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“Mapping the networks between financial institutions is a first step 
towards gaining a better understanding of modern financial systems. A 
network perspective would not only account for the various connections 
within the financial sector or between the financial sector and other 
sectors, but would also consider the quality of these links. We need this 
work to guide the development of new theories that can help us 
understand events such as the August 2007 crisis, as well as design new 
regulations that better meet the challenge of an increasingly networked 
world” (Allen and Babus, 2009: 13). 

1. Introduction  
The Great Financial Crisis and its aftermath have highlighted how the functioning of the 

economic system is strongly intertwined with the functioning of the financial system. Input-

output linkages among non-financial corporations affect the productive structure of our 

economic system, whereas contractual relationships among financial institutions determine the 

microstructure of the financial network.  All in all, by providing funding through loan 

exposures and by allocating capital in the form of debt and equity security exposures to the real 

economy, the financial system shapes the financial-economic nexus, binding together the two 

systems’ return and risk cycle.  Hence, the way these contractual relationships are distributed 

within and between the two systems - interconnectedness and concentration risk - has relevant 

implications for business cycle fluctuations and financial stability. Following Allen and Babus 

(2009)’s call for action, by adopting a microstructural network perspective our work aims at 

empirically investigating one side of this nexus: how risk propagates from within the economic 

system to banks’ balance sheet.   

In this respect, Gabaix (2011) has showed how concentration risk in the economic system 

such as shocks to large non-financial corporations may lead to remarkable fluctuations in 

economic activity - the granular origins of aggregate fluctuations. Moreover, Acemoglu et al. 

(2012) showed how interconnectedness in economic activity such as a high level of 

interdependency in the intersectoral input-output firms’ linkages - network origins - may 

explain aggregate fluctuations in output. These results are extremely relevant in light of the 

Covid-19 pandemic, which has caused bottleneck problems in the global supply chain (Rees 

and Rungcharoenkitkul, 2021). These network features - concentration risk and 

interconnectedness - also play an important role within the financial system determining 

fluctuations in the level of systemic risk. The relationship between the functioning of the 

financial system and that of the economic system and the implications for the financial system’s 

stability have been explored by Acemoglu et al. (2015). According to this work, financial 

stability and the level of systemic risk in financial networks depend on the size of the initial 

shock stemming from the real economy and on the financial network structure. More dense 
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(sparse) financial networks tend to amplify (dampen) real economic shocks when the initial 

shock is sizeable, whereas more dense financial networks enhance financial stability by 

reducing financial contagion when shocks are less sizeable.  

The financial network literature (Glasserman and Young, 2016) has focused on modelling and 

quantifying those contagion channels at play that determine financial amplification 

mechanisms usually relying on an exogenous trigger like a bank default event. However, there 

has not been much emphasis in the literature on measuring the severity and probability of the 

trigger event. According to Acemoglu et al. (2015), it is this variable together with the network 

structure that determines the system’s propensity to instability and thus the size of financial 

amplification mechanisms.  

Leveraging-up these insights from the literature, which is reviewed in Section 2, our work 

empirically measures the level of systemic risk in the UK banking sector by applying a 

stochastic microstructural balance sheet-based network methodology on the UK banks’ global 

network of granular exposures. We thereby quantifying the potential severity of the initial 

shock in monetary terms (£ amounts) – expected and tail losses - as well as the probability of 

systemic events. We contribute to the stress testing literature by performing a stochastic stress 

test for the UK banking sector in which we compute the UK banking system’s loss distribution 

as a function of: i) the actual network structure of UK banks’ exposures, thereby modelling 

interconnectedness and concentration risks; ii) a correlation matrix of counterparty defaults 

approximating Acemoglu et al. (2015)’s intersectoral input-output firms’ linkages; and iii) a 

set of risk factors - loss given default and probability of defaults parameters – which captures 

UK banks’ 1-year ahead view by country and sector of the state of the world economy. The 

novelty of this work is rooted in its stochastic approach to stress testing, thereby modelling 

scenario uncertainty, and in its empirical dimension, the estimation of the UK banks’ loss 

distribution using a quasi-complete network perspective, and the related rich set of findings on 

the microstructure of UK banking system, on the impact of Covid-19 pandemic on UK banking 

system’s tail risk, and on the decomposition of the sources of tail-risk.  

To achieve this, we so construct the most comprehensive granular exposure-based dataset 

for the UK banking sector to date by merging different supervisory datasets available at the 

Bank of England. In this respect, the resulting Global Network of UK banks’ loan, security and 

derivative exposures covers roughly £9.4 trillion or 90% of the UK banking system’ asset side. 

Out of this £9.4 trillion of exposures, 43% is captured with a bank-to-counterparty relationship 

(granular exposures), whereas the remaining 57% is composed by aggregated exposure with a 

bank-to-country/sector relationship. Overall, the Global Network, which is updated quarterly, 
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spans 16 quarters between Q1-2018 and Q4-2021, and comprises 36 UK reporting banks, 7200 

counterparties and 17.500 contractual relationships distributed across six major sectors (non-

financial corporates, financial corporates, credit institutions, governments, central banks, and 

households) and across more than 170 countries. Given that the technical details of the dataset’s 

construction are quite involved, we provide a description of the dataset’s construction at the 

beginning of Section 3 and a more detailed discussion in Appendix A for the interested reader.  

With this newly constructed dataset at our disposal, the bulk of Section 3 and Section 4 

contribute to the study on the microstructure of financial systems and on comparative financial 

systems led by the seminal paper of Allen and Gale (2001). We thus present detailed network 

statistics across time, sectors and exposure types in order to provide a footprint for the 

microstructure of the UK banking system and so moving a step forward in the mapping of the 

Global Banking System. Our key results are that the UK banking network is composed of: i) a 

core-double periphery structure, that is, an additional periphery which is an exclusive market 

for certain key players; ii) a highly fat-tailed distribution of exposures with roughly the top-

10% of exposures and counterparties capturing 90% of the total exposure amounts, iii) and a 

quite interconnected banking system across sectors and countries.  

Next, Section 5 exploits the microstructure of the Global Network to quantify UK banking 

system’s Capital at Risk (CaR) and Conditional Capital at Risk (CCaR), that is, respectively 

potential expected losses and tail loss estimates before and during the Covid-19 pandemic. In 

this respect, the UK banking system’s CaR estimate in Q2-2020 (peak of the Covid-19 crisis) 

was close to £37 billion, up by 36% (£10 billion) relative to pre-crisis average expected loss 

estimates.  

Next we compute Conditional Capital at Risk (CCaR), that is, tail-loss estimates, so as to 

model scenario uncertainty and the severity of stress events as a function of concentration risk 

and interconnectedness of the UK banking sector’s network of exposures. Overall, this 

approach allows us to assess not only the severity of extreme events, but also to measure their 

likelihood. In this respect, we estimate that an extreme stress scenario (99th percentile of the 

estimated loss distribution) would produce roughly £147 billion of losses in Q2-2020 up from 

an average of £91 billion in the pre-pandemic period. Moreover, we estimate that due to the 

Covid-19 pandemic the likelihood of the UK banking sector experiencing an extreme stress 

event above £91 billion losses increases from 1% pre-crisis to 4.1% at the peak of the pandemic 

in Q2-2020 (one extreme stress every 24 years). By comparing the increase in the severity and 

likelihood of tail events with the increase in expected losses (CaR estimates) at the peak of the 

crisis (Q2-2020), we find that average risk increase (36%) by less than the increase in tail risk, 
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respectively 310% and 62% for the probability and severity of extreme stress events. This 

finding highlights that expected losses (Capital at Risk) is not a good proxy for measuring tail 

risk (Conditional Capital at Risk). 

In the end, we show that a tightening in the correlation structure of banks’ counterparty 

defaults leads to an increased severity and likelihood of tail events, thereby corroborating 

empirically Acemoglu et al. (2015)’s findings. According to this stressed correlation structure, 

we estimate that the probability of experiencing an extreme stress event would increase to 6% 

(4.1%). In the end, we provide insights on the sources of average and tail risks by deriving the 

loss contribution of changes in PD and LGD parameters and the network structure. We show 

that the network structure may have a positive contribution to average risk, but at the same time 

the same network structure may have a negative contribution to tail risk.  

Our paper concludes with Section 6, which provides a synopsis and contextualizes the 

contributions of the paper in relation to the existing literature. 

2. Literature Review 
Granular data collection such as the large exposures framework were introduced by the 

Basel Committee on Banking Supervision in order to measure and monitor concentration risk 

and interconnectedness of credit institutions (BCBS, 2014). The collection of these data 

fostered empirical research analysing financial networks, which before that, relied on synthetic 

bilateral linkages imputed using optimization methods such as maximum, minimum or relative 

entropy solutions based on firms’ balance sheet information (Sheldon and Maurer 1998, 

Degryse and Nyguyen, 2007; Elsinger et al. 2006; Upper, 2011, Van Lelyveld and Liedorp, 

2006), or by generating random networks consistent with partial information (Halaj and Kok, 

2013; Anand et al., 2014).  

As emphasized by Glasserman and Young (2016) empirical work in this field was and is 

still limited by the confidentiality of interbank transactions, which are available only to central 

bankers and supervisors. Given these data limitations, most of empirical analyses tend to be 

country-specific or market-specific and focused on studying interbank network 

relationships1.For the UK financial network, our jurisdiction of interest, Gai et al. (2011) 

exploited the large exposure data to study concentration and contagion in the UK interbank 

market focusing on liquidity risk. Bardoscia et al. (2019a) exploited large exposure data and 

interbank security and derivative exposures to study how solvency contagion may propagate 

in the UK interbank market. Other UK-centric studies have investigated specific market 

                                                           
1 See Huser (2015) and Bardoscia et al (2021) for a review of the financial network literature. 



6 
 

segments, such as Coen et al. (2019) who focused on UK banks’ security holdings and fire-

sales spillovers, and Huser et al. (2021) on interbank and CCPs repo market relationships in 

times of stress, as well as Bardoscia et al. (2019b) who studied the UK OTC derivative market.  

In this respect, the construction of the Global Network dataset - to our knowledge the most 

comprehensive exposure-based dataset for the UK banking sector to date - allows us to 

complement this stream of literature: i) by adopting a multi-sector perspective, thereby going 

beyond contractual relationships in the interbank market; ii) by covering an extended sample 

of UK reporting banks, not limited to just the largest institutions as it was the case in previous 

studies; and iii) by embracing a multilayer perspective of loan, security and derivative 

exposures, not limited to a single market segment or a set of largest exposures, thus almost 

covering the complete asset side of the UK banking sector.  

Thanks to our dataset, we contribute to the study on the microstructure of financial systems 

and on comparative financial systems. In this regard, we document the degree of 

interconnectedness between UK banks and financial corporates, non-financial sector 

corporations, governments and central banks as well as the degree of concentration risk on an 

exposure and counterparty level. We then provide a comparison between the UK and Euro area 

(EA) banking networks by leveraging the work of Montagna et al. (2021) and Sydow et al. 

(2021) on the EA banking sector, the only two studies that like ours have a similar granular 

multilayer coverage of banks’ loan and security exposures across sectors and countries.  

Next, we contribute to the stress testing literature by implementing a microstructural balance 

sheet-based network methodology with a stochastic component, which allows us to model 

scenario uncertainty, similarly to Montagna et al. (2021) and Sydow et al. (2021), and capture 

the role played by concentration risk and interconnectedness in the determination of tail-events, 

two features that are not modelled in a classical stress testing approach. Moreover, thanks to 

this stochastic approach to stress testing, we are able to quantify not only the severity of tail 

events, but also to estimate their likelihood. In contrast to the financial network literature 

(Glasserman and Young, 2016), the modelling of contagion and amplification mechanisms 

taking place in the interbank market is left aside as an extension for future work. This modelling 

choice allows us to focus the analysis on the role played by the distribution of exposures across 

sectors, instead of within the interbank network. 

Next, we contribute to the systemic risk literature by deriving as output measures 

unconditional and conditional estimates of Capital at Risk, similar to the SRISK measure of 

Bronwlees and Engle (2017) as well as the Covar approach of Adrian and Brunnermeier (2019). 

In this respect, we follow Acemoglu et al. (2015)’s theoretical framework and measure the 
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level of systemic risk in the UK banking sector in relation to the size of the initial shock 

stemming from exposures towards the real economy and the financial network structure. Thus, 

we test our results to a variation in the correlation structure of UK banks’ counterparty defaults, 

thereby modelling explicitly intersectoral input-output firms’ linkages as in Acemoglu et al. 

(2012). In this respect, the present work provides empirical evidence and implications for 

financial stability on the role of asset correlations in exacerbating severity and likelihood of 

systemic crises (Schmieder, 2013; Taleb et al. 2012; Dullmann et al. 2008; and Lopez 2004).  

Finally, our estimates on the likelihood and severity of tail events also shed light on the 

economic and financial impact of the Covid-19 pandemic, thus contributing to most recent 

research in this area (e.g., Gease and Haldane, 2020; BIS, 2021; Huser et al., 2021; Schrimpf 

et al., 2020 and Abuzayed et al. 2021). 

3. Dataset 
The first contribution of our work is the construction of the UK banking system’s asset side 

using a granular approach (Appendix A).2 The resulting Global Network of UK banks’ 

exposures is composed by six supervisory data sources covering loan, security and derivative 

exposures as well as secured and unsecured exposures. As shown in Table 1, the Global 

Network captures £9.4 trillion of gross exposures out of £10.6 trillion of total assets in Q4-

2021, roughly 90% of the UK banking system’ asset side. The dataset is divided into two main 

set of exposures. On the one hand, the granular component accounts for 43% of total exposure 

amounts (£4.1 trillion) and can be split between loan exposures 32.7%, debt and equity security 

exposures (5.6%), and derivative exposures (5.1%)3. On the other hand, when the granular 

component is not available, we add aggregated exposures by country and sector of the 

counterparty as residual component which contributes to 57% of the total coverage (or £5.3 

trillion)4. 
 

The total number of entity-to-entity relationships (edges) that we capture are almost 17,556 

in Q4 2021 and they are spread across 7,180 counterparties (Nodes_B) and 36 reporting banks 

(Nodes_L).  Overall, the network shows an average counterparty exposure of £1.26  billion 

(Avg_EXP). Remarkably and consistently with the financial network literature, exposures are 

                                                           
2 In Appendix A we provide a description of the supervisory datasets, an overview of the methodology to map 
security and counterparty information, and additional complementary statistics.  
3 Granular exposures are defined as bank to counterparty relationships. 
4 Aggregated exposures are defined as bank to country-sector relationships. For instance, granular exposures 
towards households are not available, so we complement the dataset using aggregated statistics.  
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power-law distributed, thereby highlighting a high degree of concentration risk (See Section 

4)5.  

Furthermore, by looking at the average path length6, we notice that the coefficient is quite 

small averaging around 2.26, implying a quite fast-connected network of relationships, that is, 

shocks may propagate quickly affecting multiple entities. Nevertheless, the network is not a 

complete fully-connected network. Its diameter, i.e. the shortest distance between the two most 

distant nodes in the network is 127, whereas the density parameter7 is equal to 0.12% 

emphasizing the UK banking centric perspective of our dataset8.  

Table 1: Summary Global Network Statistics Over Time 

 
Note: Values are reported in £ billion for columns (2) to (7). Column “TOT” refers to the total original amount of 
exposures captured, “Aggregate” refer to the exposure amount mapped on aggregate sector-country counterparty 
basis , “Granular” refer to the exposure amount mapped with exposure-specific information, of which respectively 
loan, security and derivative exposures. “% LGD” refers to % of loss-given-default exposures. “Edges” refers to 
the total number of linkages, “Nodes_L” to the number of reporting banks, “Nodes_B” to the number of 
counterparties and “AVG_EXP” to the average exposure amount by counterparty. In the end, “Avg_path” refers 
to the average path length of the network, whereas the “power_law” reports the numeric scalar and exponent of 
the fitted power-law distribution.  

3.1 Sectoral Decomposition 

Next, we further investigate the topology of the network by sub-setting the dataset according 

to the sectoral classification of the counterparty so as to assess the degree of heterogeneity in 

sector-specific networks as set out in Table 2. In Q4-2021, the most relevant counterparty 

sector is general governments (GG) capturing 21.8% of total gross exposure amounts. Then it 

follows exposures to financial corporations (FC) with 21.6%, and, after that, exposures to credit 

                                                           
5 In this respect, we fit a power law distribution to our network, and we find that the alpha coefficient average 
around 1.6 across time. For this value of alpha (α ≤ 2) we can state that our network follows a power-law 
distribution for which the value of the mean is dominated by the largest exposures in the network (Newman, 
2004)5. For instance a coefficient of alpha equal to 2.1, which is used to approximate wealth distributions, implies 
that roughly 80% of total exposure amounts is concentrated in the top 20% exposures.  
6 It is defined as the average number of steps along the shortest paths for all possible pairs of network nodes. 
7 The ratio of the number of edges to the number of possible edges in the network. 
8 We need to recall that the Global Network is composed only by UK banks’ exposures, implying that by 
construction every counterparty which is not a UK bank can’t be connected to any another non-UK bank entity. 

Time TOT Aggregate Granular Loan Security Derivative % LGD Edges Nodes_L Nodes_B Avg_EXP Avg Path Diameter Density Power Law
Q1-2018 7926 4634 3292 2348 529 415 44% 16793 36 7361 1.08 2.19 88 0.11 1.55
Q2-2018 8508 4943 3565 2665 515 385 44% 17208 36 7393 1.15 2.20 99 0.11 1.59
Q3-2018 8385 4873 3512 2598 512 402 42% 17327 36 7400 1.13 2.20 99 0.11 1.59
Q4-2018 8508 4895 3614 2673 512 429 42% 17279 36 7390 1.15 2.20 99 0.11 1.55
Q1-2019 8555 5071 3484 2549 510 425 42% 17353 36 7393 1.16 2.22 111 0.11 1.56
Q2-2019 8718 5210 3508 2566 531 411 42% 17757 36 7427 1.17 2.24 133 0.11 1.51
Q3-2019 9066 5552 3514 2547 540 427 41% 17931 36 7426 1.22 2.27 126 0.11 1.57
Q4-2019 8694 5236 3457 2575 490 392 41% 16509 35 6700 1.3 2.24 124 0.12 1.59
Q1-2020 9851 6188 3663 2663 497 503 41% 17117 36 6766 1.46 2.37 134 0.12 1.56
Q2-2020 9750 6005 3745 2742 548 455 42% 17076 36 6839 1.43 2.36 174 0.12 1.55
Q3-2020 9867 5914 3953 2941 524 488 40% 17358 36 6949 1.42 2.34 123 0.12 1.58
Q4-2020 9884 5974 3911 2945 492 474 40% 16469 36 7172 1.38 2.16 123 0.13 1.60
Q1-2021 9577 5607 3970 3020 486 464 40% 17132 36 7346 1.3 2.33 147 0.13 1.57
Q2-2021 9563 5572 3992 3016 502 474 40% 17840 36 7543 1.27 2.33 140 0.13 1.60
Q3-2021 9659 5553 4105 3071 526 508 40% 17985 36 7488 1.29 2.25 163 0.13 1.56
Q4-2021 9444 5344 4100 3087 528 485 40% 17556 36 7180 1.32 2.29 148 0.13 1.59
Average 9122 5411 3712 2750 515 446 41% 17293 36 7236 1.26 2.26 127 0.12 1.57
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institutions (CI) with 18%, to the household sectors (HH) with 17.4%, to non-financial 

corporates (NFC) with 13.3%, and finally to central banks (CB) with 8%.  

By comparing the UK banking sector’s asset decomposition by sector with one provided for 

the Euro Area in Montagna et al. (2021), we can notice that the share of UK banks’ exposures 

towards the various sectors is quite aligned. The share of exposures towards FC sector is 21.6% 

vs 25.4% among the two banking systems, while towards GG is 21.8% vs 20.7%. For the NFC 

and HH sectors, we have respectively 13.3% instead of 15.1% in the Euro Area, and 17.4% 

versus 22.8% for the household sector. Finally, interbank exposures (CI) account for slightly 

more in the UK than in the Euro Area (18% vs 15.5%). 
Next, we notice that 46% of the edges (8,001) in the network are directed towards NFCs, 

which account for roughly 53% (3,800) of the total number of counterparty entities (7,180). 

On average an exposure towards a NFC is roughly £0.33 billion, which represents the smallest 

average exposure amount across all sectors. The highest average edge value of £ 15 billion is 

vis-à-vis CB sector. Next, edge exposures towards households (HH) and governments (GG) 

show the second and the third highest average edge value, £9.3 and £4.8 billion respectively, 

although we should note that for the HH sector we deal with exposures aggregated at the 

country level since we do not have information on granular loan exposures to households. 

Finally, the average amount per edge towards financial sector entities (FC and CI) tend to be 

larger, respectively £1 and £2.4 billion, than the average amount per edge towards NFC. Apart 

from the household sector for which we do not have granular information, we can state that 

exposures to the public sector on average tend to be larger than exposures toward financial and 

non-financial corporates9. 

