

BANK OF ENGLAND

Staff Working Paper No. 970 Size discount and size penalty: trading costs in bond markets

Gábor Pintér, Chaojun Wang and Junyuan Zou

April 2022

Staff Working Papers describe research in progress by the author(s) and are published to elicit comments and to further debate. Any views expressed are solely those of the author(s) and so cannot be taken to represent those of the Bank of England or to state Bank of England policy. This paper should therefore not be reported as representing the views of the Bank of England or members of the Monetary Policy Committee, Financial Policy Committee or Prudential Regulation Committee.

BANK OF ENGLAND

Staff Working Paper No. 970 Size discount and size penalty: trading costs in bond markets

Gábor Pintér,⁽¹⁾ Chaojun Wang⁽²⁾ and Junyuan Zou⁽³⁾

Abstract

We show that larger trades incur lower trading costs in government bond markets ('size discount'), but costs increase in trade size after controlling for clients' identities ('size penalty'). The size discount is driven by the cross-client variation of larger traders obtaining better prices, consistent with theories of trading with imperfect competition. The size penalty, driven by the within-client variation, is larger for corporate bonds, during major macroeconomic surprises and during Covid-19. These differences are larger among more sophisticated clients, consistent with information-based theories. The size penalty in US Treasuries is about three times as small as in UK gilts.

Key words: Trading costs, trade size, government and corporate bonds, trader identities.

JEL classification: G12, G14, G24.

The Bank's working paper series can be found at www.bankofengland.co.uk/working-paper/staff-working-papers

Bank of England, Threadneedle Street, London, EC2R 8AH Email enquiries@bankofengland.co.uk

© Bank of England 2022 ISSN 1749-9135 (on-line)

⁽¹⁾ Bank of England. Email: gabor.pinter@bankofengland.co.uk

⁽²⁾ The Wharton School. Email: wangchj@wharton.upenn.edu

⁽³⁾ INSEAD. Email: junyuan.zou@insead.edu

The views expressed in this paper are those of the authors, and not necessarily those of the Bank of England or its committees. We would like to thank Tarun Chordia, Bernard Dumas, Thierry Foucault, Vincent Glode, Itay Goldstein, Sinem Hacioglu, Joel Hasbrouck, Edith Hotchkiss (discussant), John Kuong, Pete Kyle, Dan Li (discussant), Weiling Liu (discussant), Albert J. Menkveld, Paolo Pasquariello, Joel Peress, John Power, Rhiannon Sowerbutts, Robert Stambaugh, Lucian Taylor, Semih Uslu, Xavier Vives, Alex Zhou, Haoxiang Zhu and seminar participants at INSEAD, 2021 the Stern/Salomon Microstructure Meeting, the 2021 EFA meeting, the 2022 AFA meeting and Wharton for helpful comments.

1 Introduction

It is well documented that larger trades incur lower trading costs ("size discount") in various over-the-counter (OTC) financial markets. The size discount is consistent with theories of bilateral trading with imperfect competition, which predict that larger trades get more favourable prices because dealers' bargaining power decreases in trader size and larger traders tend to trade larger amounts.¹ However, theories of information asymmetry and inventory imbalances predict "size penalty", in that larger trades would be executed at less favourable prices because of dealers' fear of adverse selection² or higher inventory costs.³

We reconcile this tension by decomposing the size-cost relationship into cross-client and within-client variations, finding size discount in the cross section and size penalty in the time series. Given the scant empirical evidence on the size penalty in OTC markets (compared to ample evidence on the size discount), we analyse the drivers of the size penalty in further detail by applying differences-in-differences methods. Our analysis illustrates the effects of different market frictions on trading costs, and our findings point to an independent role of information-based theories, controlling for inventory- and liquidity-based explanations, in driving the size penalty. We also document substantial cross-market differences, with the size penalty in US Treasuries being about three times as small as in UK government bonds.

Our paper exploits a non-anonymous trade-level dataset to study the determinants of trading costs in bond markets, with our baseline sample covering trades in the UK government bond market over the period 2011-2017. The dataset covers close to the universe of secondary market transactions, and importantly, it contains the *identities of both counterparties* for each transaction. Therefore, unlike other datasets (e.g. TRACE) typically used in the literature, our dataset allows one to distinguish between client-specific characteristics (such as traders' size and type) and transaction-specific characteristics (such as trade size) in determining trading costs. We also identify clients who actively trade in UK government bonds as well as in UK corporate bonds, which allows us to compare the size-cost relation not just across clients, but *across markets* as well. In the same spirit, we additionally compare the results across UK and US government bond trades, which allows us to estimate how the size-cost relation varies with *market size*.

Our empirical analysis yields seven main results. First, larger trades get lower trading costs in government bond markets than smaller trades, consistent with the previous literature on the "size discount" studied in corporate bond and municipal bond markets. Second, our non-anonymous dataset allows us to decompose the size-cost relation into within-client and cross-client variation. We find that trading costs increase in trade size

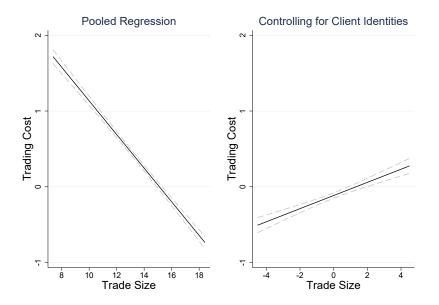
¹See Green, Hollifield, and Schurhoff (2007b) and the related literature.

²Glosten and Milgrom (1985); Kyle (1985); Easley and O'Hara (1987) among others.

³See Ho and Stoll (1981), Biais (1993) and the related literature.

once we control for clients' identities, generating a "size penalty".

Figure 1: The Relation between Trade Size and Trading Costs: The Role of Traders' Identities



Notes: The figure illustrates the relation between trade size and trading costs on the UK government bond market, covering the period 2011m8-2017m12. The Figure shows a linear regression line on the pooled, transaction-level data (left panel) and on the data after we removed client-specific averages from trading costs and trade sizes corresponding to each trade (right panel). Trading costs are measured by 3.1 (building on O'Hara and Zhou (2021)), and trade size is measured as the natural logarithm of the trade's notional. The estimated regression lines are based on around 1.2 million observations. The confidence bands are based on 95% standard errors as in Gallup (2019).

These two findings are illustrated in Figure 1, which shows the relationship between trade size and trading costs in government bonds from two different model specifications. The left panel of Figure 1 plots the fitted linear regression line from a pooled regression of trading costs on trade size. The trade-level regression shows that larger trades incur lower trading costs, consistent with the findings of size discount in other OTC markets.⁴ Our novel contribution is to isolate the within-client variation in the size-cost relation: the right panel of Figure 1 shows the regression line after removing the client-specific average from trading costs and trade size, showing evidence on size penalty. This suggests that the size discount is driven by the cross-client variation of larger traders facing lower trading costs and trading larger amounts, whereas the size penalty is driven by the within-client variation of the *same trader* facing higher trading costs on larger trades. This will be shown rigorously by regression analysis further below.

Third, we exploit cross-sectional variation in client types and find that the size penalty is larger for more sophisticated clients (hedge funds and asset managers), and it

⁴For evidence on the size discount in the US corporate bond market, see Schultz (2001), Bessembinder, Maxwell, and Venkataraman (2006), Edwards, Harris, and Piwowar (2007), Goldstein, Hotchkiss, and Sirri (2007), Hendershott and Madhavan (2015) and O'Hara, Wang, and Zhou (2018) among others. Similar evidence from the US municipal bond market is presented by Harris and Piwowar (2006) and Green, Hollifield, and Schurhoff (2007b,a) among others.

is smaller for less sophisticated clients (pension funds, foreign central banks, insurance companies, etc.). Fourth, we additionally exploit time-series variation in the magnitude of macroeconomic surprises and find that the size penalty, faced by more sophisticated clients, is larger during informationally intensive periods such as trading days that coincide with the arrival of large macroeconomic shocks. In contrast, the size penalty faced by less sophisticated clients is similar across trading days irrespective of the magnitude of macroeconomic shocks at the time. Fifth, we also exploit cross-market variation by identifying clients who simultaneously trade in government bonds as well as in corporate bonds. We find that the size penalty is larger in corporate bonds than in government bonds, and, importantly, this difference is more pronounced amongst more sophisticated clients.

Taken together, we interpret these results as evidence that information-based explanations contribute to the heterogeneity in size penalty. To the extent that more sophisticated clients are more likely to trade on information than less sophisticated clients, the differential degree of size penalty across client types, implied by the differences-in-differences approach, is consistent with theories of asymmetric information (Glosten and Milgrom, 1985). The triple differences approach, that uses time-variation in the magnitude of macroeconomic surprises, corroborates this interpretation.

The triple differences approach using cross-market variation shows that other, inventoryand liquidity-based factors are also likely to play a role, in so far as the size penalty is larger in corporate bonds than in government bonds irrespective of client types. While corporate bonds are informationally more sensitive assets than government bonds (Brancati and Macchiavelli, 2019; Arnold and Rhodes, 2020), liquidity and inter-dealer intermediation is also considerably smaller in the UK corporate bond market than in the government bond market. This makes it more costly for corporate bond dealers to execute trades with large size (Chen, Lesmond, and Wei, 2007), which could explain the larger size penalty in corporate bonds. However, assuming that the liquidity effect of a large corporate bond trade should be the same *irrespective of client type* (e.g. the sophisticated clients is consistent with the presence of informational channels over and above what is explained by inventory-based mechanisms.

Our sixth result is that a more sophisticated client performs better on larger trades than on smaller trades, with performance measured as the trade's ability to predict future price movements. In contrast, we find that within-client variation in trade size is uncorrelated with trading performance for the group of less sophisticated clients. This is an important cross-check as it strengthens the information-based interpretation of the results implied by the triple differences approach.

Our seventh result is that the size penalty in US Treasuries is about three times as small as in UK gilts. To arrive at this result, we exploit the fact that around 3% of trading

volume of the US Treasury market still occurs in London, and we are able to access trade reports on most of these transactions. Given that the US Treasury market is larger, deeper and more liquid than the UK gilt market (US-Treasury, 2021), both inventorybased theories and information-based theories would predict a smaller size penalty in US Treasuries – consistent with our empirical evidence.

In our empirical design, we use various combinations of fixed effects in order to control for other forces that may drive the size-cost relation. For example, the size penalty can also be driven by an inventory imbalance channel: a large-sized trade is more likely to cause skewed dealer inventory imbalance. Therefore, the dealer would be forced to cover its resulting inventory cost by charging a higher trading cost (Ho and Stoll, 1981), generating a size penalty. While this force is likely to be present in the data, there are at least two reasons why we interpret our results as being driven by additional, information-based factors over and above this inventory channel. First, our trade-level regressions include dealer-day fixed effects that control for the linear effects of any daily shock to dealers' inventory which could drive the size-cost relation. Second, inventory-based mechanisms alone are less likely to explain the heterogeneity in the size penalty across more sophisticated and less sophisticated clients. However, it could still be that if dealers' inventory cost functions are sufficiently convex and if more sophisticated clients systematically trade larger amounts than less sophisticated clients, then the heterogeneity in the size penalty across client types could be explained by inventory channels. However, this possibility is not supported by our sample, as we find that, if anything, more sophisticated clients seem to trade in smaller sizes.

Moreover, the size penalty could be affected by the strength of the trading relationship between clients and dealers (Di Maggio, Franzoni, Kermani, and Sommavilla, 2019; Barbon, Maggio, Franzoni, and Landier, 2019; Hendershott, Li, Livdan, and Schurhoff, 2020). However, larger trades are typically executed by counter-parties with stronger trading relationships, and trading costs also tend to be lower at dealers with whom a given client has a more enduring relationship. While mechanisms related to relationship trading may explain some of the cross-client pattern of size discount, they are less likely to explain the size penalty and its heterogeneity across client types. Nevertheless, we include in our regressions client-dealer fixed effects to control for the linear effect of trading relationships.

We also revisit the size-cost relation during the COVID-19 period, as presented in Section 5. This provides an ideal setting for performing a cross-check on a different sample, as this analysis exploits a more recent dataset (2018-2020), compared to the one (2011-2017) used to obtain our baseline results. We continue to find significant size penalty in this more recent dataset, and additionally show evidence on an increased size penalty during the financial market turmoil in March 2020, which is particularly strong for the group of more sophisticated clients. We show that this result also holds after controlling for the selling pressure of more sophisticated clients such as asset managers – a well established feature of the COVID-19 crisis.⁵

Our empirical results highlight that controlling for traders' identity is crucial for understanding trading costs in non-anonymous OTC markets. In centralised exchanges, where client identity is not revealed before the trade, client identity is not relevant for the estimation of trading costs. However, in OTC markets, client identity is observable to dealers and naturally enters dealers' pricing function. Without information on clients' identity and by simply looking at the relationship between trade size and trading costs in a pooled regression, one would likely underestimate the marginal cost faced by market participants when they increase the size of their trades.

