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1 Introduction

In this paper, we discuss the identification of structural vector autoregressive (SVAR)
models by combining sign restrictions with information in time series that act as proxy or
external instruments for the structural shocks of interest. We argue that combining both
approaches can be useful in many situations in order to obtain more informative results and
mitigate some drawbacks that may occur when using either sign restrictions or external
instruments only. We also provide tools to formally quantify the support of overidentifying
restrictions in this framework.

Sign restrictions have been introduced by Faust (1998), Canova & De Nicoló (2002)
and Uhlig (2005) as a generalization of short- and long-run restrictions on the effect of
structural shocks. In their most common form, they are imposed on contemporaneous or
higher horizon structural impulse responses. More broadly, they have been exploited to
bound other structural parameters, e.g. elasticities or variance decompositions. Given that
sign restrictions imply set-identification, an important practical problem is that the set of
admissible models is often wide, and therefore structural analysis not very informative.

Introduced by Stock & Watson (2012) and Mertens & Ravn (2012), the use of external
instrumental variables (IV) (or proxy variables) provides another popular way to achieve
identification.1 While the external IV approach is conceptually appealing, the exogeneity of
instruments is questionable in many applications (see e.g. the discussion in Ramey (2016)
on the narrative measures of monetary policy shocks). Furthermore, even a proxy variable
that is credibly exogenous may be weak, complicating reliable inference (Montiel Olea et al.
2021).

In this paper, we contribute to the literature by discussing how to combine the proxy
variable approach with sign restrictions. We discuss two interesting cases which differ in the
underlying assumption for the external variables. In the first, we assume the availability of
credibly exogenous instruments. In this case, sign restrictions can serve two purposes. On
the one hand, they may be useful to identify additional shocks from the group of shocks that
are orthogonal to those identified by IVs. On the other hand, sign restrictions can be used
in addition to the IV conditions such that they are informative with respect to the shocks
for which instruments are available. This can be useful to disentangle multiple shocks to
be identified by IV, or simply to obtain a more informative picture in finite samples.

In our second setting, we assume the availability of ‘plausibly exogenous’ proxies. Fol-
lowing the terminology of Conley et al. (2012), these are external variables which may be
related to the structural shock of interest, but are not credibly exogenous. As in the mi-
croeconometric literature, we propose to use inequality restrictions to bound endogeneity.
In our context, such bounds arise naturally as sign restrictions on the parameters that re-
late the structural shocks with the external variable, including restrictions on correlations
and variance decompositions of the instrument. Furthermore, they can easily be combined
with conventional sign restrictions on the responses of variables to achieve a reduced set of
admissible models.

1Many interesting papers have successfully exploited this identification strategy, including Gertler &
Karadi (2015), Gerko & Rey (2017), Mertens & Montiel Olea (2018), Lakdawala (2019), Känzig (2021)
and Peersman (2020).
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To conduct inference, we rely on a unified econometric framework, a Bayesian SVAR
model augmented by equations for the proxy variables. In our baseline setting, we formu-
late independent priors on the reduced form parameters and the structural impact matrix
of a B-model type SVAR, i.e. we use a model where the proxy-augmented reduced form
errors are a linear function of the structural shocks and a measurement error.2 We summa-
rize the posterior distribution of the structural parameters by Markov Chain Monte Carlo
(MCMC) methods. In order to sample from the conditional distribution of the structural
parameters, we implement a Metropolis Hastings algorithm that makes use of the efficient
importance distribution developed in Arias et al. (2018). By combining the different types
of restrictions discussed in this paper, the model may be overidentified. For these situ-
ations, we describe Bayes factors as a formal statistical tool to quantify the support of
overidentifying restrictions.

Related Literature

Our paper is related to an emerging literature that has discussed some form of combin-
ing sign restrictions with external instruments specifically, or non-model information more
broadly. Related to our first setting are papers by Cesa-Bianchi & Sokol (2017), Jarociński
& Karadi (2020), and Arias et al. (2021) who combine instrumental variables with sign re-
strictions to either identify additional shocks unrelated to the instrument, or to disentangle
multiple shocks to be identified by IV. Related to those papers, we highlight the benefits
from imposing overidentifying sign restrictions and provide methodology on how these can
be tested via Bayes factors.

Our second setting is closely related to the microeconometric literature exploiting plausi-
bly exogenous instruments. Here, set-identified simultaneous equation models are obtained
by replacing exogeneity constraints with upper bounds on the degree of endogeneity (Nevo
& Rosen 2012, Conley et al. 2012). In parallel work to ours, Ludvigson et al. (2020) also
translate this idea to SVAR models, introducing ‘external inequality constraints’. Effec-
tively, this entails discarding models in which the shock of interest is not or only loosely
correlated with the proxy variables.3 Our paper is more general with respect to impor-
tant modeling aspects. For instance, we also discuss constraints on variance contributions
and, in addition to threshold constraints, introduce several ranking restrictions that do
not require input by the researcher. Furthermore, we put special emphasis on restrictions
that are invariant under rotation of shocks unrelated to the external variables, allowing
researchers to work with partially identified models.

Methodologically, our paper relates to recent advances in Bayesian inference for SVARs
identified by external instruments (Caldara & Herbst 2019, Drautzburg 2020, Arias et al.
2021, Giacomini et al. 2021). Our paper complements this literature by considering in-
ference in an augmented B-model type proxy SVAR. There are several reasons why we
choose this model representation. First, the B-model is very popular among researchers

2The basic structure of our proxy SVAR is of the same form as the one used in Angelini & Fanelli
(2019). As explained in Section 2, this setup is labeled as a B-model SVAR in some parts of the literature
(see e.g. Lütkepohl (2005, Chapter 9)).

3See also Uhrin & Herwartz (2016) for a similar idea.
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working with sign restrictions (see Bruns & Piffer (2019) for a survey). Economic theory is
often informative about the impact impulse response functions to a certain shock which are
effectively elements in the B-matrix.4 Second, specifying a proxy VAR model in form of
an augmented B-model implies a very natural measurement error equation for the instru-
ments mt given by mt = Φεt + ηt, where εt are structural shocks and ηt is a measurement
error. As discussed in Mertens & Ravn (2013), IV restrictions correspond to simple ex-
clusion restrictions on Φ. We show that under the conjugate prior for the B-model, both
conditional prior and posterior of Φ are matrix variate normal. As we discuss in the paper,
this result facilitates testing exclusion restrictions on Φ via Savage Dickey Density ratios
(Dickey 1971). In our framework, we make use of this result to test IV validity within a
sign-identified model. Finally, in our paper we consider independent prior distributions on
the reduced form autoregressive coefficients, which allows to impose a wider spectrum of
prior information including asymmetric priors across equations.

Our paper is also related to Nguyen (2019), who introduces identifying information from
external instruments into a set-identified monetary policy model (Baumeister & Hamilton
2018). In a second step, Bayes factors are used to formally assess the validity of each
instrument. This approach is similar to what we suggest in our first setting, but there
are important differences. First, his approach relies on including external instruments as
exogenous regressors into the VAR model of Baumeister & Hamilton (2015), which requires
explicit formulation of prior distributions on structural parameters in B−1. In situations
where such prior formulations are difficult, our conjugate prior framework is easier to use.
Furthermore, as we show, the Bayes factors under the conjugate prior are not sensitive to
rotations of those shocks unrelated to the external variables, allowing researchers to use
our method within partially identified models.

Structure of the paper

Section 2 introduces the econometric modeling framework, discusses identifying restrictions,
Bayesian inference as well as the computation of Bayes factors. Section 3 illustrates the
suggested methods in applications to oil market shocks and US monetary policy shocks.
Section 4 summarizes and concludes.

2 Methodology

2.1 Augmented SVAR model

We consider a B-model type SVAR model (see e.g. (Lütkepohl 2005, Section 9.1)) given by

yt = ν +

p∑
i=1

Aiyt−i +Bεt, εt ∼ (0, In), (2.1)

4Mostly, those restrictions take the form of dogmatic sign or exclusion restrictions, but within our
approach they could also be spelled out in forms of more general prior distributions as suggested in
Baumeister & Hamilton (2015).
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where yt = (y1t, . . . , ynt)
′ is a n × 1 vector of endogenous time series, ν is a n × 1 vector

of intercepts, and Ai, i = 1, . . . , p are n × n matrices of autoregressive coefficients. The
dynamics of the system is assumed to be driven by n structural shocks εt, where we assume
that the elements of εt are orthogonal and are normalized to have unit variances. The n×n
matrix B is the contemporaneous impact matrix and reflects the immediate responses
of the variables yt to the structural shocks εt. We assume stability of the VAR, which
implies that the SVAR(p) has a MA(∞) representation given by yt = µy+

∑∞
j=0 ΞjBεt−j =

µy +
∑∞

j=0Θjεt−j, where µy = E(yt) and the n × n coefficient matrices Θj = ΞjB, are
the structural impulse response functions (IRFs). The reduced form MA(∞) matrices Ξj

can be computed recursively from Ξj =
∑j

i=1 Ξj−iAi with Ξ0 = In and Ai = 0 for i > p.
Without additional restrictions this model is not identified. Therefore, restrictions must be
imposed on the structural impact matrix B in order to pin down a meaningful structural
model.

In this paper, we focus on identification by combining sign restrictions with information
in external variables. Let mt = (m1t, . . . ,mkt)

′ be a k × 1 vector of external variables
designed to provide identifying information about a subset of k < n structural shocks. Our
econometric methods are based on augmenting the SVAR given in (2.1) by equations for
mt:(

yt
mt

)
︸ ︷︷ ︸
ỹt

=

(
ν
νm

)
︸ ︷︷ ︸
ν̃

+

p∑
i=1

(
Ai 0n×k

Γ1i Γ2i

)
︸ ︷︷ ︸

Ãi

(
yt−i

mt−i

)
︸ ︷︷ ︸
ỹt−i

+

(
B 0n×k

Φ Σ
1/2
η

)
︸ ︷︷ ︸

B̃

(
εt
ηt

)
︸ ︷︷ ︸
ε̃t

,

(
εt
ηt

)
∼ (0, In+k).

(2.2)
As noted in Mertens & Ravn (2012), the additional equations have an intuitive measurement
error interpretation. The k variables mt are modeled as a linear function of lagged values
of ỹt, the structural errors εt, plus a zero mean measurement error ηt, which is assumed to
be orthogonal to the structural shocks εt, i.e. ηt ⊥ εt. Γ1i, Γ2i and Φ are k × n coefficient
matrices. Corresponding n× k blocks of zeros in the upper right parts of Ãi and B̃ ensure
that mt and the measurement error ηt are external to the model and have no implications
for the dynamics of yt. We also assume that B̃ has full rank, rk(B̃) = n + k, throughout
the paper. Usually, proxy variables are designed to be unpredictable by lagged values of
yt and mt, and do only contain contemporaneous information about εt. In this case, one
can set Γ1i = Γ2i = 0, and the model shares the more natural representation introduced
in Mertens & Ravn (2012). To keep notation simple, for the remainder of this section, we
assume Γ1i = Γ2i = 0 holds, implying that the model reduces to

yt = ν +

p∑
i=1

Aiyt−i +Bεt, (2.3)

mt = νm + Φεt + Σ1/2
η ηt. (2.4)

Without any further restrictions, the augmented SVAR model is only identified up to
orthogonal rotations of the form B̄ = B̃Q, where the rotation matrix Q = diag(Q1, Q2),
Q1Q

′
1 = In and Q2Q

′
2 = Ik. Q has a block structure that reflects the fact that the
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measurement error ηt is assumed to be orthogonal to the dynamics in yt, implying a n ×
k block of zeros in the upper right part of B̃. Through restrictions on Φ, identifying
information can be imposed to pin down values of B or equivalently, to narrow the set of
rotation matrices Q1.

At this point, we highlight recent work of Noh (2017) and Plagborg-Møller & Wolf
(2021b) who discuss IV identification of IRFs, relaxing the assumption that εt is recover-
able from lagged and contemporaneous values of yt (invertibility). Within equation (2.2),
this could be implemented by allowing for unrestricted lead-lag dynamics between instru-
ment and endogenous variables, and computation of IRFs via a Cholesky decomposition
for (mt, y

′
t)

′ with mt ordered first. However, without the invertibility assumption, only
measurement error contaminated shocks can be identified, complicating the identification
of variance decompositions even under instrument exogeneity (Plagborg-Møller & Wolf
2021a). Throughout this paper, we often rely on the ability to explicitly take out variation
in the instrument that is due to measurement error. Therefore, we assume invertibility in
the following.

2.2 Sign and instrumental variables restrictions

We first discuss combining sign restrictions with instrumental variables (IV), assuming that
mt provides valid exogenous variation. For this purpose, partition the structural shocks εt
and the matrix Φ as:

εt = [ ε′1t
1×(n−k)

: ε′2t
1×k

]′ and Φ = [ ϕ1
k×(n−k)

: ϕ2
k×k

]. (2.5)

Without loss of generality, assume that out of all n structural shocks, the researcher iden-
tifies the last k shocks (ε2t) using k instrumental variables mt. In our model, E(mtε

′
t) = Φ

and using the partitioning in (2.5), we get

[E(mtε
′
1t) E(mtε

′
2t)] = [ϕ1 : ϕ2].