 Overall, both the average amount per edge and the average size of counterparty borrowing 

seem to be aligned, although with some differences to the Euro Area network metrics described 

in Montagna et al. (2021). In fact, the smallest average edge exposure is also reported in the 

EA network towards the NFC sector (€ 0.2 billion). FC sector follows with also a very similar 

average edge exposure of €0.8 billion. Also statistics for exposures to households are quite 

similar between the two banking sectors, with an average edge exposure of € 6.5 billion. In 

contrast, the average edge amount vis-à-vis the GG sector is larger for the UK than for the EA, 

with the latter reporting an average amount per edge of €1 billion. In the end, exposures towards 

credit institutions is large in the UK than in the EA banking sector, which has an average 

                                                           
9 We must highlight that there is a high degree of heterogeneity across reporting bank, since the size of exposures 
is among other variables, a function of the size of a bank’s balance sheet. 
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exposures of €0.4 billion. This second comparison in terms of banking systems highlights that, 

although the UK and EA banking systems differ in size, with the latter roughly two times bigger 

than the former, the network of relationships across sectors are quite similar. Banks appear to 

diversify their exposures similarly across sectors, and across entities belonging to the same 

sector, independently of their jurisdiction.    

Table 2: Sectoral Decomposition Q4-2021 

 
Note: Values are reported in £ billion for columns (2) to (7). Column “TOT” refers to the total original amount of 
exposures captured, “Aggregate” refer to the exposure amount mapped on aggregate sector-country counterparty 
basis , “Granular” refer to the exposure amount mapped with exposure-specific information, of which respectively 
loan, security and derivative exposures. “% LGD” refers to % of loss-given-default exposures. “Edges” refers to 
the total number of linkages, “Nodes_B” to the number of counterparties and “AVG_EXP” to the average 
exposure amount by counterparty in each sector.  

 

3.2 The Global Network 

We now proceed with the visualization of our Global Network in its entirety. Figure 1 aims 

to highlight three main network perspectives of the Global Network, namely relationships by 

sector, region and community. To produce these network graphs, we assign to each node a 

colour according to the sector or region the entity belongs to, respectively panel (a) and panel 

(b), and to the community according to the modularity scores calculated for each entity as in 

panel (c). Then we colour the edges according to the node’s colour receiving the exposure 

(target node), except for panel (c) for which we assign the colour by type of exposures, blue 

for loan exposures and red for security exposures. The size of the nodes is proportional to their 

eigenvector centrality scores in order to highlight the role played by connectedness rather than 

size in the network.  

 Firstly, we can observe that the UK Global Network shows a core-periphery structure. On 

the one hand, the core (dotted black circle) is composed by those entities mostly connected to 

the majority of UK banks, and to which UK banks are mostly exposed in terms of gross 

exposures. Exposures to core entities are those that overlap across banks’ portfolios of 

securities and loans, exhibiting strong dependency. All sectors are well represented in the core, 

especially non-financial corporates and credit institutions. On top of that, it is possible also to 

identify three additional sectoral clusters, respectively financial corporates, governments and 

households. The core is also well diversified in terms of regional clusters, with a strong 

Sector Total Aggregate Granular Loan Security Derivative % LGD Edges Nodes_B Avg_EXP
GG 2055 265 1789 1441 302 46 46% 1284 432 4.76
FC 2041 1476 565 239 50 276 37% 3809 2019 1.01
CI 1699 1115 584 359 102 123 36% 2938 696 2.44
HH 1645 1645 0 0 0 0 36% 1416 177 9.29

NFC 1252 800 453 366 48 39 40% 8001 3806 0.33
CB 752 43 710 685 25 0 46% 108 50 15.0

Total 9444 5344 4100 3090 528 485 40% 17556 7180 1.32
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presence of entities from every key regions, as seen by the presence of European, Asian, 

American and British entities. Typically, these entities are well-established multinational 

corporations or key international public organizations which fund themselves globally, and are 

quoted on stock exchanges. The core is also well diversified in terms of community structure. 

In fact the core is a combination of entities belonging to the top-7 communities which roughly 

account for 98% of the total number of relationships. It is important to highlight that 

communities are composed of entities amongst which dense connections exists. By contrast, 

sparse connections exist between entities belonging to different communities. In this respect, 

we can notice that an overlap does not exist between community structure and regional-sectoral 

composition.  

On the other hand, the periphery of the network is composed by multiple sub-sets of entities, 

which are clustered together around those UK banks that are exposed to the same set of 

counterparties.  The periphery can be divided into two regions - a region made of weak common 

dependencies and a region made of exclusive relationships, approximated by the area inside 

and outside the red dotted circle, respectively. Clusters constituted by weak common 

dependencies are those in which two or few banks are exposed to the same set of counterparties 

as seen in A-Type clusters in Panel (a)10. These clusters are placed closer to the core than B-

Type clusters since they are attracted to the centre by the size of their exposures, the number 

of relationships, and the number of lender banks involved in the relationships.  

The entities belonging to the same cluster may share the same regional attribute as seen in 

the variation of colours for these clusters in Panel (b), highlighting common patterns of regional 

diversification across banks, but it is not exclusive. Exposures to a B-Type cluster are not 

shared across banks, and do belong to one single bank, thereby representing a bank’s exclusive 

set of counterparties. This would imply that entity-specific shocks to counterparties belonging 

to B-Type clusters should not directly reverberate through the network if the lender bank is 

sufficiently capitalized to absorb the losses. Financial contagion may affect other banks only 

indirectly like via correlations in asset returns or via common macro shocks. On top of this, we 

need to acknowledge that by construction of the datasets, we are exploiting a UK-banking 

centric perspective. As such, entities in B-Type clusters and generally any non-UK bank entity 

might be also linked to UK banks or other corporates via their asset side exposures, which we 

do not capture in the Global Network.  

                                                           
10 If those counterparties were exposed to multiple lenders with relative sizable exposures, they would have been 
placed by the algorithm in the core of the network. 
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Lastly, we can detect that clusters can be also differentiated by the shares of the type of 

exposures, as seen in the decomposition between securities and loans in Panel (c). Although 

security exposures cover less than 20% of total gross exposure amounts, they represent roughly 

61% of the total number of edges in the network, 3/4 deriving from debt securities and 1/4 from 

equity securities.  

Figure 1: The Global Network of UK Banks’ Exposures 
Panel (a) – By Sector      Panel (b) – By Region 

 
                               

Panel (c) – By Community and Exposure   
 

 
    

          
Note: The total amount of exposures for Q4-2021 is £ 9.4 trillion. The network is built by assigning the eigenvector 
centrality metrics to the size of the nodes, while the colour of the edges is given by the counterparty node's colour. 
Blue nodes represent the banking sector, red nodes non-financial corporates, purple nodes the government sector, 
green nodes the financial corporate sector, and finally the light blue nodes the household sector. 

 

 

CI NFC HH GG FC CB UK AM EU AS OC AF N.A.
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3.3 The Interbank Network 
We provide a deep-dive into the topology of the UK interbank network which is constituted by 

36 reporting banks and 696 counterparty banks. The interbank network covers roughly £1.7 

trillion of exposures in Q4-2021, almost 18% of the total gross exposure amounts as set out in 

Table 3. Loan exposure account for 61% of granular exposures, whereas security exposures for  

18% of total interbank exposures, and derivative exposures for 21%. Nonetheless, 61% of the 

total number of edges is made of security exposures, of which 78% are bond and 22% equity 

security exposures, whereas loan exposures account for 24% of the total number of edges in 

the interbank market, and derivatives for the remaining 15%.  

Finally, the average path length coefficient suggests that not all banks are directly connected 

to each other, with an average of number of steps equal to 2.3. The interbank network is also 

very sparse, although more dense than the complete network. Among all possible connections, 

only 0.5% of them are present. Lastly, we see that a small share of interbank exposures accounts 

for a large share of the total interbank exposure amounts since as is also the case for the 

complete network, we are dealing with a power-law distribution (alpha coefficient < 2).  

Table 3: Interbank Network Characteristics 

 
Note: Values are reported in £ billion for rows (1) to (6). Row “Total” refers to the total original gross amount of 
exposures, “Aggregate” refer to the exposure amount mapped on aggregate sector-country counterparty basis, 
“Granular” refer to the exposure amount mapped with exposure-specific information, of which respectively loan, 
security and derivative exposures. “% LGD” refers to % of loss-given-default exposures. “Edges” refers to the 
total number of linkages, “Nodes” to the number of counterparties and “AVG_EXP” to the average exposure 
amount by counterparty. In the end, “Avg_path” refers to the average path length of the network, whereas the 
“Power_law” reports the numeric scalar and exponent of the fitted power-law distribution.  

By looking at the topology of the network depicted in Figure 2, we bring further insights on 

the UK interbank network structure. In order to highlight these features, we assign the nodes 

and edges with colours according to their region and type of exposures, respectively. The size 

of the nodes is proportional to the eigenvector centrality score, whereas the size of exposures 

is equal to the gross original exposure amount. We notice that the most central institutions 

captured by their size are not only UK entities, but also European and American banks, 

corroborating a strong degree of openness and internationalization of the UK banking sector. 

Time Q1-2018 Q2-2018 Q3-2018 Q4-2018 Q1-2019 Q2-2019 Q3-2019 Q4-2019 Q1-2020 Q2-2020 Q3-2020 Q4-2020 Q1-2021 Q2-2021 Q3-2021 Q4-2021 Average
Total 1473 1572 1542 1566 1615 1713 1893 1686 2182 2050 2138 2127 1925 1827 1797 1699 1800

Aggregate 987 1087 1047 1046 1119 1223 1381 1201 1627 1534 1507 1498 1268 1236 1205 1115 1255
Granular 486 485 495 519 496 491 512 485 555 515 631 629 656 590 592 584 545

Loan 288 295 305 318 293 288 306 294 329 295 403 414 449 379 373 359 337
Security 88 86 86 86 85 93 98 93 100 108 109 89 85 94 101 102 94

Derivative 110 104 104 115 118 110 108 98 126 112 119 126 122 117 118 123 114
% LGD 46% 46% 43% 44% 44% 43% 43% 43% 43% 44% 38% 40% 38% 38% 38% 36% 42%
Edges 2782 2845 2855 2848 2892 3014 3015 2907 3082 2984 3039 2807 2899 2949 2992 2938 2928
Nodes 713 704 703 702 703 725 724 686 689 676 703 712 709 720 718 696 705

Avg_EXP 2.1 2.2 2.2 2.2 2.3 2.4 2.6 2.5 3.2 3.0 3.0 3.0 2.7 2.5 2.5 2.4 2.6
Avg Path 2.2 2.2 2.2 2.2 2.2 2.3 2.3 2.2 2.4 2.4 2.4 2.2 2.4 2.3 2.2 2.3 2.3
Diameter 7 7 7 7 7 8 7 7 7 11 6 5 4 5 4 5 6.5
Density 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.4

Power Law 1.84 1.76 1.76 1.79 1.77 1.73 1.71 1.71 1.70 1.84 2.01 1.89 2.29 2.02 2.22 2.01 1.88
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Moreover, Asian banks tend to be less central overall in the UK interbank network in 

comparison with their share of exposures in the Global Network. The topology of the interbank 

network also displays a core-periphery structure, the core highlighted by a black dotted circle. 

The entities belonging to the core are those that are commonly exposed across all UK banks. 

UK banks also tend to create their own periphery by building their own communities of 

interbank relationships highlighted for instance by the red dotted circle. We need to 

acknowledge that our interbank network graph only highlights relationships from UK banks, 

whereas many other asset-side relationships may exist from non-UK banks towards UK banks 

as well as non-UK banks, although they are not displayed given our UK-centric data 

coverage11. Lastly, we highlight the composition of the relationships by exploiting the type of 

exposure, blue for loans, red for debt securities, and green for equities. We notice that, 

consistent with what we previously stated, the graphical representation highlights a more 

relevant presence of security exposures over loan exposures, although loan exposures tend to 

be more sizeable. In this respect, some banks tend to diversify across type of exposures, while 

others tend to privilege loan and debt security exposures. Only few banks show remarkable 

interbank equity exposures. 

Figure 2: The UK Interbank Network by Country and Type of Exposure 

 
 

 
 

Note: The total amount of exposures for Q3-2021 is £ 1293 billion. The network is built by assigning the 
eigenvector centrality metrics to the size of the nodes. The colour of the nodes is attributed by the geographical 
locations of the entities, while the colour of the edges is given by the type of exposure, respectively blue for loan 
exposures, green for security equity exposures, and red for debt security exposures.  

                                                           
11 Community-based relationships are important for mitigating liquidity-funding risks. As found in Allen et al. 
(2020) banks in a community on average have lower centrality of interbank borrowing as expected, nevertheless 
being in a community can mitigate the negative effect of lacking trust in obtaining interbank funding. 

UK AM EU AS OC AF N.A.
Loan Sec E Sec D
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4.  Degree of Concentration Risk and Interconnectedness  
In this section we provide stylized facts on the degree of concentration risk and 

interconnectedness of UK banks’ granular exposures in order to highlight the methodological 

relevance of these network features in the measurement of tail-risk.   

4.1 Concentration Risk 

First, we subset the network selecting only those exposures that are granular, thereby 

omitting aggregate exposures. We are left with roughly £4.4 trillion or 43% of the total 

coverage. Next, we rank exposures by size and we group them into 100 equal buckets (1% of 

the total number of exposures). Hence, we construct a cumulative discrete density function. 

Panel (a) of Figure 3 shows that roughly 60% of the total gross exposure amounts belongs to 

the 99th percentile, and that the 90th percentile captures roughly 90% of the total coverage. This 

first result highlights the degree of concentration of UK banks’ assets in a small share of large 

exposures. This is relevant from a modelling perspective since a negative shock to one of these 

exposures (degree of concentration risk) remarkably affects the stability of the UK banking 

system. Hence, the distribution of shocks affecting banks’ exposures is non-neutral, and 

determine the shape of the UK banks’ loss distribution.  

Figure 3: Cumulative Density by Exposure, Counterparty and Reporting bank in Q3-2021 
     Panel (a) –by Exposure     Panel (b) – by Counterparty          Panel (c) –by Reporting Bank 

  
Note: the red line refers to the 90th percentile.  

Moving to Panel (b), we provide a discrete cumulative density of total exposure amounts by 

counterparty constructed in the same way as presented in Panel (a). In this respect, this 

cumulative density is even more right-tailed than the exposure-based one, with the 99th 

percentile capturing roughly 70% of total gross exposure amounts, and the 90th percentile 

covering 93% of the total12. This result corroborates and complements the previous one, 

emphasizing more strongly the relevance of modelling granularly the distribution of shocks, 

also at a counterparty level. The failure or distress of certain counterparty entities may put in 

                                                           
12 Those counterparty entities may be considered as too-big-too fail.  
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jeopardy the UK banking system’ financial stability. Similarly to Gabaix (2011), negative 

idiosyncratic shocks to the top-1% counterparties may endanger the solvency position of UK 

banks. Also from this counterparty perspective, the distribution of shocks is non-neutral. 

Lastly, Panel (c) reports the cumulative density by reporting bank. In this case, we do not group 

them into buckets since the number of reporting banks is much smaller, whereas each bucket 

now represents one reporting bank. As seen in Panels (a) and (b), the cumulative density in 

Panel (c) is also strongly right-tailed, with the top-4 largest banks capturing roughly 55% of 

total UK banking system’s assets. From this lending-side perspective, we may say that also the 

provision of credit jointly with the portfolio holdings of financial assets are in the hands of few 

large players. Hence, a negative shock to this set of entities therefore may trigger contagion 

spillovers across the whole interbank and non-interbank network as demonstrated by multiple 

studies in the network and financial contagion literature (Covi et al. 2021; Cont and Schanning 

2017; Kok and Montagna 2013). Overall, this set of stylized facts highlights the importance of 

modelling the distribution and transmission of shocks on a granular level since there is high 

level of concentration risk which can only be captured by modelling entity-to-entity 

relationships. 

4.2 Direct and Indirect Interconnectedness  
To further shed light on the critical role played by certain entities in the UK Global Network, 

we provide entity-specific statistics on their degree of concentration risk, direct and indirect 

connectedness both from the reporting and counterparty side perspectives.  

For the reporting side we compute three main metrics (Equation 1a, 1b, 1c), namely: the 

concentration of a bank’s portfolio as the share of exposure amounts for the 90th percentile over 

total exposures by reporting bank i (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖), the degree of connectedness of each reporting bank 

i (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖) as the number of times bank i appears on the counterparty side13, and the degree of 

overlapping portfolios calculated as the summation of the connectedness coefficients (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖) 

across all counterparties j belonging to the portfolio of bank i (𝑂𝑂𝑂𝑂𝑖𝑖).  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 = ∑ 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑘𝑘𝐾𝐾
90%
∑ 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑗𝑗𝑗𝑗

      (1𝑎𝑎);          𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 =  ∑ 𝑁𝑁𝑖𝑖𝑖𝑖      (1𝑏𝑏);            𝑂𝑂𝑂𝑂𝑖𝑖 =  ∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑗𝑗
𝐽𝐽
𝑗𝑗    (1𝐶𝐶) 

Next, we rank banks by clustering them into colour buckets according to the weighted 

average of their standardized metrics, with blue for the tier-1 bucket, with green for the tier-2 

bucket, and with white for the tier-3 bucket. Panel (a) of Figure 4 plots these metrics into a 

                                                           
13 We compute this coefficient only one time for all counterparties, and reporting banks do appear on the 
counterparty side. 
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three-dimensional graph, in which the X-axis represents concentration risk, the Y-axis 

Connectedness, and the Z-axis Overlapping Portfolios. 

In this respect, focusing on tier-1 banks we identify four entities for illustrative purposes as 

described in Panel (a) of Table 4. Type-A entities have been placed in the North-Central region 

(NC), and can be considered the most relevant from a systemic risk monitoring perspective. 

This set of entities show a very high concentration risk in its portfolio of exposures (its top 

10% of exposures represent roughly 90% of its total exposures), meaning it is subject to high 

idiosyncratic risk. Type-A banks are also very well connected to the other reporting banks 

(roughly more than 50 banks), meaning that in case of distress, it is likely to trigger direct 

contagion in the interbank market. Moreover, its portfolio of exposures strongly overlaps with 

other banks’ portfolios, meaning that it may also be subject to the trigger of fire-sales dynamics 

affecting the whole interbank network indirectly. 

By contrast, Type-B entities are located in the North-West region (NW), and can be 

considered the second most relevant from a systemic risk monitoring perspective. They are 

prone to a high degree of idiosyncratic risk (high value on the X-axis) and in case of distress 

they will likely spread risk directly to its interbank peers. However, its portfolio of 

counterparties is well diversified, and so it will be less susceptible to indirect contagion. Next, 

Type-C entities in the South-Central region (SC) are the third most relevant in terms of risk-

monitoring. In this respect, Type-C entities are subject to a high degree of idiosyncratic risk 

(X-axis) and indirect risk via overlapping portfolios (Z-axis), nevertheless they won’t spread 

direct contagion in the interbank market (Y-Axis). Lastly, Type-D entities which are located in 

the South-West region (SW) can be susceptible to idiosyncratic shocks, but show low levels of 

both direct and indirect contagion spillovers. Finally, it is important to notice that no reporting 

banks show low levels of concentration risk (X-axis) and at the same time a high degree of 

both direct and indirect contagion (Y and Z axis).  

Table 4: Risk Monitoring Classification 
      Panel (a)           Panel (b)  

  
Note: “H” stands for high, and “L” for low, and “M” for medium risk. “NC” refers to north-central region, “NW” 
to north-west, “NE” to north-east, whereas “SC” refers to south-central, and “SW” to south-west.   

 

 

Reporting Entities A B C D
Idiosyncratic Risk H H H H
Direct Contagion H H L L
Indirect Contagion H L H L
REGION NC NW SC SW
SYSTEMIC RISK H M M L

Counterparty Entities 1 2 3 4
Idiosyncratic Risk H H H L
Direct Contagion H L L H
Indirect Contagion H H L H
REGION NC SC SW NE
SYSTEMIC RISK H M L L
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Figure 4: Concentration, Connectedness, and Overlapping Portfolios  
Panel (a) - Reporting Banks    Panel (b) – Counterparties 

 

 Note: For panel (a) X-axis refers to Concentration, Y-axis refers to Connectedness, and Z-axis refers to Overlapping Portfolio. 
For panel (b) X-axis refers to Concentration risk measured by the share of exposure amounts by counterparty in % of total 
exposure amounts in the system, Y-axis refers to Connectedness that is number of banks connected to the entity, and Z-axis 
refers to Indirect Contagion, first and second layers of connected entities. Red dots highlight reporting banks. 

By moving to the analysis of the counterparty side, that is Panel (b) of Figure 4, we compute 

three main metrics which slightly differ from those previously reported (Equation 2a, 2b, 2c)14. 