Related Literature We make two contributions to the literature discussed below. First, we provide trade-level evidence on the size penalty in multiple OTC markets, thereby adding to the existing literature which typically focused on aggregate order-flow analysis to study the link between bond prices and orderflow.⁶ Second, we exploit a number of unique sources of variation in our non-anonymous dataset to isolate the role of information asymmetry from other factors in driving the size penalty. This reconciles a tension between the theoretical prediction of size penalty in the asymmetric information literature and the empirical pattern of size discount consistently documented by previous studies.

Our paper builds on two mains strands of the empirical literature. First, we draw on previous studies on the determinants of trading costs in corporate (Schultz, 2001; Bessembinder, Maxwell, and Venkataraman, 2006; Edwards, Harris, and Piwowar, 2007; Goldstein, Hotchkiss, and Sirri, 2007; Feldhutter, 2012; Hendershott and Madhavan, 2015; O'Hara and Zhou, 2021) and municipal bond markets (Harris and Piwowar, 2006; Green, Hollifield, and Schurhoff, 2007b,a; Li and Schürhoff, 2019).⁷ We contribute to this literature by isolating the role of clients' identities in driving the relationship between trading costs and trade size, and to combine this client-level heterogeneity with other variations in our unique dataset to develop our empirical tests. Second, we contribute to the empirical literature on informed trading in government and corporate bond markets (Brandt and Kavajecz, 2004; Green, 2004; Pasquariello and Vega, 2007; Fleming, Mizrach, and Nguyen, 2018; Hendershott, Kozhan, and Raman, 2020; Czech, Huang, Lou, and Wang, 2021; Kondor and Pinter, 2022). Compared to these studies, we focus on how analysing the size-cost relation in bond markets can reveal the presence of informed trading.

⁵See Falato, Goldstein, and Hortacsu (2021); Kargar, Lester, Lindsay, Liu, Weill, and Zuniga (2021); Haddad, Moreira, and Muir (2021); O'Hara and Zhou (2021); Ma, Xiao, and Zeng (2022) among others.

⁶See Brandt and Kavajecz (2004), Pasquariello and Vega (2007) and Fleming, Mizrach, and Nguyen (2018) among many others.

⁷See Hotchkiss and Jostova (2017), Biais and Green (2019) and Bessembinder, Spatt, and Venkataraman (2020) for recent surveys.

Our empirical results are able to inform the theoretical literature on OTC markets. Specifically, our evidence on the size penalty is consistent with previous models featuring asymmetric information (Kyle, 1985; Glosten and Milgrom, 1985; Easley and O'Hara, 1987). Our evidence on the size discount is consistent with clients facing price discrimination from dealers, possibly because of the heterogeneity in their bargaining power or search intensity (Duffie, Gârleanu, and Pedersen, 2005; Green, Hollifield, and Schurhoff, 2007b; Pinter and Uslu, 2021).

The remainder of the paper is organised as follows. Section 2 develops the testable hypotheses; Section 3 describes the data sources and provides summary statistics; Section 4 presents the main empirical results; Section 5 presents an analysis of the COVID-19 period; Section 6 concludes.

2 Hypothesis Development

In this section, we build on the existing theoretical and empirical literatures to formulate our seven testable hypotheses.

Hypothesis 1 (Size Discount). Trading costs are smaller for larger trades, and this is driven by the cross-client variation of larger clients facing lower costs than smaller clients.

The size discount is a well documented empirical pattern in various OTC markets.⁸ The early literature conjectures that the size discount can be due to dealers' fixed costs of executing a trade or due to large clients' stronger bargaining power. Our cross-client variation in Hypothesis 1 isolates bargaining power from fixed costs as a driver of the size discount. More formally, Green, Hollifield, and Schurhoff (2007a) estimates a bargaining model using trade size as a proxy for bargaining power. Using more granular data with partial trader identities, recent papers show that larger traders have more dealer connections and stronger relationships with their dealers.⁹

⁸Schultz (2001); Edwards, Harris, and Piwowar (2007); Bessembinder, Maxwell, and Venkataraman (2006) find evidence of size discount in the US corporate bond market, Harris and Piwowar (2006); Green, Hollifield, and Schurhoff (2007a) in the US municipal bond market, Loon and Zhong (2016) in the index CDS market.

⁹In the US corporate bond market, for example, Hendershott, Li, Livdan, and Schurhoff (2020) shows that larger insurance companies trade in larger quantities with dealers and they also trade with more dealers. Di Maggio, Kermani, and Song (2017) shows that dealers charge lower spreads to clients with whom they have the strongest ties and more so during periods of market turmoil. O'Hara, Wang, and Zhou (2018) finds that an insurance company which trades more actively would face lower costs than an insurance company which trades less actively. Bernhardt, Dvoracek, Hughson, and Werner (2005) develops a model of relationship trading to explain the size discount in an OTC market.

Other forces such as asymmetric information¹⁰ and inventory imbalances¹¹ could generate the time-series phenomenon of size penalty in OTC markets. One would therefore expect that controlling for clients' identities (thereby controlling for the cross-client variation in average bargaining power) would likely make both information- and inventorybased mechanisms dominate. This could then give rise to observed patterns of size penalty, assuming that time-variation in bargaining power is sufficiently weak.¹²

Hypothesis 2 (Size Penalty). A given client faces higher trading costs on larger trades than on smaller trades.

Note that Section A in the Appendix presents a simple model that includes both bilateral bargaining and information asymmetry to formalise the co-existence of the sizediscount and the size penalty.

Given that mechanisms related to both asymmetric information and inventory imbalance could generate a size penalty, the challenge remains of how to tell these two forces apart in the data. To address this, we introduce an additional variation in our dataset: we distinguish between more sophisticated clients (such as hedge funds and asset managers) and less sophisticated clients (such as insurance companies, pension funds, etc.). We build on the assumption that more sophisticated clients are more likely to trade on private information, subjecting dealers to more information asymmetry, while less sophisticated clients are more likely to trade for hedging purposes.¹³ On the other hand, a dealer facing clients who seek to offload a large quantity of assets would be subject to the same inventory cost, irrespective of whether the client is more or less sophisticated. Cross-sectional variation in client types would therefore generate heterogeneity in the size penalty that is less likely to be explained by dealers' inventory imbalance. This is summarised by Hypothesis 3.

Hypothesis 3 (Client Heterogeneity). The size penalty is bigger for more sophisticated clients compared to less sophisticated clients.

¹⁰Grossman and Stiglitz (1980), Kyle (1985, 1989), and Vives (2008) provide theoretical benchmarks for mechanisms based on adverse selection. More recently, Lester, Shourideh, Venkateswaran, and Zetlin-Jones (2018) and Chen and Wang (2020) develop dynamic models of market making under adverse selection risk. Pinter, Wang, and Zou (2020) shows that size penalty is a robust prediction even when dealers have incentive to chase informed orders.

¹¹See Ho and Stoll (1981), Biais (1993), Viswanathan and Wang (2004) and the recent theoretical literature such as Colliard, Foucault, and Hoffmann (2021), as well as empirical studies by Hansch, Naik, and Viswanathan (1998); Comerton-Forde, Hendershott, Jones, Moulton, and Seasholes (2010); Bessembinder, Jacobsen, Maxwell, and Venkataraman (2018); Friewald and Nagler (2019); Goldstein and Hotchkiss (2020) among others.

¹²It has been shown that factors that affect bargaining power, such as the structure of trading networks, tend to be stable over time. Recent empirical work has shown that OTC markets have a stable coreperiphery network structure, and these markets feature persistent trading relationships. Li and Schürhoff (2019) provides evidence on municipal bonds, Di Maggio, Kermani, and Song (2017) on corporate bonds, and Afonso, Kovner, and Schoar (2014) on federal funds.

¹³See Czech and Pinter (2020), Czech, Huang, Lou, and Wang (2021) and Kondor and Pinter (2022) for recent evidence.

To provide further analysis of the driving forces behind the time-series pattern of the size penalty, we also exploit time-series variation in the magnitude of macroeconomic surprises. Previous literature has shown that macroeconomic announcements increase price volatility and invite informed trading in government bond markets (Ederington and Lee, 1993; Fleming and Remolona, 1999; Green, 2004; Jiang, Lo, and Verdelhan, 2011). Since informed trading is more likely to happen and price movements are larger during informationally intensive periods (Czech, Huang, Lou, and Wang, 2021; Kondor and Pinter, 2022), we expect the size penalty to be more pronounced during these periods. Moreover, the difference in size penalty (across trading days with small and large macro surprises) is expected to be larger for more sophisticated clients, who are more likely to possess and trade on private information relevant to the event.

Hypothesis 4. The size penalty is larger during informationally intensive days (such as large macroeconomic surprises), and this difference is more pronounced in the case of more sophisticated clients.

We also exploit cross-market variation by comparing corporate and government bond trades of the same client to further characterise the size penalty. Possible differences in the size penalty across the two markets could be due to at least three reasons (Hotchkiss and Jostova, 2017; Friewald and Nagler, 2019; Bessembinder, Spatt, and Venkataraman, 2020). First, corporate bonds provide more opportunities for informed trading than government bonds, because of additional cash-flow risks. Second, the corporate bond market tends to be more illiquid than the government bond market, due to the higher asset-heterogeneity and lower trading frequency of corporate bond transactions. A third and related reason is that dealers' cost of managing corporate bond inventories is higher, also because inter-dealer brokers play a smaller role in the corporate bond market than in the government bond market.

All three factors could make larger trades in corporate bond markets more costly to execute compared to government bond markets. Therefore, in order to isolate the informational channel, we combine the cross-market variation with heterogeneity in client types (similar to Hypothesis 4). Liquidity- and inventory-based mechanisms should generate a differential degree of size penalty in corporate bonds vis-a-vis in government bonds, *irrespective of client type*. Since informational effects are likely to be more pronounced in the case of more sophisticated clients, we expect any differential effect of the size penalty (across the two markets) to be larger for more sophisticated clients compared to less sophisticated clients.

Hypothesis 5. The size penalty is larger in corporate bonds than in government bonds, and this difference is more pronounced in the case of more sophisticated clients.

To further test for the informational mechanism behind the size penalty, we construct a measure of informativeness at the client-day level and test whether clients perform better when trading larger amounts. We measure the informativeness of a client's trade by the future price impact of the trade (Hasbrouck, 1991; Collin-Dufresne, Junge, and Trolle, 2020). When a market maker trades with a client who possesses private information, the size of a given trade is a well-established proxy for the presence of private information. This positive correlation between trade size and information content of trade holds in various market settings including centralised exchanges (Kyle, 1985) and OTC markets (Naik, Neuberger, and Viswanathan, 1999).

Hypothesis 6. A given informed client performs better on larger trades than on smaller trades.

The last hypothesis we test relates to how the size penalty varies with market size. For example, should one expect the size penalty to be smaller in the US Treasury market than in the UK gilt market? Given that the US Treasury market is larger, deeper and more liquid than the UK gilt market (US-Treasury, 2021), inventory-based theories would be consistent with a smaller size penalty in US Treasuries because of larger intermediation as well as inter-dealer activity (Viswanathan and Wang, 2004). Similarly, recent information-based theories also predict that the size penalty would decrease in market size; see, for example, the model of Vives (2011) with strategic informed traders as well as the recent theory of market microstructure invariance (Kyle and Obizhaeva, 2016).¹⁴

Hypothesis 7. The size penalty is smaller in larger markets.

In the rest of the paper, we use our trade-level dataset to test these seven hypotheses and find evidence in support of them.

3 Data and Measurement

3.1 Data Source

To distinguish between the roles of trade size and trader size in bond markets, one needs a detailed transaction-level dataset which contains information on the identity of both sides of a trade. The ZEN database sourced by the UK Financial Conduct Authority, contains this information along with information on the transaction time, the transaction price and quantity, the International Securities Identification Number, the account number, and buyer-seller flags. Our sample covers the period between August 2011 and Dec 2017. Our analysis focuses on transactions that occur between clients and designated market makers, called Gilt-Edged Market Makers (GEMMs). GEMMs are the primary

¹⁴According to the theory of market microstructure invariance, for example, if the US Treasury market volume is 10 times the UK gilt market volume and the volatility is the same in the two markets, then one would expect the largest one percent of UK gilt market trades to cost about $10^{1/3} \approx 2.15$ times as much as an equivalent trade in the US Treasury market. We thank Pete Kyle for suggesting this example.

dealers in the UK government bond market, and the majority of client-dealer trades are intermediated by them.¹⁵ After filtering out all duplicates, erroneous entries, we are left with approximately 1.2 million observations for government bond market trades and about the same number of observations for corporate bond market trades. Further details on the data construction can be found in Appendix B.