The assumption that mt are valid instruments for ε2t, implies that mt is correlated with ε2t
but uncorrelated with all other shocks in the system, that is E(mtε

′
1t) = 0. Consequently,

the IV conditions imply
ϕ1 = 0k×n−k, (2.6)

and
ϕ2 ̸= 0, rk(ϕ2) = k, (2.7)

where (2.6) and (2.7) are the exogeneity and relevance conditions, respectively. If k = 1,
the scalar shock of interest (ε2t) is point identified by the external instrument conditions,
while for any k > 1, restrictions (2.7) and (2.6) only partition the structural shocks into
shocks ε2t which correlate with the instruments, and shocks ε1t assumed to be orthogonal to
the instruments. Therefore, when k > 1 additional restrictions are necessary to disentangle
the effects of each subcomponent of ε2t.

When instrument restrictions are valid, we see two potentially useful ways to introduce

5



sign restrictions. On the one hand, they can be used to identify additional shocks within
ε1t, the shocks orthogonal to the instrument. For example, in one of our empirical applica-
tions, we use an IV to identify a supply shock while different demand shocks are identified
using sign restrictions on impact IRFs. Within our unified framework, all shocks identified
by either sign restrictions or IV restrictions are guaranteed to be mutually orthogonal.
Alternatively, sign restrictions may be imposed on ε2t, which are the shocks identified by
external instruments. This may be useful for two reasons. First, if k > 1, sign restrictions
can be imposed to further disentangle each subcomponent of ε2t.

5 Second, sign restrictions
can act as an additional piece of information for shocks that are point-identified by IV.
Such information can be particularly valuable when the external variables are only weakly
informative. For example, within our oil market application (Section 3.1), we combine clas-
sical impact sign restrictions with IV restriction to identify the supply shock. Also, Bruns
& Piffer (2021) use sign restrictions on the top of IV restrictions within a non-linear VAR.
Additional restrictions on ε2t are potentially overidentifying and may be checked against
the data. In our framework, this can be done in form of Bayes factors which we will discuss
in Section 2.5.

2.3 Sign restrictions and plausibly exogenous instruments

There may be situations where researchers have doubts regarding the exogeneity of their
external instruments. Therefore, we discuss how proxy variables that are not exogenous
may still be useful for identification. In reference to the microeconometric literature, we
adopt the terminology and call these proxy variables ‘plausibly exogenous’ (cf. Conley et al.
(2012)). Instead of instrument exogeneity, weaker inequality restrictions are suggested to
bound the relation between structural shocks and proxy variables.

For ease of exposition, we discuss a situation where the goal is to identify a single shock,
say ε1t or equivalently B1, the first column of the structural impact matrix. Furthermore,
assume that we have a scalar proxy variable mt, which is only ‘plausibly exogenous’ for ε1t
such that the approach in Section 2.2 cannot be used in a credible way. In the following,
we suggest various restrictions that bound the relation between the proxy variable mt, the
structural shock of interest ε1t and all other shocks ε2t. In particular, we discuss constraints
on correlations and variance contributions, and further classify these into threshold and
ranking restrictions as explained below.

Correlation constraints

For k = 1, the measurement error equation is given by:

mt = νm + ϕεt + σηηt, ηt ∼ (0, 1),

5For example, Piffer & Podstawski (2017) use sign restrictions on ϕ2 in the situation that k = 2, while
Bertsche (2019) imposes restrictions on the impact matrix B2 directly.
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where ϕ is a 1× n vector and ση a scalar. Therefore, within the proxy-augmented SVAR,
the correlation between the ith shock and the instrument is:

ρi := Corr(mt, εit) =
E(mtεit)√
Var(mt)

=
ϕi√

ϕϕ′ + σ2
η

∈ (−1, 1).

A threshold restriction of the form ρ1 > c1 can be used (see also Ludvigson et al. 2020).
Effectively, this retains all models where the correlation between mt and the structural
shock of interest ε1t exceeds a threshold c1. A special case is obtained for c1 = 0, expressing
the belief that the external variable mt is at least positively correlated with the structural
shock it has been designed for. The larger c1, the more models are ruled out from the set
of admissible SVARs. The threshold value c1 needs to be set by the researcher. However,
in our view, a particular choice is often difficult to justify in practice.

Instead of choosing c1, one could employ a ranking restriction of the form ρ1 > ρj, j =
2, . . . , n. Such a restriction ensures that the identified set only includes models where the
shock of interest ε1t shows a larger correlation with the proxy mt than any other shock
in the system. One drawback with this ranking restriction on the correlations is that the
results may not be invariant to the identification and normalization of the shocks unrelated
to the instrument (ε2t). For example, in a bivariate model where Corr(mt, ε1t) = 0.1 and
Corr(mt, ε2t) = −0.2 this restriction would be satisfied. However, a simple re-normalization
of the sign to ε̃2t = −ε2t yields the opposite conclusion. This problem can be addressed by
considering variance contributions instead, which we discuss in in the following.

Variance contribution constraints

Since the elements in εt are orthogonal by construction, the share of variance ωi in mt

explained by the ith structural shock is given by the squared correlation:

ωi =
ϕ2
i

ϕϕ′ + σ2
η

∈ (0, 1),

and one could use a threshold constraint of form ω1 > c2 for some c2 ∈ (0, 1). Thus, one
would only retain models for which the shock of interest ε1t explains at least c2 · 100% of
the variation in the instrument. However, the extent to which mt reflects the measurement
error is not known a priori, which makes it difficult to set c2 in practice.

To alleviate this problem, it might be useful to consider the statistic

ω∗
i =

ϕ2
i

ϕϕ′ ∈ (0, 1),

which gives the contribution of the ith structural shock to Var(mt − ηt), the variance of
the proxy net of measurement error. Choosing the value c∗2 ∈ (0, 1) for the restriction
ω∗
1 > c∗2 is easier as (1− c∗2) carries the convenient interpretation of the maximum degree of

endogeneity one is willing to allow for. As c∗2 approaches unity, one increasingly excludes
endogenous variation in mt with the limiting case of c∗2 = 1 effectively imposing the IV
restriction.
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Alternatively, one could also use the ranking constraint ω1 >
∑n

j=2 ωj, i.e. one would
only keep models for which the identified shock of interest ε1t explains more of the variation
in mt than all remaining shocks in ε2t together. Note that using ω∗

1 >
∑n

j=2 ω
∗
j would give

identical results and that this ranking restriction is a special case of the threshold constraint
above with c∗2 = 0.5. Instead, one may think of imposing the ranking constraint ω1 > ωj, j =
2, . . . , n. Here, one keeps only models in which the identified shock of interest ε1t explains
more of the variation in mt than any other shock in ε2t. However, this restriction is not
invariant to rotations of ε2t and hence requires their explicit identification to be operational.
In contrast, using ω1 >

∑n
j=2 ωj is invariant to such rotations. To see this, define rotated

shocks ε̄2t = Q′
2ε2t with corresponding measurement error regression coefficients ϕ̄2 = ϕ2Q2

where Q2Q
′
2 = In−1. Then, it holds that:

n∑
j=2

ωj =
ϕ2ϕ

′
2

ϕ2
1 + ϕ2ϕ′

2 + σ2
η

=
ϕ̄2ϕ̄

′
2

ϕ2
1 + ϕ̄2ϕ̄′

2 + σ2
η

.

Note that similar manipulations can be used to show that ω1 > c2 and ω∗
1 > c∗2 are also

invariant to the identification of ε2t and hence suitable for partially identified models.

Practical considerations

In practice, applied researchers need to choose one particular way of exploiting information
in plausibly exogenous proxy variables from the menu above. As usual in SVARs, this
choice needs to be made by the researcher against the background of the particular appli-
cation. For instance, in some applications, researchers may have a good understanding of
reasonable values for threshold values. If no such information is available, then researchers
may revert to methods that rely on a simple ranking. Furthermore, we recommend that in
partially identified models, one should only consider restrictions that are invariant to the
identification of ε2t.

Some researchers may be reluctant to select a single threshold or ranking condition. In
this case, it might be attractive to formulate a more general prior belief on the amount of
endogeneity in the spirit of Baumeister & Hamilton (2015). To give an example, one can
use a Beta prior on ω∗

1 ∼ Beta(α, β) and tune α and β to the particular proxy variable.
For instance, setting α = 5 and β = 1 yields a density that peaks at ω∗

1 = 1, implying
the modal prior belief that mt is a valid instrument. Also, for those values, most of the
prior mass would lie above 0.5, reflecting a strong belief that most of the variation in mt

(unrelated to measurement error) should be driven by the shock of interest. The algorithm
developed in this paper is general enough to handle such prior distributions.

We also highlight that any of the restrictions outlined above can be adapted to a set-
ting with multiple shocks and instruments, and can be combined with conventional sign
restrictions on structural parameters of the model. As we demonstrate in our empirical
applications (Section 3.2), a combination with conventional sign restrictions can be a pow-
erful identification strategy if the latter alone are not strong enough to yield informative
results.

Finally, the possibility to exploit identification of partially endogenous instruments fa-
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cilitates the construction of such variables considerably. Among those, one could consider
qualitative indicators for the sign of given shocks at a certain date, which are often easy
to construct (see Plagborg-Møller & Wolf (2021b, Appendix B.3) and Boer & Lütkepohl
(2021)). Coupled with restrictions discussed in this section, just a few non-zero elements
in mt might help to considerably narrow down the set of admissible models without the
need to impose full exogeneity. Similarly, one may construct a proxy mt, which is either
0 or the prediction error of a variable of interest. In a second step, one may then impose
that the structural shock of interest is the main driver of these selected prediction errors.
In fact, such an approach would be closely related to narrative sign restrictions suggested
in Antoĺın-Dı́az & Rubio-Ramı́rez (2018).6

2.4 Bayesian inference

In the following, we discuss Bayesian inference for the augmented B-model type SVAR
subject to the restrictions discussed previously. Let Ã = [ν̃, Ã1, . . . , Ãp], Ỹ = [ỹ1, . . . , ỹT ]

′

and X = [x1, . . . , xT ]
′ where xt = [1, ỹ′t−1, . . . , ỹ

′
t−p]

′. We work with a standard Gaussian
likelihood. Given known presample values ỹ0, ỹ−1, . . . , ỹ−p+1, the density is:

p(Ỹ |Ã, B̃) = (2π)−
(n+k)T

2 |B̃B̃′|−
T
2 exp

(
−1

2
tr(B̃−1′B̃−1(Ỹ −XÃ)(Ỹ −XÃ)′)

)
. (2.8)

Given that the Gaussian likelihood is fully characterized by the first two moments, it is
invariant to certain orthogonal rotations of B̃. That is, if no exogeneity restrictions are
imposed, the same likelihood value is obtained for any alternative model B̃∗ = B̃Q with
Q = diag(Q1, Q2) (see Section 2.1) as long as the sign- and IV restrictions remain satisfied.

Regarding the prior, we specify independent distributions for the autoregressive coeffi-
cients and the structural impact matrix. With respect to the first, denote by α the vec-
torized non-zero elements in Ã. Then, we assume a Gaussian prior given by p(α;α0, Vα) ∼
N (α0, Vα). While this choice allows the user to pick from a wide range of priors developed
for multivariate regression analysis, normality implies conditional conjugacy and hence en-
sures straightforward treatment within Markov Chain Monte Carlo (MCMC) methods. As
opposed to other Bayesian proxy SVARs considered in Caldara & Herbst (2019) and Arias
et al. (2021), we consider an independent prior for the reduced form parameters rather
than a fully conjugate prior for the structural parameters. This is motivated by the fact
that in a VAR setting, informative priors are typically spelled out for the reduced form
parameters. Furthermore, assuming prior independence has the benefit that it allows for
a wider spectrum of priors which can be asymmetric across equations. These include the
original Minnesota prior of Litterman (1986) and various popular hierarchical shrinkage
priors surveyed in Koop et al. (2010). This effectively allows us to employ dogmatic exclu-
sion restrictions imposed on Ã which we employ to ensure that the external variables do
not influence the dynamics of the endogenous variables.

6We are grateful to an anonymous referee for pointing out this possibility.
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For the structural impact matrix B̃, we consider a conjugate prior which takes the form

p(B̃; v0, S0) ∝ | det(B̃)|−(v0+n+k) exp

(
−1

2
tr

(
S0

(
B̃B̃′

)−1
))

. (2.9)

Akin to the likelihood, the conjugate prior implies that all B-models satisfying the restric-
tions discussed in this paper obtain the same prior density value. This guarantees that the
researcher does not impose unintentional identifying information beyond the restrictions
considered in this paper. Furthermore, the prior hyperparameters are fairly easy to choose,
e.g. by a training sample. Specifically, v0 and S0 can be thought of as degrees of freedom
and a scale matrix from an inverse Wishart prior specified on the augmented covariance
matrix Σ̃ = B̃B̃′.

In Appendix A, we prove that the prior specified in (2.9) can be further split into densities

for each of the three underlying parameter blocks of B̃, that is B, Σ
1/2
η and Φ. Specifically,

we can show that p(B̃; v0, S0) ∝ p(B; v0, S0)p(Σ
1/2
η ; v0, S0)p(Φ|B,Σ1/2

η ; v0, S0), where:

p(B; v0, S0) ∝ | det(B)|−(v0+n) exp

(
−1

2
tr
(
S11 (BB

′)
−1
))

,

p(Σ1/2
η ; v0, S0) ∝ |Ση|−(v0+k)/2 exp

(
−1

2
tr
(
S22·1Σ

−1
η

))
,

p(Φ|B,Σ1/2
η ; v0, S0) ∼ MN (S21S

−1
11 B,Ση, B

′S−1
11 B).