Hence, we compute first the concentration risk of a counterparty as the share of gross exposures 

of counterparty j over total gross exposure amounts (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑗𝑗) divided by 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑗𝑗  thereby 

capturing the average size of exposures. We then compute the degree of connectedness of each 

counterparty entity j (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑗𝑗)15, and finally the level of indirect contagion approximated by the 

summation of the connectedness coefficients (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑗𝑗) across all reporting banks connected to 

the counterparty j. The colour bucketing is classified as discussed previously with the addition 

of red dots which identify the UK banks which appear as counterparties.  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑗𝑗 =

∑ 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑗𝑗𝑗𝑗
∑ 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑗𝑗𝑖𝑖

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑗𝑗
    (2𝑎𝑎);             𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑗𝑗 =  ∑ 𝑁𝑁𝑗𝑗𝑗𝑗    (2𝑏𝑏);              𝐼𝐼𝐶𝐶𝑗𝑗 =  ∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑗𝑗,𝑖𝑖

𝐼𝐼
𝑖𝑖    (2𝐶𝐶) 

In this respect, focusing on tier-1 counterparties, we identify four types of entities for 

illustrative purposes as described in Panel (b) of Table 4. These entities are the most relevant 

from a systemic risk monitoring perspective since they are located in the North-Central region 

(NC), thereby representing a high degree of idiosyncratic risk (X-axis) for multiple reporting 

banks (Y-axis), which in turn are very well connected to other banks in the interbank network 

                                                           
14 We eliminate few outliers on the X-axis for the graphical representation.   
15 This metric is the same as the one computed for the reporting side, that is, the number of reporting banks (i) 
counterparty j is connected to.  
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(Z-axis). Type-2 entities which are located in the South-Central region (SC), represent a high 

degree of idiosyncratic risk (X-axis), but a low level of connectedness since they are connected 

to only a small fraction of UK banks (Y-axis), though these banks are central in the interbank 

market (Z-axis). These entities can be considered as medium-risk providers for the system. 

Next, in the South-West region we find Type-3 entities which are low-risk providers for the 

system. These entities exhibit a high degree of idiosyncratic risk for their reporting banks (X-

axis), but at the same time they are connected to only a very small set of banks (Y-axis) that 

are not very central in the interbank network (Z-axis). Finally, Type-4 entities are located in 

the North-East region (NE) and represents a low-risk for the system. This group of 

counterparties mostly comprises banks (red dots) which represent a low level of idiosyncratic 

risk for their bank peers. Nevertheless, they are connected with many peers (Y-axis), which in 

turn are very well connected within the interbank market (Z-axis).  

Overall, we can state that degree of concentration risk in the UK banking system both from a 

reporting and counterparty perspective is high. This characteristic makes the UK banking sector 

vulnerable to idiosyncratic shocks which via direct and indirect connectedness may spread risk 

across the global interbank network (Figure 2), within and outside the UK banking system. 

These stylized facts are informative for the modelling approach we should adopt in order to 

capture the role played by concentration risk and interconnectedness in the determination of 

the level of systemic risk.  
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5. Capital at Risk 
In this section we aim at quantifying potential losses of the UK banking system and disentangle 

their composition. To achieve that, we exploit complementary data on PD and LGD parameters 

by counterparty sector and country as detailed in Appendix A (section 1.5)16.   

In this respect, two main exercises are provided. First, we compute expected one-year ahead 

loss estimates, also defined as Capital at Risk estimates (CaR)17. Second, in order to incorporate 

the degree of concentration risk and interconnectedness into our loss estimates we move away 

from an expected loss calculation methodology and we compute Conditional Capital at Risk 

Estimates (CCaR) by means of stochastic simulations. Hence we compute conditional loss 

estimates according to the 90th, 97.5th and 99th percentile of the loss distribution and we thus 

estimate the severity and probability of the “initial shock”. The stochastic approach allows us 

to model scenario uncertainty, assess the severity of stress scenarios and the trigger event in 

probabilistic terms. In the end, we decompose the results to shed light on the sources of tail 

risk for the UK banking sector.  

5.1 Measuring Capital at Risk 
We compute 1-year ahead expected losses using LGD and PD parameters by sector and 

country provided by each reporting bank. Since counterparty specific PD parameters are not 

available, we assign to each counterparty the PD parameter by sector and country averaged 

across all reporting banks’ estimates. This approach resembles a pool-IRB approach of 

counterparty default rates since we use information reported by all UK reporting banks for each 

counterparty sector and country. This approach ensures robustness since it is an average 

estimate across several IRB models18.  

Expected losses are computed using the complete set of exposure - both granular and aggregate 

- and exposure-based information on the share of unsecured exposure amounts19. In this 

respect, we use a standardized approach to loss calculation and we treat all exposures equally, 

thereby applying the same LGD and PD parameters to loan, security and derivative 

                                                           
16 Probability default parameters are based on banks’ estimates using their internal models, and are calibrated to 
the long-run average PD of one-year default rates. 
17 Expected losses are covered by banks’ provisions.   
18 The ECB in 2019 has approved the use of pool-IRB approaches in order to better measure PD and LGD 
parameters. This approach is used especially to estimate counterparty default rates for those type of counterparties 
whose historical default rates are very low and thus difficult to estimate such as for wholesale exposures (See 
ECB, 2019).  
19 Hence, we estimate losses using net exposures (𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑗𝑗), thereby deducting on an exposure basis the secured 
exposure amount from the gross exposure amount so as to derive the exposures at default (EAD).  
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exposures20. Hence, we sum for each reporting bank 𝑖𝑖 expected losses computed on a 

counterparty basis 𝑗𝑗 and we aggregate them across all reporting banks to achieve a measure of 

Capital at Risk for the UK banking sector (Equation 3). 

𝐶𝐶𝑎𝑎𝐸𝐸𝑖𝑖𝐶𝐶𝑎𝑎𝐶𝐶 𝑎𝑎𝐶𝐶 𝑅𝑅𝑖𝑖𝑅𝑅𝑅𝑅 ≡��𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑗𝑗

𝐽𝐽

𝑗𝑗

∗ 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑗𝑗

𝐼𝐼

𝑖𝑖

∗ 𝑂𝑂𝐿𝐿𝑗𝑗                                (3) 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒: 𝑖𝑖 𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑒𝑒𝑅𝑅 𝐶𝐶𝐶𝐶 𝐶𝐶ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝐸𝐸𝐶𝐶𝑒𝑒𝐶𝐶𝑖𝑖𝐶𝐶𝑟𝑟 𝑏𝑏𝑎𝑎𝐶𝐶𝑅𝑅 𝑎𝑎𝐶𝐶𝑎𝑎 𝑗𝑗 𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝑐𝑐𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝐸𝐸𝑎𝑎𝑒𝑒𝐶𝐶𝑐𝑐 

Figure 5 reports the estimated expected loss amounts decomposed by sector and region of 

the counterparty. We want to emphasize that loss estimates are for one-year ahead since we use 

1-year expected probabilities of default21.  

In terms of Capital at Risk (CaR), the UK banking system’s loss estimate in Q4-2021 is 

close to £31 billion (0.33% of total exposure amounts), up by 17% (£27 billion) relative to the 

pre-crisis period approximated by estimates for Q4-2019. Importantly the time-series is quite 

stable over time, ranging between £25 and £28 billion between Q1-2018 and Q4-2019. Though, 

when the Pandemic starts, the time-series closely tracks the build-up of counterparty risks as 

the result of the COVID-19 crisis. In Q2-2020, at the peak of the Covid-19 Crisis, total expected 

losses amounted to £ 37 billion, up by 36% from pre-crisis levels.  

Looking at the expected loss estimates by sector reported in Panel (a), most of the losses 

stem from exposures towards the non-bank financial corporate sector (FC) with £16.6 billion 

(44.9%), followed by non-financial corporates (NFC) almost £11.7 billion (31.6%), and then 

by the household sector (HH) £6.5 billion (17.5%). Not surprisingly expected loss estimates 

vis-à-vis governments (GG) and central banks (CB) account for less than 2% (£0.6 billion), the 

smallest component, although gross exposures towards Governments account for roughly 

21.8% of the total coverage.  

Similarly, expected losses towards credit institutions account for only 3% of the total (£1.1 

billion), although their gross exposure amounts account for almost 18% of the total. This result 

is due to a very low average probability of default applied to CI counterparty sector, below 

0.2% or 20 basis points, that is, a bank defaulting every 500 years. This result emphasizes the 

relevance of modelling contagion and amplification effects within the interbank market using 

microstructural models in order to quantify and factor systemic risk and network risk factors 

into CI’s PD calculations. Overall, the most important component is clearly expected losses 

                                                           
20 Security exposures concern debt and equity holdings. We do not compute market-risk losses using security-
specific parameters such as haircuts and price impacts functions.  
21 For more details on the methodology see BIS (2001). https://www.bis.org/publ/bcbsca05.pdf   

https://www.bis.org/publ/bcbsca05.pdf
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stemming from exposures towards the corporate sector, both financial and non-financial, 

capturing roughly 76.5% of the total (£28.3 billion). This is why, in the credit risk and stress 

testing literature, most of the estimation effort is spent in accurately estimating losses from 

counterparties belonging to the corporate sector22.  

Looking at Panel (b) providing the geographical decomposition, loss estimates in Q2-2020 

are concentrated within the UK, roughly £18.1 billion (49%), and then equally spread across 

Americas (17.8%), Asian countries (15.4%) and Europe (14.9%). Finally, expected losses from 

African countries and Oceania are both below 1%. The geographical loss decomposition 

corroborates the global nature of UK banks’ risk exposure. UK banks tend to import financial 

shocks from abroad as much as from within the United Kingdom, making the UK financial 

cycle synchronized with the global economic cycle.  

Figure 5: UK Banks’ Expected Losses (1-Year Ahead) 
   Panel (a) – by Sector         Panel (b) – by Geographical Region 

 
  
 
 
 
 

  
                                  

5.1.1 Benchmarking  

Expected losses increase during the Covid-crisis mainly due to an increase in counterparty 

risk in the non-financial corporate sector. In Q2-2020 expected losses vis-à-vis the corporate 

sector (FC+NFC) increase up to £28.3 billion or by 50% between Q4-2019 and Q2-2020.  

This finding emphasizes the severity of the Covid-19 pandemic, which necessitates some 

benchmarking in order to assess the accuracy of the results. Unfortunately, our data availability 

                                                           
22 In this respect, PD and LGD parameters are estimated using the IRB approach for each counterparty sector and 
country, exploiting also granular information on type of exposures, for instance differentiating between non-SMEs 
and SME exposures, and focusing on wholesale credit exposures. Retail exposures and related LGD and PD 
parameters do not enter into this calculation. 
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is limited. The Global Network only starts in Q1-2018, thereby not allowing us to compare our 

results with historical estimates for the 2008 Great Financial Crisis. Nevertheless, we may 

attempt to compare our estimates with those of other studies, although we should bear in mind 

that it is difficult to find up-to-date studies with credit loss estimates for UK banks, especially 

using granular exposure data. In this respect, the BIS Quarterly Review of March 2021 provides 

credit loss estimates and projections due to the Covid-19 crisis for G7 countries’ banking 

systems using Hardy and Schmieder (2013)’ s methodology. This methodology estimates the 

impact of output on credit loss rates as a non-linear function of both the depth of the recession 

and its cumulative severity23. The report thus provides estimates specifically for the UK, whose 

increase in cumulative corporate credit losses over the 2020–22 period due to the pandemic 

amounts to 5.1% of annual GDP (as of 2019), the G7 country most severely affected. This 

estimate can be translated into roughly £110 billion of credit losses over three years. By 

calculating our cumulative expected losses over the same period for the corporate sector, our 

estimates lead to an average cumulative loss of £74 billion24.  

Although the methodologies differ substantially, the BIS report takes a top-down sectoral 

approach, while ours is a bottom-up granular assessment, results do not remarkably differ. In 

this respect, our estimates use more up to date data, snapshot ending in Q4-2021 instead of Q4-

2020 as in the BIS exercise, thereby incorporating via PD and LGD parameters more up-to-

date expectations on the future state of the economy. 

5.2 Measuring Conditional Capital at Risk  
In this sub-section we move away from the analysis of expected loss estimates, which may be 

informative on the UK banking sector’s average probability of default, and focus on measuring 

the likelihood and severity of tail events factoring-in the degree of concentration risk and 

interconnectedness of the UK banking system’s network of exposures. Hence, we try to size 

the impact of those initial shocks that can be considered sizeable as discussed in Acemoglu et 

al. (2015). In this context, we do not compute amplification and contagion effects stemming 

                                                           
23 The BIS report calculates the change in credit losses by multiplying the projections of the change in credit loss 
rates by sectoral credit exposures. In addition to the sectoral credit loss rates, the authors of the report calculate 
aggregate credit loss rates for each economy based on the aggregate output projections to put the sectoral data 
into perspective. Based on this approach, the report concludes as follows: “based on our sectoral GDP projections, 
in a plausible central scenario we find that corporate credit losses during 2020–22 could be equivalent to about 
three times the pre-crisis level on average across the G7, China and Australia. The additional credit losses 
emerging from the crisis during the three-year period would cumulate to slightly above 2% of annual GDP or $1 
trillion” (BIS, 2021 pp. 68).   
 
24 We take the quarterly average loss estimates in 2020 (£ 26 billion), in 2021 (£ 24 billion) and we use 2021 
estimates (£ 24 billion) as an average projection for 2022.  
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from interbank financial exposures as the financial network literature does, but instead we treat 

interbank exposures alike any other counterparty exposure vis-a-vis the other sectors.  

From a policy maker perspective this complementary assessment is essential for sizing the 

sources of potential tail vulnerabilities. It provides a probabilistic assessment of tail-events so 

as to contextualize the likelihood of their realization at every point in time25. Hence, we try to 

model scenario uncertainty using a stochastic approach to scenario design following Montagna 

et al. (2021) and Sydow et al. (2021). In contrast to these studies, we compute Conditional 

Capital at Risk estimates (CCaR), that is, UK banks’ losses conditional to the 90th, 97.5th and 

99th percentile of the loss distribution.  

5.2.1 Tail Events Scenario Design 
We split the sample of exposures between granular exposures towards specific counterparty 

and aggregated exposures towards countries and sectors. For aggregated exposures and 

granular exposures towards central banks we still compute losses in expectation as the average 

component, while for granular exposures we compute a distribution of losses, that is, the 

stochastic component26. So the computation of the stochastic component is based on a network 

of 17,293 edges and 7,236 counterparties which are potentially defaulting entities, covering 

roughly £3.9 trillion of gross granular exposure amounts (36% of the total coverage)27. The 

stochastic component hence will factor-in the degree of concentration risk and 

interconnectedness of the UK banking system’s network of exposures. The expected loss 

component instead is calculated upon £4.1 trillion of gross aggregated exposures28.  

Since counterparty specific PD parameters are not available, we assign to each counterparty 

the PD parameter by sector and country averaged across all reporting banks’ estimates. This 

approach resembles a pool-IRB approach of counterparty default rates since we use 

information reported by all UK reporting banks for each counterparty sector and country. This 

approach ensures robustness since it is an average estimate across several IRB models29.  

                                                           
25 Top-down stress test exercises are benchmarked on historical macro estimates of extreme events, and so they 
lose the forward-looking dimension, thereby not providing an estimate for the likelihood of adverse stress 
scenarios. Using microstructural bottom-up approaches compared to top-down macro models results become a 
function of exposure and counterparty-specific parameters and ultimately network-specific characteristics. 
26 We don’t model stochastically losses vis-à-vis aggregate exposures since it would imply that an entire sector 
for a country would default, and so all exposures vis-à-vis that sector. Hence we measure losses in expectations 
for the share of exposures that we can’t map granularly.  The only exception is the sector central banks (CB) 
whose losses are model in expectation.  
27 We exclude granular exposures towards central banks from this calculation, which account for £710 billion or 
7.5% of total exposure amounts. 
28 Alike the expected loss exercise we use only the unsecured exposure amounts for calculating loss estimates for 
both the stochastic and average loss components. . 
29 The ECB in 2019 has approved the use of pool-IRB approaches in order to better measure PD and LGD 
parameters. This approach is used especially to estimate counterparty default rates for those type of counterparties 
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Next in order to model the level of interdependency in the intersectoral input-output firms’ 

linkages - network origins - as in Acemoglu et al. (2012), we estimate a correlation structure 

of counterparty defaults (based on reported counterparty PD) by country and sector exploiting 

a panel dataset covering 134 countries and 4 sectors (NFC, FC, CI, GG) ranging between Q1-

2018 and Q4-2021. This leads to an average correlation across countries and sectors for the full 

sample of 0.045 as reported in Figure 630. Nevertheless there is lot of heterogeneity across 

sectors and countries, with negative correlation coefficients for some pairs. Hence, we should 

acknowledge that depending on the time period of the sample we use, although we keep it 

fixed, the correlation structure should change. The correlation matrix based on counterparty 

PD by country and sector have been estimated over 16 quarters during which the Covid-19 

pandemic took place, leading to a strengthening of correlation across countries and sectors. The 

average correlation across countries and sectors for the subsample Q1-2018 till Q4-2019 (pre 

Covid-19) is close to 0.03, whereas for the sub-sample covering the Covid-19 crisis the average 

correlation coefficient was higher, close to 0.08.  

Figure 6: Distribution of the Average Correlation Coefficients between Q1-2018 and Q4-2021 

 
Note: Average across all correlation parameters by country-sector pairs equal to 0.045, thereby approximating 
median stress events as estimated in Hardy and Schmieder (2013). 

Correlation coefficients do change over the business cycle and are affected by 

macroeconomic and financial conditions. For instance, Hardy and Schmieder (2013) relies on 

the empirical estimates of Duellmann et al. (2008) who provide estimates on fluctuations of 

asset correlations under macroeconomic stress for a sample of large Western European 

corporates between 1997–2003. Conditional to their data sample, asset correlations fluctuated 

strongly, ranging from 0.04 to 0.16, with a mean at 0.1. Overall, our estimates are lower than 

Duellmann et al. (2008) due to differences in the sectoral coverage, since the estimates given 

here are an average across sectors, and also include financial corporates and governments 

which experience much lower historical probability of defaults. Hence, by sub-setting our 

                                                           
whose historical default rates are very low and thus difficult to estimate such as for wholesale exposures (See 
ECB, 2019).  
30 In this exercise the correlation is time-invariant. We use the average across all reported quarters. The peak of 
the distribution coincides with the average correlation coefficient since we fill NAs with the average correlation 
coefficient.  
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sample to only non-financial corporates (NFC), we find that the average correlation coefficients  

for the corporate sector across countries is close to 0.1, and respectively 0.07 before the Covid-

19 crisis (Q1-2018 to Q4-2019), and 0.13 during the Covid-19 crisis (Q1-2020 to Q4-2021). 

Hence, our estimates are aligned with and corroborates Duellmann et al. (2008)’s estimates for 

the pre-crisis period for the corporate sector.  

Moreover, Hardy and Schmieder (2013)’s estimates for asset correlation differ conditional 

to the degree of stress scenario. For instance, during normal conditions (median), medium 

stress (90th percentile) and severe stress conditions (97.5th percentile) asset correlation 

increases respectively from 0.1, to 0.22 and 0.3. In this respect, our average correlation 

estimates for the corporate sector during the Covid-19 period (0.13) can be classified in 

between normal and medium stress conditions.31. This is due to the type of stressed correlation  

that the Covid-19 crisis has produced, that is, a heterogeneous stress across countries and 

sectors. Moreover, we should emphasize that also the timing was different, since not all the 

countries have been hit simultaneously. This heterogeneous shock which is reflected in change 

in counterparty PDs may increase the positive correlation for certain country-sector pairs or 

decrease it for other country-sector pairs. This is consistent with the BIS (2019)’s results on 

credit loss estimates for the G7 countries’ banking systems, since they conclude that the Covid-

19 crisis seems not to be as severe as the GFC32 and closer to a medium stress event33. Overall, 

we can state that our correlation matrix of counterparty default probabilities averaged over the 

full sample period can be considered a reliable proxy for medium-low stress events, thereby 

quite conservative34. In Section 5.3 we will test our results to this assumption. 

We thus produce 20,000 Montecarlo simulations of Bernulli vectors of corporate defaults 

for 7,236 counterparties by modelling an M-variate distribution with uniform marginals and a 

Gaussian copula with a covariance matrix characterized by the correlation structure above 

estimated (Montagna et al. 2021). As reported in Equation (4), each entry (𝐽𝐽𝑗𝑗,𝑠𝑠) of the Bernulli 

vector take value 1 if the counterparty defaulted or value 0 if it did not. Hence, for each 

simulation/scenario, we compute the stochastic loss component for each reporting bank by 

                                                           
31 We need to emphasize that the Covid-19 crisis has affected sectors and countries heterogeneously, for this 
reason the average correlation coefficient did not increase remarkably.  
32 These results are based on the parameters and elasticities provided in Hardy and Schmieder (2013). 
33 In this respect, the study used parameters and elasticities for credit loss estimates calculation that were an 
average between medium and severe stress events. 
34 We could have calculate a correlation structure for different sub-periods, but this would create problems in 
comparing stochastic loss estimates across quarters. Hence, we prioritize comparability of results across time. 
Moreover, as emphasized by Schmieder et al. (2011) fixed IRB correlations based on low PDs can be used as 
benchmark estimate for supervisory purposes. See also Lopez (2004).  
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multiplying exposures at default (𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑗𝑗) by the counterparty-specific LGD parameter and by 

1 or 0 depending on whether the counterparty in that scenario defaulted or not. We then sum 

across each reporting bank in order to obtain the stochastic loss component for the UK banking 

system in each scenario. Finally - Equation (5) - we sum the stochastic loss component of each 

scenario - 𝑆𝑆𝐶𝐶𝑎𝑎𝑅𝑅𝐺𝐺,𝑠𝑠 - (derived from the granular exposures network) and the expected loss 

component - 𝐸𝐸𝐶𝐶𝑎𝑎𝑅𝑅𝐴𝐴 - (derived from the aggregate exposures network) to obtain the loss 

distribution for the whole UK banking system. In the end by conditioning the resulted loss 

distribution to the selected percentile x (99th to approximate extreme stress events, 97.5th for 

severe distress, and 90th for medium stress), we derive our measure of Conditional Capital at 

Risk (CCaR) as reported in Equation (6).  

𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑎𝑎𝑅𝑅𝐶𝐶𝑖𝑖𝐶𝐶 𝐶𝐶𝑎𝑎𝐸𝐸𝑖𝑖𝐶𝐶𝑎𝑎𝐶𝐶 𝑎𝑎𝐶𝐶 𝑅𝑅𝑖𝑖𝑅𝑅𝑅𝑅𝑠𝑠 ≡��𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑗𝑗

𝐽𝐽

𝑗𝑗

∗ 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑗𝑗

𝐼𝐼

𝑖𝑖

∗ � 
𝐽𝐽1,1 𝐽𝐽1,2 𝐽𝐽1,𝑠𝑠
𝐽𝐽2,1 𝐽𝐽2,2 𝐽𝐽2,𝑠𝑠
𝐽𝐽𝑗𝑗,1 𝐽𝐽𝑗𝑗,2 𝐽𝐽𝑗𝑗,𝑠𝑠

�                           (4) 

Where 𝑖𝑖 refers to the reporting bank, 𝑗𝑗 to each counterparty, 𝑅𝑅 to the realization of each single 

scenario, and 𝐽𝐽𝑗𝑗,𝑠𝑠 takes value 1 if counterparty j in scenario s defaults and 0 if it doesn’t.   

𝐿𝐿𝐶𝐶𝑅𝑅𝑅𝑅 𝐿𝐿𝑖𝑖𝑅𝑅𝐶𝐶𝑒𝑒𝑖𝑖𝑏𝑏𝑐𝑐𝐶𝐶𝑖𝑖𝐶𝐶𝐶𝐶 ≡ 𝑆𝑆𝐶𝐶𝑎𝑎𝑅𝑅𝐺𝐺,𝑠𝑠 +  𝐸𝐸𝐶𝐶𝑎𝑎𝑅𝑅𝐴𝐴                                                                                       (5) 

𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎𝑖𝑖𝐶𝐶𝑖𝑖𝐶𝐶𝐶𝐶𝑎𝑎𝐶𝐶 𝐶𝐶𝑎𝑎𝐸𝐸𝑖𝑖𝐶𝐶𝑎𝑎𝐶𝐶 𝑎𝑎𝐶𝐶 𝑅𝑅𝑖𝑖𝑅𝑅𝑅𝑅 =  𝐿𝐿𝐶𝐶𝑅𝑅𝑅𝑅 𝐿𝐿𝑖𝑖𝑅𝑅𝐶𝐶𝑒𝑒𝑖𝑖𝑏𝑏𝑐𝑐𝐶𝐶𝑖𝑖𝐶𝐶𝐶𝐶𝐸𝐸                                                               (6)  

Where 𝐿𝐿 refers to the network of granular exposures, 𝐴𝐴 to the network of aggregated exposures, 

and 𝐸𝐸 to the percentile of the loss distribution.   

5.2.2 Severity and Likelihood of Tail Events 
We provide distributions of total loss estimates (CCaR estimates) for the UK banking system 

for all quarters (Table 5), decomposing them by the expected loss component and the stochastic 

loss component. Starting from a visual inspection of Figure 7 which reports the loss distribution 

for Q4-2019 (pre-crisis period) total losses differ remarkably between the left tail (low severity 

scenarios) and the right tail (high severity scenarios) of the distribution. As we move closer to 

the right tail, we can see that the share of stochastic losses increases over the share of expected 

losses. This evidence shows a high dispersion even in “normal times”, with the most extreme 

scenario being 10 times worse than the average scenario. Losses in the 99th and 97.5th percentile 

scenarios classified as extreme and severe stress events amount up to respectively £89 billion 

and £66 billion, roughly 3.3 and 2.4 times more than an average scenario35. Hence, modelling 

                                                           
35 In this respect, the BOE’s 2019 stress testing exercise estimates roughly £180 billion of losses from credit and 
traded risks over a five year period given an adverse scenario which resembles macroeconomic and financial 
conditions experienced during the GFC. Most of the losses take place in the first two years of the scenario. 
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and analysing scenario uncertainty is very important to shed light upon the severity of tail  

events.  

Figure 7: UK Banks’ Stochastic Distribution of Losses in Normal Times (Q4-2019)                       

  
Note: grey bars refer to the expected loss component and they are equal by construction across all scenarios. Black 
bars refer to the stochastic loss component and they are ranked from left to right by severity. Red line refers to the 
average loss, while the blue line to the median loss. 

Nevertheless, we need also to contextualize this value in probabilistic terms. In this respect, 

the likelihood of experiencing an extreme event in Q4-2019 of £91 billion losses or above the 

average loss of the 99th percentile during the pre-pandemic period (Q1-2018 till Q4-2019), 

which can be considered an extreme stress event based on the above definition of Hardy and 

Schmieder (2013), is low, that is, 296 scenarios over 20,000 simulations, hence a probability 

of 1.5% (once every 67 years)36. However, if we benchmark the probability against 

experiencing a severe stress event (97.5th percentile), that is, above £65 billion, the probability 

increases up to 3.9% (once every 26 years). In the end, if we benchmark the probability against 

experiencing an medium stress event (90th percentile), that is, above £35 billion, the probability 

increases to 10.4% (once every 10 years).  

Table 5: UK Banks’ Stochastic Distribution of Losses – Benchmark Case 

 
Note: “Mean” refers to average banks’ losses, and “Median” refers to the median losses, “Pct 99%”, “Pct 97.5%”, “Pct 90%” 
refers respectively to the loss for the 99th, 97.5th and 90th percentile of the loss distribution representing extreme, severe and 
medium stress events. In the end “Prob 99%”, “Prob 97.5%” and “Prob 90%” refer to the probability of extreme, severe and 

                                                           
36 We compute the average loss over the pre-pandemic period (Q1-2018 to Q4-2019) for conditioning tail-risk to 
the 90th, 97.5th and 99th percentile since we want to capture deviations relative to a stable period, and smooth out 
quarterly variations.  

STATISTICS Q1-2018 Q2-2018 Q3-2018 Q4-2018 Q1-2019 Q2-2019 Q3-2019 Q4-2019 Q1-2020 Q2-2020 Q3-2020 Q4-2020 Q1-2021 Q2-2021 Q3-2021 Q4-2021
Mean 26 28 25 26 27 27 28 27 30 37 35 35 33 32 31 31
Median 22 23 21 21 22 23 23 22 24 29 29 30 28 27 26 26
Pct 99% 88 101 86 90 90 89 91 104 117 147 116 114 107 110 108 108
Pct 97.5% 64 73 63 62 63 66 65 76 87 109 86 86 77 77 79 79
Pct 90% 34 37 33 34 35 37 37 36 41 52 49 49 46 45 44 44
Prob 99% 0.9% 1.4% 0.9% 1.0% 1.0% 1.0% 1.0% 1.5% 2.2% 4.1% 2.1% 2.2% 1.7% 1.7% 1.7% 1.7%
Prob 97.5% 2.3% 3.2% 2.2% 2.2% 2.4% 2.5% 2.5% 3.9% 4.7% 6.7% 5.1% 4.9% 3.9% 4.0% 3.9% 3.9%
Prob 90% 9.4% 11.2% 8.5% 8.8% 9.9% 11.4% 11.3% 10.4% 13.2% 21.9% 21.2% 22.6% 19.7% 17.8% 16.6% 16.6%
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medium stress events, respectively with losses higher than £91 billion, £ 67 billion and £35 billion benchmarked on average 
losses for the same percentiles during Q1-2018 to Q4-2019. The number of simulations equal to 20,000. 

However, macroeconomic and financial conditions may change over the business cycle and 

given unexpected shocks such as the Covid-19 pandemic. In this respect, Figure 8 provides the 

stochastic distribution of banks’ losses calculated in Q2-2020, that is, at the Peak of the Covid-

19 crisis. First of all, the mass in the right tail of the distribution remarkably increased, and the 

stochastic component increases its relevance relative to the expected loss component, thereby 

increasing the overall severity of stress events. Overall, the severity of extreme events increased 

remarkably during the Covid-19 pandemic, that is, given a worsening of financial and 

macroeconomic conditions which are reflected in higher levels of counterparty risk37.  

Figure 8: UK Banks’ Stochastic Distribution of Losses during the Covid-19 Crisis (Q2-2020)    

  
Note: grey bars refer to the expected loss component and they are equal by construction across all scenarios. Black bars refer 
to the stochastic loss component and they are ranked from left to right by severity. Red line refers to the average loss, while 
the blue line to the median loss. The number of simulations equal to 20,000. 

However, not only did the severity increase, but also the likelihood of experiencing extreme 

events. In order to properly benchmark the likelihood with the results presented for Q4-2019, 

we keep the threshold to identify extreme stress events constant at £91 billion of losses, that is, 

the average loss for the 99th percentile between Q1-2018 and Q4-2019. Hence, we try to answer 

the following question: “what is the probability of experiencing in Q2-2020 - at the peak of the 

Covid-19 crisis - the same type of ‘extreme stress events’ as classified during the pre-crisis 

period?”. The answer is 4.1%, as 828 scenarios (over 20000 simulations) show total losses 

higher than £91 billion in Q2-2020. In Q4-2019 it was 1.5%, moving from 1 severe distress 

scenario every 67 years, to 1 severe distress scenario every 24 years. However, if we benchmark 

the probability against experiencing a “severe stress” event (97.5th percentile or £ 65 billion), 

the probability increases to 6.7%, that is, 1334 scenarios over 20000 simulations (once every 

                                                           
37 The correlation matrix is fixed across quarters. 
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15 years). Overall, we have seen how both the severity and probability of severe stress events 

increased remarkably during the pandemic given the change in macro and financial conditions.  

In the end for monitoring purposes we provide a time-series evolution of probabilities and 

severity of Tail Events - Figure 9. In this respect, we compute the probabilities and severity for 

extreme and severe stress events (99th and 97.5th percentiles). The build-up of systemic risk in 

the UK banking sector approximated by the probability - Panel (a) - and severity - Panel (b) - 

of extreme and severe stress events by the start of the Covid-19 pandemic is very clear.  

By comparing the increase in the severity and likelihood of tail events with the increase in 

expected losses (CaR estimates) at the peak of the crisis (Q2-2020), we can see that average 

risk increase (37%) by less than the increase in tail risk, respectively 310% and 62% for the 

probability and severity of extreme stress events. This finding highlights that average risk is 

not a good proxy for tail risk. In Q4-2021, both tail risk measures, although they declined after 

reaching the peak in Q2-2020, remain still higher than the average pre-crisis levels by 

respectively 70% (probability) and 20% (severity).  

Figure 9: Probabilities and Severity of Stress Events for the UK banking Sector 
Panel (a) - Probability   Panel (b) – Severity (CCaR) 

 
Note: Extreme and severe stress events refer respectively to the 99th and 97.5th percentile of the loss distribution. The 
probability estimates for extreme and severe stress events are computed conditional to losses higher than £91 billion and £67 
billion, that is, average losses for the same percentiles during Q1-2018 to Q4-2019. The number of simulations equal to 20,000. 

5.3 The Role of Asset Correlation  

Asset correlations, as emphasized by Hardy and Schmieder (2013) and by Duellmann et al. 

(2008), are key inputs for modelling correlated default probabilities in solvency stress test 

exercises. Usually in standard solvency stress test exercises, the focus is placed upon the 

estimation of losses in expectation conditional to an adverse scenario, for which the role of 

correlated shocks and correlated defaults is neglected. As we can see from the results in the 

previous section, average loss estimates are not affected by the correlation structure and size. 

However, when we study tail events correlations play a key role in determining their severity 
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and likelihood. Hence we assume that there is a strengthening in the interdependency of input-

output relationships of banks’ counterparties38.  

In the previous exercise we were using a correlation matrix estimated over the period Q1-

2018 and Q4-2021. The average correlation parameter across all countries and sectors was 

0.045, and 0.1 for specifically the corporate sector. This was a conservative assumption, since 

during crisis times, asset correlations tend to strengthen, respectively close to 0.22 for medium 

stress events and close to 0.3 for severe stress events.  

Hence, in this exercise we want to test the sensitivity of our results to an increase in the 

correlation structure of shocks. To achieve that, first we estimate the correlation matrix over 

the crisis period Q1-2020 to Q4-2021 in order to maintain the correlation structure between 

country-sector pairs as it was during the Covid-19 crisis. This leads us to an average correlation 

coefficient close to 0.08, still too low compared to Hardy and Schmieder (2013)’s estimate for 

medium stress events. Hence, we reduce negative correlation coefficients and increase positive 

correlation coefficients by a constant equal to 0.2 in order to make the mean and peak of the 

distribution coincides with an average correlation coefficient of 0.22 as estimated by Hardy 

and Schmieder (2013) - Figure 10.  

Figure 10: Distribution of Stress Correlation Coefficients over the entire sample period Q1-
2018 and Q3-2021 

 
Note: Average across all correlation parameters by country-sector pairs equal to 0.22, thereby approximating medium stress 
events as estimated in Hardy and Schmieder (2013). 

By inspecting Figure 11 and Table 6, we notice that the severity of extreme events further 

increase relative to the previous baseline case. The right tail of the distribution gets fatter and 

taller. The most extreme scenario now is above 400 billion of losses and tail events tend to 

account for an even larger share of total cumulated losses. Hence severity of medium, severe 

and extreme stress events approximated by CCaR estimates increase as correlation in firms’ 

PDs increases.  

                                                           
38 For instance this may be due to a stronger synchronization of counterparties’ revenues across sectors and 
economic activities (supply chain relationships like just-in-time manufacturing) or due to a synchronization of 
business cycles across countries. More in general common sectoral shocks like the Covid-19 Pandemic or like 
climate-related transition risks may generate a strengthening in asset correlations as well as counterparty defaults 
across sectors and countries.   
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Figure 11: UK Banks’ Stochastic Distribution of Losses during the Covid-19 Crisis (Q2-2020) 
conditional to a Stress Correlation Structure in Counterparty Defaults 

  
Note: grey bars refer to the expected loss component and they are equal by construction across all scenarios. Black 
bars refer to the stochastic loss component and they are ranked from left to right by severity. Red line refers to the 
average loss, while the blue line to the median loss. 

To compare the estimated likelihood of extreme events with the previous exercise, we 

condition the set of stress scenarios to those scenarios with an average loss above £91 billion 

for the 99th percentile, £67 billion for the 97.5th percentile, and £35 billion for the 90th 

percentile. Given this stress correlation structure, the probability of experiencing extreme stress 

events (99th percentile) in Q2-2020 increase to 6% from 4.1%, that is, we estimate 1206 

scenarios with total losses larger than £91 billion (over 20,000 simulations). For severe stress 

events, the probability increases to 10.2%, that is, 2036 scenarios over 20,000 simulations with 

losses above £67 billion.  

Table 6: UK Banks’ Stochastic Distribution of Losses based on a Stressed Correlation Matrix 

 
Note: “Mean” refers to average banks’ losses, and “Median” refers to the median losses, “Pct 99%”, “Pct 97.5%”, “Pct 90%” 
refers respectively to the loss for the 99th, 97.5th and 90th percentile of the loss distribution representing extreme, severe and 
medium stress events. In the end “Prob 99%”, “Prob 97.5%” and “Prob 90%” refer to the probability of extreme, severe and 
medium stress events, respectively with losses higher than £91 billion, £ 67 billion and £35 billion benchmarked on average 
losses for the same percentiles during Q1-2018 to Q4-2019. The number of simulations equal to 20,000. 

In the end, Figure 12 reports the probability and severity of extreme and severe stress events 

over time according to a stress and a baseline correlation structure (straight versus dotted lines). 

We can note from the visual inspection that the probability and severity of stress events in each 

Q1-2020 Q2-2020 Q3-2020 Q4-2020 Q1-2021 Q2-2021 Q3-2021 Q4-2021 Q1-2020 Q2-2020 Q3-2020 Q4-2020 Q1-2021 Q2-2021 Q3-2021 Q4-2021
Avg_tot 34 41 39 39 37 36 35 33 30 37 35 35 33 32 31 31
Median 26 31 31 31 30 29 28 27 24 29 29 30 28 27 26 26
Pct 99% 141 166 129 128 122 128 123 116 117 147 116 114 107 110 108 108
Pct 97.5% 105 127 100 98 93 94 94 88 87 109 86 86 77 77 79 79
Pct 90% 54 66 60 60 56 56 54 51 41 52 49 49 46 45 44 44
Prob 99% 3.7% 6.0% 3.4% 3.2% 2.7% 2.8% 2.7% 2.3% 2.2% 4.1% 2.1% 2.2% 1.7% 1.7% 1.7% 1.7%
Prob 97.5% 7.3% 10.2% 8.2% 8.2% 6.7% 6.8% 6.5% 5.7% 4.7% 6.7% 5.1% 4.9% 3.9% 4.0% 3.9% 3.9%
Prob 90% 22% 34% 33% 35% 31% 28% 26% 23% 13.2% 21.9% 21.2% 22.6% 19.7% 17.8% 16.6% 16.6%

Baseline Correlation StructureMedium-Stress Correlation Structure
STATISTICS
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percentile of the distribution shifted up starting in Q1-202039. In Q4-2021 both probability and 

severity of stress events (ST) still remain well above the pre-crisis levels, even more if 

counterparty defaults are highly correlated. We want to emphasize that these estimates are 

some kind conservative since we use a stress correlation structure that equal a medium stress 

scenario (not a severe stress) as classified by Hardy and Schmieder (2013).  Furthermore we 

want to emphasize that expected losses do not change at all, since correlation does not matters 

in expectation, but only affects the shape of the loss distribution. To conclude, we want to 

emphasize that PD and LGD parameters in this exercise remain equal to those in the baseline 

case, and variations are due to only change in the correlation matrix.  

Figure 12: Comparison of Probability and Severity of Stress Events for the UK Banking Sector 
conditional to a Stress and Baseline Correlation Structure 

Panel (a) - Probability   Panel (b) – Severity (CCaR) 

 
Note: ST refers to results estimated conditional to a stress correlation structure (average equal to 0.22) approximating medium 
stress events. Whereas BSL refers to baseline results. Extreme and severe stress events refer respectively to the 99th and 97.5th 
percentile of the loss distribution. The probability estimates for extreme and severe stress events are computed conditional to 
losses higher than £91 billion and £67 billion, that is, average losses for the same percentiles during Q1-2018 to Q4-2019. The 
number of simulations equal to 20,000.  

5.4 Conditional Capital at Risk Decomposition 
In this subsection, we decompose UK banks’ CCaR estimates into their sectoral and regional 

contribution in order to identify the sources of tail events. We focus the analysis on extreme 

stress scenarios, that is, those scenarios in the 99th percentile of the loss distribution. Results 

are provided for Q4-2021 in order to capture the latest developments, although Appendix B 

provides the decomposition over the entire sample period.  Table 7 provides a breakdown of 

average losses for extreme stress scenarios by sector. The decomposition is provided only for 

the stochastic component, since the decomposition of the expected loss component was 

provided in Section 5.1.  

                                                           
39 The stress correlation structure (ST) has been used only for the estimation of the crisis period between Q1-2020 
and Q4-2021. 
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The most important sector is non-bank financial corporates (FC) with a contribution (loss 

share) of 50.6% to total loss in extreme stress scenarios. Importantly the FC sector also shows 

a loss ratio of 10.6% as share of FC granular gross exposures. This estimate approximates the 

share of FC exposures that potentially is subject to default conditional to an extreme stress 

scenario. Then there follows non-financial corporates (NFC) which account for only 32.6% of 

total average losses and governments (GG) with 15.8%. As we can see the banking sector (CI) 

is a small contributor to total losses in extreme stress scenarios, although their total granular 

exposures combined account for 17% of total granular exposures. This is due to multiple 

reasons.  First probabilities of defaults for counterparty sector CI are very low, ranging between 

0.1% and 0.3% across developed regions. Moreover, the correlation structure across countries 

is three time stronger for the corporate sector (FC and NFC) rather than the CI sector. This 

implies that especially in the 99th percentile of scenarios - the extreme ones - clusters of 

counterparty defaults will take place within the sector with the higher correlation structure such 

as the corporate sector and with higher PDs. In the end, we need to emphasize that our 

methodology does not capture amplification and contagion effects taking place within the 

financial system. Contagion and amplification mechanisms such as asset fire-sales will 

strengthen correlated defaults within and among the CI and FC sectors as well as their loss 

contribution to severe stress events as shown in Montagna et al. (2021). This methodological 

extension goes beyond the scope of this paper, and is discussed in the Conclusion. 