A key aspect of our empirical analysis is that we are able to see the identities of both counterparties for each transaction – a unique feature of the ZEN database as also used in Czech, Huang, Lou, and Wang (2021) and Kondor and Pinter (2022). Following these papers, we distinguish between more sophisticated clients (hedge funds and asset managers) and less sophisticated clients (pension funds, foreign central banks, commercial banks, international policy institutions, insurance companies, non-financial investors). This classification is motivated by the recent evidence on the enhanced ability of more sophisticated clients to predict future bond returns (Czech, Huang, Lou, and Wang, 2021). We identify around 600 clients that cover more than 90% of the trading volume between clients and dealers.

3.2 Measurement and Summary Statistics

One of the two key variables in our empirical analysis is trade size, which we measure as the pound value of the given trade's notional. We will use the natural logarithm of trade size as the key independent variable in our regressions below; hence we briefly describe its empirical distribution here. Figure 2 illustrates the (log) size distribution for the UK government bond and corporate bond markets, along with selected summary statistics. Both the mean and the median values are larger in government bonds (13.4 and 13.7) than in corporate bonds (12.1 and 12.2). The dispersion of the distribution, measured in standard deviation, is about 0.5 log points larger in government bonds than in corporate bonds (2.72 vs 2.15).

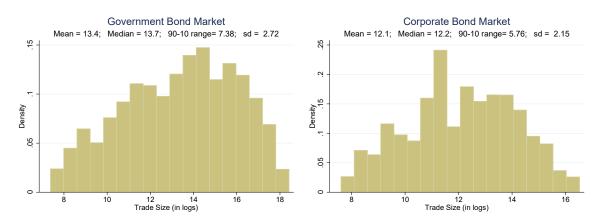
Table A.1 in Appendix provides further summary statistics, showing that the mean and median trade size for government bonds in our sample is about £6.3 million and £0.86 million, which suggests a sizeable skew in the distribution. While trades in corporate bonds tend to be considerably smaller, we do not see a discernible difference in the size distribution across more and less sophisticated clients.

The second key variable in our empirical analysis is trading costs, which we measure by following O'Hara and Zhou (2021). Specifically, for each trade v we compute the following measure:

$$Cost_{v} = \left[\ln\left(P_{v}^{\star}\right) - \ln\left(\overline{P}\right)\right] \times \mathbf{1}_{B,S},\tag{3.1}$$

¹⁵GEMMs' intermediation activity is lower in corporate bonds, acting as counterparties for about 65% of all client trades in our sample. For further details on the identities of GEMMs, see https://www.dmo.gov.uk/responsibilities/gilt-market/market-participants/.

Figure 2: Trade Size Distributions



Notes: these figures summarize the size distributions in the UK government bond (left panel) and corporate bond (right panel) markets, based on trade-level data spanning the period 2011m8-2017m12. The construction of the histograms is based on the trade-level dataset after trimming it at the 1-99% level.

where P_v^{\star} is the transaction price, $\mathbf{1}_{B,S}$ is an indicator function equal to 1 when the transaction is a buy trade, and equal to -1 when it is a sell trade, and \overline{P} is a benchmark price, which in our baseline is the average price of all transactions in bond k on trading day t. We multiply $Cost_v$ by 10,000 to compute costs in basis points of value. As shown below, our baseline results are robust to using four alternative ways to compute \overline{P} .¹⁶ Note that transaction prices in the ZEN dataset do not include commission (or any accrued interest when relevant); hence our measure of trading cost (3.1) can be seen as a lower bound on the total cost of trade execution.¹⁷

Table 1 provides summary statistics of our baseline measure of trading costs using our sample of government bond trades. We summarise the medians of our cost measure after double sorting the data along different trade size and maturity categories. Specifically, we follow O'Hara, Wang, and Zhou (2018) in creating four size categories: micro (£1-£100,000), odd-lot (£100,000-£1,000,000), round-lot (£1,000,000-£5,000,000) and block (above £5,000,000). We also sort trades into three maturity categories: short and medium (0-8 years), long (8-20 years) and very long (above 20 years) maturities.

Importantly, we compute the median cost measures for the different size-maturity category pairs using two different specifications. Panel (a) of Table 1 reports medians using the pooled dataset, whereas panel (b) reports medians after we remove client-specific averages from trading costs, i.e. after purging out client fixed effects from our

¹⁶The four alternatives are as follows. First, we compute \overline{P} as the average transaction price in bond k, trading day t and dealer j. Second, we compute \overline{P} as the average transaction price in bond k, in a given part of the trading day t. Using the time stamp for each trade, we divide trades into three groups, depending on whether the transaction occurred (i) before 11am, (ii) during 11am-3pm, or (iii) after 3pm. Third, we also compute \overline{P} as the average transaction price in bond k, trading day t, separately for buy and sell trades. Fourth, we also compute \overline{P} as the average transaction price in bond k, trading day t, using only trades on the inter-dealer market.

¹⁷For further details, see Section 7.15. of the Transaction Reporting User Pack for the ZEN dataset: https://www.fca.org.uk/publication/finalised-guidance/fg15-03.pdf.

	Tì	ading Co	\mathbf{st}	Nu	mber of C	bs.
Maturity	0-8Y	8-20Y	>20Y	0-8Y	8-20Y	>20Y
Trade-size category						
£1-£100,000	0.778	1.447	0.530	$157{,}533$	$87,\!631$	89,004
$\pounds100,000-\pounds1,000,000$	-0.117	-0.097	-0.289	123,848	89,900	$107,\!341$
$\pounds1,000,000-\pounds5,000,000$	-0.267	-0.374	-0.420	$102,\!478$	$91,\!682$	$81,\!865$
>£5,000,000	-0.021	-0.171	0.200	$145,\!555$	108,783	$88,\!675$

Table 1: Summary Statistics: Trading Costs, Trade Size and Maturity

(a) Results from the Pooled Dataset

(b) After Removing Client-specific Averages

	Tr	rading Co	ost	Numb		umber of	Obs.
Maturity	0-8Y	8-20Y	>20Y	0-	-8Y	8-20Y	>20Y
Trade-size category							
$\pm 1 - \pm 100,000$	-0.627	-0.115	-0.072	157	7,533	87,631	89,004
$\pounds100,000-\pounds1,000,000$	-0.528	-0.393	-0.395	123	8,848	89,900	$107,\!341$
$\pounds1,000,000-\pounds5,000,000$	-0.240	-0.051	-0.173	102	2,478	91,682	$81,\!865$
>£5,000,000	0.146	0.048	0.381	145	5,555	108,783	8 88,675

Notes: The tables present medians of our baseline measure of trading costs (3.1), measured in basis points, for different segments of the maturity and size distributions. Panel (a) shows median trading costs using the pooled dataset of government bond trades. Panel (b) shows the median trading costs after removing the client-specific mean (i.e. purging out client fixed effects) from trading costs. The sample covers the period 2011m8–2017m12.

cost measure. The two different specifications are meant to separate the role of *trader* size from the role of *trade size* in driving the cost-size relation, thereby highlighting the role of clients' identities in affecting trading costs.

Panel (a) shows that trading costs are largest for micro trades, and costs monotonically fall in trade size, with the exception of block trades that incur a higher cost than round-lot trades across all maturities. By far, the highest trading costs in all maturity categories concentrate in micro trades. With the exception of block trades, these results are consistent with the size discount which has been documented, using similarly pooled datasets, in other fixed income markets (e.g. Harris and Piwowar (2006); Edwards, Harris, and Piwowar (2007)).

Panel (b) of Table 1 reports the medians after controlling for clients' identities (with fixed effects) in trading cost measurement. Results from this specification imply that a client tends to face lower trading costs in smaller (micro and odd-lot) trades than larger (round-lot and block) trades across all maturity categories. Overall, panel (b) highlights that the within-client variation in trading costs seems to flip the sign of the cost-size relation, thereby giving rise to a size penalty. While these summary statistics add to the evidence illustrated by Figure 1, a number of other factors could be affecting both trade size and trading costs, including time-variation in market conditions, client-dealer relationships among others. We therefore turn to regression analysis in the next section in order to control for these factors and to uncover the possible mechanisms that drive

the size penalty.

4 Empirical Analysis

4.1 The Role of Trader Identity in the Size-Cost Relation

Our baseline specification is the following trade-level regression:

$$Cost_v = \beta \times Size_v + \alpha_{k,t} + \lambda_{i,m} + \mu_{j,m} + \delta_{i,j} + \varepsilon_v, \qquad (4.1)$$

where $Cost_v$ is the trading cost as computed in 3.1, $Size_v$ is the natural logarithm of the given trade's notional (in £s) and *controls* includes combinations of fixed effects at the levels of client *i*, dealer *j*, bond *k*, day *t* and month *m*. The key object of interest is the estimated value of β : if trading cost is the same for large and small trades, then we would expect β not to be significantly different from zero.¹⁸

Table 2 shows the results for our baseline regression 4.1, using various specification of fixed effects. All regressions include bond-day fixed effects that aim to control for the linear effects of aggregate shocks that may affect bonds heterogeneously. For example, trading costs tend to be larger in more illiquid bonds where average trade sizes are also different compared to more liquid bonds. With bond-day fixed effects, we aim to control for time-variation in such liquidity effects.

We move gradually from the least restrictive specification (column 1) to the most restrictive specification (column 5). Consistent with the Figure 1 above, the inclusion of client fixed effects (column 2) makes the biggest change to the estimation results by flipping the sign of the estimated effect: without client fixed effects, a one log unit increase in trade size is associated with a size discount of -0.217 bps. In contrast, the inclusion of client fixed effects results in a size penalty of 0.1 bps.

In column 3, we include dealer fixed effects, motivated by the recent literature that emphasised the role of dealer-heterogeneity in determining transaction costs (Hollifield, Neklyudov, and Spatt, 2017; Colliard, Foucault, and Hoffmann, 2021). In column 4, we include dealer-day fixed effects in order to control for time-variation in the tightness of balance sheet constraints of dealers (Bessembinder, Jacobsen, Maxwell, and Venkataraman, 2018) and client-month fixed effects to control for lower frequency variation in client characteristics. In column 5, we include client-dealer fixed effects, motivated by Di Maggio, Franzoni, Kermani, and Sommavilla (2019) emphasising the role of client-

¹⁸There are at least two reasons why our baseline regression is at the trade-level instead of more aggregated levels. First, our trade-level regression allows us to control for possible confounds related to bond-, dealer- level heterogeneity with multidimensional fixed effects. Second, the analysis of the size-cost relation would be more difficult at more aggregated levels, given the tendency of institutional investors to pursue order-splitting strategies (Campbell, Ramadorai, and Schwartz, 2009).

	(1)	(2)	(3)	(4)	(5)
Trade Size	-0.217***	0.102***	0.121***	0.134***	0.158^{***}
	(-4.04)	(3.05)	(4.01)	(4.25)	(5.19)
Ν	1274295	1274289	1274289	1269855	1269238
R^2	0.055	0.061	0.062	0.134	0.139
$\mathrm{Day}\#\mathrm{Bond}\ \mathrm{FE}$	Yes	Yes	Yes	Yes	Yes
Client FE	No	Yes	Yes	No	No
Dealer FE	No	No	Yes	No	No
$\mathrm{Day} \# \mathrm{Dealer}~\mathrm{FE}$	No	No	No	Yes	Yes
$Month \# Client \ FE$	No	No	No	Yes	Yes
${\rm Client} \# {\rm Dealer} ~{\rm FE}$	No	No	No	No	Yes

Table 2: Trading Costs and Trade Size in Government Bond Markets: The Role of Traders' Identities

Notes: this table regresses trading costs on trade size and various fixed effects (4.1). The cost measure is in bp-points. To reduce noise, we winsorise the sample at the 1%-level. T-statistics in parentheses are based on robust standard errors, using two-way clustering at the day and client level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).

dealer relationship in determining trading costs. The interpretation of this additional control is that it allows the comparison of trades that are executed by the same counterparties in different points in time. We find that the results are qualitatively robust to including these additional fixed effects, and are overall consistent with Hypothesis 2 of Section 2.

In terms of economic significance, the estimated effects are non-negligible. The estimated coefficient in Column 5 of Table 2 and the fact that the standard deviation of trade size is around 2.72 log point (Figure 2) suggest that a one standard deviation increase in trade size increases trade costs by about 0.43 bps. This is sizeable compared to average bid-ask spreads of around 0.25 bps and 0.33 bps in UK gilts of 10- and 30-year maturities, respectively, during this period.¹⁹

4.2 The Size Discount in the Cross-Section

We argued above that the size discount implied by pooled regressions (left panel of Figure 1 and panel (a) of Table 1) is driven by the cross-client variation of larger traders facing more favourable trading costs and trading larger amounts. To show this rigorously, we collapse our dataset at the client-level and estimate the following cross-sectional regression for client i:

$$Cost_i = c + \gamma \times TraderSize_i + \varepsilon_i, \tag{4.2}$$

where $Cost_i$ is the unweighted mean trading cost (3.1) based on all trades of client *i*, and $TraderSize_i$ is measured as the natural logarithm of mean trade size of client *i*.

