ≥ 0). The solution method described here will be valid if the addition of the

proxy shocks does not change the periods in which the constraint µ̂t = 0 binds in equilibrium, which we

check is indeed the case in our applications.50

C.4 Macro-Prudential Policy in the Bust

The experiments in section 5.5.2 assume that the policy behavior during the ‘bust’ (when credit spreads

spike) differs from policy behavior during the housing boom, when credit spreads are gradually falling.

We implement these experiments under the assumption that the change in policy behavior is completely

unanticipated by agents in the economy.

Specifically, we record the outcomes from our baseline scenario (section 5.3) for periods t = 1, . . . , TB ,

where TB = 32 denotes the final period of the housing boom. We record the outcomes for the endogenous

variables in this period in the vector xTB , which we then use as the initial state vector for the simula-

tions conducted under alternative policy assumptions (namely optimal LTV limits and jointly optimal

monetary and macro-prudential policies).

50If that were not the case, an additional step could be added to the method to iterate between steps 3 and 4,
that is, solving for the proxy shock values and the equilibrium ‘constraint indicator function’ (see Harrison and
Waldron (2021) for further details).
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