Finally, we should emphasize that the contribution of FCs and NFCs could potentially be 

much higher since we capture respectively 28% and 36%of total exposures with granular 

information40.  Overall, the total loss ratio across all sectors for extreme stress scenarios is 

equal to 3.5% of total granular exposures and the loss share across sectors is stable across the 

entire sample period as reported in Appendix B.  

Table 7: Sectoral Decomposition of CCaR Estimates (Q4-2021) 

  

Next, Table 8 provides a breakdown of tail losses for extreme stress scenarios by geographical 

location. The highest contributor in Q4-2021 is the UK with a share of 47%, whereas Americas 

are the second highest contributor with 22.4%, followed by Europe with 20.8% and Asian 

                                                           
40 The household sector is missing since we don’t have granular exposures for this sector. 

Sectors FC NFC GG CI Total
Exposures (£bn) 565 453 1789 584 3391
AVG Loss (£bn) 61 39 19 1 120
Loss Ratio (%) 10.7% 8.6% 1.1% 0.2% 3.5%
Loss Share (%) 50.6% 32.6% 15.8% 1.0% /
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countries with 8.7%. To what may concern the loss ratio, the UK shows the second highest 

among all geographical regions (5.4%) after Africa (6.6%). Then follows “Americas” with a 

value of 4%, Europe with 3.1%, and Asia with 1.3%.  

Overall, by looking at the time series reported in Appendix B, we can see how the sectoral 

contribution of tail risk has remained quite stable with only the FC sector experiencing an 

increased share during the peak of the Pandemic, for then in Q4-2021 returning back to 

equilibrium. Contrary the geographical contribution to tail risk seems to have increased in 

Americas and Asia in 2021 and reduced in UK and Europe. This result highlights how the 

Pandemic has heterogeneous economic consequences across sectors but also across regions 

and countries. The Covid-19 crisis has affected the sources of systemic risk. Overall, we can 

state that tail events affecting the UK banking sector in Q4-2021 are more likely to stem from 

regions outside the UK (53%), corroborating the fact that the UK banking sector is clearly 

exposed internationally as much as domestically as a small open economy suggests. 

Table 8: Regional Decomposition of CCaR estimates (Q4-2021) 

  

5.5 Sensitivity Analysis  

In this section, we provide evidence of the main risk drivers for average and tail risks by mean 

of counterfactual exercises. We perform three main counterfactuals to compute the loss 

contribution due to variations over-time in risk parameters (PD and LGD) as well as in the 

underlying network structure (distribution of exposures)41. We take Q4-2019 as baseline year 

(pre-pandemic period) and we let first LGD parameters by sector and country vary over time 

according to the actual estimates, and we keep unchanged relative to Q4-2019 the PD 

parameters and the network structure. In this way, by subtracting the new derived losses (mean 

and 99th percentile) with those obtained for Q4-2019, we derive the contribution of LGD 

parameters from Q1-2020 onwards relative to Q4-2019. We repeat the exercise other two times 

by letting vary also the PD parameters to compute the PD contribution, and then the network 

structure, keeping always unchanged the other two risk dimensions. Finally by summing each 

factor loss contribution to the actual loss in Q4-2019 and by taking the difference of it with the 

                                                           
41 We keep the correlation structure unchanged and benchmarked with the baseline case for consistency and 
comparability purposes.  

Regions UK Americas Europe Asia Africa Oceania Total
Exposures (£bn) 1035 671 805 823 15 30 3381
AVG Loss (£bn) 56.4 26.9 24.9 10.4 1.0 0.3 120
Loss Ratio (%) 5.4% 4.0% 3.1% 1.3% 6.6% 0.9% 3.5%
Loss Share (%) 47.0% 22.4% 20.8% 8.7% 0.8% 0.2% /
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actual loss experienced in each specific quarter (given all factors changing simultaneously) 

gives us the interaction term contribution, which is a function of the combined variations in 

LGDs, PDs and the network structure.  

Figure 13 provides insights on the contribution to expected losses of each risk factors (PD, 

LGD, and NTW) and the interaction term. First of all, we can notice that the relative 

contribution change over time. In Q1-2020 relative to Q4-2020, the main contributor to the 

increase in expected losses is the network structure, explain 87% of the total loss variation in 

between Q4-2019 and Q1-2020. Though, we can see that in Q2-2020, at the peak of crisis, 

counterparty default risk captured by the variations in PD parameters became the most 

important factor with 65% of total contribution (relative to Q4-2019), followed by the network 

structure with a positive contribution of 25%, and by the interaction term (10%).  We can see 

that this trend persists throughout the whole pandemic period till the last quarter available Q4-

2021, with an increasing PD loss contribution. This finding emphasizes the role played by 

counterparty default rates in the build-up of average risk during the pandemic relative to the 

pre-pandemic period. Interestingly we can notice that LGD loss contribution turned negative, 

emphasizing that not all the risk factors contributed to a deterioration in the expected loss 

estimate. 

Figure 13: Risk factors Contribution to Expected Losses 

Panel (a) - % of Total Contribution      Panel (b) - £ Billion Contribution 

 
Note: “LGD” refers to the contribution made by quarterly changes in Loss-given-default parameters relative to 
Q4-2019, “PD” refers to the contribution made by quarterly changes in counterparty probability of defaults, 
“NTW” refers to the contribution made by quarterly evolution of the network structure, and “INT” to the 
contribution of the interaction term, which captures the interaction effects of the simultaneous change of LGD, 
PD, and NTW parameters.  

Moving to the analysis of tail risk, approximated by the 99th percentile of the loss distribution, 

we can notice that the contribution of each risk factor to changes in tail losses varies remarkably 

across quarters. Although initially the network structure has a positive contribution alike for 
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expected losses, its contribution becomes negative reaching a peak in Q1-2021, and remains 

negative till Q4-2021. This implies that the conformation of the network structure is risk 

absorber relative to the conformation in Q4-2019. Contrary, counterparty default risk (PD) is 

the major driver to the overall increase in tail risk, compensating the negative contribution of 

both variations in the network structure and in LGD parameters. Moreover, the interaction term 

becomes also positive and relevant especially in Q4-2021 (major contributor), emphasizing 

that the current risk environment (NTW, PD, LGD) is still less beneficial than the one 

experienced in Q4-2019. Interestingly we can notice that the network structure contribution is 

positive for measuring expected losses, while negative for tail risk. Overall, counterparty 

default risk remains the key contributor to higher expected and tail losses relative to the pre-

pandemic period. 

Figure 14: Risk Factors Contribution to Tail Losses (99th percentile) 

Panel (a) - % of Total Contribution      Panel (b) - £ Billion Contribution 

 
Note: “LGD” refers to the contribution made by quarterly changes in Loss-given-default parameters relative to 
Q4-2019, “PD” refers to the contribution made by quarterly changes in counterparty probability of defaults, 
“NTW” refers to the contribution made by quarterly evolution of the network structure, and “INT” to the 
contribution of the interaction term, which captures the interaction effects of the simultaneous change of LGD, 
PD, and NTW parameters.  

5.6 Limitations 
We want to emphasize that our network approach to stress testing the UK banking system’ 

asset side have some limitations, which in turn have implications for our CaR and CCaR 

estimates, with potential revisions both upwards and downwards. First of all, we only model 

losses from direct exposures, and we don’t model amplification effects or second-round losses 

arising from interbank or intra financial sector’s exposures via contagion or fire-sales 

spillovers. In this respect, our approach is closer to a standard stress test methodology rather 

than a financial network stress testing methodology as developed by Montagna et al. (2021), 

Sydow et al (2021), and Roncoroni et al. (2021), among others. As we have seen CaR and 
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CCaR estimates capture a little amount of losses stemming from credit institutions, accounting 

for 1% of losses in extreme stress events. Hence, our estimates tend to underestimate systemic 

risk spillovers stemming from this sector. Future extensions of this work should tackle this 

methodological gap, and directly model financial amplification mechanisms in the interbank 

market. This is even more important since losses stemming from security exposures are 

modelled similarly to credit risk exposures, and are not derived with an ad-hoc price impact 

function as for instance in Coen et al. (2019). Our estimates are conservative in this respect, 

since fire-sales mechanisms via overlapping portfolios of exposures may also negatively affect 

the price of securities of those counterparties which actually did not default in tail scenarios. 

Hence, banks’ conditional capital at risk estimates should be a function of correlations in the 

real economic sector as well as in the financial sector since the price of securities is actually a 

function of financial institutions’ management strategies. In this respect, modelling financial 

amplification mechanisms would benefit from extending the coverage of the Global Network 

beyond the banking sector, for instance to the UK insurance and pension fund sectors as well 

as to the investment fund sector. We leave these dimensions to future research.  

Another limitation of the current work is that it relies on PD parameters that are not 

counterparty-specific. Our risk parameters are homogeneous across counterparties belonging 

to the same sector and country. This assumption which is due to the limitation in terms of 

granular coverage of our supervisory data source may lead to an over estimation of CaR and 

CCaR estimates. The rationale is the following. Given that the distribution of exposures follow 

a power-law distribution, that is,  large corporates capture 90% of total UK banks’ exposures, 

and given that small corporates are likely to experience on average higher probability of 

defaults than large corporates, we tend to assign higher PDs to the set of largest exposures. In 

this respect, the current work would benefit from using counterparty-specific PD parameters at 

least for a set of large quoted corporates so as to increase the degree of heterogeneity in 

counterparty risk.  

Related to this, we have to emphasize that our data source for risk factors exploits banks’ 

own assessment of their specific counterparty risk. This subjective assessment may present 

both advantages and disadvantages. On the one hand, banks may have superior knowledge on 

their counterparty risk compared to external data sources, thereby contributing to enhance our 

loss estimates. Moreover, banks’ counterparty risk factors reflect banks’ short to medium term 

expectations on financial and economic developments (1-year ahead). Hence, our CaR and 

CCaR estimates incorporate banks’ expectations about the future state of the world economy, 

thereby working as potential early warning indicators for a banking system’s loss of confidence 
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(or overconfidence). This type of signals may inform policy makers on the timing of releasing 

(tightening) capital buffer requirements in order to sustain funding to the corporate sector. This 

is crucial since a deterioration of confidence vis-à-vis the non-financial corporate sector may 

directly exacerbate liquidity conditions of non-financial corporates, and in turn increase the 

likelihood of corporate defaults, which in the end worsen banks’ solvency position. On the 

other hand, using subjective estimates of risk factors may lead to potential bias, since banks 

may under or overestimate counterparty risk. In this respect, we tackle this source of estimation 

bias by averaging PD and LGD parameters by country and sector across reporting banks, 

thereby implementing a pool approach to counterparty risk. Nevertheless, for policy analysis 

and policy applications it is important to test our results to homogenous and heterogeneous 

variations in risk parameters so as to overcome parameter uncertainty, as we did for scenario 

uncertainty. However, CaR estimates are a linear function of both PD and LGD parameters, 

hence a homogeneous increase in risk factors would lead to a homogenous increase in expected 

losses. This is not true for CCaR estimates since an increase in PD parameters would affect 

also the correlation structure of corporate defaults. In this respect, we tested our results to a 

variation in the correlation structure, risk parameters, and network structure. 

In the end, we want to highlight few other concerns and potential extensions of our work. 

Our results are not affected by the number of Montecarlo simulations. We perform sensitivity 

analysis using 10.000/30.000 simulations, and CCaR estimates do not change. Finally, the 

granular coverage of the Global Network, although quite comprehensive, still requires further 

improvement. Roughly 57% of total exposure amounts were captured with aggregated 

exposures by country and sector, thereby not entering into the calculation of the stochastic loss 

component for the Conditional Capital at Risk measure. Instead they enter the calculation of 

the CCaR as expected loss component, thereby leading to an under-estimation of the severity 

and likelihood of tail events.   

6. Conclusion 
Concentration risk and interconnectedness are systemic risk dimensions that can only be 

unravelled through network analysis. Shocks to large corporates, the granular origins of 

aggregate fluctuations (Gabaix 2011), and a high level of interdependency in the intersectoral 

input-output linkages, the network origins (Acemoglu et al. 2012), may drive aggregate 

fluctuations in output. The same rationale applies to the microstructure of the financial system, 

which in turn determines fluctuations in Systemic Risk (Acemoglu et al. 2015).  The degree of 

concentration risk as well as of interconnectedness both in the economic system and in the 
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financial system have strong implications for the system’s functioning and its propensity to 

(in)stability. In this regard, we provide evidence that the microstructure of the UK banking 

sector is potentially conducive to instability given its highly concentrated and interconnected 

network structure.  

Hence, in this set-up, idiosyncratic shocks to specific UK banks’ counterparties have 

implications for fluctuations in the aggregate level of systemic risk, and likewise idiosyncratic 

shocks to specific banks may have implications for fluctuations in economic activity. Our work 

focused on the former, by assessing systemic risk from a system-perspective as a function of 

the actual network structure of UK banks’ exposures and of variations in counterparty risk 

conditions proxied by changes in PD and LGD parameters of banks’ counterparties. Hence, we 

computed UK banks’ expected losses also defined as Capital at Risk (CaR) which amounted 

to £31 billion in Q4-2021, lower compared to Q2-2020 - the peak of the Covid-19 crisis - (£37 

billion), though still higher relative to the pre-crisis period (£27 billion). 

However, CaR estimates are not a function of the network structure, and do not take into 

consideration either the distributional features of the network (concentration risk and 

interconnectedness) or the inter-sectoral input-output linkages among banks’ counterparties. 

For this reason, we modelled scenario uncertainty as a function of the realized network 

structure. By means of Monte Carlo simulations we thus compute the Conditional Capital at 

Risk measure (CCaR), which quantifies the severity and likelihood of tail events. We estimate 

that at the peak of the Covid-19 pandemic the probability of experiencing an extreme stress 

event in the UK banking sector of more than £91 billion losses was close to 4.1%, up from 1% 

in the pre-crisis period.  

Furthermore, we shed light on the sensitivity of our results to a strengthening in the degree 

of correlation of counterparty defaults, that is, a tightening in the intersectoral input-out 

linkages. Conditional to this stressed correlation structure, the probability of experiencing 

extreme stress events in Q2-2020 further increase to 6%. The intuition behind this result is that 

the strengthening of the correlation in counterparty defaults leads to a higher likelihood of 

experiencing clusters of defaults by country and sector thereby increasing the severity of tail 

events and so their conditional likelihood. The CCaR decomposition by sector and 

geographical region highlights that the UK banking sector is more exposed to systemic risk 

spillovers stemming from exposures outside the UK jurisdiction as to within the UK 

jurisdiction, and this trend is especially visible in recent quarters.  

Overall, we provide evidence that tail-risk (CCaR) in the UK banking sector increased 

remarkably more than the average risk (CaR), thereby implying that expected losses are not a 
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good proxy for tail losses or systemic risk. Thus, a stochastic granular stress testing approach 

is needed to take into account uncertainty over the realization of the macro stress scenario. 

Moreover, also the sources of expected losses differ from those of tail losses, with the network 

structure giving a positive contribution to average losses, while acting as shock absorber in the 

tail.  

To conclude, we highlighted at the beginning of this paper the challenges the research and 

policy community have faced in their quest to shed light on the role that modern financial 

systems play in the unfolding of events like the Great Financial Crisis. By adopting a network 

perspective, empirical work has started to investigate the microstructure of the financial system 

across countries and sectors focusing on those features - concentration and interconnectedness 

- that may contribute to the financial system’s functioning and its propensity to (in)stability. In 

this paper, we have highlighted the role those features play in strengthening the severity and 

likelihood of tail events for the UK banking sector. In particular, we determine that highly 

interconnected and concentrated financial and economic systems may provide clear efficiency 

benefits during tranquil times, but at the same time the very same features also increase the 

system’s level of instability once the reign of tranquillity ends.  
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Appendix A - Data 

1. A Roadmap to Construct a Granular Data Infrastructure  
The Basel Committee on Banking Supervision (BCBS, 2014) set out a global regulatory 

framework called “large exposures” to monitor and measure concentration risk arising from a 

counterparty failure. This was a necessary step in raising global awareness among financial 

market participants (public and private) about the need for more granular and up-to-date 

sources of exposure information. This need is now even more compelling in light of the sudden 

and fast-moving Covid-19 Pandemic that has affected counterparties across sectors and 

countries in remarkable different ways and with different timings. 

A successful implementation of a comprehensive data collection on exposures at the firm-

counterparty level has been hard to achieve, and is yet to be fully accomplished. While the 

regulation in theory requires firms to precisely identify counterparties via their name and legal 

entity identifier (LEI code), in practice the consistency of the way in which counterparties were 

identified could vary significantly across regulated firms. This counterparty identification 

problem via LEI code and firms’ names is not exclusive for the UK jurisdiction, but is shared 

across jurisdictions as highlighted for the Euro Area (EA) in Covi et al. (2021). Counterparty 

legal names differ across reporting institutions even within the same jurisdiction, and LEI codes 

are often difficult to retrieve and associate to counterparty names. In general, the LEI adoption 

across jurisdictions has been unbalanced and is low outside securities and OTC derivatives 

markets (FSB, 2019: 25), making it difficult for credit institutions and financial firms to 

associate LEI codes to counterparties especially from the banking book. Hence, LEI coverage 

still remains too low to encourage further regulatory uses or to reach a potential tipping point 

where voluntary take-up by market participants would suffice to propel further adoption (FSB, 

2019: 25).  

These data challenges haven’t held back the implementation of the large exposures 

regulation or the collection of other granular exposure datasets, such as security or derivative 

portfolio holdings, though they have slowed down and complicated the exploitation of this 

exposure-type datasets for monitoring financial stability risks and for supervisory purposes. 

For central bankers, supervisors, and regulators to maximise the potential of using these 

datasets, the first and foremost pre-requisite is a high-quality mapping of counterparties to legal 

entity names and LEI codes in a consistent manner across firms and time, which is not yet the 

case in current granular regulatory data collections.  
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In 2012, the Financial Stability Board - conscious of the challenges and costs for the private 

sector as well as the wide range of benefits42 this data transition and improvement in underlying 

data quality may provide in the medium-long run to all market participants - was endorsed by 

G-20 countries to promote a “global adoption of the LEI framework to support authorities and 

market participants in identifying and managing financial risks”. As part of this initiative, the 

FSB in 2014 kick-started the construction of the Global Legal Entity Identifier Foundation 

(GLEIF) database as the operational arm of the system that federates local LEI issuers under 

the oversight of the LEI Regulatory Oversight Committee (ROC)43. This presents a 

fundamental step in disseminating reference and group structure information as a public good 

and in pushing forward and supporting a global-scale adoption of LEI codes for the 

identification of financial and non-financial firms. As emphasized by the ESRB (Laurent et al. 

2021), LEI codes have the potential to become the identifier of the global economy. Moreover, 

in order to support LEI adoption by financial market participants, the EU Regulation No 

600/2014 (also defined as MiFIR) has limited the access entities can have to financial markets 

in the European Union without an associated LEI code. As documented by the ESRB, the 

adoption in Q1-2017 of this LEI reference standard which was applied to various collections 

of granular data sources44 led to a remarkable increase in LEI issuance per month, that is, in 

counterparty LEI-based identification. Overall these regulatory and data initiatives represent a 

key milestone in terms of supporting a global scale adoption of LEI codes as firm-specific 

identifiers.  

Nevertheless, a common and consistent adoption of LEI codes across firms on a global scale 

still requires a full integration of the LEI identification approach into data management 

systems, both in the private sector as well as in the public sector. Why is this integration process 

not straightforward? The current data management systems are based upon using unique 

internal identifiers (not LEI-based) to classify each counterparty (client), and those internal IDs 

differ across reporting banks, even within the same jurisdiction. In order to bridge this data 

gap, the GLEIF database represents an excellent master data reference source for mapping 

                                                           
42 In terms of i) monitoring financial risks; ii) exposure aggregation in data reporting; iii) statistical analysis; iv) 
understanding the structures of multinational companies, market structure and trading networks; v) and facilitating 
market surveillance and compliance assessments (FSB, 2019: 25). 
43 The ROC is composed by 65 financial markets regulators and other public authorities and 19 observers from 
more than 50 countries. It promotes the broad public interest by improving the quality of data used in financial 
data reporting, improving the ability to monitor financial risk, and lowering regulatory reporting costs through the 
harmonization of these standards across jurisdictions. Access at: https://www.leiroc.org/  
44 The European Market Infrastructure Regulation (EMIR), the Markets in Financial Instruments  Directive 
(MiFID II), MiFIR, Solvency II and the Central Securities Depositories Regulation (CSDR). See Laurent et al. 
(2021) for an overview of these regulations and impact. 

https://www.leiroc.org/
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counterparty entities with LEI codes by exploiting the legal name and/or the security identifier 

(ISIN code) stored in the GLEIF database45.  