 $^{^{19}{\}rm The}$ computation of bid-ask spreads are based on daily average quote data from Bloomberg, covering the period 2012-2017.

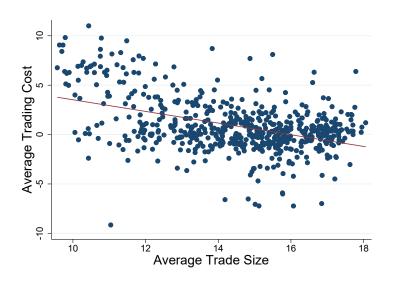


Figure 3: Trading Costs and Trader Size in the Cross-Section

Notes: this Figure shows a scatter plot of average client trading costs (vertical axis) against average trade size (horizontal axis) at the client-level in the UK government bond market. Average trading cost is the client-specific mean of our baseline cost measure 3.1. Average trade size is the natural logarithm of the average nominal size of a client's transactions. To reduce noise, the dataset is trimmed at 1%-level, leaving 586 observations. The estimated $\hat{\gamma} = -0.59$ with t-stat (based on robust standard errors) of -9.6.

The results are summarised in Figure 3, confirming a statistically significant size discount in the cross-section. This is consistent with Hypothesis 1 of Section 2. In spite of the simplicity of the cross-sectional regression (with various other dimensions of client heterogeneity not featured), the estimated model delivers a non-negligible R^2 of 0.2. These results are robust to using an alternative measure of trader size such as clients' total monthly trading volume averaged across months. Moreover, the baseline scatter plot looks similar when we control for clients' average monthly dealer connections (Hendershott, Li, Livdan, and Schurhoff, 2020; Kondor and Pinter, 2022) as well as average monthly intensity (the log of total number of transactions) of client *i* (O'Hara, Wang, and Zhou, 2018).²⁰

As reviewed in the Introduction, a voluminous literature documented on the size discount as an important feature of bond trading. Figure 3 adds to this literature by isolating the source of variation in the trade-level data (i.e. the cross-client variation) that drives the documented size discount.

4.3 The Size Penalty: Exploring the Mechanisms

We now take a closer look at the within-client pattern of size-penalty documented in Section 4.1.

 $^{^{20}}$ These results are shown by Figures A.2–A.3 in the Appendix.

4.3.1 The Role of Trader Sophistication

To explore the role of heterogeneity in client types in driving the size penalty, we first divide clients into two groups based on whether the given client is of a more sophisticated type (asset manager or hedge fund) or of a less sophisticated type (pension funds, foreign central bank, etc.). As argued, the underlying assumption is that former group is more likely to trade on information, than the latter group.²¹ For these two groups $g = \{g_1, g_2\}$, we estimate an extended version of our baseline regression 4.1, as follows:

$$Cost_v = \sum_{w=1}^{2} \eta_w \times \mathbf{1}[i \in g_w] \times Size_v + FE + \varepsilon_v, \qquad (4.3)$$

where $\mathbf{1}[i \in g_w]$ is an indicator function equal to 1 if client *i* belongs to group *w*, and 0 otherwise. We present the estimates of η_1 and η_2 adjacent to each other in the regression tables and present results for tests of equality of the two coefficients.

Table 3 shows the results for the case when we estimate regression 4.1 for the more sophisticated and less sophisticated clients separately. This differences-in-differences (DID) approach reveals that while the cross-sectional phenomenon of size discount is present for both sets of clients (with the estimated coefficients being similar), the inclusion of client fixed effects generates a larger size penalty for the group of more sophisticated traders. The most conservative specification (column 5) shows that the size penalty is almost twice as large among more sophisticated clients (0.197) than among less sophisticated clients (0.106), consistent with Hypothesis 3 of Section 2.

 $^{^{21}}$ See Czech, Huang, Lou, and Wang (2021) for further details on the ability of more sophisticated clients to forecast bond returns.

	(1)	(2)	(3)	(4)	(5)		
Less Sophisticated Clients							
Trade Size	-0.217***	0.057	0.067	0.080*	0.106**		
	(-4.14)	(1.22)	(1.46)	(1.79)	(2.29)		
	More Sophis	ticated Clie	nts				
Trade Size	-0.213***	0.140***	0.169***	0.183***	0.197***		
	(-2.67)	(3.34)	(4.83)	(5.08)	(5.61)		
p-values, eq. of coeff.	0.966	0.185	0.076	0.069	0.115		
Ν	1271112	1271106	1271106	1264580	1263963		
R^2	0.100	0.106	0.107	0.202	0.207		
Day#Bond#ClientType FE	Yes	Yes	Yes	Yes	Yes		
Client FE	No	Yes	Yes	No	No		
Dealer #ClientType FE	No	No	Yes	No	No		
$Day \# Dealer \# Client Type \ FE$	No	No	No	Yes	Yes		
Month#Client FE	No	No	No	Yes	Yes		
Client#Dealer FE	No	No	No	No	Yes		

Table 3: Trading Costs and Trade Size: More Sophisticated Clients vs Less Sophisticated Clients

Notes: this table regresses trading costs on trade size and various fixed effects. The cost measure is in bp-points. To reduce noise, we winsorise the sample at the 1%-level. T-statistics in parentheses are based on robust standard errors, using two-way clustering at the day and client level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01). The p-values correspond to the testing for the equality of coefficients.

To the extent that more sophisticated traders are more likely to trade on information, heterogeneity in the degree of size penalty across the two groups of traders is suggestive of an information-based explanation (Kyle (1985), Easley and O'Hara (1987) and others). It could still be however that more sophisticated clients face a steeper cost-size trade-off for non-informational reasons (e.g. mechanisms related to dealer inventory). Therefore, to isolate more rigorously the role of information in driving the size penalty, the next subsections extend the DID approach by adding one additional layer of "differences" related to macroeconomic surprises.

4.3.2 The Size Penalty around Macroeconomic Announcements

In this section, we estimate the role of macroeconomic announcements in affecting the degree of size-penalty. According to our Hypothesis 4, the release of large unexpected macroeconomic news leads to higher probability of informed trading (Bernile, Hu, and Tang, 2016; Du, Fung, and Loveland, 2018), so it increases the size penalty of both more and less sophisticated clients. Moreover, since more sophisticated clients have a higher likelihood to possess private information or a more accurate private interpretation of public signals, the increase in size penalty should be larger among this group of clients.

We build on the high-frequency methodology of Swanson and Williams (2014) to identify trading days when the surprise component of US and UK macroeconomic announcements were unusually high.²² Specifically, we sort trading days into two groups $s = \{s_1, s_2\}$, based on whether the magnitude of the surprise on day t was smaller or bigger than the sample median. We estimate a modified version of our baseline regression 4.3, as follows:

$$Cost_v = \sum_{w=1}^2 \sum_{z=1}^2 \eta_{w,z} \times \mathbf{1}_t [t \in s_z, i \in g_w] \times Size_v + FE + \varepsilon_v, \tag{4.4}$$

where $\mathbf{1}_t[t \in s_z, i \in g_w]$ is an indicator function equal to 1 when a given trading day t belongs to group z and client i belongs to group w, and is equal to 0 otherwise; the term FE includes various combinations of fixed effects discussed above.

	(1)	(2)	(3)	(4)	(5)		
Less Sophisticated Clients							
Trade Size#SmallNews	0.061	0.080	0.061	0.082*	0.104**		
	(1.25)	(1.57)	(1.33)	(1.70)	(2.11)		
Trade Size#LargeNews	0.067	0.069	0.066	0.075	0.107^{**}		
	(1.44)	(1.40)	(1.41)	(1.58)	(2.13)		
p-values, eq. of coeff.	0.830	0.673	0.871	0.833	0.943		
Ν	More Sophis	ticated Clie	ents				
Trade Size#SmallNews	0.150***	0.161***	0.141***	0.154***	0.171***		
	(4.01)	(4.03)	(3.49)	(3.62)	(4.11)		
Trade Size#LargeNews	0.196^{***}	0.207^{***}	0.202^{***}	0.205^{***}	0.221^{***}		
	(4.55)	(4.75)	(4.77)	(4.79)	(5.17)		
p-values, eq. of coeff.	0.132	0.119	0.086	0.144	0.147		
Ν	1182307	1178836	1179827	1176302	1175687		
R^2	0.106	0.136	0.173	0.199	0.204		
Day#Bond#ClientType FE	Yes	Yes	Yes	Yes	Yes		
Dealer # Client Type FE	Yes	No	No	No	No		
Client FE	Yes	Yes	Yes	No	No		
${\it Day} \# {\it Dealer} \# {\it Client} {\it Type} \ {\it FE}$	No	No	Yes	Yes	Yes		
Month#Client FE	No	Yes	No	Yes	Yes		
$Client \# Dealer \ FE$	No	No	No	No	Yes		

Table 4: Trading Costs and Trade Size: Around Big and Small Macroeconomic News

Notes: this table regresses trading costs (measured in bp-points) on trade size (measured as log of the nominal size of the trade in \pounds s) interacted with indicator variables denoting whether the trading day coincides with the arrival of a large or small macroeconomic surprise compared to the median, and whether the client is more or less sophisticated. The macroeconomic surprises are constructed following the high-frequency methodology of Swanson and Williams (2014). The regression also includes various fixed effects. To reduce noise, we winsorise the sample at the 1%-level. T-statistics in parentheses are based on robust standard errors, using two-way clustering at the day and client level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01). The p-values correspond to the testing for the equality of coefficients, within a given client type.

The results are shown in Table 4. The size penalty faced by less sophisticated cli-

 $^{^{22}}$ Our dataset is obtained from the Bank of England (building on Eguren-Martin and McLaren (2015) as used in Kondor and Pinter (2022)). The method uses historical tick data to compute the change in the 3-year interest rate in a tight window (five minutes before and five minutes after) around the release of both nominal and real news from both from the UK and the US.

ents is virtually the same irrespective of whether trading days are hit by small or large macroeconomic shocks. In contrast, the size penalty continues to be more statistically significant for sophisticated clients. Importantly, the point estimates are around 30% larger on trading days with big macroeconomic surprises (0.221) compared to days with small surprises (0.171) in the most conservative specification (column 5). The statistical significance of these differences is somewhat modest, with the corresponding p-values being in the range 0.08-0.15.

The third layer of the triple differences approach, represented by the time-variation in the magnitude of macroeconomic surprises, provides a stronger evidence for the presence of information-based drivers of the size penalty, compared to the differences-in-differences approach of the previous subsection. Tables A.5–A.6 in Appendix show that the results are similar when we experiment with four alternative measures of trading costs as left-hand-side variables in regression 4.4.

An alternative interpretation of these results, however, is that the trading activity of clients during informationally sensitive periods may be endogenous to client type, e.g. less sophisticated clients may refrain from trading (large amounts) compared to more sophisticated clients during high-surprise days. This selection effect combined with the possibility of dealers facing more inventory risk during high-surprise days may be driving the results in Table 4. There are two ways in which we try to address this issue. First, we document how the relative presence of more and less sophisticated clients may change during low- and high-surprise days. We measure the presence of the given client group with three variables: (i) total number of daily transactions, (ii) total daily trading volume and (iii) total number of unique clients from the given group type. As shown in Table A.7 in the Appendix, we find all three measures increase during days with large macroeconomic surprises. Importantly, we find that this increase is similar across the two client groups, indicating that the selection issue may be less of a concern. Second, the next subsection will exploit cross-market variation to further analyse the source of heterogeneity in the size penalty. This alternative approach is less subject to the aforementioned selection effect, as will be discussed below, because we require clients to be present and active in both markets in a given time period.

4.3.3 The Size Penalty in Government vs Corporate Bond Markets

In this section, we estimate whether the size penalty may be different in the corporate bond market compared to the government bond market. This cross-market analysis is made possible by a unique feature of our dataset: our ZEN dataset not only covers close to the universe of secondary market trades in UK government bonds but also contains trade reports for UK corporate bond transactions. This allows us to identify clients who actively trade in both UK bond markets. Identifying a common set of clients is crucial for a cross-market comparison of the size penalty, because the client composition itself can be endogenously determined by the yields, riskiness, liquidity and opaqueness of the market in question (Dow, 2004). We mitigate the selection issue by restricting the sample to clients who have a non-trivial presence in both types of bond markets. Specifically, we restrict that any client in this subsample must generate at least 15% of their volume in both markets. For example, this means that we omit most foreign central banks from this exercise, as they have little presence in the UK corporate bond markets and trade almost exclusively in government bonds. Some asset managers specialize in trading in either the government bond or the corporate bond market so they are also excluded from the sample.