Here, Ση = Σ
1/2
η (Σ

1/2
η )

′
, S0 =

(
S11 S12

S21 S22

)
, S22·1 = S22−S21S

−1
11 S12, andX ∼ MN (M,U, V )

denotes the matrix normal distribution with mean E[X] =M and variance Var[vec(X)] =
V ⊗ U .

There are several useful implications from this result. First, conditional normality of Φ
sets the cornerstone for simple Bayes factor computation. As we will discuss in Section 2.5,
it allows the use of Savage Dickey Density Ratios to test IV exclusion restrictions. Second,
the result gives insights on how the prior relates to others used in the Bayesian proxy SVAR
literature. Specifically, (for p = 0) using a change of variable technique with Ã = B̃−1 yields
the Jacobian of transformation | det(Ã)|−2(n+k) and the prior density of Arias et al. (2018):

p(Ã; v0, S0) ∝ | det(Ã)|v0−n−k exp
(
−1

2
tr
(
Ã′S0Ã

))
. Furthermore, a prior as in Caldara &

Herbst (2019) can be obtained by applying the change of variables to the upper left block
A = B−1, and using an independent normal prior for Φ. However, prior dependence on B
(or A), is needed if a researcher would like to ensure that the prior is not unintentionally
informative about the set of admissible models. Third, the result opens the door to easily
switch to a prior which is uniform for the A-model, if a researcher prefers doing so. Using
a change of variable technique with {B,Φ,Ση} to {A = B−1,Φ,Ση} yields the correspond-

ing prior p(A,Σ
1/2
η ,Φ;S0, v0) ∝ p(A; v0, S0)p(Σ

1/2
η ; v0, S0)p(Φ|A,Σ1/2

η ; v0, S0) with alternated

densities given by p(A; v0, S0) ∝ | det(A)|v0−n exp
(
−1

2
tr (A′S0A)

)
and p(Φ|A,Σ1/2

η ; v0, S0) ∼
MN (S21S

−1
11 A

−1,Ση,A
−1′S−1

11 A
−1). For the re-parameterized SVAR, the prior then resem-

bles that of Arias et al. (2018). Note that the methodology considered in this paper, in-
cluding the posterior sampler, are general enough to handle other priors. If the researcher
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would like to impose additional identifying information in terms of a density function that
weights certain structural parameters a priori, the prior of equation (2.9) can be replaced or
simply amended accordingly. However, we stress that one would need to defend these very
carefully as they become informative about the set of otherwise observationally equivalent
parameters.7

For posterior inference, Markov Chain Monte Carlo (MCMC) methods are used and
we refer the reader to Appendix B for a detailed exposition. Essentially, the algorithm
iteratively draws from the conditional posteriors p(Ã|B̃, Ỹ ) and p(B̃|Ã, Ỹ ). While the
conditional posterior of Ã is Gaussian and hence simple to draw from, that of B̃ is unknown.
Here, we rely on an Accept Reject Metropolis Hastings (AR-MH) algorithm that is based
on the proposal distribution suggested in Arias et al. (2018). The proposal is able to draw
from the conditional distribution of B̃ up to a small approximation error arising from the
change of variables applied during the algorithm. Given that the approximation error tends
to have very small variance, the MH step has a very high acceptance rate. For more details
regarding MCMC efficiency, we refer to Appendix B.2.

Given the proposal distribution, we note that the same constraints apply as in Arias
et al. (2018). Specifically, the algorithm is unable to handle overidentifying exclusion
restrictions. This can become a problem if a researcher would like to identify a single shock
with multiple instruments, or if multiple instruments are assumed to be correlated with
just one structural shock. In this case, depending on the identifying restrictions, one would
need a different algorithm (e.g. that proposed in Caldara & Herbst (2019)). We note that
for the applications considered in this paper the caveat is of no concern.

2.5 Bayes factors

When combining sign- and IV restrictions, it can be useful to have a statistical tool to check
overidentifying restrictions against the data. Therefore, we discuss using Bayes factors as
a means to quantify the statistical support of a given overidentifying restriction.8

Consider the availability of two models M1 and M0, where M0 is the more restrictive
model subject to overidentifying constraints. Then, we define the Bayes factor as BF10 =
p(Ỹ |M1)/p(Ỹ |M0), where p(Ỹ |M1) and p(Ỹ |M0) are the probabilities that the data Ỹ has
been generated according to modelsM1 andM0, respectively. Under equal prior probability
of M1 and M0, the Bayes factor has the natural interpretation of posterior odds of M1 over
M0.

When conducting tests of overidentifying restrictions based on a combination of sign-
and IV restrictions, the first step is to define which restrictions are assumed to be more
credible to begin with.9 This yields two possible scenarios. In the first, a researcher is
convinced of the validity of his external instrument (M1) and would like to test additional
sign restrictions as overidentifying (M0). For example, in Section 3.1, we identify an oil

7For an application with such an identification strategy, see Appendix F which revisits our first empirical
analysis using the oil market model of Baumeister & Hamilton (2019).

8As a tool to test identifying restrictions, Bayes factors have been used increasingly in SVARs, see e.g.
Woźniak & Droumaguet (2015), Lütkepohl & Woźniak (2020), Lanne & Luoto (2020) and Nguyen (2019).

9We thank an anonymous referee for pointing out this important distinction.
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market model via a combination of impact sign restrictions and IV constraints (M1). In a
second step, we test different types of elasticity restrictions as overidentifying (M0).

In the second scenario, a researcher starts the analysis with a set of sign restrictions (M1)
and would like to test if certain additional IV restrictions are supported by the data (M0).
Here, one may consider both the exogeneity and relevance conditions. In our empirical
application of Section 3.2, we demonstrate this case in testing the exogeneity of a narrative
monetary policy measure (M0) within a sign-restricted SVAR (M1).

Testing sign restrictions

We start by testing sign restrictions as overidentifying. In the following, we show how the
Bayes factors can be computed in a straightforward way from prior and posterior draws of
the less restrictive model. We assume that the prior of the overidentified model M0 can be
factored as:

p(θ|M0) =
p0(θ)p(θ|M1)∫
p0(θ)p(θ|M1)dθ

=
p0(θ)p(θ|M1)

cθ
. (2.10)

Therefore, p0(θ) represents any additional identifying information imposed on the top of
those assumed by the less restrictive modelM1. For the overidentifying sign restrictions that
we aim to test, p0(θ) simply takes the form of a uniform distribution over the restricted
parameters space S ∈ Θ, that is p0(θ) ∝ 1(θ ∈ S). But we note that more generally,
p0(θ) can also be a probability density function designed to provide additional identifying
information via a priori weighting of structural parameters (Baumeister & Hamilton 2015).

For a prior of the form (2.10), the posterior can be factored in an equivalent way:

p(θ|M0, Ỹ ) ∝ p0(θ)p(θ|M1)p(Ỹ |θ)
∝ p0(θ)p(θ|M1, Ỹ ),

such that

p(θ|M0, Ỹ ) =
p0(θ)p(θ|M1, Ỹ )∫
p0(θ)p(θ|M1, Ỹ )dθ

=
p0(θ)p(θ|M1, Ỹ )

cθ|Ỹ
(2.11)

Under prior (2.10), the Bayes factor can be simplified considerably. First, note that using
Bayes theorem and the fact that the models have the same parameters θ, we find:

p(Ỹ |M1)

p(Ỹ |M0)
=
p(Ỹ |θ)p(θ|M1)/p(θ|M1, Ỹ )

p(Ỹ |θ)p(θ|M0)/p(θ|M0, Ỹ )
=
p(θ|M1)p(θ|M0, Ỹ )

p(θ|M0)p(θ|M1, Ỹ )
.

Using expressions of equation (2.10) and (2.11) for prior and posterior of M0 respectively,
the Bayes factor simplifies to:

BF10 =
p(θ|M1)p(θ|Ỹ ,M0)

p(θ|M0)p(θ|Ỹ ,M1)
=
p(θ|M1)

(
p(θ|M1, Ỹ )p2(θ)c

−1

θ|Ỹ

)
(
p(θ|M1)p2(θ)c

−1
θ

)
p(θ|Ỹ ,M1)

=
cθ
cθ|Ỹ

.

Furthermore, cθ|Ỹ and cθ can be expressed as expectations of p0(θ) over prior and posterior
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distribution of the less restricted model respectively:

BF10 =
cθ
cθ|Ỹ

=

∫
p0(θ)p(θ|M1)dθ∫
p0(θ)p(θ|M1, Ỹ )dθ

=
Eθ[p0(θ)]

Eθ|Ỹ [p0(θ)]
. (2.12)

This representation makes it straightforward to estimate BF10 using draws from the prior
and posterior of the less restrictive model M1. In particular, one may use the simulation
consistent averages Êθ|Ỹ [p0(θ)] = 1/J1

∑J1
j=1 p0(θ

(j)) for θ(j) ∼ p(θ|M1, Ỹ ) and Êθ[p0(θ)] =

1/J2
∑J2

i=1 p0(θ
i) for θ(i) ∼ p(θ|M1). Standard errors of the Bayes factor estimate (or

the log of it if preferred) can be easily obtained via the Batch Means method. This in-

volves using Jb subsamples of the Monte Carlo output and defining B̂F10 = J−1
b

∑Jb
j=1 BF

(j)
10

for j = 1, . . . , Jb. Then, a standard limit theorem implies that
√
Jb(B̂F10 − BF10) →

N (0,Var(B̂F10)).

Testing instrumental variables restrictions

In the second case, the researcher departs from a set of sign restrictions and would like
to test additional instrumental variable restrictions. Here, the less restrictive model is
the sign-identified SVAR (M1), and the more restrictive model relies on sign restrictions
plus the additional IV restrictions (M0). This approach is also considered in Nguyen
(2019), however, based on a different modeling framework. More broadly, the idea of
testing instrument validity has been explored by relying on heteroskedasticity instead of
sign restrictions, and using frequentist rather than Bayesian inference (Bertsche & Braun
2020, Podstawski et al. 2018).

In the following, we show how Bayes factors can be used to assess instrument validity
in our framework. As in Section 2.2, let ε2t be the shocks to be identified by an IV
approach and devide Φ = [ϕ1 : ϕ2] = [E(mtε

′
1t) : E(mtε

′
2t)]. Then, instrument irrelevance

can be tested quantifying statistical evidence against ϕ2 = 0. Furthermore, if instrument
exogeneity is of interest, the corresponding restriction to test are ϕ1 = 0. As we will
demonstrate, Bayes factors for both instrument relevance and exogeneity can be computed
in a straightforward way using Savage Dickey Density ratios (SDDR). Again, this only
requires generating draws from the prior and posterior of the less restrictive model.

To fix notation define Sr as the nr × nk selection matrix of zeros and ones such that
ϕr = Srvec(Φ) are the restricted elements in M0. Analogously, let Sf be the corresponding
(nk−nr)×nk selection matrix for the unrestricted elements of Φ, denoted as ϕf = Sfvec(Φ).
Split the parameter vector into θ = {θ−ϕr , ϕr}, where θ−ϕr = {α,B,Ση, ϕf} gathers all the
unrestricted parameters. We assume that the prior of the less restrictive model, p1(θ−ϕr , ϕr)
is given as outlined in Section 2.4. For the restricted model M0, it holds that ϕr = ϕr,0,
and we assume the following prior distribution p0(θ−ϕr):

p0(θ−ϕr) = p1(θ−ϕr |ϕr = ϕr,0). (2.13)

In words, the prior density of the restricted model is given by the prior of the unrestricted
model conditional on the exclusion restrictions. As pointed out in Jarociński & Maćkowiak
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(2017), this is a very natural approach to construct a prior for the restricted model. Specif-
ically, any researcher that starts from a model with prior p1(θ−ϕr , ϕr) and learns about the
restriction ϕr = ϕr,0, ends up with equation (2.13) after applying Bayes theorem. Further-
more, the choice of prior p0(θ−ϕr) facilitates computation of Bayes factors using the SDDR.
As shown in Verdinelli & Wasserman (1995), for all priors that satisfies (2.13), the Bayes
factor reduces to

BF10 =
p(ϕr = ϕr,0)

p(ϕr = ϕr,0|Ỹ )
, (2.14)

where p(ϕr = ϕr,0|Ỹ ) and p(ϕr = ϕr,0) are the marginal posterior and prior densities
for ϕr in the unrestricted model, evaluated at ϕr,0. While neither of the two densities are
available in closed form, we can make use of the analytical results derived in Section 2.4 and
compute them using simulation output of the unrestricted model. Specifically, a simulation
consistent estimator is given by:

B̂F 10 =
J−1
1

∑J1
i=1 p(ϕr = ϕr,0|θ(i)−ϕr

)

J−1
2

∑J2
j=1 p(ϕr = ϕr,0|Ỹ , θ(j)−ϕr

)
,

where θ
(i)
−ϕr

and θ
(j)
−ϕr

are prior and posterior draws of the unrestricted model respectively.
Obtaining p(ϕr = ϕr,0|θ−ϕr) is straightforward given conditional normality of Φ, that

is p(Φ|θ−Φ) ∼ MN (S21S
−1
11 B,Ση, B

′S−1
11 B). The only missing ingredient is to further

include ϕf into the conditioning set. Let ϕ = vec(Φ) as well as µϕ = vec(S21S
−1
11 B) and

Vϕ = (B′S−1
11 B ⊗ Ση) the moments of p(ϕ|θ−ϕ) ∼ N (µϕ, Vϕ). Exploiting standard results

on joint normality between ϕf and ϕr we obtain p(ϕr = ϕr,0|θ−ϕr) ∼ N (µϕr , Vϕr) where

µϕr = Srµϕ +
(
SrVϕS

′
f

) (
SfVϕS

′
f

)−1
(ϕf − Sfµϕ) ,

Vϕr = SrVϕS
′
r −

(
SrVϕS

′
f

) (
SfVϕS

′
f

)−1
(SfVϕS

′
r) .