Capitalising on this master data reference source, we provide a data infrastructure 

framework for cleaning, mapping, and merging firms’ counterparty information and for 

reconstructing balance sheet based granular financial network exploiting multiple supervisory 

data sources. As part of this framework, we apply a mapping-searching algorithm across 8 

million entities collected from the entire spectrum of global counterparties in the UK banks’ 

portfolios of loan and security exposures. We thus document a roadmap to build a granular 

automatic and scalable data infrastructure. This is a necessary step for then studying and 

analysing the network of UK banks’ exposures on a global scale exploiting counterparty-

specific information. In this respect, we follow the works of Covi et al. (2021) in mapping 

bank-specific information using LEI identifiers and Montagna et al. (2021) who extend the 

approach to a global map of counterparties in order to merge different granular supervisory 

datasets for the Euro Area (EA) banking sector. The datasets we use share the standard structure 

of granular datasets collected both for supervisory and non-supervisory purposes. They also 

share the standard structure for both security ISIN-based datasets as well as for LEI-based 

datasets, making this data infrastructure framework applicable to any data management system. 

The data infrastructure’s value-add is therefore twofold, respectively enabling i) the mapping 

of counterparties via LEI and ISIN codes and so producing a consistently mapped network of 

exposures, and ii) the linking of qualitative and quantitative counterparty-specific information 

via LEI codes using multiple private and public data sources. Overall, the data infrastructure 

and mapping algorithm increase the coverage of counterparty LEI codes from 55% to 91% for 

the large exposures dataset (LE) and up to 97% and 87% for the security ISIN-based datasets 

from respectively 0% and 66%.  

1.1 Network Data Sources 
In this section we describe the datasets we use to construct the UK banks’ global network. In 

order to achieve a comprehensive coverage of the UK banks’ asset side we need to draw from 

various data sources of different levels of granularity. First, we introduce two entity-based 

datasets (LE and C67) capturing entity to entity relationships, where the reporting and 

counterparty sides are identified via Legal Entity Identifiers (LEI codes). Next, we present two 

security-based datasets covering entity to security relationships, where the reporting side is still 

                                                           
45 As explained before, for security and derivative instruments, a full map of ISIN codes to LEI codes is provided 
by the GLEIF website. So for this type of assets, the LEI mapping process is easier to implement. 
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identified via a LEI code, as in the entity-based datasets, but the counterparty side is now 

identified via ISIN codes tracking the security issued. The level of granularity of the security-

based datasets is higher than the entity-based datasets since multiple ISIN codes belong to one 

single entity. In the end, since the coverage of these granular datasets is not exhaustive, we 

collect one aggregate-based dataset, for which the reporting side is identified with a LEI code, 

whereas the counterparty side is aggregated by sector and country of origin.  

1.1.1 Granular Entity-Based Datasets 
Large Exposures Dataset (LE) 
The large exposures (LE) framework serves as a backstop to the capital framework by ensuring 

that the maximum loss a bank would face in the event of a sudden default of a counterparty or 

a group of connected clients that are linked by economic dependence or control would not 

endanger the bank’s solvency.46 All exposures captured under the risk-based capital framework 

are subject to the LE framework, including off-balance sheet exposures. This includes 

exposures in both the banking and trading book without applying risk weights or degrees of 

risk. Banks are required to limit their exposures to an individual client or group of connected 

clients to 25% of Tier 1 capital, although some exposures might be subject to different limits 

or exemptions47. Banks may use eligible credit risk mitigation techniques to reduce these 

exposures.  

The supervisory data collection on exposures in scope of the LE framework started in 2014 

as part of the Common Reporting Framework (COREP) regime. Specifically, COREP 

templates C.27, C.28, C.29, C.30 are submitted by UK banks on a quarterly basis. Banks are 

required to submit these returns on an individual entity basis, on a consolidated and, if 

applicable, sub-consolidated basis (as is the case for ring-fenced banks for example). The LE 

dataset captures only those exposures that meet the definition of a large exposure i.e. that are 

larger than 10% of a bank’s/consolidation group’s Tier 1 capital or on a consolidated basis, are 

above £260 million48. The LE dataset is constructed with an entity to entity relationship. Each 

counterparty is identified with the legal name or group name and where possible with a Legal 

Entity Identifier (LEI code). Additional counterparty information is provided such as the 

                                                           
46 Supervisory framework for measuring and controlling large exposures (bis.org) 
47 From 2014 to 2017, transitional provisions outlined in CRR Article 494 allowed banks to include decreasing 
amounts of Tier 2 capital in the definition of eligible capital as it applied to large exposures rules. In 2014, the 
applicable amount of Tier 2 capital was capped at a 100% of Tier 1 capital. During 2015 and 2016, the applicable 
amount of Tier 2 capital was capped at 75% and 50% of the value of Tier 1 capital respectively. From 1 January 
2017, the applicable amount of Tier 2 capital was capped at a third of Tier 1 capital as set out in CRR Art 4 (71)(b). 
From 1 Jan 2022, eligible capital is defined as Tier 1 capital only as per the Basel Standard on large exposures. 
48 Prior to 1 Jan 2022, this threshold was set at €300 million. 

https://www.bis.org/publ/bcbs283.pdf
https://www.eba.europa.eu/regulation-and-policy/single-rulebook/interactive-single-rulebook/1160
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SECTOR, COUNTRY (of incorporation) and NACE classification of the entity. The LE 

dataset also provides a rich set of exposure attributes, which allow us to distinguish debt, 

equity, derivate and off-balance sheet exposures. Moreover, the dataset also provides 

information on the amount of exposure which is subject to exemptions from LE limits and the 

amount of exposure that is secured by credit risk mitigation instruments49. For our scope, we 

will focus on two main variables of interests: gross original exposure amount and the gross 

original exposures amount after having deducted the credit risk mitigation instruments so as to 

classify the exposure amounts into secured and unsecured exposure amounts. Prior to January 

2022, the LE dataset also provided information on the maturity breakdown of the top 10 largest 

exposures vis-à-vis regulated and unregulated entities (template C.30).  

The LE dataset, given its reporting threshold, is quite comprehensive covering banks’ 

exposures towards credit institutions (CI), governments (GG) and central banks (CB) and to a 

lesser extent, exposures towards non-financial corporations (NFC) and non-bank financial 

corporations (FC). This difference in the sectoral coverage is due to the average size of the 

entities within those sectors. It is expected that, on average, NFCs and FCs would consist of 

small-medium size entities and therefore, a larger share of exposures to these entities are 

expected to be below the reporting threshold. Looking at the interbank network specifically, 

exposures from large reporting banks towards small banks also tend to be under-populated. No 

exposures in relation to the the household sector (HH) are provided as part the LE dataset. The 

dataset is a global dataset, capturing UK banks’ large exposures vis-à-vis entities worldwide. 

The dataset is UK-centric, meaning that on the reporting side, only UK firms, subsidiaries of 

international banking groups domiciled in the UK or UK consolidation groups are present. This 

feature is common across all data sources.  

Although the LE dataset is very rich, constructing a consistent network of bilateral 

relationships is not immediate. Consistent identification of counterparty entities is complex and 

challenging. Reporting banks may classify the very same counterparty with a slightly different 

name, or report the legal name of the subsidiaries instead of the group name. Moreover, the 

LEI dimension is not always available because banks may not have a LEI code (especially for 

small firms or subsidiaries) or because the reporting bank does not provide the LEI code against 

the counterparty (indicated as “not available/NA”). Moreover, when the entity on the 

counterparty side is classified as a group of connected clients, the reporting bank is obliged to 

                                                           
49 For example, exemptions are applied to exposures vis-à-vis certain general governments and central banks 
based on their assigned risk weights as per relevant regulatory requirements as well as to certain entities in bank’s 
wider group based on prior approval from the PRA. 
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report only the name of the head of group but not the related LEI code. There may also be 

variation in LEI codes and legal names reported against the same counterparty by the same 

reporting bank across time. This identification gap on the counterparty side is the main 

challenge we need to overcome in order to construct a consistent network of bilateral 

relationships. Similar problems arise for the COUNTRY, SECTOR and NACE dimensions 

which are often missing. These data identification issues are common to all granular data 

sources since the collection of these datasets started only relatively recently and reporting 

infrastructure is still being refined. In this respect, one of the main contributions of this paper 

is to develop and present a procedure to overcome these challenges and fully exploit these 

extremely rich and unique data sources. This data source covers over time roughly as 

unbalanced panel 425 reporting banks, 6592 counterparties for a total of 213.428 exposure data 

up to Q4-2021. 

Liability Dataset (C.67) 
The Liability Dataset (C67) provides information on the 10 largest funding sources of the UK 

banks on a monthly frequency where the funding obtained from each counterparty or group of 

connected clients exceeds a threshold of 1% of total liabilities as at the reporting date. Its 

collection aims at monitoring concentration risk on the liability side and allows regulatory 

authorities to monitor a bank’s liquidity risk that falls outside the scope of the reports on 

liquidity coverage and stable funding. This dataset is useful to reconstruct a part of the asset 

side of non-UK bank exposures, and to complement to certain extent exposures from large-size 

UK banks towards small-size UK banks which are not captured in the LE dataset due to the 

reporting threshold. The dataset also captures exposures from governments and central banks 

towards UK banks.  

The dataset presents a similar structure, although simplified, to the LE dataset. Exposure 

amounts are reported in gross terms, and exposures are classified by type of instruments, which 

allows us to disentangle between secured and unsecured funding exposures50. A maturity 

breakdown is also provided, with a variable defining the average weighted maturity of the 

exposure in days. The funding provider is also identified with their legal name and the related 

LEI code. The COUNTRY and SECTOR dimensions are also reported, but not the NACE 

classification. This dataset presents the same data identification issues previously described 

thereby also requiring a consistent mapping of the counterparty entities. In this respect, this 

                                                           
50 Information on the Large Exposures data can be retrieved from the Prudential Regulation Authority’s 
Website.   

https://www.prarulebook.co.uk/rulebook/Content/Part/413577/06-05-2022
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data source covers over time roughly 241 reporting banks, 2201 counterparties and 84506 data 

points up to Q4-2021.  

1.1.2 Granular Security-Based Datasets 
In order to monitor and model market risk and increase the coverage of the UK banks’ Global 

Network, we aim to collect UK banks’ security holdings. To achieve that, we exploit two main 

and complementary data sources, respectively the SHS and AS datasets. The former is collected 

on an annual basis by the BoE’s Stress Test Division to exclusively monitor seven major UK 

banks (ACS banks) on a consolidated basis for the annual cyclical scenario51, whereas the latter 

is collected on a quarterly frequency by the BoE’s Data and Statistics Division to monitor a 

larger sample of UK banks on an unconsolidated basis. Both datasets have a common data 

structure. Reporting banks are identified with their legal names and LEI codes, whereas the 

counterparty side is mapped with an ISIN code for each security held, an LEI code of the issuer, 

and a legal name as well as the country and sector of the counterparty. For each security, the 

datasets also report the maturity date of the contract, splitting between equity and debt 

securities, and the currency in which the security has been issued. In the end, for each security 

exposure, amounts are reported at nominal and market values. These datasets are big granular 

datasets. The SHS and AS datasets covers over time respectively 13 and 33 reporting banks; 

28,033 and 41,197 counterparties; 69,938 and 115732 ISIN-based security instruments; and 

199,501 and 1,360,809 security exposures up to Q4-2021.  

Just as with the entity-based datasets presented in the previous sub-section, these security 

datasets also present some data issues. For instance, ISIN codes might be wrongly typed and 

LEI codes identifying the issuer of the security may be missing as well as the country and 

sectoral tags. Moreover, counterparty names are also reported differently across reporting 

firms. Hence, in order to construct a multilayer network of granular exposures in which 

reporting and counterparty entities are consistently and uniquely identified across reporting 

firms and time, these data issues need to be tackled and solved via a cleaning a mapping 

procedure which will be presented in section 1.2.  

1.1.3 Aggregate Sector-Country Exposures 

With the LE, C67, SHS and AS datasets we are able to map entity to entity relationships. They 

represent the granular information of our global network. However, the coverage of UK banks’ 

total assets is not complete if we limit our analysis to this collection. For the objective of 

                                                           
51 ACS banks are those banks that are subject to the annual cyclical scenario, and there are seven of them: HSBC, 
Barclays, Standard Chartered, Lloyds, Nationwide, Santander, and Royal Bank of Scotland.  
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performing a stress test exercise and computing accurate and reliable financial stability metrics 

from a supervisory and policy perspective, we should aim to increase the coverage of the asset 

side to the largest extent possible even though we may lose some degree of granularity in doing 

so. In this respect, we collect data from FINREP supervisory template F.20.04, which contains 

information on the geographical and sectoral breakdown of UK banks’ assets.  That is, for each 

country in which the reporting bank is exposed and for each asset class (derivatives, equity 

instruments, debt securities, and loans and advances) and for each sector as applicable (credit 

institutions - CI, other financial corporations - FC, non-financial corporations - NFC, central 

banks - CB, general governments - GG, and households - HH), the firm is required to report its 

exposures as gross carrying amounts. These three dimensions, COUNTRY, SECTOR and type 

of INSTRUMENT are consistent with the dimensions previously described in the granular 

template thereby not requiring us an additional matching effort across datasets. Our wrangled 

F.20.04 dataset, also defined as aggregate exposure dataset, has 166,436 observations on 11 

attributes, starting in Q1 2018 and (for our purposes here) ending in Q3 2021.   

This dataset is important for the reconstruction of the Global Network especially for filling 

up three main counterparty sectors: HH, NFC, and FC. On the one hand, the household sector 

is missing from the granular datasets previously reported. This sector is crucial for modelling 

risk stemming from domestic exposures since a large share of exposures to households are 

within the UK. On the other hand, UK banks’ large exposures vis-à-vis non-financial 

corporates and non-bank financial corporates may miss a significant portion of exposures 

towards small-medium enterprises and funds due to the reporting threshold of the large 

exposure regulation. By contrast, large exposures towards CIs, GGs and CBs tend to be sizeable 

enough to be captured in the LE dataset. Therefore, the aggregate exposure dataset helps to 

extend the coverage of these remaining sectors. Moreover, this dataset is also useful for 

benchmarking purposes so as to quantify the share of granular exposures captured by country 

and sector. 

After having collected the F.20.04 dataset, we need to proceed with the data manipulation 

procedure since the granular datasets and the aggregate exposure dataset cannot be directly 

merged as they stand. Both the exposure-datasets and the aggregate-exposure dataset need to 

be first cleaned, mapped and subset before they are merged since these datasets have exposures 

in common. This is an important step to avoid double-counting issues. In the next section, we 

are going to describe the procedure for cleaning and mapping the granular exposure-datasets, 

whereas in section 1.4 we provide a description of the merging procedure. 
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1.2 Cleaning and Mapping Algorithm 
1.2.1 Cleaning Procedure 
In order to construct the UK banks’ network of granular exposures, we need to identify 

reporting banks and counterparty entities uniquely across three main dimensions: time, dataset, 

and reporting firm. In the LE and C67 datasets we have two main identifiers, respectively the 

NAME and LEI of the counterparty. However, the very same counterparty may be reported 

with a slightly different name even by the same reporting bank across datasets and time. The 

name of the counterparty may also differ across reporting banks within the same dataset and 

reporting period. In order to homogenise the name, we create an additional variable, defined as 

CLEAN_NAME, which is the original name cleaned of special characters, white spaces, and 

digits. Next, we move to the LEI identifier, which is a unique code of 20 characters. However, 

also in this case, the LEI code may be missing or wrongly typed. In this respect, we remove all 

illicit LEI codes which are longer or shorter than 20 characters and those that include characters 

which are not letters or digits. This procedure is also applied to the SHS and AS security 

datasets. Nevertheless, these latter two datasets also have an ISIN dimension, which links 

multiple ISIN codes to the LEI code of the issuer. For the ISIN codes, as is the case for the LEI 

codes, they may be wrongly typed. In this respect, we remove all ISIN codes which are longer 

or shorter than their permitted length of 12 characters and those that include characters which 

are not letters or numbers. For those data entries in which the ISIN code is missing, we remove 

those entries from the datasets since it won’t be possible to fill the missing ISIN during the 

mapping procedure even if we might have the related LEI code of the counterparty because 

multiple matches exist between ISIN codes to a single LEI. By contrast, we do keep those data 

entries with a missing LEI since only one unique match exists between an ISIN code and LEI 

code and between a NAME and LEI code.  

1.2.2 Mapping Procedure 

The key challenge of working with granular data is the unique identification of entities across 

reporting firms, datasets and time. The main objective of the mapping algorithm is to assign to 

each entity an identifier (ID number) which is unique across time. In order to achieve this 

outcome, we exploit the information reported by the firms regarding their exposures namely, 

the original counterparty NAME, the CLEAN_NAME we created, the LEI code and an ISIN 

code when it is a security exposure dataset (SHS and AS datasets). Moreover, in order to 

increase further the coverage of NAME, LEI codes and ISIN codes beyond those values already 
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present in the exposure-datasets, we also retrieve two additional datasets from an open source 

website called GLEI52. The GLEI dataset has several dimensions and data tables. The GLEI_1 

dataset provides a map of LEI to NAME of roughly 1.9 million entities53. The GLEI_2 dataset 

provides a map of ISIN to LEI of roughly 5.9 million securities54. These datasets are the most 

comprehensive map of legal classified entities around the world, and they are updated daily.  

As first step of the procedure, we create a data table by combining all unique entities identified 

from each exposure-dataset. A unique entity is defined as one entity that has at least one field 

among the fields NAME, CLEANED NAME, LEI and ISIN which differs from another entity. 

If one field is missing (such as the ISIN field for non-security exposures), we exploit 

information only from the remaining fields. The same applies when one field is not available 

(NA), for instance because a reporting firm did not provide information about the LEI code of 

the counterparty entity. In this respect, we exploit information only by using the NAME and 

the CLEANED NAME variables. This initial data table is composed by roughly 8.6 million 

unique entities.  

As a second step, we apply the mapping algorithm to the initial data table we created. The 

algorithm consists of a searching procedure which identifies sequentially all entities which 

display the same exact CLEAN_NAME across all entries, then the same LEI code and finally 

the same ISIN code and assigns to them a unique ID number. Hence, the algorithm looks for 

matches between pairs of fields: CLEAN_NAME to NAME, LEI to NAME, and ISIN to LEI. 

The rationale for the searching algorithm is as follows. One reporting firm may report the 

NAME of a given counterparty but not the related LEI code, while at the same time another 

reporting entity may report the NAME of the same counterparty along with the LEI code. The 

same logic applies to the other fields. Given this intuition, we are able to assign the same ID to 

the same entity by exploiting common information across pairs and across reporting firms, 

datasets and time periods. For the CLEAN_NAME to NAME matching pair, we use an exact 

string match rather than a fuzzy match since we want to avoid the risk of matching the wrong 

entity. We have to avoid introducing any matching error during the searching procedure 

because the error will propagate across matching pairs throughout the mapping procedure.  

                                                           
52 Online Source: https://www.gleif.org/it/  
53 The data source is LEI-CDF v2.1 Golden Copy retrieved from: https://www.gleif.org/it/lei-data/gleif-golden-
copy/download-the-golden-copy#/.  Moreover, the GLEI golden source dataset also provides information on 
firms’ attributes, such as geolocation, headquarter etc.  
54 The ISIN-LEI data source was retrieved from: https://www.gleif.org/it/lei-data/lei-mapping/download-isin-to-
lei-relationship-files#  

https://www.gleif.org/it/
https://www.gleif.org/it/lei-data/gleif-golden-copy/download-the-golden-copy#/
https://www.gleif.org/it/lei-data/gleif-golden-copy/download-the-golden-copy#/
https://www.gleif.org/it/lei-data/lei-mapping/download-isin-to-lei-relationship-files
https://www.gleif.org/it/lei-data/lei-mapping/download-isin-to-lei-relationship-files
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As a third step, once we have identified each entity with a unique ID, we create our final entity 

table by selecting one exemplar entity for each unique ID based on a statistical approach. 

Specifically, fields such as NAME and LEI codes for each unique ID will be then filled 

respectively with the NAME and LEI code that appear the most times for the same ID, that is, 

the most common entry NAME and LEI code. We do this, since sometimes firms report the 

wrong LEI code for the same NAME field. For this reason, during the searching procedure we 

give priority in assigning ID by NAME over LEI codes.  In fact the searching procedure starts 

by assigning ID by NAME_CLEAN to NAME and after by LEI to NAME. The resulting 

Master Entity Table (Table 1) displays 2 million entries, roughly one fourth of the size of the 

initial data table. 

Next, we add three additional columns to the table, respectively the COUNTRY, SECTOR 

and NACE fields of the entity, again by keeping the most common entry that appears in the 

data table for each variable. These dimensions provide relevant complementary information 

about the counterparty entity, which are important for modelling purposes—for instance to 

compute geographical or sectoral risk metrics (such as for stress testing exercises and for 

benchmarking aggregate exposures by country and sector).  