As argued above, possible differences in size penalty across the two markets could be driven by explanations related to information, liquidity or dealers' inventory costs (Hotchkiss and Jostova, 2017; Friewald and Nagler, 2019; Bessembinder, Spatt, and Venkataraman, 2020). The identification assumption underlying our triple differences approach is that the liquidity and inventory mechanisms should generate a differential degree of size penalty in corporate bonds vis-a-vis in government bonds, *irrespective of client type*. Therefore, if we find that the size penalty is larger for corporate bonds than in government bonds and, importantly, this increase is significantly larger for sophisticated clients than less sophisticated clients, then we can plausibly argue that information-based factors likely play a role in determining the size penalty over and above what is captured by liquidity and inventory channels, consistent with Hypothesis 5 in Section 2.

To proceed, we sort all transactions into two groups $l = \{\text{GovernmentBond}, \text{CorporateBond}\}$, based on whether the given trade occurred in the government bond or corporate bond market. We then estimate a modified version of our baseline regression 4.3, as follows:

$$Cost_v = \sum_{w=1}^2 \sum_{z=1}^2 \eta_{w,z} \times \mathbf{1}[j \in l_z, i \in g_w] \times Size_v + FE + \varepsilon_v,$$
(4.5)

where $\mathbf{1}[j \in l_z, i \in g_w]$ is an indicator function equal to 1 when a bond j belongs to group z and client i belongs to group w, and is equal to 0 otherwise; the term FE includes various combinations of fixed effects discussed above.

The results are shown in Table 5. We find that the size penalty is significantly larger in corporate bonds than in government bonds, but only for the sophisticated group of clients. While the most conservative specification (column 4) shows that the point estimate on the size penalty is about 0.225 bps larger (0.35 vs. 0.125) for less sophisticated clients, it is larger by about 0.67 bps (0.856 vs. 0.186) for the more sophisticated client groups. For the latter group, the statistical significance of these differences is particularly strong, with the corresponding p-values being less than 0.01. As shown by Tables A.8–A.9 in the Appendix, we obtain similar results when using four alternative definitions of trading costs. Moreover, including all clients in the analysis (irrespective of their relative trading

	(1)	(2)	(3)	(4)			
Less Sophisticated Clients							
Trade Size#GovernmentBonds	0.078	0.093**	0.122***	0.125***			
	(1.42)	(2.01)	(2.69)	(2.74)			
Trade Size#CorporateBonds	0.310	0.316	0.332	0.350^{*}			
	(1.59)	(1.59)	(1.64)	(1.71)			
p-values, eq. of coeff.	0.149	0.192	0.232	0.208			
More Sc	ophisticated	Clients					
Trade Size#GovernmentBonds	0.152***	0.177***	0.186***	0.186***			
	(3.92)	(4.70)	(5.16)	(5.11)			
Trade Size#CorporateBonds	0.774^{***}	0.749^{***}	0.800***	0.856^{***}			
	(3.89)	(3.81)	(4.07)	(4.34)			
p-values, eq. of coeff.	0.001	0.002	0.001	0.000			
Ν	1171526	1165674	1165359	1164790			
R^2	0.349	0.426	0.430	0.433			
Day#Bond#ClientType FE	Yes	Yes	Yes	Yes			
Client#Market FE	Yes	Yes	Yes	No			
${\it Dealer}\#{\it Market}\#{\it ClientType}~{\it FE}$	Yes	Yes	Yes	No			
Day#Dealer#ClientType FE	No	Yes	Yes	Yes			
$Month \# Client \ FE$	No	Yes	Yes	Yes			
Client #Dealer	No	No	Yes	No			
Client#Dealer#Market FE	No	No	No	Yes			

Table 5: Trading Costs and Trade Size: Government vs Corporate Bonds Markets

volume in the two markets) lead to similar findings as well, as shown in Table A.10 in the Appendix.

4.3.4 Trade Size and Trading Performance

One natural test for an information-based explanation of the size penalty is to check whether clients make more profitable trades when trading larger amounts. To carry out this test, we first construct a measure of performance for each trade v and horizon T, building on Di Maggio, Franzoni, Kermani, and Sommavilla (2019):

$$Performance_{v}^{T} = \left[\ln\left(\overline{P}_{T}\right) - \ln\left(\overline{P}_{0}\right)\right] \times \mathbf{1}_{B,S},\tag{4.6}$$

where \overline{P}_0 is the average price of all transactions in bond k on the day when transaction v takes place, \overline{P}_T is the average transaction price T days after trade v, and $\mathbf{1}_{B,S}$ is an indicator function equal to 1 when the transaction is a buy trade, and equal to -1 when it is a sell trade.

Notes: this table regresses trading costs (measured in bp-points) on trade size (measured as log of the nominal size of the trade in £s) interacted with an indicator variable taking value 2 (1) if the trade takes place in the corporate (government) bond market. The regression also includes various fixed effects. The upper (lower) panel shows the results for less (more) sophisticated clients. To reduce noise, we winsorise the sample at the 1%-level. T-statistics in parentheses are based on robust standard errors, using two-way clustering at the day and client level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01). The p-values correspond to the testing for the equality of coefficients, within a given client type.

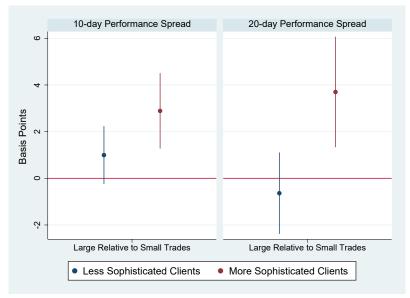


Figure 4: The Relation between Trade Size and Trading Performance

Notes: this figure plots the difference between the estimated η_3 and η_1 coefficients from regression 4.7 using performance at the 10- and 20-day horizon measured in basis points. We include as control the natural logarithm of the number of daily transactions ("Intensity"). To reduce noise, we winsorise the sample at the 1%-level and use client-day observations. The 90% confidence interval based on robust standard errors, using two-way clustering at the client and day level.

Given that bond trading strategies tend to have multiple legs (Duarte, Longstaff, and Yu, 2007), we do not estimate trade-level regression to proxy informed trading but, instead, we collapse our dataset at the client-day level using volume weighted average of measure 4.6 for each client *i*, market *l*, and day *t*. We also sort trading days of each client *i* on each market *l* into three tertiles according to average trade size. For these groups $g_{i,l} = \{g_{i,l,1}, g_{i,l,2}, g_{i,l,3}\}$, we estimate the following panel regression:

$$Performance_{i,l,t}^{T} = \sum_{w=1}^{3} \eta_{w} \times \mathbf{1}_{t}[t \in g_{i,l,w}] + Intensity_{i,l,t} + \varepsilon_{i,l,t},$$
(4.7)

where $\mathbf{1}_t[t \in g_{i,l,w}]$ is an indicator function equal to 1 on trading days t when a client i in market l belongs to group w, and is equal to 0 otherwise. It is important to emphasise that the construction of this indicator variable primarily exploits within-client variation (in market l), i.e. we compare the performance of the same client across different trading days instead of comparing clients who systematically trade in different quantities. The term $Intensity_{i,l,t}$ in 4.7 is the log of total number of transactions of client i on day t, which aims to control for the activity of clients (O'Hara, Wang, and Zhou, 2018).

Figure 4 shows the difference between the estimated values for η_1 and η_3 for horizons $T = \{10, 20\}$ trading days, separately for more sophisticated clients (red bars) and less sophisticated clients (blue bars). The results show that, for the set of more sophisticated clients, days with large trade sizes are associated with significantly higher trading performance over the 10-20 day horizon, compared to days when *the same client* trades in the lower size tertile. In contrast, we do not observe such a size effect for less sophistic-

ated clients. Overall, we interpret these findings as supportive of Hypothesis 6 in Section 2.

These results can also be used to address alternative explanations behind the observed size penalty. For example, one may argue that the size penalty is due to differences in opinions, instead of information asymmetry.²³ According to this alternative explanation, a larger trade size may reflect a greater disagreement between the client and the dealer. For example, if the client buys a larger amount from a dealer, then this could indicate that the client is more optimistic than the dealer, leading to the client buying at a higher price. If more sophisticated clients were more likely to trade on opinions (while less sophisticated clients were more likely to trade on opinions (while less sophisticated clients were more likely to trade on opinions) (while less sophisticated clients were more likely to trade for hedging purposes), this could explain the differential degree of size penalty across client types. However, this (non-informational) explanation would be at odds with the results presented in this section, i.e. disagreements alone may not explain why larger trades better *predict future yields changes* than smaller trades, and why this difference would be more pronounced among more sophisticated clients.

4.4 Robustness and Extensions

4.4.1 Client Type and Trade Size

A main source of variation in our empirical design is client type. A key assumption underlying the information-based interpretation of our regressions is that more sophisticated clients are different from less sophisticated clients because they are more likely to trade on information, and not because, say, they systematically trade in different quantities. To test for this, we estimate the following trade-level regression:

$$Size_v = \delta \times D_i^{Soph} + FEs + \varepsilon_v,$$

$$(4.8)$$

where D_i^{Soph} is a dummy variable taking value 1 is client *i* is an asset manager or a hedge fund and 0 otherwise.

Table A.11 in Appendix shows the results for the estimated values for δ using different combinations of fixed effects. The effects are statistically insignificant. The point estimates suggest that, if anything, more sophisticated clients seem to trade in smaller sizes. This rejects the possibility that heterogeneity in client types is simply picking up that more sophisticated clients trade in larger sizes, which could generate larger inventory costs for dealers and thereby larger size penalty.

4.4.2 Non-linearities

Moreover, we check for non-linearities and non-monotonicity in the size penalty. To that end, we re-estimate a variant of Table 3 by replacing *size* as a continuous variable with

²³See Carlin, Longstaff, and Matoba (2014) and Atmaz and Basak (2018) for recent contributions.

four dummy variables indicating which size quartile a given trade is located in, using the within-size variation of a client. As shown in Table A.12 in Appendix, trading costs are the largest on the trades that are in top quartile of the size distribution, using the within-client variation of trade sizes. The results continue to be more statistically and economically significant among more sophisticated clients compared to less sophisticated clients.

4.4.3 Agency Trades

As an additional test, we explore variation in *trade-type* to further investigate the possible information-based mechanism underlying the size penalty. In our baseline sample, about 20% of client-dealer trades are labelled as agency trades, with these trades structured as follows: trader B trades, on behalf of trader A, with trader C. In our sample, trader C is always a dealer; trader B (the agent) can either be a dealer or a client; and trader A is always a client that can be more or less sophisticated.²⁴ We now test whether a more sophisticated client A faces a differential size penalty when trading directly with dealers (non-agency trade) compared to trading with dealers via an agent (agency trade). The hypothesis is that if information-based mechanisms are at play, then the size penalty of the sophisticated client would be smaller on agency trades, because the given client could conceal her identity through agency.²⁵

Table A.13 in the Appendix shows the results for the group of more sophisticated clients from a variant of regression 4.3, where we interact size with a dummy variable, indicating whether the given trade is an agency trade or not. We find that the size penalty is concentrated in non-agency trades, consistent with an information-based explanation.

4.5 Evidence from US Treasuries

We next revisit the cost-size relation in the context of the US government bonds in order to test Hypothesis 7 in Section 2. Comparing the US and UK government bond markets is an ideal setting to estimate the effect of market size, as these two markets are similar in other aspects such as market structure and the riskiness of the assets. Measured in daily trading volume, the US treasury market is around 10 times larger than the UK gilt market during our sample period.²⁶

To estimate how the size-cost relation varies with market size, we use the ZEN dataset on US Treasuries by exploiting the fact that around 3% of trading volume occurs in

 $^{^{24} \}rm Our$ baseline sample therefore excludes the type of agency trades (typically studied in the literature) whereby (using the example above) traders A and C would be clients and trader B would be a dealer.

 $^{^{25}}$ See Smith, Turnbull, and White (2001) and the related literature.

²⁶During our baseline sample period (2011m8-2017m12), daily trading volume in US Treasuries averages at around \$500 billion, whereas daily trading volume is around £30 billion in the UK gilt market (AFME, 2018).

London (Fleming, 1997; Fleming, Mizrach, and Nguyen, 2018). We search for the same set of dealers and clients (as in our sample of UK gilts) and end up with around 1.3 million transactions for around 950 US Treasuries. We find that about 75% of our sample of UK gilt market clients trade Treasuries in our sample of US trades. Given that we use a similar set of dealers and clients in our empirical analysis, we also implicitly address the concern that the composition of clients and dealers may be endogenous to the market in question.