The posterior ordinate p(ϕr = ϕr,0|θ−ϕr , Ỹ ) can be obtained following similar steps but
departing from the conditional posterior of Φ: p(Φ|θ−Φ, Ỹ ) ∼ MN (S̄21S̄

−1
11 B,Ση, B

′S̄−1
11 B).

Note that in this case S̄ = S0 +
(
Ỹ −XÃ

)(
Ỹ −XÃ

)′
, which follows from the conjugacy

of the prior. Alternatively, and maybe more intuitively, one can write the posterior as
the result of a standard regression formulation. Specifically, define M = [m1 : . . . : mT ],
E = [ε1 : . . . : εT ], H = [η1 : . . . : ηT ], µΦ = S21S

−1
11 B and VΦ = B′S−1

11 B. Then, our

framework implies the regression modelM = ΦE+Σ
1/2
η H. One can show that the posterior

moments of p(Φ|θ−Φ, Ỹ ) can be expressed as S̄21S̄
−1
11 B =

(
ME ′ + µΦV

−1
Φ

) (
EE ′ + V −1

Φ

)−1

and B′S̄−1
11 B =

(
EE ′ + V −1

Φ

)−1
, which are standard posteriors for multivariate regression

under a conjugate prior. This representation helps to understand the mechanics of the
Bayes factors when testing IV restrictions. Assume the posterior of the sign-identified
model implies structural shocks for which not only the shock(s) of interest ε2t are able to
predict mt. Then, the posterior ordinate will get smaller and ultimately, the Bayes factor
larger pointing towards evidence against instrument exogeneity. A similar line of argument
also holds for testing instrument relevance.
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When testing exogeneity restrictions using the methodology described in this section, an
important question is if the result depends on identifying restrictions imposed on the n−k
shocks that are unrelated to the instrument under the null hypothesis. In other words,
would the density change if we further rotate the columns in B̃ with an orthogonal matrix
which leaves ϕf unaffected but rotates ϕr? It turns out that for the special case that we
are interested in testing, that is ϕr,0 = 0, the density is unaffected by such rotations which
is comforting news for models that are only partially identified. The intuition behind
this result is that zero restrictions assessed under the null hypothesis (ϕr,0 = 0) remain
unchanged, if postmultiplied by a rotation matrix. For a formal derivation of this result,
see Appendix C.

The role of the prior

From equations (2.12) and (2.14), it becomes clear that Bayes factors depend strongly on the
prior distribution. Moreover, in set-identified models, also the posterior remains influenced
by the prior, even in large samples. The reason is that the data is not informative about
some quantities of the parameter space (Poirier 1998). Therefore, the choice of prior needs
to be explicitly defended.

One way to go about this has been proposed in Baumeister & Hamilton (2015), who
suggest to acknowledge this shortcoming and argue for spelling out informative prior distri-
butions for sign and magnitude of underlying structural parameters of A = B−1. We think
that such an approach is useful, in case such prior information is available. However, for
larger or partially identified models, it can get very difficult to formulate such prior beliefs.

In contrast, the prior considered in this paper requires just minimal inputs from the
researcher and therefore is particularly easy to choose. First, it requires setting two hyper-
parameters v0 and S0 which carry the same interpretation as prior degrees of freedom and
scale matrix of an inverse Wishart prior. The second ingredient are the sign and exclusion
constraints considered in Sections 2.2 and 2.3. In the spirit of Arias et al. (2018), our
prior then assumes that for a given correlation structure (summarized in v0 and S0), all
B-models (or A-models if preferred) satisfying the identifying restrictions are equally likely
a priori. In our view, this is a sensible prior to work with when no further information is
available to discriminate among SVAR models that satisfy the restrictions. However, note
that being uniform on the set of B- or A-models does not necessarily mean that the prior
is uninformative about other structural parameters (Baumeister & Hamilton 2015, Inoue
& Kilian 2020).

In Appendix D, we conduct two small scale simulation exercises to illustrate that Bayes
factors based on the conjugate prior are well suited for providing a statistical signal if sign-
and IV restrictions are at odds with each other. Furthermore, our simulations suggest that
fairly automatic specification for the prior parameters v0 and S0 based on training samples
works well. Finally, making reference to Kass & Raftery (1995), we give a short guide on
how applied researchers typically interpret the magnitudes of Bayes factors in Appendix E.
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3 Empirical applications

We demonstrate the usefulness of our methodology in two empirical applications. In Section
3.1, we use a combination of sign- and IV restrictions to disentangle supply from demand
shocks as drivers of oil prices. In Section 3.2, we analyze the effects of monetary policy
shocks on economic and financial variables by making use of identifying information from
a ‘plausibly exogenous’ instrument in combination with conventional sign restrictions.

3.1 The importance of oil supply shocks for driving oil prices

Since Kilian (2009) there has been increasing interest in disentangling oil price movements
into supply and demand components (see e.g. Kilian & Murphy (2012, 2014), Baumeister &
Hamilton (2019), Caldara et al. (2019), Zhou (2020), Känzig (2021), Cross et al. (2020)).
Despite the large set of papers, estimates of the relative importance of oil supply and
demand shocks as drivers of oil prices still vary widely.

A large share of the disagreement across the literature can be attributed to differences in
identification. Models identified with a tight upper bound on the elasticity of supply find
supply shocks to be unimportant drivers of oil prices. On the other hand, if a less restric-
tive formulation is used that incorporates uncertainty about the identifying assumptions
themselves, supply shocks turn out to be considerably more important.

We use the methods developed in this paper to revisit the evidence and contribute
to the debate by introducing additional identifying information into the workhorse oil
market model. Specifically, on the top of sign restrictions, we exploit the OPEC production
shortfall series of Kilian (2008) (K08 henceforth) as an external instrument for the SVAR
supply shock. Since we do not use the IV as single identification device for the supply
shock, we can be less concerned about potential weak identification that arises from using
the K08 shock as instrument (see e.g. Montiel Olea et al. (2021)). Our findings suggest
that once we incorporate the additional IV restrictions, the exact prior formulation for the
elasticity of supply becomes less important for estimates of the importance of oil supply as
driver of oil prices. Point estimates of forecast error variance contributions settle around
10%.

We identify the shocks of interest within a standard four equation VAR(13) following
recent specifications for the global oil market. We use yt = (prodt, reat, rpot, it)

′, where
prodt is the log of world oil production and reat is a measure for world economic activity,
where we choose the industrial production index of Baumeister & Hamilton (2019) (BH19
henceforth). Furthermore, rpot is the real price of oil and it are the seasonally adjusted
log of OECD crude oil inventories. For our analysis, we have recomputed Kilian’s monthly
oil supply shock series from oil production data and extended it to match our estimation
sample.10 Our sample includes monthly data from 1978M08 to 2018M11, given that pre-
1978 the K08 shock displays very little variation. We use the first five years of the data to
train a hands-off prior distribution setting v0 and S0 as to match, for each variable in the

10The extended series includes shocks related to the Libyan civil war and militia attacks during 2011 and
2013. We give a detailed description on how we have constructed the time series and a plot in Appendix
F.
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VAR, the empirical covariance between AR(2) forecast errors and the K08 shock over the
training sample (1978M10 to 1983M09). With respect to the autoregressive coefficients we
use the independent Minnesota prior centered around univariate random walks as in Koop
et al. (2010).

We follow Kilian & Murphy (2014), KM14, in identifying three out of the four shocks in
the model. This includes an oil supply shock denoted as εst , a flow demand shock εfdt and
an inventory (speculative) demand shock εidt . The fourth shock, εodt , is not identified and
meant to capture all other demand channels. Identification is achieved by (a combination
of) the following restrictions and prior distributions.

1. R1: impact sign restrictions on B as in KM14:
u∆prod
t

ureat

u
rpo
t

u∆it

 =


− + + ∗
− + − ∗
+ + + ∗
∗ ∗ + ∗




εst
εfdt
εidt
εodt

 .

2. R2: IV constraints relating the K08 series to the supply shocks: E[εstmt] ̸= 0, while
E[εfdt mt] = E[εidt mt] = E[εodt mt] = 0.

3. R3: Let η1 = B12/B32 and η2 = B13/B33 be the supply elasticities as defined in KM14.

(a) R3-HR20: η1/2 ≤ 0.04. Motivated by surveying microeconometric estimates, this
restriction was suggested in Herrera & Rangaraju (2020) and allows for slightly
larger values than the upper bound originally envisaged by KM14.

(b) R3-BH19: η1/2 ∼ t0,∞(0.1, 0.2, 3), a truncated t-density with mode at 0.1, scale pa-
rameter equal to 0.2 and 3 degrees of freedom. Note that BH19 suggest this prior
for a (single parameter) supply elasticity in their A-model. For comparability with
restriction 3a, we instead use it on η1/2. Reflecting a substantial degree of uncer-
tainty, this formulation is less restrictive than R3-HR20 and allows the possibility
for larger values a priori.

The restrictions in R2 reflect the relevance and exogeneity restrictions of the instrumental
variable approach. The two most prominent prior distributions used for the SVAR implied
supply elasticity are summarized in R3. Here, B12/B32 and B13/B33 are thought as of oil
supply elasticities, measuring the percentage increase of production in response to a one
percentage increase in the real oil price, triggered by either of the two identified demand
shocks.

We first study if the additional IV constraints are informative about either of the two
supply elasticity prior distributions (R3). For this purpose, we identify the VAR using only
the impact sign restrictions and IV constraints (R1+R2). In Panel A of Table 1, we display
quantiles of the posterior distribution of the short-run supply elasticities obtained under
such an identification strategy. 68% posterior credibility sets suggest that η2 is estimated
fairly precisely with posterior median just near the upper bound suggested in HR20, and
84% quantiles just below 0.1. However, this is not the case for the elasticity of supply
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Table 1: Posterior distribution of supply elasticities and Bayes factors for overidentifying
restrictions

Panel A: Posterior under R1 and R2

Parameter 16% 50% 84%

η1 0.031 0.115 0.370
η2 0.008 0.032 0.096

Panel B: Bayes factors testing restrictions on η1/2

Restrictions Eθ|Ỹ [p2(θ)] Eθ[p2(θ)] 2 ln B̂F10 s.e.

BH19 9.095 0.971 −4.48 0.03
HR20 0.109 0.002 −8.21 0.40

Note: Bayes factors computed as described in Section 2.5. Here, the less restrictive model is identified

using R1 and R2, while the more restrictive model additionally employs R3-HR20 or R3-BH19. In Panel

B, we have for BH19, p2(θ) : η1/2 ∼ t(0.1, 0.2, 3) while for HR20 p2(θ) : p(η1/2 ≤ 0.04) = 1 and 0 else.

measured in response to a flow demand shock (η1). Here, the 68% posterior set includes
values considered unreasonably large by parts of the literature. Hence, one might still
have the desire to use additional identifying information for the supply elasticities, directly
excluding larger values a priori (R3-HR20) or making those values less likely through a
probability density function (R3-BH19). We use the Bayes factor proposed in Section 2.5
to formally quantify the support of each approach within the model identified by R1+R2.
The log-Bayes factors in Panel B of Table 1 suggest that there is no evidence against using
either prior as additional piece of identifying information (R3-H20 and R3-BH19).11 In
fact, quite the opposite is observed. Since the likelihood of the restrictions is larger under
the posterior than under the prior, we obtain negative values suggesting evidence in favor
of using such information. In principle, we can also use these results to see which approach
obtains a stronger support by the data. Redefining the Bayes factor as support of HR20
over BH19, we obtain 2 lnBF ≈ (−8.21)−(−4.48) = −3.73, suggesting some but not strong
evidence in favor of HR20, according to the reference guidelines of Kass & Raftery (1995).
We conclude that Bayes factors suggest evidence for using additional prior information on
elasticities, although the evidence is less strong about which of two is more suitable in
practice.

Given that both elasticity priors are supported by Bayes factors, one might argue that
we are back to the very same problem faced by the literature: depending on our choice of
R3, we end up with different results. However, as we document, the trade-off becomes much
less pronounced in a model where the IV conditions provide additional information for the
elasticity of supply. In Table 2, we compare the implications of using either prior HR20
or BH19 in a model identified by only sign restrictions (Panel A) and again in a model
identified by combining the sign restrictions with IV constraints (Panel B) by computing
the contribution of identified structural shocks to the (forecast error) variance of the real

11See Appendix E for interpretation of Bayes factor magnitudes.
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Table 2: Posterior quantiles of the Forecast Error Variance Decomposition of the Real Price
of Oil

Panel A: R1 + R3

εst εadt εsdt
h = 0 h = 24 h = 0 h = 24 h = 0 h = 24

R3-HR20 0.06 0.12 0.44 0.45 0.31 0.17
(0.01,0.19) (0.04,0.27) (0.18,0.72) (0.23,0.65) (0.10,0.62) (0.05,0.38)

R3-BH19 0.18 0.18 0.31 0.28 0.21 0.09
(0.03,0.42) (0.05,0.42) (0.12,0.58) (0.12,0.51) (0.06,0.45) (0.03,0.24)

Panel B: R1+R2+R3

εst εadt εsdt
h = 0 h = 24 h = 0 h = 24 h = 0 h = 24

R3-HR20 0.06 0.11 0.50 0.51 0.37 0.14
(0.02,0.13) (0.04,0.22) (0.20,0.78) (0.30,0.70) (0.11,0.69) (0.04,0.38)

R3-BH19 0.08 0.12 0.34 0.26 0.32 0.11
(0.03,0.17) (0.05,0.25) (0.13,0.64) (0.10,0.54) (0.07,0.66) (0.04,0.35)

Note: The forecast error variance decomposition of the real oil price is computed at horizons h = 0 and

h = 24 months. Values in brackets indicate the 16% and 84% pointwise posterior credibility set. Both

HR20 and BH19 are used as information for η1/2.

price of oil. We are particularly interested in the effect of the oil supply shock (εst), where
the estimates have diverged somewhat and are subject to debate.