Finally, we add to the entity table two additional columns referring to the consolidation 

status of the counterparty entity. This dimension is relevant since it gives us the flexibility to 

choose to model risk (depending on the scope of the exercise) at the highest level of 

consolidation or on an unconsolidated basis. By exploiting the GLEI_3 dataset, which provides 

a LEI relationship between each LEI code of the GLEI_1 dataset and its direct and ultimate 

parent company’s LEI code, we construct two consolidation variables, respectively the ultimate 

parent ID within the UK jurisdiction (UP_ID_UK) and the ultimate parent ID worldwide 

(UP_ID_WW)55. To achieve that, we search across all LEI codes of the entity table, and once 

we find a match between the LEI code in the entity table and the GLEI_3 dataset, we assign 

the ID previously created matching the ultimate parent’s LEI code reported in the GLEI_3 

dataset. If the ultimate parent’s LEI code in the GLEI-3 dataset matches the LEI code in the 

entity table, that entity is the ultimate parent and therefore the ID and the ultimate parent ID 

are the same. The distinction between ultimate parent ID within the UK and the ultimate parent 

ID worldwide is achieved by applying the same procedure but differentiating by the 

COUNTRY dimension of the entity. The mapping algorithm is computationally efficient, and 

                                                           
55 The data sources is RR-CDF v.1.1 Golden Copy that can be retrieved from: https://www.gleif.org/it/lei-
data/gleif-golden-copy/download-the-golden-copy#/  

https://www.gleif.org/it/lei-data/gleif-golden-copy/download-the-golden-copy#/
https://www.gleif.org/it/lei-data/gleif-golden-copy/download-the-golden-copy#/
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it takes roughly ~20 minutes to run. Moreover, the algorithm is scalable, that is, the addition of 

more information to the initial data table always improves its accuracy. Therefore by adding 

new granular data sources with the same dimensions and by increasing the time coverage of 

the datasets, the accuracy of the mapping function increases as long as the computational time. 

This is an important property of the function since the resulting data infrastructure can be 

automatically updated on a quarterly basis, and as a result, the mapping accuracy will improve 

endogenously and over time. To further improve the mapping accuracy, an ex-post manual 

cleaning exercise can be applied. The strategy is to select the top 100 exposures (in terms of 

amounts) not mapped after the first run of the algorithm and to construct a dataset with the 

same pair of fields and then manually fill in the LEI codes retrieved from the GLEI dataset. 

This dataset will be then introduced as an additional mapping source on top of the GLEI 

datasets into the mapping process. Thus, the information manually imputed will be 

automatically retrieved in following runs of the algorithm. The accuracy will improve non-

linearly since the searching and mapping procedure will amplify the matching process via 

matching pairs. In this respect, Table 1 reports an example of the final output of the Master 

Entity Table. In particular, this example neatly shows how, through our mapping algorithm, 

we are able to successfully match an entity with its ultimate parent.  We should emphasize that 

by having the LEI code dimension for each counterparty we can potentially add qualitative and 

quantitative variables to each counterparty by making matches with and exploiting other 

complementary data sources. Section 1.5 will provide additional information on the collection 

of complementary information for analytical and modelling purposes.   

Table 1: Master Entity Table 

 

1.3 Efficiency of the Mapping Procedure 
Using the Master Entity Data Table, we are able to assign our unique ID identifier to each 

counterparty in the original data source and to each reporting bank. Once we have implemented 

this step, we can refill the qualitative fields in the original datasets such as NAME, LEI, 

COUNTRY, SECTOR, and NACE classification with the cleaned information. This allows us 

to compute the efficiency of the mapping algorithm. In this respect, Table 2 provides a coverage 

NAME LEI ID LEI UP ID_UP CTY SEC
NACE

BP international 
l imited

G1KG0OQD10NOMCMLDZ35 2469 213800LH1BZH3DI6G760 557 UK NFC G

BP plc 213800LH1BZH3DI6G760 557 / 557 UK NFC C
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of the LEI, COUNTRY, SECTOR and NACE dimensions before and after the mapping 

procedure. We want to emphasize that with our mapping approach we reach an LEI coverage 

above 87% across all granular data sources. This allows us to obtain a complete sectoral 

coverage and a very high country coverage above 93% of total exposure amounts. The sectoral 

classification by NACE economic activities is less accurate ranging between 62% and 92% of 

total coverage across data sources. This emphasizes the difficulties in aggregating information 

at a granular levels via counterparty-specific legal entity identifiers.  

Table 2: Efficiency of the Mapping Algorithm by Data Source and Counterparty Dimension as 
share of total exposure coverage 

 

1.4 Data Infrastructure  
We construct a data infrastructure in order to automatize the mapping procedure and make the 

dataset easily updatable so as to extend the horizon of the Global Network on a quarterly basis, 

and in doing so regularly improve its efficiency. The data infrastructure has been developed in 

R and consists of three main blocks. The first block concerns the automatic download and 

preparation of the original data sources in a standardized format, that is, by selecting only the 

dimensions/columns previously described. Since we are working with big granular datasets, 

reducing the dimension of the data frames is crucial to minimize the computational time of the 

whole process. Next, we apply the cleaning and mapping algorithm in order to consistently 

identify entities with unique IDs. This block is fundamental to be able to uniquely identify 

exposures across datasets between the same reporting firm and counterparty entities, and in 

doing so, also be able to subset the datasets consistently thereby avoiding double-counting of 

exposures across datasets during the merging procedure. Therefore, the higher the accuracy of 

the mapping algorithm, the higher is the accuracy of the merging procedure. Finally, the third 

LEI LE C67 SHS AS
Raw Data 55% 95% 0% 66%
Clean Data 91% 97% 97% 87%
COUNTRY LE C67 SHS AS
Raw Data 35% 91% 0 100%
Clean Data 93.00% 100% 98% 100%
SECTOR LE C67 SHS AS
Raw Data 35% 91% 0 0
Clean Data 100% 100% 100% 100%
NACE LE C67 SHS AS
Raw Data 22% 0 0 0
Clean Data 85% 90% 92% 62%

Coverage
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block aims at constructing the Global Network which will be used for policy and research 

purposes and is divided into the three following steps.  

 

 

1.4.1 Step 1 - Consolidate Reporting Side 

The first step involves the selection of reporting firms. To avoid double counting of 

exposures between subsidiaries and the head of group, we select only those UK reporting banks 

that report at the highest consolidation level. In this respect, we select a subset of firms, 

respectively consolidated banking groups and solo entities which do not belong to any other 

consolidated banking group. In this subset, two types of firms will appear, UK banks and non-

UK bank subsidiaries domiciled in the UK. For those datasets which only report exposures at 

a subsidiary level such as the AS security dataset, by exploiting the information collected on 

the GROUP structure, we will consolidate the reporting side by merging security exposures of 

multiple subsidiaries belonging to the same banking group into a single entity. This would 

allow us to display on the reporting side the same banking groups and solo entities across 

datasets. The objective of the manipulation is threefold: i) homogenize the reporting side; ii) 

further reduce the size of the datasets; iii) avoid double counting of reported exposures. 

1.4.2 Step 2 - Exposure Cleaning and Refilling  

Since firms sometimes make mistakes on the original reported amount of the exposures, we 

run some quality control checks. We remove all exposures that, as gross original amounts, are 

larger than 20% of a firm’s total assets from the LE and C67 datasets and those security 

exposures (ISIN based) that are larger than 6% of a firm’s total assets. The selection of these 

thresholds is an ad-hoc selection based on our specific-reported sample. Second, to reduce 

further the size of the datasets we set a floor cap to the size of the exposure. We keep all 

exposures that are larger than £1 million for the LE and the C67 datasets. As far as the security 

datasets are concerned, since they also report short exposures which are reported as negative 

values, we keep all exposures that are larger than £1 million in absolute value, i.e. > £1 million 

and < –£1 million. In the end, once we have prepared the reporting side and cleaned exposure 

amounts that are considered as outliers, we proceed to refill the security datasets from missing 

quarters so as to achieve a homogeneous quarterly frequency across data sources.  

The LE dataset is reported with a quarterly frequency, and the sample starts in Q1-2015. 

The C67 dataset is reported with a monthly frequency, and to align the two datasets, we select 

exposures reported on the months that match the end of each reporting quarter. These two 

datasets are our core data sources and they do not require any further data manipulation in this 
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respect. By contrast, the SHS dataset has an annual frequency with a snapshot date based in 

Q4, starting from 2018. Whereas, the AS dataset has a quarterly frequency, but the collection 

started only in Q1-2019. Hence, we exploit an interesting characteristic of these granular 

exposure datasets. Overall, we notice that exposures among a reporting firm and a counterparty 

entity tend to be constant over time, with only small variations in terms of exposure amounts 

across quarters. For instance exposure amounts at T-2 and T+2 are relatively similar. This 

shows that the largest exposures in our datasets are slow-moving, and the larger is the exposure 

amount, the higher is the likelihood of this feature being valid. This characteristic is evident in 

both exposure-based and security-based datasets. We exploit this property of our data and we 

fill the missing quarters of the SHS datasets (Q1-Q2-Q3) by back-filling the values provided 

for the Q4 snapshot. For those security contracts which are debt contracts, we also have to 

adjust the maturity and issuance date, which is recalculated proportionally to the time shift. 

The same filling strategy is applied to the AS dataset thereby bringing backwards the Q1-2019 

snapshot to fill the missing snapshots in Q4, Q3, Q2, and Q1 of 2018. We do this mainly to 

extend the time coverage of the datasets in the past to the largest extent possible.  

Finally, before merging exposures consistently across datasets and creating the Global 

Network of Granular Exposures, we implement a final step in which we create a common data-

column structure across datasets and fill in values for entries in rows and columns which 

present NAs. Every dataset should have nine columns set out as follows.  Column (1) for the 

reporting bank ID (also defined as LENDER), column (2) for the counterparty entity ID (also 

defined as BORROWER), column (3) identifying the REPORTED_PERIOD, column (4) 

identifying the type of exposures called SEC_TAG, column (5) reporting the original exposure 

amount (also defined ORIGINAL_EXP), column (6) reporting the short-term exposure amount 

(also defined ORIGINAL_EXP_ST), column (7) reporting the equity exposure amount (also 

defined EQUITY), column (8) reporting the net exposure amount (also defined NET_EXP), 

and column (9) reporting the source of the dataset (also defined SOURCE)56.  

The LE dataset represents our core dataset and the column-structure described above 

resembles the one already present in the LE dataset. The columns that show exposure amounts 

are columns (5) to (9). Column (5), which shows gross exposure amounts, is completely filled 

with values in every dataset. However, we have missing values for column (6), that is, short-

term exposures for the LE dataset, since the maturity structure of exposures is provided only 

                                                           
56 Some datasets have some empty columns which are fill with 0. For instance, the C67 dataset has no equity 
exposures, thereby column (7) will be filled with zeros. Contrary the security datasets do not have non-security 
exposures by constructions, and also it will be filled with zeros.  
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for the top-20 exposures in the LE dataset. Hence, we fill short-term exposure amounts for 

these rows using the average short-term exposure amount calculated over time for each lender 

against all relevant borrowers. If NAs are still present, we use the average short-term exposure 

amount by counterparty borrower, or otherwise the average by country and counterparty sector. 

Using this approach, we are able to fill all short-term exposure amounts for rows corresponding 

to the LE dataset. Another column that exhibits NAs is column (8) “net exposure amounts” 

capturing unsecured exposures in the C67 dataset, as that column is missing from the original 

data source. In this case, we exploit information on the type of instrument, which is provided 

in the C67 dataset. Hence, we insert 0 when an instrument is a collateralized instrument57. 

Otherwise, we insert the average percentage by reporting and counterparty entity calculated 

from the LE dataset. The same procedure is applied to the AS and SHS security datasets for 

which column (8) is also missing. Finally, column (7) is missing from the C67 dataset. 

However, in this case we directly insert 0 for these rows against this column since in the C67 

datasets there are no equity instruments.  

1.4.3 Step 3 - Merging Strategy 

The final step consists in two consolidation procedures: i) aggregation of exposures by 

counterparty entity; and ii) merging of exposures consistently across datasets. The former aims 

at aggregating exposures of one reporting firm within the same time period vis-à-vis multiple 

counterparty entities belonging to the same group of entities, whether they are credit 

institutions, financial corporations or non-financial corporations. Since we have reconstructed 

the group structure for each counterparty entity, we can use the variable UK_UP_ID to sum 

exposure amounts across counterparty entities belonging to the same ultimate parent within the 

UK jurisdiction for rows corresponding to the LE and C67 datasets. The fields we sum are the 

gross exposure amounts, the short-term exposure amounts, the net exposure amounts, and the 

equity exposure amounts. Similarly, we implement the same procedure for the security datasets 

by summing all amounts by ISIN codes for the same counterparty entity although 

differentiating between equity and debt security exposures. We then aggregate exposures by 

UK_UP_ID of the counterparty as we had done in the case of the LE and C67 datasets. 

Therefore we may have two security exposures between a reporting firm and the same 

counterparty entity within the same time period, respectively one for equity and one for debt 

instruments. Hence, the security datasets will lose the ISIN dimension, and they become 

                                                           
57 The set of instruments is the following: funding obtained from intragroup counterparties (IGCP), funding 
obtained from repurchase agreements (SFT), other secured wholesale funding (OSWF), and  other funding 
products (OFP).  Info about the instruments can be found here: eba.europa  

https://www.eba.europa.eu/sites/default/documents/files/documents/10180/2187846/2bfbe797-42e3-4df1-8ddd-c12bba266320/Annex%207%20%28Annex%20XIX%20-%20AMM%20instructions%29.pdf?retry=1
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exposure-based datasets, that is, displaying an entity to entity relationship identified by a LEI 

code. Nevertheless, the ISIN-related information won’t be lost since we keep a column for 

short-term exposure amounts, which are calculated by summing exposure amounts across debt 

security contracts with maturity date below 30 days. Moreover we keep a clear distinction 

between equity and debt exposures. Once we have consolidated the exposures and security 

exposures by UK_UP_ID, we have four datasets with the very same column and row structure.  

The second step of the procedure consists of merging exposures across datasets. We first 

construct the network of LE and C67 exposures, also defined as edges_LE_C67. To do this, 

we add to the LE dataset all exposures from the C67 dataset that are not already present in the 

LE dataset. Secondly, when an exposure between the same reporting firm and counterparty 

entity appears in both LE and C67, we keep the exposure reported in the LE dataset. Next, we 

implement the same procedure with the security datasets SHS and AS. We derive the network 

of securities (edges_AS_SHS) by adding to the AS dataset all exposures from the SHS dataset 

that are not already present in in the AS dataset. Hence, we give priority to the AS dataset over 

the SHS dataset since the AS dataset has a quarterly frequency, as we have already noted. 

Finally, we merge the two newly created networks, that is, edges_LE_C67 and the 

edges_AS_SHS. Before doing so, we split the edges_LE_C67 exposures into two sets. We 

subtract the equity exposures from the gross original exposure amounts and we add the equity 

exposures as new rows into the dataset and we distinguish these rows in the SOURCE column 

by tagging them as “SLE”. These exposures are equity security exposures stemming from the 

LE dataset. Hence, the edges_LE_C67 network is divided into debt exposures (loan + security) 

and equity security exposures. Next, we aim to separate loan exposures in the edges_LE_C67 

network from those exposures that instead are debt security exposures. To achieve that, we 

match debt security exposures among the same reporting firm and counterparty entity among 

the two network datasets edges_LE_C67 and edges_AS_SHS for each reported period. Then 

we remove from the edges_LE_C67 network the gross exposure amount that appears in the 

edges_AS_SHS security network. Hence, the remaining amount of debt exposures tagged as 

“LE” and “C67” in the SOURCE column are now only loan exposures. In this respect, in the 

SEC_TAG column we now classified those debt exposures as loan exposures “L”. Then we 

add those exposures from the edges_AS_SHS network to the edges_LE_C67 dataset as new 

rows. As was the case for exposure values derived from the LE dataset, the SOURCE column 

will also identify the original data sources from which those rows come from, such as AS or 

SHS datasets. We then carry out the same procedure for those matched equity security 

exposures that match exposures in the LE dataset and we keep those that are stemming from 
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the LE dataset58. If the matched equity exposure from the edges_AS_SHS dataset is larger than 

the exposure from the edges_LE_C67 dataset, we add an additional row with an amount that 

is equal to the difference in the two amounts. In contrast, all exposures that appear in the 

edges_AS_SHS network and do not appear in the edges_LE_C67 network (unique exposures) 

are directly added as new rows. We thus arrive at the completion of the Global Network of 

Granular Exposures which is made of i) loan exposures, ii) debt security exposures, and iii) 

equity security exposures. Nevertheless, the sum across all exposures for each reporting bank 

may not still match the total assets of each bank for two main reasons: i) loan exposures to the 

household sector, and ii) loan exposures towards small-medium size enterprises which are not 

captured by the LE dataset since they are smaller than LE reporting threshold. In this respect, 

in order to complete the asset side coverage we exploit the supervisory template F.20.04 

reporting aggregate exposures by country and sector of counterparty. First we assign a unique 

ID to each country-sector pair starting from the last sequential ID number previously defined 

in the entity table and we add them to the entity table as new counterparty entities. The name 

assigned to these rows will be defined as the combination of the country and sectoral codes, 

for instance UK-HH for the UK household sector. Then, we aggregate granular exposures from 

the Global Network by reporting firm and reported period and by sector and country pair. We 

then match for each reporting firm the total aggregate exposures by country and sector retrieved 

from the supervisory template F.20.04 with the aggregated granular exposures by country and 

sector computed from the Global Network. Hence, for each reporting firm and reported period 

and country and sector pair we take the difference in the two exposure amounts (aggregate 

exposures – aggregated granular exposures) and we add it as new rows. These new rows are 

then identified under the SOURCE column with the tag “FIN” from FINREP data source and 

we classify them as loan exposures “L” in the column SEC_TAG. The Global Network of 

Granular Exposures is thus augmented with aggregate exposures to each country-sector pair. 

Table 3 reports the number of reporting banks we cover for each single data source after these 

procedures have been applied. We have in total 36 banks, out of which 18 banks have a 

complete coverage across LE, SEC and FINREP datasets. 

Table 3: Coverage of Reporting Banks by Dataset 

 
 

                                                           
58 The amount of equity exposures here matched is a small share of the total equity exposure amounts. 

Reporting Banks LE SEC FINREP COMPLETE

36 21 25 18 18
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1.5 Complementary Data Sources  

We now provide additional information on other complementary data sources we use for 

modelling and stress testing purposes. First of all, we collect solvency information on banks’ 

capital base (CET1), risk weighted assets (RWAs), and total assets (TA), respectively from 

COREP supervisory templates C.01 and C.02 as well as FINREP supervisory template F.01. 

Then we complement exposure and counterparty information by retrieving loss given default 

(LGD) and probability of default (PD) parameters from COREP supervisory templates C.09.02 

and approximating these values to apply by country and sector of the counterparty59. This 

template is submitted by firms who have received prior approval from the PRA to use the 

internal-ratings based (IRB) approach to determine capital requirements for certain exposures 

and whose non-domestic exposures are greater than 10% of total exposures. Under the IRB 

approach, firms are allowed to rely on their own estimates of risk components such as PD 

and/or LGD rather than using supervisory estimates for most asset classes in scope. In general, 

in order to arrive at these estimates, banks need to build a model that meaningfully 

differentiates risk by defining grades and assigning obligors or exposures to each grade or pool.  

 The COREP supervisory templates C.09.02 provides a detailed breakdown of each 

reporting bank’ LGDs and PDs parameters by country and sector of the counterparty. Firms 

provide these estimates for 5 major obligor sectors such as corporate, sovereign, bank, retail 

and equity60. PD parameters are calibrated to the long-run average PD of one-year default rates 

based on exposures on the banking book. While PDs are based at the obligor level, LGDs are 

based at the facility level. Overall, the PD and LGD datasets covers on a quarterly basis roughly 

17 reporting banks at the highest level of consolidation, 247 countries, and obligors in 16 sub-

sectors, for a total of 485.834 data points from Q1-2018 up to Q4-2021. In this respect, as an 

illustrative example, Panel A and Panel B of Table 4 reports the development over time of the 

average PD and LGD parameters across sectors and by regional location of the counterparty. 

These estimates are the result of a pool-estimation approach since we compute an exposure-

weighted average across all reporting banks in the sample. We want to stress the fact that these 

parameters are an average across countries, and strong heterogeneity exists among countries 

belonging to the same region. We also note that while these estimates are based on supervisory 

templates submitted by a limited sub-set of reporting banks, this dataset provides useful 

                                                           
59 The structure of the COREP templates can be retrieved here: eba.europa 
60 The corporate asset class can be also split between exposures towards SMEs and non-SMEs and other sub-
classes. A similar splitting is applied to retail exposures. For an overview of the sector and asset classes covered 
see: CRE30 - IRB approach: overview and asset class definitions (bis.org) 

https://www.eba.europa.eu/documents/10180/769398/Draft+ITS+amending+ITS+on+Sup+Rep+%28Annex+1+amending+Annex+I%29.xls/839114e4-d57a-4b09-a318-8b6857bae1d1
https://www.bis.org/basel_framework/chapter/CRE/30.htm?inforce=20191215&published=20191215#paragraph_CRE_30_20191215_Definition_of_corporate_exposures
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insights into firms’ internal estimates of risk by country and sector albeit at an aggregate level. 

In theory, the optimal approach would be to map each entity with one ad-hoc counterparty-

specific PD parameter. However, datasets like Moodys Riskcalc, though they provide quarterly 

time series of PD and LGD parameters by firm identified with an LEI code, these datasets cover 

only a sub-set of large corporates61.  