	(1)	(2)	(3)	(4)	(5)
Trade Size	0.016	0.048*	0.047^{*}	0.045^{*}	0.050^{*}
	(0.77)	(1.92)	(1.90)	(1.82)	(1.94)
Ν	1274295	1274289	1274289	1269855	1269238
R^2	0.055	0.061	0.062	0.134	0.139
$\mathrm{Day}\#\mathrm{Bond}\ \mathrm{FE}$	Yes	Yes	Yes	Yes	Yes
Client FE	No	Yes	Yes	No	No
Dealer FE	No	No	Yes	No	No
$\mathrm{Day} \# \mathrm{Dealer}~\mathrm{FE}$	No	No	No	Yes	Yes
$Month \# Client \ FE$	No	No	No	Yes	Yes
Client#Dealer FE	No	No	No	No	Yes

Table 6: Trading Costs and Trade Size in Government Bond Markets: Evidence from US Treasuries

We then re-estimate the five regression models as in our baseline Table 2 using our sample of US Treasury trades. The results are presented in Table 6. Column (1) shows that the size-cost relation is statistically insignificant without client fixed effects. Columns (2)-(5) show that adding client fixed effects generates a size penalty that is both statistically and economically weaker than what we find for UK gilts. Using the most conservative specification, we find that the size penalty in US Treasuries is about one third of the size penalty in UK gilts (0.050 vs 0.158).²⁷ These results provide evidence in support of Hypothesis 7 in Section 2.

Moreover, we also collapse our data at the client-level to estimate the size discount in the cross-section of US Treasury market clients. Figure A.4 in the Appendix estimates the scatter plot which gives a qualitatively similar picture to our baseline for the UK (Figure 3). However, the slope coefficient is four times as small for the US sample (-0.16) as for the UK sample (-0.59), implying that the size discount is substantially stronger in the UK gilt market compared to our sample of US Treasury trades.

Notes: this table regresses trading costs on trade size and various fixed effects (4.1), using our sample of US Treasury transactions. The cost measure is in bp-points. To reduce noise, we winsorise the sample at the 1%-level. T-statistics in parentheses are based on robust standard errors, using two-way clustering at the day and client level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).

 $^{^{27}}$ Figure A.4 in the Appendix shows that the cross-sectional relationship between trader size and trading costs is also weaker in US Treasuries than in UK gilts. The size discount in US Treasuries, measured as the slope coefficient, is around one fourth of the size discount in UK gilts (-0.16 vs -0.59 in Figure 3).

5 COVID-19

In this final, empirical section of our paper, we revisit the cost-size relation during the COVID-19 episode in the UK. The spread of the COVID-19 pandemic in early 2020 presented a major shock to the global financial system, including bond markets. Investigating the behaviour of the cost-size relation during this informationally intensive period provides an ideal opportunity to perform an out-of-sample robustness test of our baseline results. This is because more recent sample period (2018-2020) requires the use of a different dataset compared to our baseline sample (2011-2017).

In addition, a better understanding of the functioning of government bond markets after COVID-19 is interesting on its own right and it is becoming ever more important for policy design (Duffie 2020; Hauser 2020). While a growing literature has analysed the unfolding of the crisis in bond markets and the effect of subsequent central bank interventions, the majority of this literature focused on corporate bond markets in the US (Falato, Goldstein, and Hortacsu 2021; O'Hara and Zhou 2021; Kargar, Lester, Lindsay, Liu, Weill, and Zuniga 2021; Haddad, Moreira, and Muir 2021; Ma, Xiao, and Zeng 2022 amongst others) and the UK (Czech and Pinter 2020), and there has been little transaction-level evidence on the effect of COVID-19 in government bond markets.²⁸

To carry out the analysis, we employ the MiFID II bond transaction data, which covers the period from January 2018 to July 2020.²⁹ Similar to the ZEN data, the MiFID II data provide detailed information (including counterparty identifiers) on transactions in the UK corporate bond market and give us almost full coverage of the client trade universe.

The following analysis serves two purposes. First, we check whether size penalty continues to hold in a different and more recent sample, and whether we continue to find a more pronounced effect for more sophisticated clients, thereby providing additional tests for Hypotheses 2-4 of our paper. Second, we explore how the size penalty might have changed during the unprecedented COVID-19 crisis period. To this end, we sort all the trades into two groups $c = \{c_1, c_2\}$ based on whether the trade occurred during March 2020 or outside this month. We then estimate the following regression:

$$Cost_v = \sum_{w=1}^2 \sum_{z=1}^2 \eta_{w,z} \times \mathbf{1}_t [t \in c_z, i \in g_w] \times Size_v + FE + \varepsilon_v,$$
(5.1)

where $\mathbf{1}_t[t \in c_z, i \in g_w]$ is an indicator function equal to 1 when a trading day t belongs to group z and client i belongs to group w, and is equal to 0 otherwise; the term FE

²⁸For a theoretical analysis of COVID-19 crisis in US government bond markets, see He, Nagel, and Song (2022).

²⁹The MiFID II reporting requirements became applicable on 3 January 2018. While ZEN is generally regarded as the predecessor of the MiFID II database, there are significant differences in the reporting requirements that prohibit a consistent merge of both datasets.

	(1)	(2)	(3)	(4)			
Less Sophisticated Clients							
Trade Size#OutsideCOVID-19	0.261***	0.257***	0.251***	0.214***			
	(4.20)	(4.43)	(4.26)	(3.56)			
Trade Size#DuringCOVID-19	0.404^{*}	0.301	0.274	0.273			
	(1.81)	(1.62)	(1.43)	(1.57)			
p-values, eq. of coeff.	0.525	0.808	0.903	0.737			
More S	ophisticated	l Clients					
Trade Size#OutsideCOVID-19	0.318***	0.294***	0.311***	0.329***			
	(6.92)	(6.81)	(7.80)	(8.45)			
Trade Size#DuringCOVID-19	0.581^{**}	0.611^{***}	0.635***	0.652^{***}			
	(2.22)	(2.86)	(3.12)	(3.40)			
p-values, eq. of coeff.	0.271	0.121	0.096	0.080			
Ν	1143362	1142116	1141464	1114966			
R^2	0.146	0.194	0.203	0.262			
Day#Bond FE	Yes	Yes	Yes	Yes			
Dealer FE	Yes	No	No	No			
$Month \# Client \ FE$	Yes	Yes	Yes	No			
Day#Dealer FE	No	Yes	Yes	Yes			
Client#Dealer FE	No	No	Yes	No			
$Client \# Dealer \# Month \ FE$	No	No	No	Yes			

Table 7: Trading Costs and Trade Size: During and Outside COVID-19

Notes: this table regresses trading costs on trade size and various fixed effects. The cost measure is in bp-points. To reduce noise, we winsorise the sample at the 1%-level. T-statistics in parentheses are based on robust standard errors, using two-way clustering at the day and client level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01). The p-values correspond to the testing for the equality of coefficients, within a given client type.

includes various combinations of fixed effects discussed above.

Table 7 shows the results from estimating regression 5.1, first for the group of less sophisticated (upper panel), and then for more sophisticated clients (lower panel). We continue to find that more sophisticated clients face a larger size penalty than less sophisticated clients during normal times, with the difference being about 0.1 bps (0.214 vs. 0.329) according to the most conservative specification in column (4). This difference is similar to our baseline based on the ZEN data for 2011-2017. Importantly, we find that the size penalty increases considerably during the COVID crisis and this increase is more pronounced for more sophisticated clients (0.652) compared to the other client type (0.273) – consistent with Hypothesis 4 and Table 4 above.

We acknowledge however that these results could be driven by the fact that our group of more sophisticated clients mainly consists of asset managers who could have been under severe selling pressure as documented by the recent literature.³⁰ Therefore, we try to control for the possible contribution of selling pressure to the increase in the size penalty of more sophisticated clients during the COVID-19 crisis by adding an additional layer of

³⁰See Falato, Goldstein, and Hortacsu (2021); Kargar, Lester, Lindsay, Liu, Weill, and Zuniga (2021); Haddad, Moreira, and Muir (2021); O'Hara and Zhou (2021); Ma, Xiao, and Zeng (2022) amongst others.

	(1)	(2)	(3)	(4)			
More Sophisticated Clients Under More Selling Pressure							
Trade Size#OutsideCOVID-19	0.320***	0.296***	0.321***	0.339***			
	(5.59)	(5.84)	(7.03)	(7.47)			
Trade Size#DuringCOVID-19	0.605^{**}	0.637^{***}	0.647^{***}	0.644^{***}			
	(2.23)	(2.99)	(3.15)	(3.05)			
p-values, eq. of coeff.	0.226	0.098	0.098	0.138			
Ν	483475	482910	482819	476606			
R^2	0.153	0.212	0.217	0.261			
More Sophisticated C	lients Unde	er Less Sellin	ng Pressure				
Trade Size#OutsideCOVID-19	0.348***	0.314***	0.313***	0.311***			
	(6.66)	(5.73)	(5.89)	(5.93)			
Trade Size#DuringCOVID-19	0.576	0.475	0.511^{*}	0.664^{***}			
	(1.53)	(1.58)	(1.80)	(3.11)			
p-values, eq. of coeff.	0.535	0.602	0.494	0.114			
Ν	206443	205745	205629	200467			
R^2	0.241	0.325	0.333	0.393			
Day#Bond FE	Yes	Yes	Yes	Yes			
Dealer FE	Yes	No	No	No			
$Month \# Client \ FE$	Yes	Yes	Yes	No			
$\mathrm{Day} \# \mathrm{Dealer}~\mathrm{FE}$	No	Yes	Yes	Yes			
Client#Dealer FE	No	No	Yes	No			
$\label{eq:client} Client \# Dealer \# Month~FE$	No	No	No	Yes			

Table 8: Trading Costs and Trade Size: During and Outside COVID-19

differences to our research design. Specifically, we sort our group of more sophisticated clients into two subgroups based on the cumulative signed order flow in March 2020, and we then estimate our cost-size regression separately for these two subgroups.

Table 8 shows the results. Based on the point estimates, we find that while the increase in size-penalty was large for clients under selling pressure (0.644 vs. 0.339), there is still a similarly larger increase in the size penalty for clients who were under less selling pressure (0.664 vs. 0.311).

Note also that the regressions include client-dealer-month fixed effects that aim to control for relationship effects during turbulent times (Di Maggio, Franzoni, Kermani, and Sommavilla, 2019). In addition the regressions include dealer-day fixed effects in order to control for time-variation in the tightness of balance sheet constraints of dealers – an important feature of this period (Duffie, 2020).

Notes: this table regresses trading cost on trade size and various fixed effects. The cost measure is in bp-points. To reduce noise, we winsorise the sample at the 1%-level. T-statistics in parentheses are based on robust standard errors, using two-way clustering at the day and client level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01). The p-values correspond to the testing for the equality of coefficients, within a given client type.

6 Conclusion

To conclude, our paper revisited the empirical relation between trade size and trading costs – one of the main questions in the literature on financial markets. In our empirical design, we were able to observe clients' identities as well as their trading activities in UK government and corporate bond markets as well as across UK and US government bond markets. These unique features of our empirical design allowed us to reconcile some of the tension in the vast literature on the size-cost relation. Our results reveal that controlling for traders' identity is crucial for understanding the drivers of trading costs in non-anonymous over-the-counter markets. In addition, combining this client-level variation with variations in client-type, macroeconomic news and bond markets highlights the different forces that drive the size-cost relation.

There are a number of interesting avenues for future research. First, revisiting the size-cost relation around government bond auctions would be an interesting empirical extension of our framework. This could shed some interesting light both on supply effects (Lou, Yan, and Zhang, 2013; Fleming and Liu, 2017) and informational effects (Hortacsu and Kastl, 2012; Boyarchenko, Lucca, and Veldkamp, 2021) around primary issuances that can have important policy implications as well. Second, analysing the size discount and size penalty in a structural framework could help provide a sharper characterisation of the drivers of the size-cost relation and to quantify the relative importance of the different channels. Estimating the theoretical model presented in Appendix A in the spirit of Odders-White and Ready (2008) could be a step into that direction. Third, one could consider the aggregate implications of our empirical analysis. For example, one could estimate how time-series variation in either the size discount or the size penalty is related to variation in aggregate bid-ask spreads and yields in government and corporate bond markets. This could tighten the link between our analysis and the literature on the term structure of interest rates.