In line with the literature, combining sign restrictions with a tight upper bound on the
supply elasticities (R1+R3-HR20) renders supply shocks to be fairly unimportant as drivers
of oil prices. Point estimates suggest contributions of between 6% and 12% depending on
the forecast horizon. Instead, using a less restrictive formulation that allows for uncertainty
in the elasticity of supply (R1+R3-BH19) yields fairly imprecise estimates. 68% posterior
credibility sets reflect substantially higher uncertainty, including values up to 42%. This
also effects median estimates rendering supply shocks to be 2-3 times more important.

In contrast, when additionally exploiting the information from the instrument (Panel B),
estimates largely coincide no matter if we use a tight upper bound or a less restrictive prior
distribution for the supply elasticities. Point estimates for the contribution of oil supply
shocks settle at 6-8% on impact, and 11-12% at the two year horizon. The reason is that
the information in the instrument points toward a minor role of supply. By incorporating
hard identifying information, we allow the uninformative prior of BH19 to be updated to a
larger extent by the data. While the resulting identification scheme is less restrictive than
imposing an upper bound directly, it happens to point towards the same results. Note,
however, that the choice of prior still matters for the contribution of other shocks. This
makes perfect sense given that the IV restriction R2 is primarily designed to be informative
about the supply shock.
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Throughout this section, we followed Kilian & Murphy (2014) in defining η1/2 as the
short-run elasticities of oil supply. However, as highlighted in Baumeister & Hamilton
(2021), an alternative definition of the supply elasticity is given by a single parameter
within the A-model, which corresponds to the systematic reaction of oil producers to in-
creases in the oil price. In Appendix G, we show that our empirical findings are very similar
when the IV information is introduced into a model identified by a combination of exclu-
sion restrictions and prior densities for B−1, which is the original identification strategy
envisaged by BH19.

3.2 The effects of monetary policy

The effects of monetary policy shocks have been extensively studied using SVAR models
(see Ramey (2016) for a recent review of the literature). To avoid overly restrictive ex-
clusion restrictions, two very popular identification schemes have emerged in recent years.
One strand of the literature uses sign restrictions, possibly combined with zero restrictions
to identify the monetary policy shock. These restrictions are derived from economic the-
ory, such that a monetary policy tightening should be associated with an increase in the
interest rates but not in consumer prices (Uhlig 2005, Faust 1998) or that the Fed tightens
monetary policy stance in reaction to surprising increases in output and inflation (Arias
et al. 2019). Unfortunately, using set identification often leads to wide confidence inter-
vals around impulse responses such that results are typically uninformative with respect to
financial variables.

An alternative branch of the literature uses narrative or high frequency measures of
monetary policy shocks for identification. Among the most prominent measures are shock
series based on readings of Federal Open Market Committee (FOMC) minutes, cleaned by
Greenbook forecasts for output and inflation (Romer & Romer 2004, Coibion 2012) and
factors based on changes in high frequency future prices around FOMC meetings (Faust
et al. 2004, Gertler & Karadi 2015, Nakamura & Steinsson 2018). However, it is a very
difficult task to construct convincing exogenous instruments for monetary policy. With
respect to the Romer & Romer shock (henceforth R&R), the authors themselves state
that their series is only ‘relatively free of endogenous and anticipatory movement’ (Romer
& Romer 2004). To ensure against remaining endogeneity they exclude the possibility
of a contemporaneous response of the macroeconomic variables to the narrative series.
Furthermore, as demonstrated in Caldara & Herbst (2019), the FOMC responds not only
to forecasts of output and inflation, but also responds to the information in credit spreads.
This finding directly invalidates the use of the R&R residual as an external instrument to
study the effects of monetary policy on financial markets.

As laid out in Section 2.3, our methodology provides a simple framework to exploit
identifying information in proxy variables that are just ‘plausibly exogenous’, which we
will combine with conventional sign restrictions. We show that in the sign-restricted model
of Arias et al. (2019) (ACR henceforth), the Bayes factor yields formal evidence against
using the R&R shock as an IV. However, we still exploit its information to narrow down
the set of admissible models using the type of restrictions discussed in Section 2.3. In
particular, we impose the additional restriction that the monetary policy shock explains
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more variance of the narrative series than all other driving forces of the economy. This
sharpens identification of the set-identified model and leads to more informative results,
while also avoiding the potentially wrong assumption of exogeneity.

For our empirical study, we follow ACR and specify a monthly SVAR(12) model with
yt = (gdpt, deft, cpt, trt, nbrt,ffrt)

′, where gdpt is the real gross domestic product, deft is the
GDP deflator, cpt is a commodity price index, trt are total reserves, nbrt are non-borrowed
reserves, and ffrt is the federal funds rate. All variables are transformed to log times 100,
except for ffrt which is included in annualized percentages.12 With respect to the narrative
series, we usemt = rrt, the R&R narrative shock series updated by Wieland & Yang (2016).
Our sample starts in 1969M1 and ends in 2007M12 and we assume that Γ1i = Γ2i = 0,
excluding predictability of R&R by lagged values of ỹt. The first three years are used to
train an informative prior distribution, i.e. we set v0 = 36 and S0 = diag(S11, S22) where
S22 =

∑36
t=1m

2
t and S11 =

∑36
t=1 ûtû

′
t with ût being simple AR(2) forecast errors of the

training sample. Assuming prior independence between the instrument and forecast errors
is useful for our Bayes factor analysis as it ensures that the prior is centered around the
null hypothesis of instrument exogeneity (Φr,0 = 0). For the regression coefficients, we use
the same Minnesota prior considered in the first application.

To demonstrate the merits of our approach, we will compare the following identification
schemes: a pure IV approach which assumes that the R&R shock is a valid instrument
for monetary policy (R1), a combination of zero and sign restriction as considered in ACR
(R2), and a combined identification scheme that relaxes the exogeneity assumption (R3).

In the first identification scheme (R1), we treat the R&R residuals as an exogenous
instrument for the monetary policy shock (εmp

t = ε1t). Therefore the identifying restrictions
for R1 are given by E[εmp

t mt] ̸= 0 and E[εitmt] = 0, i ̸= 1, yielding the zero restrictions on
Φ discussed in Section 2.2.

In R2, we follow ACR and restrict coefficients of the monetary policy rule implicit in
the SVAR model. Rewriting the model as a simultaneous equation system, the systematic
component of monetary policy is given by:

rt = ξyu
gdp
t + ξπu

def
t + ξcpu

cp
t + ξtru

tr
t + ξnbru

nbr
t + σξε

mp
t . (3.1)

The coefficients can be backed out by ξy = −a−1
n1 a11, ξπ = −a−1

n1 a12 , ξcp = −a−1
n1 a13,

ξtr = −a−1
n1 a14, ξnbr = −a−1

n1 a15, and σξ = a−1
n1 where aij are the elements of A = B−1. We

follow ACR and impose the following combination of restrictions on equation (3.1): R2 :
{0 < ξy < 4, 0 < ξπ < 4, ξtr = 0, ξnbr = 0}, implying that the central bank systematically
increases its policy rate in response to positive surprises of output or prices, while it does
not show systematic reactions towards surprises in monetary aggregates. An upper bound
of 4 rules out implausibly large values.13

Finally, the combined identification scheme (R3) is based on R2 plus the additional
constraint that the monetary policy shock εmp

t must explain more variation of mt than all

12All time series were obtained from the replication files of Arias et al. (2019). Note that gdpt and deft
were interpolated based on US industrial production and CPI prices, respectively.

13Strictly speaking, these restrictions imply a set identified model based on a combination of zero and
sign restrictions. Within our framework, this requires adjusting the proposal distribution of Appendix A
to account for the additional zero restrictions, see Arias et al. (2018) for details.
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Table 3: Posterior distribution for parameters of the policy rule
R1 R2 R3

quantile ξy ξπ ξcp ξy ξπ ξcp ξy ξπ ξcp

5% −0.29 −1.30 −0.03 0.06 0.34 −0.24 0.03 0.09 −0.10
50% −0.09 −0.74 0.00 0.63 2.26 −0.01 0.26 0.84 −0.00
95% 0.10 −0.19 0.03 2.27 3.81 0.22 0.65 1.85 0.08

Posterior quantiles of the parameters governing the monetary policy rule

other structural shocks. Using notation of Section 2.3, this means we use ω1 >
∑n

j=2 ωj,
where ωj is the contribution of the jth structural shock to variation of mt. The additional
restriction makes sure that only those models are retained where the monetary policy shocks
is clearly related to the R&R narrative shock. At the same time, up to half of the variation
in mt explained by εt can reflect endogenous reactions of the R&R series to other shocks.

We start our analysis by reporting posterior quantiles for the parameters governing
the monetary policy rule (Table 3). Estimates based on R1 suggest that mt is highly
informative about the monetary policy rule. However, using it as an instrument yields
economically implausible parameters. For instance, the 90% posterior confidence sets of ξπ
suggests that the Fed systematically cuts the policy rate in response to higher inflation,
contradicting standard macroeconomic thinking. As for the second identification strategy
(R2), posterior probability intervals suggest that the data is not overly informative at all.
For example, the 95% quantile of ξπ implies that in reaction to a 1% increase in prices, the
central bank systematic reaction is to increase the federal funds rate by almost 4 percentage
points within the same month, which is very near to the upper bound of ACR. Adding the
additional restriction on the relation between the policy shock and the R&R residual (R3)
substantially narrows down these credibility sets. Values between 0.03 and 0.65 for ξy
and between 0.09 and 1.85 for ξπ seem reasonable and are more in line with conventional
estimates of a Taylor Rule (Hamilton et al. 2011).

In Figure 1, we provide impulse response functions to the identified monetary policy
shock obtained under restrictions R1, R2 and R3. First, consider the top row which shows
results from the model identified by using the R&R series as an external instrument (R1).
A short-term increase in output together with a sharp and significant positive response in
aggregate prices (price puzzle) seems puzzling and casts additional doubt on the credibility
of the identification strategy. Indeed, formal analysis via our Bayes factor points towards
a rejection of instrument exogeneity under the sign-identification scheme. Defining M1

as model R2 and M0 as model R2 plus the IV exclusion restriction (Φr,0 = 0), we find

2 ln B̂10 = 14.49 (0.64). These results confirm findings in Nguyen (2019) who incorporates
the R&R shock into a quarterly model identified via sign restrictions and prior distributions
on structural parameters. Interestingly, he also rejects instrument exogeneity of the R&R
narrative shock despite different data, frequency and identification strategy. In contrast,
when using a combination of sign- and zero restrictions (R2, second row of Figure 1),
the puzzling results disappear. However, the identification seems rather weak in that it
yields very wide error bounds which often include the zero line. The model does, however,
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Figure 1: Impulse responses in the monetary policy SVAR obtained by using different
identifying restrictions. Posterior median (solid line), 68% and 90% posterior credibility
sets (dotted lines). Sample period: 1965M01-2007M12.

indicate a short-term drop in output. Finally, the bottom row of Figure 1 shows the
results from using R3 which imposes the additional ranking constraint on the variance
contributions underlying mt. We see that such a combined identification approach leads
to tighter credibility sets and therefore gives more informative results than using sign
restrictions only.

In a last exercise, we demonstrate that a sharper identification is particularly useful if we
are further interested in estimating the effects of monetary policy on financial variables. To
this end, we add one financial variable at a time to the baseline specification and recompute
IRFs to a monetary policy shock. We consider real stock prices, measured as the log of
consumer price deflated S&P500 index, the mortgage spread, defined as difference between
30-year fixed rate mortgage average and the 10-year treasury yield, the commercial paper
spread, defined as 3-month AA financial commercial paper rate minus the 3-months T-
bill rate, and the ‘excess bond premium’ measure of credit market tightness developed by
Gilchrist & Zakraǰsek (2012).

Similar to the baseline model without financial variables, we document that posterior
credibility sets are much tighter if we exploit information from the R&R series in addition
to the sign restrictions. For instance, in a model identified by R2 not much can be said on
the response of stock prices and the excess bond premium since credibility sets are wide and
include zero. In contrast, the picture is clearer when using R3. Here, real stock prices tend
to fall and the excess bond premium responds positively. Furthermore, impulse responses
are significantly different from zero, at least if judged by the 68% posterior credibility sets.
A similar pattern arises for the responses of mortgage and commercial paper spreads.
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Figure 2: Impulse responses in the monetary policy SVAR augmented by one financial vari-
able at a time. Posterior median (solid line), 68% and 90% posterior credibility sets (dotted
lines). Sample periods: 1965M01-2007M12 (real stock prices, commercial paper spread),
1971M04-2007M12 (mortgage spreads), 1973M01-2007M12 (excess bond premium).