Table 4 – Panel A: Average PDs by Sector and Region 

 
Table 4 – Panel B: Average LGDs by Sector and Region 

                                                           
61 Information on Riskcalc can be retrieved at the following website.  

Region-Sector Q1-2018 Q2-2018 Q3-2018 Q4-2018 Q1-2019 Q2-2019 Q3-2019 Q4-2019 Q1-2020 Q2-2020 Q3-2020 Q4-2020 Q1-2021 Q2-2021 Q3-2021 Q4-2021
Africa_CB 3.0% 3.5% 2.9% 3.0% 3.2% 3.2% 3.3% 3.6% 2.7% 2.9% 2.8% 3.1% 3.7% 3.5% 3.3% 3.5%
Americas_CB 0.3% 0.3% 0.4% 0.4% 0.4% 1.1% 0.9% 0.9% 1.0% 0.3% 0.4% 0.4% 0.5% 0.5% 1.1% 1.1%
Asia_CB 0.5% 0.5% 0.6% 0.6% 0.6% 0.6% 0.6% 0.5% 0.8% 0.6% 0.7% 0.9% 0.9% 0.9% 1.0% 0.9%
Europe_CB 0.1% 0.4% 0.2% 0.3% 0.3% 0.3% 0.3% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.3% 0.3%
Oceania_CB 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
UK_CB 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.1% 0.0% 0.1% 0.0% 0.1% 0.0% 0.0% 0.1% 0.1% 0.1%
Africa_CI 2.5% 1.9% 2.2% 1.9% 2.4% 2.6% 1.7% 2.4% 2.1% 1.5% 1.7% 2.4% 3.0% 3.9% 3.7% 2.5%
Americas_CI 2.1% 2.0% 1.0% 1.2% 1.3% 1.0% 1.3% 1.5% 0.8% 0.6% 0.7% 0.9% 0.7% 0.7% 1.2% 1.3%
Asia_CI 1.0% 0.9% 1.0% 1.0% 1.0% 1.1% 1.1% 1.2% 1.0% 1.0% 1.3% 1.5% 1.6% 1.6% 1.8% 1.8%
Europe_CI 0.6% 0.7% 0.7% 0.7% 0.7% 0.7% 0.8% 0.7% 0.7% 0.7% 0.8% 0.8% 0.8% 0.5% 0.7% 0.6%
Oceania_CI 0.1% 0.1% 0.1% 0.0% 0.1% 0.0% 0.1% 0.0% 0.0% 0.0% 0.1% 0.0% 0.1% 0.1% 0.1% 0.1%
UK_CI 0.4% 0.4% 0.3% 0.3% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.2% 0.1% 0.1% 0.1% 0.1%
Africa_FC 4.3% 5.4% 3.7% 4.7% 4.2% 4.9% 5.8% 4.9% 4.8% 4.9% 5.7% 5.9% 6.4% 6.2% 6.9% 5.4%
Americas_FC 1.8% 2.0% 1.9% 2.4% 2.4% 2.4% 2.1% 2.0% 1.9% 1.8% 2.0% 1.8% 1.7% 1.6% 1.6% 1.6%
Asia_FC 2.5% 2.4% 2.6% 2.6% 2.5% 2.5% 2.5% 2.6% 2.3% 2.9% 2.8% 3.2% 3.1% 3.0% 3.1% 2.9%
Europe_FC 1.1% 1.1% 1.0% 1.6% 1.0% 1.2% 1.1% 1.4% 1.6% 1.6% 1.6% 1.5% 1.5% 1.1% 1.1% 1.0%
Oceania_FC 0.6% 0.8% 0.7% 0.7% 0.7% 1.0% 1.8% 0.9% 1.0% 1.2% 1.3% 1.5% 1.1% 1.2% 0.9% 0.9%
UK_FC 2.3% 2.3% 2.1% 2.1% 2.2% 2.3% 2.2% 2.2% 2.3% 2.7% 2.8% 2.9% 2.7% 2.6% 2.5% 2.2%
Africa_GG 3.0% 3.5% 2.9% 3.0% 3.2% 3.2% 3.3% 3.6% 2.7% 2.9% 2.8% 3.1% 3.7% 3.5% 3.3% 3.5%
Americas_GG 0.3% 0.3% 0.4% 0.4% 0.4% 1.1% 0.9% 0.9% 1.0% 0.3% 0.4% 0.4% 0.5% 0.5% 1.1% 1.1%
Asia_GG 0.5% 0.5% 0.6% 0.6% 0.6% 0.6% 0.6% 0.5% 0.8% 0.6% 0.7% 0.9% 0.9% 0.9% 1.0% 0.9%
Europe_GG 0.1% 0.4% 0.2% 0.3% 0.3% 0.3% 0.3% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.3% 0.3%
Oceania_GG 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
UK_GG 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.1% 0.0% 0.1% 0.0% 0.1% 0.0% 0.0% 0.1% 0.1% 0.1%
Africa_HH 0.6% 0.6% 0.6% 0.5% 0.5% 0.6% 0.6% 0.5% 0.6% 0.6% 0.6% 0.6% 0.7% 0.6% 0.5% 0.5%
Americas_HH 0.3% 0.6% 0.6% 0.6% 0.6% 0.5% 0.5% 0.4% 0.5% 0.5% 0.6% 0.6% 0.6% 0.6% 0.6% 0.4%
Asia_HH 0.5% 0.8% 0.7% 0.6% 0.6% 0.6% 0.6% 0.7% 0.7% 0.7% 0.9% 1.0% 0.9% 0.8% 0.9% 0.9%
Europe_HH 0.7% 0.9% 0.9% 0.8% 0.8% 0.7% 0.9% 0.9% 0.9% 1.0% 0.8% 1.0% 0.9% 0.8% 0.9% 0.7%
Oceania_HH 0.4% 0.5% 0.5% 0.2% 0.3% 0.2% 0.2% 0.6% 0.6% 0.5% 0.6% 0.5% 0.7% 0.4% 0.2% 0.3%
UK_HH 1.1% 1.1% 1.2% 1.3% 1.2% 1.3% 1.3% 1.3% 1.2% 1.4% 1.3% 1.4% 1.4% 1.2% 1.2% 1.1%
Africa_NFC 5.1% 6.7% 4.5% 5.9% 4.9% 5.4% 6.3% 5.4% 5.3% 5.9% 6.6% 6.9% 7.2% 6.7% 7.3% 6.1%
Americas_NFC 1.8% 1.6% 1.9% 2.3% 2.2% 2.4% 2.2% 2.1% 2.1% 1.9% 2.2% 2.1% 1.8% 1.8% 1.9% 1.9%
Asia_NFC 2.9% 2.8% 3.1% 3.0% 3.0% 2.9% 2.9% 3.0% 2.6% 3.6% 3.6% 3.9% 3.5% 3.4% 3.4% 3.3%
Europe_NFC 1.5% 1.5% 1.3% 2.0% 1.2% 1.6% 1.2% 1.5% 2.0% 2.0% 2.0% 1.9% 1.9% 1.6% 1.5% 1.6%
Oceania_NFC 0.8% 1.0% 0.9% 0.8% 0.8% 1.1% 1.9% 1.0% 1.2% 1.3% 1.4% 1.8% 1.2% 1.2% 1.0% 1.0%
UK_NFC 2.7% 2.6% 2.4% 2.4% 2.6% 2.7% 2.6% 2.6% 2.6% 3.1% 3.2% 3.4% 3.2% 3.1% 3.0% 2.7%

https://www.moodysanalytics.com/product-list/riskcalc
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1.6 Multilayer Network Statistics 
  

The Global Network of UK banks’ exposures is composed by six data sources divided into two 

loan exposure datasets (LE, FINREP) and three security exposures datasets (SHS, SAS, SLE). 

There is one variable of interest, namely, gross original exposure amounts, although we also 

collect net exposure amounts which can be a proxy for exposures at default (EAD). 

Figure 1 presents the coverage over time of the Global Network by data source and by type 

of exposure. Panel (a) compares the total amount of UK banks’ gross exposures with the UK 

banking sector’s total assets (red dotted line) at each point in time. The Global Network 

captures £9.4 trillion of exposures out of £10.6 trillion of total assets in Q4-2021, roughly 90% 

of the UK banking system’ asset side. The exposure coverage relative to total assets is stable 

over time. The average quarter-on-quarter variation is equal to 3 percentage points, with a 

maximum variation of 9% in Q1-2020 relative to Q4-2019 consistent with a similar expansion 

of the UK banking sector’s balance sheet. This feature also holds for the contribution of each 

dataset to the total coverage, which is stable over time. The aggregated exposures dataset by 

country and sector (derived from FINREP) contributes to 57% of the total coverage, whereas 

all granular exposure datasets combined make 43%. On the one hand, security exposure 

Region-Sector Q1-2018 Q2-2018 Q3-2018 Q4-2018 Q1-2019 Q2-2019 Q3-2019 Q4-2019 Q1-2020 Q2-2020 Q3-2020 Q4-2020 Q1-2021 Q2-2021 Q3-2021 Q4-2021
Africa_CB 45% 46% 46% 45% 45% 44% 44% 43% 44% 44% 44% 44% 45% 44% 45% 44%
Americas_CB 40% 40% 41% 41% 41% 42% 42% 42% 42% 42% 42% 40% 40% 44% 44% 45%
Asia_CB 45% 46% 45% 45% 44% 45% 44% 45% 45% 45% 45% 45% 45% 44% 44% 44%
Europe_CB 54% 54% 47% 47% 47% 47% 46% 47% 47% 46% 46% 46% 46% 46% 46% 47%
Oceania_CB 41% 40% 39% 44% 41% 40% 40% 44% 43% 42% 44% 46% 46% 45% 45% 45%
UK_CB 56% 61% 48% 49% 47% 47% 46% 48% 48% 49% 48% 49% 49% 48% 48% 48%
Africa_CI 42% 43% 41% 40% 38% 38% 37% 38% 36% 32% 35% 28% 34% 37% 36% 33%
Americas_CI 41% 43% 41% 42% 40% 41% 43% 43% 42% 39% 38% 36% 36% 37% 35% 33%
Asia_CI 39% 38% 36% 36% 36% 36% 36% 37% 37% 36% 34% 35% 36% 35% 33% 33%
Europe_CI 53% 53% 49% 51% 49% 51% 49% 49% 50% 49% 47% 49% 49% 50% 46% 46%
Oceania_CI 45% 43% 49% 45% 47% 46% 45% 46% 45% 44% 43% 44% 42% 43% 42% 40%
UK_CI 41% 43% 39% 37% 38% 37% 37% 35% 37% 38% 36% 37% 35% 34% 32% 35%
Africa_FC 42% 41% 44% 43% 44% 44% 43% 45% 42% 42% 41% 39% 41% 42% 41% 40%
Americas_FC 36% 40% 41% 43% 41% 42% 43% 40% 41% 38% 37% 36% 37% 35% 38% 37%
Asia_FC 41% 41% 41% 40% 41% 41% 42% 43% 42% 41% 40% 41% 41% 40% 38% 39%
Europe_FC 48% 49% 46% 48% 47% 49% 48% 47% 49% 47% 44% 43% 43% 45% 45% 44%
Oceania_FC 46% 45% 47% 45% 47% 46% 48% 48% 46% 46% 46% 45% 40% 40% 38% 39%
UK_FC 39% 40% 38% 37% 38% 38% 37% 37% 38% 37% 36% 36% 35% 37% 35% 36%
Africa_GG 45% 46% 46% 45% 45% 44% 44% 43% 44% 44% 44% 44% 45% 44% 45% 44%
Americas_GG 40% 40% 41% 41% 41% 42% 42% 42% 42% 42% 42% 40% 40% 44% 44% 45%
Asia_GG 45% 46% 45% 45% 44% 45% 44% 45% 45% 45% 45% 45% 45% 44% 44% 44%
Europe_GG 54% 54% 47% 47% 47% 47% 46% 47% 47% 46% 46% 46% 46% 46% 46% 47%
Oceania_GG 41% 40% 39% 44% 41% 40% 40% 44% 43% 42% 44% 46% 46% 45% 45% 45%
UK_GG 56% 61% 48% 49% 47% 47% 46% 48% 48% 49% 48% 49% 49% 48% 48% 48%
Africa_HH 38% 43% 44% 43% 43% 43% 43% 44% 40% 40% 41% 39% 41% 41% 40% 40%
Americas_HH 33% 34% 35% 36% 36% 38% 38% 36% 39% 36% 35% 34% 34% 33% 36% 35%
Asia_HH 42% 39% 39% 39% 40% 40% 40% 41% 41% 38% 37% 38% 37% 37% 36% 36%
Europe_HH 48% 48% 44% 44% 45% 46% 45% 45% 46% 45% 42% 42% 41% 43% 43% 43%
Oceania_HH 39% 34% 41% 33% 35% 38% 39% 38% 34% 37% 37% 39% 38% 38% 39% 39%
UK_HH 29% 29% 29% 28% 29% 29% 28% 28% 28% 28% 27% 27% 26% 27% 26% 26%
Africa_NFC 41% 39% 43% 42% 43% 44% 43% 45% 42% 44% 42% 41% 42% 42% 42% 41%
Americas_NFC 35% 38% 42% 42% 41% 41% 42% 40% 42% 41% 39% 40% 41% 39% 40% 40%
Asia_NFC 43% 42% 42% 42% 43% 42% 45% 45% 44% 43% 43% 43% 43% 43% 42% 42%
Europe_NFC 46% 47% 45% 47% 46% 47% 47% 46% 48% 47% 44% 41% 41% 43% 44% 42%
Oceania_NFC 46% 45% 45% 45% 47% 46% 48% 48% 46% 46% 46% 45% 40% 40% 38% 39%
UK_NFC 39% 39% 38% 38% 38% 38% 37% 37% 38% 37% 36% 36% 36% 37% 36% 36%
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datasets (SHS_AS) capture 6% of the total62. On the other hand, granular loan exposure 

datasets capture 33% of the total, while granular derivative exposures captures roughly 5%.  

Figure 1 thus highlights the rationale and value-add of combining and exploiting the various 

data sources described in section 1. The outcome is a good and stable coverage of the UK 

banking sector’s asset side. Having detailed the contribution of each data sources to the 

composition of the Global Network, we now move to the presentation of the decomposition by 

counterparty sector and country of origin of UK banks’ exposures. We show that in Q4-2021, 

the most relevant counterparty sector is governments (GG) capturing 21.8% of total gross 

exposure amounts. Then follow exposures to financial corporations (FC) with 21.6%, and, after 

that, exposures to credit institutions (CI) with 18%, to the household sectors (HH) with 17.4%, 

to non-financial corporates (NFC) with 13.3%, and finally to central banks (CB) with 8%.  In 

the end,  the contribution over time by geographical region (We do not provide the breakdown 

by country for graphical purposes.) highlights that in Q4-2021, UK banks were mostly exposed 

outside the UK for 62.3% of total gross exposures, while domestically for the remaining 37.6%. 

The most relevant regions outside the UK are Americas with 24.5%, Asian countries with 

19.5%, and Europe with 16.9%.  

Figure 1: Time-Series Decomposition of total gross exposure coverage by data source, sector 
and country 

 
Note: red dotted line refer to UK banks’ total assets. 
             

    
 
 

Results 

Appendix B – Conditional Capital at Risk Estimates 

Table 1 – Decomposition of UK Banks’ CCaR Estimates (Extreme Stress Scenarios) 

Panel (a) – By Sector 

                                                           
62 Sydow et al. (2021) provides estimate for the share of EA banks’ granular loans to individual firms, which 
represents roughly 21% of banks’ total assets. Moreover, they highlight that information on granular securities 
holdings in banks’ balance sheets covers only 7% of total assets. 
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Panel (b) – By Region 

 

 
Note: The “Loss Ratio” is computed as losses over gross exposures by country or region, while the Loss Share is 
calculated as sectoral/regional losses over total losses.  

 

Loss Ratio Q1-2018 Q2-2018 Q3-2018 Q4-2018 Q1-2019 Q2-2019 Q3-2019 Q4-2019 Q1-2020 Q2-2020 Q3-2020 Q4-2020 Q1-2021 Q2-2021 Q3-2021 Q4-2021
CI 0.3% 0.3% 0.2% 0.2% 0.3% 0.3% 0.3% 0.2% 0.2% 0.3% 0.3% 0.2% 0.2% 0.3% 0.2% 0.2%
GG 1.0% 1.1% 1.5% 1.8% 1.5% 1.1% 1.0% 1.0% 0.8% 1.0% 1.1% 0.9% 0.9% 0.7% 1.2% 1.1%
FC 11.3% 11.2% 10.0% 10.2% 10.3% 10.1% 10.5% 12.5% 12.8% 15.5% 11.7% 12.2% 10.9% 10.9% 10.2% 10.7%
NFC 7.1% 7.6% 6.9% 7.2% 7.4% 7.8% 8.3% 6.8% 7.3% 8.3% 8.9% 9.5% 9.0% 9.1% 8.5% 8.6%

Loss Share Q1-2018 Q2-2018 Q3-2018 Q4-2018 Q1-2019 Q2-2019 Q3-2019 Q4-2019 Q1-2020 Q2-2020 Q3-2020 Q4-2020 Q1-2021 Q2-2021 Q3-2021 Q4-2021
CI 1.3% 1.4% 1.0% 1.0% 1.1% 1.2% 1.2% 0.7% 1.0% 0.8% 1.3% 1.1% 1.2% 1.4% 1.1% 1.0%
GG 14.0% 14.7% 21.5% 24.4% 19.7% 15.3% 13.6% 11.8% 8.9% 9.4% 14.5% 12.9% 13.2% 10.4% 17.2% 15.8%
FC 53.8% 51.5% 47.5% 45.0% 47.9% 48.6% 47.8% 62.2% 64.6% 65.9% 52.2% 52.2% 49.9% 52.0% 49.7% 50.6%
NFC 30.9% 32.4% 30.0% 29.6% 31.2% 35.0% 37.4% 25.3% 25.4% 23.9% 32.0% 33.9% 35.7% 36.2% 32.0% 32.6%

Loss Ratio Q1-2018 Q2-2018 Q3-2018 Q4-2018 Q1-2019 Q2-2019 Q3-2019 Q4-2019 Q1-2020 Q2-2020 Q3-2020 Q4-2020 Q1-2021 Q2-2021 Q3-2021 Q4-2021
UK 6.7% 6.4% 6.3% 6.7% 6.1% 5.7% 5.7% 8.1% 8.3% 9.2% 5.4% 5.4% 5.5% 5.6% 5.9% 5.4%
Americas 3.2% 3.2% 2.8% 3.1% 3.3% 3.0% 3.7% 2.7% 2.9% 3.6% 4.2% 4.2% 3.9% 3.8% 4.0% 4.0%
Europe 3.2% 3.4% 3.2% 3.2% 3.5% 3.8% 3.5% 2.8% 2.9% 3.7% 3.5% 3.6% 3.1% 3.1% 3.0% 3.1%
Asia 1.0% 0.9% 0.9% 1.0% 0.9% 0.9% 1.0% 0.8% 0.9% 1.1% 1.2% 1.1% 1.0% 1.1% 1.1% 1.3%
Africa 2.5% 4.4% 3.1% 3.7% 3.1% 3.2% 4.5% 3.3% 2.7% 4.5% 6.0% 5.8% 4.6% 5.0% 5.8% 6.6%
Oceania 0.8% 0.8% 0.7% 0.7% 0.9% 0.9% 1.0% 0.6% 0.7% 1.0% 1.1% 1.0% 0.8% 1.0% 0.7% 0.9%

Loss Share Q1-2018 Q2-2018 Q3-2018 Q4-2018 Q1-2019 Q2-2019 Q3-2019 Q4-2019 Q1-2020 Q2-2020 Q3-2020 Q4-2020 Q1-2021 Q2-2021 Q3-2021 Q4-2021
UK 55.4% 55.6% 58.0% 57.6% 55.7% 51.8% 50.3% 67.4% 64.5% 64.7% 48.0% 46.4% 46.4% 46.2% 48.1% 47.0%
Americas 15.8% 15.5% 14.1% 15.6% 16.9% 16.0% 19.4% 12.7% 13.7% 13.7% 20.7% 20.9% 22.1% 21.9% 23.4% 22.4%
Europe 22.1% 22.6% 21.8% 19.9% 21.9% 25.7% 23.2% 15.1% 16.2% 16.2% 23.8% 24.6% 23.2% 22.9% 19.7% 20.8%
Asia 6.0% 5.4% 5.4% 6.1% 4.9% 5.6% 6.0% 4.2% 5.0% 4.6% 6.4% 6.9% 7.3% 8.0% 7.8% 8.7%
Africa 0.4% 0.7% 0.5% 0.6% 0.5% 0.5% 0.8% 0.5% 0.4% 0.5% 0.9% 0.9% 0.8% 0.8% 0.9% 0.8%
Oceania 0.3% 0.2% 0.2% 0.2% 0.3% 0.3% 0.3% 0.1% 0.2% 0.2% 0.3% 0.3% 0.2% 0.2% 0.2% 0.2%
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