References

- AFME (2018): "Government Bond Data Report," Report, Association for Financial Markets in Europe.
- AFONSO, G., A. KOVNER, AND A. SCHOAR (2014): "Trading partners in the interbank lending market," Staff Reports 620, Federal Reserve Bank of New York.
- ARNOLD, G. E., AND M. E. RHODES (2020): "Information sensitivity of corporate bonds: Evidence from the COVID-19 crisis," *Finance Research Letters*, p. 101911.
- ATMAZ, A., AND S. BASAK (2018): "Belief Dispersion in the Stock Market," *The Journal of Finance*, 73(3), 1225–1279.
- BARBON, A., M. D. MAGGIO, F. FRANZONI, AND A. LANDIER (2019): "Brokers and Order Flow Leakage: Evidence from Fire Sales," *Journal of Finance*, 74(6), 2707–2749.
- BENOS, E., AND F. ZIKES (2018): "Funding constraints and liquidity in two-tiered OTC markets," Journal of Financial Markets.

- BERNHARDT, D., V. DVORACEK, E. HUGHSON, AND I. M. WERNER (2005): "Why Do Larger Orders Receive Discounts on the London Stock Exchange?," *The Review of Financial Studies*, 18(4), 1343–1368.
- BERNILE, G., J. HU, AND Y. TANG (2016): "Can Information Be Locked up? Informed Trading Ahead of Macro-News Announcements," *Journal of Financial Economics*, 121(3), 496–520.
- BESSEMBINDER, H., S. JACOBSEN, W. MAXWELL, AND K. VENKATARAMAN (2018): "Capital Commitment and Illiquidity in Corporate Bonds," *Journal of Finance*, 73(4), 1615–1661.
- BESSEMBINDER, H., W. MAXWELL, AND K. VENKATARAMAN (2006): "Market transparency, liquidity externalities, and institutional trading costs in corporate bonds," *Journal of Financial Economics*, 82(2), 251–288.
- BESSEMBINDER, H., C. SPATT, AND K. VENKATARAMAN (2020): "A Survey of the Microstructure of Fixed-Income Markets," *Journal of Financial and Quantitative Analysis*, 55(1), 1–45.
- BIAIS, B. (1993): "Price Information and Equilibrium Liquidity in Fragmented and Centralized Markets," Journal of Finance, 48(1), 157–85.
- BIAIS, B., AND R. GREEN (2019): "The Microstructure of the Bond Market in the 20th Century," *Review of Economic Dynamics*, 33, 250–271.
- BOYARCHENKO, N., D. O. LUCCA, AND L. VELDKAMP (2021): "Taking Orders and Taking Notes: Dealer Information Sharing in Treasury Auctions," *Journal of Political Economy*, 129(2), 607–645.
- BRANCATI, E., AND M. MACCHIAVELLI (2019): "The information sensitivity of debt in good and bad times," *Journal of Financial Economics*, 133(1), 99–112.
- BRANDT, M. W., AND K. A. KAVAJECZ (2004): "Price Discovery in the U.S. Treasury Market: The Impact of Orderflow and Liquidity on the Yield Curve," *Journal of Finance*, 59(6), 2623–2654.
- CAMPBELL, J., T. RAMADORAI, AND A. SCHWARTZ (2009): "Caught on tape: Institutional trading, stock returns, and earnings announcements," *Journal of Financial Economics*, 92(1), 66–91.
- CARLIN, B. I., F. A. LONGSTAFF, AND K. MATOBA (2014): "Disagreement and asset prices," *Journal* of Financial Economics, 114(2), 226–238.
- CHEN, L., D. A. LESMOND, AND J. WEI (2007): "Corporate Yield Spreads and Bond Liquidity," *The Journal of Finance*, 62(1), 119–149.
- CHEN, W., AND Y. WANG (2020): "Dynamic Market Making with Asymmetric Information and Market Power," SSRN Scholarly Paper ID 3224495, Social Science Research Network, Rochester, NY.
- COLLIARD, J., T. FOUCAULT, AND P. HOFFMANN (2021): "Inventory Management, Dealers' Connections, and Prices in Over-the-Counter Markets," *Journal of Finance*, 76(5), 2199–2247.
- COLLIN-DUFRESNE, P., B. JUNGE, AND A. B. TROLLE (2020): "Market Structure and Transaction Costs of Index CDSs," *The Journal of Finance*, 75(5), 2719–2763.
- COMERTON-FORDE, C., T. HENDERSHOTT, C. M. JONES, P. C. MOULTON, AND M. S. SEASHOLES (2010): "Time Variation in Liquidity: The Role of Market-Maker Inventories and Revenues," *Journal of Finance*, 65(1), 295–331.

- CZECH, R., S. HUANG, D. LOU, AND T. WANG (2021): "Informed trading in government bond markets," *Journal of Financial Economics*, 142(3), 1253–1274.
- CZECH, R., AND G. PINTER (2020): "Informed trading and the dynamics of client-dealer connections in corporate bond markets," Bank of England working papers 895, Bank of England.
- DI MAGGIO, M., F. FRANZONI, A. KERMANI, AND C. SOMMAVILLA (2019): "The relevance of broker networks for information diffusion in the stock market," *Journal of Financial Economics*, 134(2), 419–446.
- DI MAGGIO, M., A. KERMANI, AND Z. SONG (2017): "The Value of Trading Relations in Turbulent Times," Journal of Financial Economics, 124(2), 266–284.
- Dow, J. (2004): "Is Liquidity Self-Fulfilling?," The Journal of Business, 77(4), 895–908.
- DU, B., S. FUNG, AND R. LOVELAND (2018): "The Informational Role of Options Markets: Evidence from FOMC Announcements," *Journal of Banking & Finance*, 92, 237–256.
- DU, S., AND H. ZHU (2017): "Bilateral trading in divisible double auctions," Journal of Economic Theory, 167(C), 285–311.
- DUARTE, J., F. A. LONGSTAFF, AND F. YU (2007): "Risk and Return in Fixed-Income Arbitrage: Nickels in Front of a Steamroller?," *The Review of Financial Studies*, 20(3), 769.
- DUFFIE, D. (2020): "Still the world's safe haven? Redesigning the U.S. Treasury market after the COVID-19 crisis," Working paper, Brookings.
- DUFFIE, D., N. GÂRLEANU, AND L. H. PEDERSEN (2005): "Over-the-Counter Markets," *Econometrica*, 73(6), 1815–1847.
- EASLEY, D., AND M. O'HARA (1987): "Price, trade size, and information in securities markets," Journal of Financial Economics, 19(1), 69–90.
- EDERINGTON, L. H., AND J. H. LEE (1993): "How Markets Process Information: News Releases and Volatility," *The Journal of Finance*, 48(4), 1161–1191.
- EDWARDS, A., L. E. HARRIS, AND M. S. PIWOWAR (2007): "Corporate Bond Market Transaction Costs and Transparency," *Journal of Finance*, 62(3), 1421–1451.
- EGUREN-MARTIN, F., AND N. MCLAREN (2015): "How much do UK market interest rates respond to macroeconomic data news?," Bank of England Quarterly Bulletin, 55(3), 259–272.
- FALATO, A., I. GOLDSTEIN, AND A. HORTACSU (2021): "Financial fragility in the COVID-19 crisis: The case of investment funds in corporate bond markets," *Journal of Monetary Economics*, 123(C), 35–52.
- FELDHUTTER, P. (2012): "The Same Bond at Different Prices: Identifying Search Frictions and Selling Pressures," *Review of Financial Studies*, 25(4), 1155–1206.
- FLEMING, M. J. (1997): "The round-the-clock market for U.S. Treasury securities," *Economic Policy Review*, 3(Jul), 9–32.

- FLEMING, M. J., AND W. LIU (2017): "Intraday Pricing and Liquidity Effects of U.S. Treasury Auctions," Working paper.
- FLEMING, M. J., B. MIZRACH, AND G. NGUYEN (2018): "The microstructure of a U.S. Treasury ECN: The BrokerTec platform," *Journal of Financial Markets*, 40, 2–22.
- FLEMING, M. J., AND E. M. REMOLONA (1999): "Price Formation and Liquidity in the U.S. Treasury Market: The Response to Public Information," *The Journal of Finance*, 54(5), 1901–1915.
- FRIEWALD, N., AND F. NAGLER (2019): "Over-the-Counter Market Frictions and Yield Spread Changes," The Journal of Finance, 74(6), 3217–3257.
- GALLUP, J. L. (2019): "Added-variable plots with confidence intervals," *The Stata Journal*, 19(3), 598–614.
- GLOSTEN, L. R. (1989): "Insider Trading, Liquidity, and the Role of the Monopolist Specialist," *The Journal of Business*, 62(2), 211–35.
- GLOSTEN, L. R., AND P. R. MILGROM (1985): "Bid, ask and transaction prices in a specialist market with heterogeneously informed traders," *Journal of Financial Economics*, 14(1), 71–100.
- GOLDSTEIN, M. A., AND E. S. HOTCHKISS (2020): "Providing liquidity in an illiquid market: Dealer behavior in US corporate bonds," *Journal of Financial Economics*, 135(1), 16–40.
- GOLDSTEIN, M. A., E. S. HOTCHKISS, AND E. R. SIRRI (2007): "Transparency and Liquidity: A Controlled Experiment on Corporate Bonds," *Review of Financial Studies*, 20(2), 235–273.
- GOULD, J. P., AND R. E. VERRECCHIA (1985): "The Information Content of Specialist Pricing," Journal of Political Economy, 93(1), 66–83.
- GREEN, R., B. HOLLIFIELD, AND N. SCHURHOFF (2007a): "Dealer intermediation and price behavior in the aftermarket for new bond issues," *Journal of Financial Economics*, 86(3), 643–682.
- (2007b): "Financial Intermediation and the Costs of Trading in an Opaque Market," *Review of Financial Studies*, 20(2), 275–314.
- GREEN, T. C. (2004): "Economic News and the Impact of Trading on Bond Prices," *Journal of Finance*, 59(3), 1201–1234.
- GROSSMAN, S. J., AND J. E. STIGLITZ (1980): "On the Impossibility of Informationally Efficient Markets," *The American Economic Review*, 70(3), 393–408.
- HADDAD, V., A. MOREIRA, AND T. MUIR (2021): "When Selling Becomes Viral: Disruptions in Debt Markets in the COVID-19 Crisis and the Fed's Response," *The Review of Financial Studies*, 34(11), 5309–5351.
- HANSCH, O., N. Y. NAIK, AND S. VISWANATHAN (1998): "Do Inventories Matter in Dealership Markets? Evidence from the London Stock Exchange," *The Journal of Finance*, 53(5), 1623–1656.
- HARRIS, L. E., AND M. S. PIWOWAR (2006): "Secondary Trading Costs in the Municipal Bond Market," *The Journal of Finance*, 61(3), 1361–1397.

- HASBROUCK, J. (1991): "Measuring the Information Content of Stock Trades," *The Journal of Finance*, 46(1), 179–207.
- HAUSER, A. (2020): "Seven Moments in Spring: Covid-19, financial markets and the Bank of England's balance sheet operations," Speech, Bank of England.
- HE, Z., S. NAGEL, AND Z. SONG (2022): "Treasury inconvenience yields during the COVID-19 crisis," Journal of Financial Economics, 143(1), 57–79.
- HENDERSHOTT, T., R. KOZHAN, AND V. RAMAN (2020): "Short selling and price discovery in corporate bonds," *Journal of Financial and Quantitative Analysis*, 55(1), 77–115.
- HENDERSHOTT, T., D. LI, D. LIVDAN, AND N. SCHURHOFF (2020): "Relationship Trading in Over the Counter Markets," *Journal of Finance*, 75(2), 683–734.
- HENDERSHOTT, T., AND A. MADHAVAN (2015): "Click or Call? Auction versus Search in the Overthe-Counter Market," *Journal of Finance*, 70(1), 419–447.
- Ho, T., AND H. R. STOLL (1981): "Optimal Dealer Pricing under Transactions and Return Uncertainty," *Journal of Financial Economics*, 9(1), 47–73.
- HOEL, M. (1987): "Bargaining games with a random sequence of who makes the offers," *Economics* Letters, 24(1), 5–9.
- HOLLIFIELD, B., A. NEKLYUDOV, AND C. SPATT (2017): "Bid-Ask Spreads, Trading Networks, and the Pricing of Securitizations," *Review of Financial Studies*, 30(9), 3048–3085.
- HORTACSU, A., AND J. KASTL (2012): "Valuing Dealers' Informational Advantage: A Study of Canadian Treasury Auctions," *Econometrica*, 80(6), 2511–2542.
- HOTCHKISS, E., AND G. JOSTOVA (2017): "Determinants of Corporate Bond Trading: A Comprehensive Analysis," *Quarterly Journal of Finance*, 7(02), 1–30.
- IVANOV, P., A. ORLOV, AND M. SCHIHL (2021): "Bond liquidity and dealer inventories: Insights from US and European regulatory data," Occasional Paper 52, Financial Conduct Authority.
- JIANG, G. J., I. LO, AND A. VERDELHAN (2011): "Information Shocks, Liquidity Shocks, Jumps, and Price Discovery: Evidence from the U.S. Treasury Market," *Journal of Financial and Quantitative Analysis*, 46(2), 527–551.
- KARGAR, M., B. LESTER, D. LINDSAY, S. LIU, P.-O. WEILL, AND D. ZUNIGA (2021): "Corporate Bond Liquidity during the COVID-19 Crisis," *The Review of Financial Studies*.
- KONDOR, P., AND G. PINTER (2022): "Clients' Connections: Measuring the Role of Private Information in Decentralized Markets," *The Journal of Finance*, 77(1), 505–544.
- KYLE, A. (1985): "Continuous Auctions and Insider Trading," Econometrica, 53(6), 1315–35.
- KYLE, A. S. (1989): "Informed Speculation with Imperfect Competition," *Review of Economic Studies*, 56(3), 317–355.
- KYLE, A. S., AND A. A. OBIZHAEVA (2016): "Market Microstructure Invariance: Empirical Hypotheses," *Econometrica*, 84(4), 1345–1404.