4 Conclusion

In this paper, we discuss ways of combining sign restrictions with information in proxy
variables for the identification of SVAR models. When the external variables are credibly
exogenous instruments, sign restrictions may be useful to identify other shocks in the sys-
tem, or to disentangle multiple shocks to be identified by IV. We also suggest to use them
as an overidentifying device to obtain a more informative picture in finite samples. When
the external variables are just ‘plausibly exogenous’, we suggest to replace the exogeneity
restrictions with bounds on correlations and variance contributions. Combined with con-
ventional sign restrictions, the resulting identification strategy can be quite powerful. We
introduce the restrictions in an augmented SVAR model and conduct posterior inference
via MCMC methods. We rely on a conjugate prior for a B-model type SVAR, which allows
to compute Bayes factors in a straightforward way.

Finally, we illustrate the usefulness of our method in two empirical applications. In the
first, we study the importance of supply shocks as drivers of oil prices. Our findings suggest
that once we use Kilian’s OPEC shortfall series as an IV to identify supply shocks, two
prominent identification strategies used in literature yield similar conclusions. In the second
application, we estimate the effects of US monetary policy combining sign restrictions and
information in the Romer & Romer (2004) narrative shock. Formal Bayes factor analysis
suggests that the narrative shock is unlikely to be exogenous. We show how the information
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in the proxy can still be useful to narrow down the set of admissible models and to obtain
a more informative picture, particularly for financial variables.
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Canova, F. & De Nicoló, G. (2002), ‘Monetary disturbances matter for business fluctuations
in the G-7’, Journal of Monetary Economics 49, 1131–1159.

Cesa-Bianchi, A. & Sokol, A. (2017), Financial shocks, credit spreads and the international
credit channel, Working paper, Bank of England.

Chib, S. & Greenberg, E. (1995), ‘Understanding the Metropolis–Hastings algorithm’, The
American Statistician 49(4), 327–335.

Coibion, O. (2012), ‘Are the effects of monetary policy shocks big or small?’, American
Economic Journal: Macroeconomics 4(2), 1–32.

Conley, T. G., Hansen, C. B. & Rossi, P. E. (2012), ‘Plausibly exogenous’, Review of
Economics and Statistics 94(1), 260–272.

Cross, J., Nguyen, B. H. & Tran, T. D. (2020), ‘The role of precautionary and speculative
demand in the global market for crude oil’.

Dickey, J. M. (1971), ‘The weighted likelihood ratio, linear hypotheses on normal location
parameters’, The Annals of Mathematical Statistics pp. 204–223.

Drautzburg, T. (2020), ‘A narrative approach to a fiscal DSGE model’, Quantitative Eco-
nomics 11(2), 801–837.

Faust, J. (1998), ‘The robustness of identified VAR conclusions about money’, Carnegie-
Rochester Conference Series on Public Policy 49, 207–244.

Faust, J., Swanson, E. T. &Wright, J. H. (2004), ‘Identifying VARs based on high frequency
futures data’, Journal of Monetary Economics 51(6), 1107–1131.

Gerko, E. & Rey, H. (2017), ‘Monetary policy in the capitals of capital’, Journal of the
European Economic Association 15(4), 721–745.

Gertler, M. & Karadi, P. (2015), ‘Monetary policy surprises, credit costs, and economic
activity’, American Economic Journal-Macroeconomics 7(1), 44–76.

26



Geweke, J. (1992), ‘Evaluating the accuracy of sampling-based approaches to the calcula-
tion of posterior moments’, J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M.
Smith, Eds., Bayesian Statistics 4, 169–193.

Giacomini, R., Kitagawa, T. & Read, M. (2021), ‘Robust Bayesian inference in proxy
SVARs’, Journal of Econometrics .
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A Prior distribution

In this section of the appendix, we prove that the conjugate prior distribution in equation
(2.9) implies

p(B̃; v0, S0) ∝ p(B; v0, S0)p(Σ
1/2
η ; v0, S0)p(Φ|B,Σ1/2

η ; v0, S0),

where:

p(B; v0, S0) ∝ | det(B)|−(v0+n) exp

(
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2
tr
(
S11 (BB

′)
−1
))

,

p(Σ1/2
η ; v0, S0) ∝ |Ση|−(v0+k)/2 exp

(
−1

2
tr
(
S22·1Σ

−1
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))
,
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η )

′
, S0 =

(
S11 S12

S21 S22

)
, S22·1 = S22−S21S

−1
11 S12, andX ∼ MN (M,U, V )

denotes the matrix normal distribution with mean E[X] =M and variance Var[vec(X)] =
V ⊗ U .

Derivation: First, since B̃ is block lower triangular, we have that | det(B̃)| = | det(B)|| det(Σ1/2
η )|,

and hence:
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−(v0+ñ)
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Adding and subtracting tr(Σ−1
η S21S

−1
11 S12) yields:
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Plugging the trace term back into the prior of B̃ yields:
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The final step is to multiply the term by
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B Posterior inference

We start with some notation. Let Sa and Sb be full rank selection matrices of zeros and
ones such that α = Savec(Ã) and β = Sbvec(B̃) are the nonzero free elements in Ã and
B̃. Denote by θ = {α, β} the set of augmented SVAR parameters, and by θ−x the set of
parameters excluding x. Setting arbitrary initial values θ(0) = {α(0), β(0)}, we propose a
MCMC that generates draws θ(i), i = 1, . . . ,M from the posterior, by iteratively drawing
from the following conditional distributions:

1. Draw α(i) from p
(
α|θ−α, Ỹ

)
∼ N (ᾱ, V̄α) where mean and variance are:

V̄ −1
α = V −1

α + Sa((B̃B̃
′)−1 ⊗X ′X)S ′

a,

ᾱ = V̄α

(
V −1
α + Savec(X

′Ỹ (B̃B̃′)−1)
)
.
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2. Draw β(i) from p
(
β|θ−β, Ỹ

)
∝ p(Ỹ |α, β)p(β). Since the conditional distribution

is of no known form, we rely on an Accept Reject Metropolis Hastings (AR-MH)
step (Tierney 1994, Chib & Greenberg 1995). For a given proposal distribution

p⋆
(
β|θ−β, Ỹ

)
, which we discuss at a later point, the AR-MH algorithm involves two

steps:

(a) Accept-reject step: Generate a candidate β⋆ ∼ p⋆
(
β|θ−β, Ỹ

)
and accept it with

probability

αAR (β⋆) = min

1,
p
(
β⋆|θ−β, Ỹ

)
cAR × p⋆

(
β⋆|θ−β, Ỹ

)
 ,

which is repeated until a draw is accepted.

(b) Metropolis-Hastings step: Accept the proposal β⋆ with probability αMH(β
(i−1)|β⋆).

Let D (β) =
{
β : p

(
β|θ−β, Ỹ

)
≤ cAR × p⋆

(
β|θ−β, Ỹ

)}
and DC (β) its comple-

ment. Then:

αMH(β
(i−1)|β⋆) =



1 if β(i−1) ∈ D (β)

cAR × p⋆
(
β⋆|θ−β, Ỹ

)
p
(
β⋆|θ−β, Ỹ

) if β(i−1) ∈ DC (β) , β⋆ ∈ D (β)

p
(
β⋆|θ−β, Ỹ

)
p⋆

(
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)
p
(
β(i−1)|θ−β, Ỹ

)
p⋆

(
β⋆|θ−β, Ỹ

) if β(i−1), β⋆ ∈ DC (β)

The constant cAR in the AR-MH step can be tuned to trade off the efficiency of the AR
step against the acceptance probability in the MH step.14 We iteratively tune this constant
over a preliminary run of the MCMC as to capture twice the average ratio between target
and proposal distribution. For the applications considered in this paper, this resulted in
a reasonable trade-off between AR and MH steps, yielding acceptance probabilities of the
latter in the range of 85%-99%.

The success of the AR-MH step depends critically on the design of the proposal distri-

bution p⋆
(
β|θ−β, Ỹ

)
. In Appendix B.1, we outline in detail a proposal distribution which

relies on the methodology developed in Arias et al. (2018, 2021) to efficiently explore the
conditional distribution of the set-identified parameters in B̃. Briefly summarized, the
proposal involves drawing a candidate β⋆ = Sbvec(B̃

⋆) for B̃⋆ = chol(Σ)Q by drawing
Σ ∼ iW(v, S) from an inverse Wishart with shape parameter S and degrees of freedom
v, and Q = diag(Q1, Q2) from a uniform distribution of Q1 and Q2 subject to the zero

14To see this, note that for increasing values of cAR, the MH acceptance probability eventually ap-
proaches one given that any β⋆ ∈ D. However, at the same time the performance of the AR step deterio-
rates, as more and more draws are necessary until a draw is accepted.
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and sign restrictions discussed in Section 2.2 and 2.3. In order to capture the shape of the
conditional distribution, we set v = v0 + T and S = S0 + Ũ Ũ ′. To evaluate the importance
density of a candidate draw β⋆, we use numerical derivatives which account for the change
of variables underlying the transformation of random variables Σ, Q to β. After some burn
in period, the algorithm is used to generate a large number of draws of the posterior dis-
tribution of θ. Those draws are then used in a standard fashion to summarize posterior
quantities numerically.

B.1 Proposal distribution used in the AR-MH algorithms

We describe the proposal distribution p⋆(β; v, S) used by the AR-MH algorithm in Section
2.4 and 2.5 in more detail. We use the following notation. Let ñ = n + k, eñ,j be the
jth column of Iñ, Q = diag(Q1, Q2) be a ñ × ñ orthogonal block diagonal matrix where
Q1 is orthogonal of size n × n and Q2 orthogonal of size k × k. Furthermore, Σ is a
symmetric positive definite matrix dimension ñ. As mentioned in the main part of the
paper, the structural impact matrix of the proxy-augmented SVAR, B̃, is parameterized as
B̃ = chol(Σ)Q = PQ where chol(·) is the lower triangular Cholesky decomposition. If the
external variable is assumed to be a valid instrument, we have specified zero restriction on
B̃ as discussed in Section 2.2. We follow Arias et al. (2021) and denote the restrictions as:

JB̃eñ,j = 0k×1 for 1 ≤ j ≤ n− k, (B.1)

JPQeñ,j = JPL′Q1en,j = 0k×1 for 1 ≤ j ≤ n− k, (B.2)

where J = [0k×n : Ik] and L = [In : 0n×k]. That is, the exogeneity restrictions can be
written as linear constraints on either B̃ or Q. Denote by z̃j the number of restrictions
on the jth column of Q1, which is k for 1 ≤ j ≤ n − k if the exogeneity constraints are
imposed and 0 otherwise. Then, the proposal distribution in the AR-MH algorithm draws
β⋆ by the following algorithm:

1. Draw P = chol(Σ) where Σ ∼ iW(v, S).

2. Generate Q = diag(Q1, Q2) from a uniform distribution, subject to zero and sign
restrictions, as in Arias et al. (2021):

(a) For 1 ≤ j ≤ n, draw w1,j = x1,j/||x1,j|| with x1,j ∼ N (0, In+1−j−z̃j)

(b) For 1 ≤ j ≤ k, draw w2,j = x2,j/||x2,j|| with x2,j ∼ N (0, Ik+1−j)

(c) Compute Q1 = [q1,1 : · · · : q1,n] recursively by setting q1,j = K1,jw1,j, where K1,j

is such that it forms a null space of the matrix M1,j = [q1,1 : · · · : q1,j−1 : G(P )
′]′

with G(P ) := JPL′ and for 1 ≤ j ≤ n − k. For n − k + 1 ≤ j ≤ n, set
M1,j = [q1,1 : · · · : q1,j−1]

′. This captures the exogeneity restrictions as in Section
2.2. If they do not hold (as discussed in Section 2.3), simply use M1,j = [q1,1 :
· · · : q1,j−1]

′ for 1 ≤ j ≤ n.

(d) Compute Q2 = [q2,1 : · · · : q2,n] recursively by setting q2,j = K2,jw2,j for K2,j

such that it forms a null space of M2,j = [q1,1 : · · · : q1,j−1]
′ for 1 ≤ j ≤ k.
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(e) If the sign restrictions are satisfied, proceed. Otherwise, repeat step 2.

3. Set B̃⋆ = PQ and β⋆ = Sbvec(B̃
⋆).

Note that by construction Σ = B̃B̃′ and furthermore, B̃ will satisfy the desired zero block
restrictions on the upper right part as well as on Φ if the exogeneity restrictions of equation
(B.2) are imposed additionally.

In the following, we give the density implied by this proposal distribution. Denote

the mapping [w′, vec(Σ)′]′
f→ β⋆ and its inverse by β⋆ f−1

→ [w′, vec(Σ)′]′, where w =
[w′

1,1, . . . , w
′
1,n, w

′
2,1, . . . , w

′
2,k]

′. Then, a draw from β⋆ ∼ p⋆(β; v, S) has density value:

p⋆(β; v, S) ∝ det(B̃⋆B̃⋆′)−
v+ñ+1

2 exp

(
−1

2
tr(S(B̃⋆B̃⋆′)−1)

)
vf−1(B̃⋆), (B.3)

where the first part comes from the inverse Wishart density of Σ, and vf−1(B̃) is the “volume
element” as denoted in Arias et al. (2018), which accounts for the change in variables when
transforming draws from Σ, Q to B̃. In our case, we have that following Theorem 2 of Arias
et al. (2018):

vf−1(B̃) = | det(Jf−1(B̃)Jf−1(B̃)′)|
1
2 , (B.4)

where Jf−1(B̃) is the Jacobian of f−1 evaluated at B̃. Note that this holds only if Sb in

β⋆ = Sbvec(B̃) is specified as to include all zero constraints, that is those on the upper
right block of B̃, as well as those on Φ if exogeneity restrictions are specified as in equation
(B.2).15

To ensure that the mappings f and f−1 are differentiable and one to one, we follow Ap-
pendix A.3 of Arias et al. (2018) to compute K1,j and K2,j by the QR decomposition using
the Gram Schmidt process. In order to evaluate the Jacobian, we use numerical derivatives
of f−1. Given that the dimension of β⋆ is usually relatively small, the computational costs
are not very high.16

B.2 Convergence properties of the algorithm

When applying our methods, an important question is how many draws are needed to get
reliable answers from the MCMC algorithm. To this end, in Figure 3 we have plotted a ran-
dom snapshot (of length 5000) of the posterior simulation output for the elements of B in
the empirical oil market model of Section 3.1. Visual inspection suggests stationary output
with no visible autocorrelation patterns. This is confirmed by Gewekes Relative Numerical
Efficiency (RNE) statistic printed into each subplots title. As described in Geweke (1992),
the RNE carries the interpretation of the ratio of number of replications required to achieve
the same efficiency than drawing iid from the posterior. The RNE values documented for
each element of B suggest very high numerical efficiency of the algorithm. The analysis

15Note that otherwise, Theorem 3 of Arias et al. (2018) would apply.
16This is particularly an advantage over Arias et al. (2021), given that in their approach, the mapping

underlying the Jacobian is of various magnitudes larger since they include the whole SVAR parameters,
that is also the autoregressive parameters.
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suggests that with several thousand draws one might obtain fairly reliable posterior infer-
ence for most of the structural quantities one would typically consider. However, for the
computation of Bayes factors we recommend a much higher number of draws, as it requires
to explore sufficiently well the entire set of models. For our applications, we used 100’000
draws when computing Bayes factors, and 10’000 draws for impulse response functions.

Note that Figure 3 is fairly representative of the output obtained in the other empirical
applications and identification schemes. Hence, we do not repeat this analysis for each of
the empirical applications and make them available upon request.
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Figure 3: Exemplary Markov Chain Monte Carlo output of each element in B for the oil
market model identified by R1 and R2 (see Section 3.1). The title of each subplot also
includes the relative numerical efficiency suggested in Geweke (1992).

C Testing for instrument exogeneity - rotational in-

variance with respect to unidentified shocks

In this part of the appendix, we show that the Bayes factor developed to test the IV exclu-
sion restrictions is not sensitive to how shocks unrelated to the instrument are identified.
To set notation for this analysis, let’s assume that the k instruments are related to the first
k shocks. This leaves the k−n remaining shocks to be assumed unrelated to the instrument
under the null hypothesis. Such an ordering implies the following partition of Φ:

E(mtε
′
t) = Φ = [ Φf︸︷︷︸

k×k

, Φr︸︷︷︸
k×(n−k)

].

35



In the following, we study how an orthogonal rotation of the n−k remaining shocks affects
the Bayes factor for Φr,0 = 0. Such a rotation can be obtained by post multiplying the
impact matrix B (and hence also Φr) with Q = diag(Ik, Qr) where Q

′
rQr = In−k.

In the following, we show that starting from a model {B,Φ}, the density p(Φr =
0|Ỹ , θ−Φr) is the same than the density p(Φ⋆

r = 0|Ỹ , θ−Φ⋆
r
) for a rotated model {B⋆ =

BQ,Φ⋆ = ΦQ}, as long as the rotation only affects the shocks unrelated to the instru-
ment. As we shall see, the reason is that for the special case that Φr,0 = Φ⋆

r,0 = 0, the null
hypothesis is invariant to those rotations.

In the following, define Φ⋆ = ΦQ = [Φf ,ΦrQr] and B
⋆ = BQ = [Bf , BrQr] = [Bf , B

⋆
r ].

Then, we need to show that:

p(Φr = 0|Ỹ , θ−Φr) = p(Φ⋆
r = 0|Ỹ , θ⋆−Φ⋆

r
),

where θ−Φr = {Φf , B,Ση, A} and θ⋆−Φ⋆
r
= {Φf , B

⋆,Ση, A}. Using Bayes Theorem, this is
equivalent to show that denominator and nominator are equal for both sides of the equation:

p(Φf ,Φr,0 = 0|Ỹ , θ−Φ)

p(Φf |Ỹ , θ−Φf
)

=
p(Φf ,Φ

⋆
r,0 = 0|Ỹ , θ⋆−Φ⋆)

p(Φf |Ỹ , θ⋆−Φf
)

. (C.1)

Based on our results of Section 2 and defining Ŝ1 = S21S
−1

11 and Ŝ2 = S
−1

11 , the density of
Φ⋆ in the rotated model is given by:

p(Φ⋆|Ỹ , θ−Φ⋆) ∼ MN (Ŝ1B
⋆,Ση, (B

⋆)′Ŝ2B
⋆)

= c−1|Ση|−n/2|(B⋆)′S−1
11 B

⋆|k/2 exp
(
−1

2
tr
((

(B⋆)′S−1
11 B

⋆
)−1

(Φ⋆ − ŜB⋆)′Σ−1
η (Φ⋆ − Ŝ1B

⋆)
))

= c−1|Ση|−n/2|Q′B′Ŝ2BQ|k/2

× exp

(
−1

2
tr

(
Q′

(
B′Ŝ2B

)−1

Q(Φ⋆ − Ŝ1BQ)
′Σ−1

η ((Φ⋆ − Ŝ1BQ)

))
First, let’s look at the nominator of equation (C.1). Note that at Φr,0 = Φ⋆

r,0 = 0 it
holds that Φ⋆

r,0 = Φr,0Qr implying that [Φf ,Φ
⋆
r,0] = [Φf ,Φr,0Qr] = [Φf ,Φr,0]Q. Hence, the
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nominators are equal:

p(Φf ,Φ
⋆
r,0 = 0|Ỹ , θ⋆−Φ⋆) = c−1|Ση|−n/2|B′Ŝ2B|k/2|Q|k

× exp

(
−1

2
tr

(
Q′

(
B′Ŝ2B

)−1

Q([Φf ,Φ
⋆
r,0]− Ŝ1BQ)

′Σ−1
η (([Φf ,Φ

⋆
r,0]− Ŝ1BQ)

))
= c−1|Ση|−n/2|B′Ŝ2B|k/2

× exp

(
−1

2
tr

(
Q′

(
B′Ŝ2B

)−1

Q([Φf ,Φr,0]Q− Ŝ1BQ)
′Σ−1

η (([Φf ,Φr,0]Q− Ŝ1BQ)

))
= c−1|Ση|−n/2|B′Ŝ2B|k/2

× exp

(
−1

2
tr

((
B′Ŝ2B

)−1

([Φf ,Φr,0]− Ŝ1B)′Σ−1
η (([Φf ,Φr,0]− Ŝ1B)

))
= p(Φf ,Φr,0 = 0|Ỹ , θ−Φ)

Also the denominator stays the same, since the marginal of Φf is not affected by the

rotation. Specifically, we have that p(Φf |Ỹ , θ⋆−Φf
) ∼ MN (Ŝ1Bf ,Ση, B

′
f Ŝ2Bf ) and hence

p(Φf |Ỹ , θ⋆−Φf
) = p(Φf |Ỹ , θ−Φf

). This shows that the posterior ordinate in the Savage
Dickey Density Ratio will be unaffected by the way we identify the last n − k shocks, as
long as it is based on the prior we study in this paper. Note that a similar derivation can
be done to show that the prior ordinate is equal, that is p(Φr = 0|θ−Φr) = p(Φ⋆

r = 0|θ⋆−Φ⋆
r
).

D Simulation Evidence Bayes Factor

D.1 Testing sign restrictions as overidentifying

To demonstrate the performance of the Bayes factor as a tool to test sign restrictions, we
simulate data from the following static structural model of supply and demand:

supply: qt = αpt + εst (D.1)

demand: qt = βpt + εdt (D.2)

instrument: mt = ϕ1ε
s
t + ηt (D.3)

Here, we can think of qt and pt as quantity and price, and therefore α > 0 and β < 0 as
the supply and demand (price) elasticity respectively. The last equation relates an instru-
ment mt to the supply shock via the measurement error equation discussed in Section 2.
We calibrate the underlying parameters {α, β, ϕ1, σ

2
s , σ

2
d, σ

2
η} based on solving an empirical

covariance matrix of ũt = [uprodt , urpot ,mk08
t ], where [uprodt , urpot ] are VAR(24) forecast errors

obtained from a bivariate VAR of the (log) real oil price and (log) global oil production,
and mt is the K08 shock series also considered in Section 3.1. Solving for the structural
parameters we obtain {α = 0.07, β = −0.5, ϕ1 = 0.16, σs = −1.46, σd = 3.72, ση = 0.71}.
However, we alter the value to ϕ1 = 0.5 such that the structural shock explains about
30% of the instruments variance. This guarantees that the model is well identified for the
small sample sizes we consider in our simulation design (T = 50, 100, 150) compared to the
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empirical application (T = 543). Written as an augmented B-model, the impact matrix
(normalized to increase the oil price) is then given by:

B̃ =

−1.28 0.46 0
2.59 6.60 0
−0.5 0 0.71

 .

After simulating data from a multivariate normal distribution ũt ∼ N (0, BB′), we are
going to use the methodology developed in Section 2.5 to test the simple sign restriction
that b11 and b22 have the same sign. Hence, our model M1 is a model where we identify the
first shock via IV restrictions. The model under the null hypothesis imposes the additional
restriction that both elements of the first column are of the same sign. Given the true
impact matrix, one would expect the Bayes factors to point towards evidence against M0

with increasing sample size. For our simulation purpose, we generate 500 datasets generated
from the model of length T = 150, and use subsamples at both T = 50 and T = 100 to
assess the effects of an increasing sample size. With respect to the prior, we use the first
15 observations as a training sample. Specifically, let [ũ

(s)
1 , . . . , ũ

(s)
T ] be the dataset from

the sth simulation. Then, we simply set v0 = 10 and S0 a diagonal matrix with entries

S0,ii =
∑v0

t=1

(
ũ
(s)
it

)2

.

The resulting distribution of the Bayes factors are given in table 4. As expected, with
increasing sample sizes, the Bayes factors increasingly point towards strong evidence against
model M0.

5% 16% 50% 84% 95%

T = 50 -0.30 1.05 3.50 8.17 11.37
T = 100 0.62 2.74 6.41 12.88 Inf
T = 150 2.53 4.34 9.56 15.65 Inf

Table 4: Distribution of Bayes factors to test equal sign of the first column of B, using
500 simulated datasets. Note: a value of infinity (Inf) may appear in our simulations if
none of the 10000 posterior draws of the unrestricted modelM1 satisfies the additional sign
restrictions of model M0.

D.2 Testing instrumental variables restrictions as overidentifying

We proceed with a small simulation exercise for the second case. Here, we are confident in
a set of sign restrictions and want to test IV restrictions as overidentifying. To demonstrate
the performance of the Bayes factor under a default prior, we iteratively simulate datasets
from the same structural model as in D.1. However, we alternate the instrument equation
to reflect varying degrees of endogeneity. One would expect the Bayes factor to detect
such endogeneity and reject instrument exogeneity as soon as the models identified by sign
restrictions are at odds with instrument exogeneity.

To keep the setting as close as possible to D.1, we change the instrument equation
without affecting neither the variance of the instrument nor the covariance of the forecast
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errors. To achieve this, we rotate the last column by a orthogonal (Givens) matrix G(θ) =cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0
0 0 1

 for θ = [ 1
10
π, 2

10
π, 3

10
π, 4

10
π]. This yields models to simulate from

with an increasing degree of endogeneity. The corresponding impact matrices B̃1 to B̃4 are
printed at the left of the following panel:

B̃1 =

−1.28 0.46 0
2.59 6.60 0
−0.48 0.15 0.70

 B̃1,IV =

−1.36 0.04 0
0.42 7.07 0
−0.50 0 0.70

 α1,IV = 0.01, β1,IV = −3.22

(D.4)

B̃2 =

−1.28 0.46 0
2.59 6.60 0
−0.40 0.29 0.70

 B̃2,IV =

1.31 −0.39 0
1.78 6.86 0
0.50 0 0.70

 α2,IV = −0.05, β2,IV = 0.73

(D.5)

B̃3 =

−1.28 0.46 0
2.59 6.60 0
−0.29 0.40 0.70

 B̃3,IV =

1.12 −0.77 0
3.82 5.97 0
0.50 0 0.70

 α3,IV = −0.13, β3,IV = 0.29

(D.6)

B̃4 =

−1.28 0.46 0
2.59 6.60 0
−0.15 0.48 0.70

 B̃4,IV =

0.83 −1.08 0
5.47 4.50 0
0.50 0 0.70

 α4,IV = −0.24, β4,IV = 0.15

(D.7)

To understand our simulation design better, we have also printed the values of B̃i,IV , αi,IV

and βi,IV (for i = 1, . . . , 4) which correspond to population values under the assumption
of instrument exogeneity. These matrices show that as the instrument increasingly reflects
variation of the second shock, wrongly assuming IV validity leads to the first column of B
reflecting more and more the impact coefficient of the second shock. Hence, we expect the
Bayes factor to increasingly point towards statistical evidence against model M0.

For each of the four impact matrices, we simulate N = 500 datasets, each of length
T = 150 and compute Bayes factors to compare the two models. The first (M0) is identified
via the sign restrictions that 0 < α < 0.1 and −0.8 < β < 0, while the second assumes
instrument exogeneity in addition, that is ϕ2,r = 0. Similar to our first simulation exercise,
we use the first 15 observations as a training sample to train (a diagonal) S0 and set v0 = 15.

The resulting distribution of the Bayes factors are given in Table 4. As expected, as the
instrument starts to increasingly reflect variation from the second shock, the Bayes factors
point towards strong evidence against the null hypothesis of instrument exogeneity.
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5% 16% 50% 84% 95%

B̃1 −2.65 −1.52 0.29 1.96 3.51

B̃2 0.55 2.25 5.53 10.31 13.23

B̃3 9.33 12.44 18.00 23.35 27.13

B̃4 11.26 14.61 20.44 25.58 28.88

Table 5: Distribution of Bayes factors to test equal sign of the first column of B, using 500
simulated datasets of length T = 150.

E Interpretation of Bayes Factors

A widely acknowledged reference point for interpretation of Bayes factor magnitudes is the
paper of Kass & Raftery (1995). In the following, we tabulate the main categories given
therein. These are explicitly expressed as twice the natural logarithm of the Bayes factor
B10, as to coincide with the scale of the more familiar likelihood ratio test statistic. Note
that if the log Bayes factor is negative, the statistical evidence is in favour of the null
hypothesis (and against M1). A simple redefinition as 2 ln(BF01) = −2 ln(BF10) allows to
stick to the reference values below.

Table 6: Categories of interpretation according to Kass & Raftery (1995)

2 ln(BF10) B10 Evidence against M0

0 to 2 1 to 3 Not worth more than a bare mention
2 to 6 3 to 20 Positive
6 to 10 20 to 150 Strong
> 10 > 150 Very Strong

F Reconstructing and extending Kilian’s oil supply

shock

In Section 3.1, we have used a monthly series of oil supply shocks as in Kilian (2008). Only
a quarterly time series for the ‘exogenous’ oil price shock from 1973Q2-2004Q3 is available
on Lutz Kilian’s homepage. A corresponding time series on the monthly frequency is not
readily available and we would also like to use a more recent sample period. Therefore,
we have reconstructed the monthly series shock series using updated oil production data
from the US Energy Information Administration (see Monthly Energy Review, Table 11.1a
and Table 11.b, https://www.eia.gov/totalenergy/data/monthly/index.php). As described
in Kilian (2008) the construction is based on computing oil supply shortfalls based on
counterfactual oil growth rates for countries that have been exposed to exogenous oil supply
disruption caused e.g. by geopolitical turmoils and wars (see the Kilian paper for a precise
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description of the shock construction methodology). Reconstructing the series allows us
to extend the shock measure to the sample 1973M02-2017M12 used in our paper. For this
period, we have added two more exogenous events that affected oil production in Libya.
The first event is related to the Libyan war in 2011, which led to a sharp drop of oil
production. We start the counterfactual in March 2011 and it ends in April 2012. Since no
other OPEC country was affected by the civil war, the benchmark of all OPEC countries’
production minus Libya. The second event was triggered in May 2013 by a series of militia
attacks that started the civil unrest. Consequently, we start a second counterfactual for
Libya starting in that period. Using the information from the oil market reports, it is
clear that Libya never managed to resolve the civil unrest with two rival governments in
the country. For this reason the counterfactual continues until the end of our sample in
2017M12. For this second event, we have removed Iran from the benchmark group in
the period May 2013 to December 2015, as Iran faced international sanctions that led to
problems for the oil industry. For the time between May 2016 until the end of our sample,
sanctions on Iran were less stringent due to a political deal and consequently, we have
included Iran in the benchmark during this period. Starting in January 2016, we have also
removed Venezuela from the benchmark as this country faced its own problems related to
a political and economic crisis.

The resulting shock series is shown in Figure 4. Note that transforming our shock series
to quarterly frequency and comparing it with the original Kilian quarterly shock series
shows a correlation of about 0.995.

1975 1980 1985 1990 1995 2000 2005 2010 2015
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Figure 4: Exogenous oil production shortfall series as in Kilian (2008) (extended). Sample
period: 1973M01 - 2017M12.
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G Revisiting the oil market model of Baumeister and

Hamilton (2019)

As noted in Section 3.1, Baumeister & Hamilton (2019) (BH19) express their prior beliefs
on different definitions for the oil price elasticities than used in Kilian & Murphy (2014).
To assess the robustness of our empirical results to how we define elasticities, we use this
part of the appendix to repeat our oil market exercise within the model of BH19. As
opposed of the B type of model we considered in the main part of our paper, this involves
a mixture of sign- and exclusion restrictions on B−1 plus formulation of prior densities
for the underlying parameters. We start our analysis by broadly replicating the results of
BH19 using the methodology proposed in this paper. We then proceed by documenting
how the results change once we use Kilian’s oil production shortfall series as an IV for the
SVAR supply shock.

Following BH19, we use yt = [100×∆qt, 100×∆yt, 100×∆pt,∆it]
′, where qt is the log

of global crude oil production (in million barrels per day), yt a world industrial production
index, pt is the log of the real oil price and ∆it the proxy for OECD oil inventories expressed
as a fraction of previous month’s global crude oil production. As in their paper, we set
p = 12 lags in the VAR and use a slightly updated dataset covering 1974m2 to 2019m4.
Their structural oil market model (abstracting from lags and difference notation) is given
by the following simultaneous equation system:

Supply qt = αpqpt + εst , (G.1)

Economic activity yt = αpypt + εadt , (G.2)

Consumption demand qt − i⋆t = βpyyt + βpqpt + εcdt , (G.3)

Inventory demand i⋆t = ψ1qt + ψ3pt + εidt , (G.4)

Measurement error it = χi⋆t + εme
t . (G.5)

In this model, αpq > 0 is the (unique) oil supply elasticity, αpy < 0 is the systematic reaction
of global production to oil price changes, βpy > 0 the income elasticity of oil demand, βpq < 0
the oil demand elasticity, and 0 < χ < 1 carries the interpretation of a fraction of latent
oil inventories (i⋆t ) observed under a measurement error specification. Furthermore, the
structural shocks are assumed to be mutually orthogonal with each variance σ2

i , i = 1, . . . , 4.
Written in terms of observable VAR forecast errors, the model is given by:

1 0 −αpq 0
0 1 −αpy 0
1 −βpy −βpq −χ−1

−ψ1 0 −ψ3 1


︸ ︷︷ ︸

A


uqt
uyt
upt
uit


︸ ︷︷ ︸

ut

=


εst
εeat

εcdt − χ−1εme
t

χ−1εidt + εme
t


︸ ︷︷ ︸

ε̃t

. (G.6)

To further orthogonalize the latter last two shocks, BH19 premultiply the system by a
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matrix

Γ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 ρ 1

 ,

where ρ = χ−1σ2
me

σ2
cd+χ−2σ2

me
which yields mutually orthogonal shocks εcd⋆t and εid⋆t and further

transforms the last row of A. Augmented by an equation for our IV, the model is then
given by: 

1 0 −αpq 0
0 1 −αpy 0
1 −βpy −βpq −χ−1

ψ⋆
1 ψ⋆

2 ψ⋆
3 ψ⋆

4


︸ ︷︷ ︸

A


uqt
uyt
upt
uit


︸ ︷︷ ︸

ut

=


εst
εeat
εcd⋆t

εid⋆t


︸ ︷︷ ︸

ε⋆t

. (G.7)

mt = ϕ1ε
s
t + ϕ2ε

ea
t + ϕ3ε

cd⋆
t + ϕ4ε

id⋆
t + ηt (G.8)

Here, ψ⋆
1 = ρ− ψ1, ψ

⋆
2 = −ρβpy, ψ⋆

3 = −ρβpq − ψ1 and ψ⋆
4 = −ρχ−1 + 1. The last equation

allows us to further exploit the information of the IV if further constraints are imposed on
ϕ.

We compare results obtained under the following two identification schemes. In model
R1 we closely follow BH19 and combine the exclusion restrictions on B−1 expressed in
equation (G.7) with a series of prior distributions that put larger weight on a priori plausible
structural parameters:

pR1(β) ∝ |B̃|−(v0+n+k) exp

(
−1

2
tr

(
S0

(
B̃B̃′

)−1
))

p (αpq(β)) p (αpy(β)) p(βpy (β)) p (βpq(β)) p (χ(β)) .

For the exact density specifications of each parameter we refer to the paper of BH19. We
note that in contrast to the prior considered in Section 2, it is informative about certain
rotations that imply a priori reasonable structural parameters. Also, note that BH19 also
specify additional priors on ρ and ψ1/2 and determinants of A which we do not further
consider in our paper as they are not necessary to replicate the results of BH19.

We compare results from model R1 to those of a second model R2. In R2 we relax the
exclusion restrictions in the first equation and instead impose IV restrictions relating the
K08 shortfall series to the SVAR supply shock. The model reads then:

1 −αyq −αpq −αiq

0 1 −αpy 0
1 −βpy −βpq −χ−1

ψ⋆
1 ψ⋆

2 ψ⋆
3 ψ⋆

4


︸ ︷︷ ︸

A


uqt
uyt
upt
uit


︸ ︷︷ ︸

ut

=


εst
εeat
εcd⋆t

εid⋆t


︸ ︷︷ ︸

ε⋆t

. (G.9)

mt = ϕ1ε
s
t + ηt. (G.10)

As for the prior in model R2, we use the exact same density used for R1 but disregard from
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the additional term on αpq which we would like to test for.17 Hence, the prior is given by:

pR2(β) ∝ |B̃|−(v0+n+k) exp

(
−1

2
tr

(
S0

(
B̃B̃′

)−1
))

p (αpy(β)) p(βpy (β)) p (βpq(β)) p (χ(β)) .

For both priors, we set S0 and v0 via a training sample based on the first five years.
Our empirical results are summarized in table 7. First, in Panel A we provide the

posterior credibility set of the supply elasticity αqp. Model R1 is designed to replicate the
results of BH19 and hence finds a very similar posterior of αqp.

18 The median estimate
suggests a fairly large value of about 0.13 in comparison to the upper bound of HR20.
In turn, once we replace the exclusion restrictions of the supply equation with the IV
constraints (R2), we end up with considerably smaller values of αqp. The posterior is
remarkably narrow given that model R2 does not use explicit prior information on αqp.
We proceed by testing the competing priors used in the literature (BH19 and HR20) as
overidentifying. The resulting Bayes factors are given in Panel B. Similar to the analysis in
the main part of this paper, the likelihood of the densities increases from prior to posterior.
Hence, there is positive support in favor of using either piece of information. The differences
between HR20 and BH19 are not very large, however, closely resembling our findings in
the main part of the text.

Finally, we compare the variance contribution of the supply shock to oil prices for two
models. In the model designed to replicate BH19 results (R1), we find that supply shocks
are fairly important drivers of oil prices, with point estimates of about one third of the
variance at both impact and 2 years horizon. Using model R2 plus the BH19 prior for αqp,
we arrive at much smaller estimates of between 7% and 11% depending on the horizon. If
we use R2 plus the HR20 restriction, similar results are obtained in terms of magnitudes,
although with considerable smaller confidence sets. Overall, the findings are similar to
those of Section 3.1 despite relying on different identifying assumptions and definitions of
the oil price elasticity.

17However, similar to the exercise conducted in the main part, we maintain the sign restriction that
αpq > 0.

18The posterior distribution of the other structural parameters also match those of BH19. Those are
αpy, βpy, βpq and χ.

44



Table 7: Posterior distribution of supply elasticities and Bayes factors for overidentifying
restrictions using the model of Baumeister & Hamilton (2019).

Panel A: Posterior of supply elasticity αqp

Model 16% 50% 84%

R1 0.096 0.134 0.181
R2 0.013 0.039 0.081

Panel B: Bayes factors testing restrictions on αqp

Restrictions Eθ|Ỹ [p2(θ)] Eθ[p2(θ)] 2 ln B̂F10 s.e.

BH19 3.61 0.98 -2.59 0.04
HR20 0.51 0.03 -5.51 0.17

Panel C: Contribution of εst to the FEVD of the real price of oil

Model h = 0 h = 24

R1 0.33 0.32
(0.23, 0.45) (0.22, 0.44)

R2 + BH19 0.07 0.11
(0.03, 0.15) (0.06, 0.19)

R2 + HR20 0.04 0.07
(0.02, 0.06) (0.04, 0.10)

Bayes factors computed as described in Section 2.5. Here, the less restrictive model is identified using the

IV restrictions combined with prior distributions on A but not on αqp (R2), while the more restrictive

model additionally imposes prior information on the supply elasticity αqp. For BH19, p2(θ) : αqp ∼
t(0.1, 0.2, 3) while for HR20 p2(θ) : p(αqp ≤ 0.04) = 1 and 0 else. The FEVD of the real oil price is

computed at horizon h and values in brackets indicate pointwise 68% posterior credibility sets.
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