- LESTER, B., A. SHOURIDEH, V. VENKATESWARAN, AND A. ZETLIN-JONES (2018): "Market-making with Search and Information Frictions," NBER Working Papers 24648, National Bureau of Economic Research, Inc.
- LI, D., AND N. SCHÜRHOFF (2019): "Dealer networks," The Journal of Finance, 74(1), 91–144.
- LOON, Y. C., AND Z. K. ZHONG (2016): "Does Dodd-Frank Affect OTC Transaction Costs and Liquidity? Evidence from Real-Time CDS Trade Reports," *Journal of Financial Economics*, 119(3), 645–672.
- LOU, D., H. YAN, AND J. ZHANG (2013): "Anticipated and Repeated Shocks in Liquid Markets," *Review of Financial Studies*, 26(8), 1891–1912.
- MA, Y., K. XIAO, AND Y. ZENG (2022): "Mutual Fund Liquidity Transformation and Reverse Flight to Liquidity," *The Review of Financial Studies*.
- NAIK, N. Y., A. NEUBERGER, AND S. VISWANATHAN (1999): "Trade Disclosure Regulation in Markets with Negotiated Trades," *Review of Financial Studies*, 12(4), 873–900.
- ODDERS-WHITE, E. R., AND M. J. READY (2008): "The probability and magnitude of information events," *Journal of Financial Economics*, 87(1), 227–248.
- O'HARA, M., Y. WANG, AND X. ZHOU (2018): "The execution quality of corporate bonds," *Journal* of Financial Economics, 130(2), 308–326.
- O'HARA, M., AND X. A. ZHOU (2021): "Anatomy of a liquidity crisis: Corporate bonds in the COVID-19 crisis," *Journal of Financial Economics*, 142(1), 46–68.
- PASQUARIELLO, P., AND C. VEGA (2007): "Informed and Strategic Order Flow in the Bond Markets," *Review of Financial Studies*, 20(6), 1975–2019.
- PINTER, G., AND S. USLU (2021): "Comparing Search and Intermediation Frictions Across Markets," mimeo.
- PINTER, G., C. WANG, AND J. ZOU (2020): "Information Chasing and Adverse Selection in Over-the-Counter Markets," .
- RUBINSTEIN, A. (1982): "Perfect Equilibrium in a Bargaining Model," *Econometrica*, 50(1), 97–109.
- SCHULTZ, P. (2001): "Corporate Bond Trading Costs: A Peek Behind the Curtain," *Journal of Finance*, 56(2), 677–698.
- SMITH, B. F., D. A. S. TURNBULL, AND R. W. WHITE (2001): "Upstairs Market for Principal and Agency Trades: Analysis of Adverse Information and Price Effects," *Journal of Finance*, 56(5), 1723–1746.
- SUBRAHMANYAM, A. (1991): "Risk Aversion, Market Liquidity, and Price Efficiency," Review of Financial Studies, 4(3), 416–441.
- SWANSON, E. T., AND J. C. WILLIAMS (2014): "Measuring the Effect of the Zero Lower Bound on Medium- and Longer-Term Interest Rates," *American Economic Review*, 104(10), 3154–85.

- US-TREASURY (2021): "Recent Disruptions and Potential Reforms in the U.S. Treasury Market: A Staff Progress Report," Progress report, U.S. Department of the Treasury.
- VISWANATHAN, S., AND J. J. D. WANG (2004): "Inter-Dealer Trading in Financial Markets," *The Journal of Business*, 77(4), 987–1040.

VIVES, X. (2008): Information and Learning in Markets. Princeton University Press.

(2011): "Strategic Supply Function Competition With Private Information," *Econometrica*, 79(6), 1919–1966.

Appendix

A A Theoretical Model of Bilateral Trading

A.1 Overview

In this section, we present a bilateral trading model with bargaining and information asymmetry to rationalise the co-existence of the size discount and penalty. The model builds on the standard CARA-normal setting with strategic traders as in Kyle (1985) and risk aversion Subrahmanyam (1991) with the addition of a liquidity component. Importantly, we show how one can introduce into this framework of asymmetric information a simple bargaining game (building on Rubinstein (1982) and Hoel (1987)) which can generate both the size discount and the size penalty. This model could be a building block for analysing strategic bilateral trading under asymmetric information in decentralised markets.

Combining information asymmetry and bargaining power is, in general, a hard theoretical problem. In most papers, prices are either monopolistically (Gould and Verrecchia, 1985; Glosten, 1989) or competitively (Kyle, 1985; Glosten and Milgrom, 1985) offered by an uninformed party to an informed party. This simple price-setting mechanism avoids signalling and screening, at the expense of not being able to achieve surplus splitting between the two parties.³¹ We circumvent the technical difficulty of bargaining under asymmetric information, by showing that a trader with both liquidity and informational trading motives would perfectly reveal her joint trading motive through her order size in a linear-pricing equilibrium without bargaining delay. Our model jointly predicts within-client size penalty and across-client size discount. Each of the two channels can be conveniently shut down, in which case the model reduces to a standard model with remaining feature explaining either size penalty or size discount.

A.2 The Model

A client seeks to trade a risky asset with a dealer. The value of the asset, v, has an unconditional distribution $N\left(0, \frac{1}{\tau_v}\right)$. The client observes a noisy signal, $s = v + \varepsilon$, before the trade. The noise ε is normally distributed, $N\left(0, \frac{1}{\tau_{\varepsilon}}\right)$. The client has an initial asset position of x, following a normal distribution $N\left(0, \frac{1}{\tau_x}\right)$. The dealer does not observe the client's signal, s, or her initial position, x. The random variables v, ε and x are jointly independent. The client has a CARA utility function with risk aversion γ . The

 $^{^{31}}$ In Lester, Shourideh, Venkateswaran, and Zetlin-Jones (2018), the price can either be competitive or monopolistic with an exogenous probability. While not focusing on surplus splitting, Du and Zhu (2017) studies a bilateral double-auction model with information asymmetry in which the price is set by a double auction between two traders.

initial risky asset position x gives the client a liquidity motive to trade, while the signal s gives her an informational motive. The client's preference and information follow the standard CARA-normal setting with strategic traders as in Kyle (1985) and risk aversion as in Subrahmanyam (1991), with the addition of a liquidity component, x, added to her trading motive. The dealer is risk neutral.

A trade is conducted as follows. First, the client requests to buy q unit of the asset from the dealer (q < 0 means that the client requests to sell). Then, to negotiate a price, the client and the dealer engage in an infinite-horizon bargaining game with discount rate δ and a random sequence of who makes the offers. In the bargaining game, the dealer moves first to offer a price in response to the client's request. The bargaining game concludes if the client accepts the price offer, and otherwise continues to the next stage. In each subsequent stage, the client is selected to offer a price with probability η to the dealer, and the other way round with probability $1 - \eta$ as in Hoel (1987), which is adapted from the alternating offer game of Rubinstein (1982).

We consider a Perfect Bayesian Equilibrium (PBE) in which the agreed-upon price p is linear in size, $p(q) = a + \lambda q$, and the first price offer is immediately accepted. Such an equilibrium is said to be a *linear-pricing PBE without bargaining delay*. The following theorem summarises the equilibrium of the model.

Theorem 1. When $\left(2\frac{\eta}{1+\delta}-1\right)\gamma^2\tau_v^2 - \tau_{\varepsilon}\tau_x(\tau_v+\tau_{\varepsilon}) > 0$, there exists a unique linearpricing PBE without bargaining delay. On the equilibrium path, the client submits an order $q_{\eta}^*(s, x)$, the dealer offers $p_{\eta}^*(q) = \lambda_{\eta}^* q$, and the client immediately accepts the price offer, where

$$\lambda_{\eta}^{*} = \frac{\gamma}{2} \frac{\left(1 + \frac{\gamma^{2} \tau_{v}^{2}}{\tau_{\varepsilon} \tau_{x}(\tau_{v} + \tau_{\varepsilon})}\right) + \frac{\eta}{1 + \delta} \left(1 - \frac{\gamma^{2} \tau_{v}^{2}}{\tau_{\varepsilon} \tau_{x}(\tau_{v} + \tau_{\varepsilon})}\right)}{\left(2 \frac{\eta}{1 + \delta} - 1\right) \frac{\gamma^{2} \tau_{v}^{2}}{\tau_{\varepsilon} \tau_{x}} - (\tau_{v} + \tau_{\varepsilon})}$$
$$q_{\eta}^{*}(s, x) = \frac{\gamma}{2\lambda^{*} \left(\tau_{v} + \tau_{\varepsilon}\right) + \gamma} \left(\frac{\tau_{\varepsilon}}{\gamma} s - x\right).$$

We establish Theorem 1 by solving for a linear-pricing PBE without bargaining delay, with the key steps detailed in the following proof.

Proof. Given each signal s and initial position x, the client's expected gain from trading q units of the asset is:

$$\frac{\tau_{\varepsilon}}{\tau_{\varepsilon}+\tau_{v}}s(q+x) - pq - \frac{\gamma}{2}\frac{1}{\tau_{\varepsilon}+\tau_{v}}(q+x)^{2} - \left[\frac{\tau_{\varepsilon}}{\tau_{\varepsilon}+\tau_{v}}sx - \frac{\gamma}{2}\frac{1}{\tau_{\varepsilon}+\tau_{v}}x^{2}\right] \equiv (p_{0}(q,s,x) - p)q,$$

where $p_0(q, s, x)$ is the client's reservation price:

$$p_0(q, s, x) = \gamma \frac{1}{\tau_{\varepsilon} + \tau_v} \left(\frac{\tau_{\varepsilon}}{\gamma} s - x \right) - \frac{\gamma}{2} \frac{1}{\tau_{\varepsilon} + \tau_v} q.$$
(A.1)

Anticipating an equilibrium price p(q) without bargaining delay, the client chooses size

q to maximize her expected trading gain. Her first order condition is $p_0(q, s, x) - p(q) + \left(\frac{\partial p_0(q, s, x)}{\partial q} - \frac{\partial p(q)}{\partial q}\right)q = 0$ which, together with a linear equilibrium price function $p(q) = a + \lambda q$, can be used to obtained the client's optimal demand q:

$$q = \frac{\gamma}{2\lambda\left(\tau_{\varepsilon} + \tau_{v}\right) + \gamma} \left(\frac{\tau_{\varepsilon}}{\gamma}s - x\right) - \frac{\tau_{\varepsilon} + \tau_{v}}{2\lambda\left(\tau_{\varepsilon} + \tau_{v}\right) + \gamma}a.$$
 (A.2)

With this optimal choice q, the client's expected gain $(p_0(q, s, x) - p)q$ from trading can be written as:

$$(p_0(q,s,x) - p)q = \left(\frac{2\lambda\left(\tau_\varepsilon + \tau_v\right) + \gamma}{\tau_\varepsilon + \tau_v} - \frac{\gamma}{2}\frac{1}{\tau_\varepsilon + \tau_v} + \lambda\right)q^2, \tag{A.3}$$

which shows that the client's expected gain from trading depends on her signal s and initial endowment x only through her requested size q. This equilibrium property renders the ensuing bargaining game one with complete information. Therefore, the solution of Hoel (1987) applies, whereby the dealer offers price p(q) which is immediately accepted by the client:

$$p(q) = \frac{\eta}{1+\delta} p_1(q) + \left(1 - \frac{\eta}{1+\delta}\right) p_0(q), \qquad (A.4)$$

where $p_1(q)$ is given by:

$$p_1(q) = \mathbb{E}[v|q] = \frac{2\lambda \left(\tau_v + \tau_\varepsilon\right) + \gamma}{\tau_v + \tau_\varepsilon + \frac{\gamma^2 \tau_v^2}{\tau_\varepsilon \tau_x}} q + \frac{\tau_v + \tau_\varepsilon}{\tau_v + \tau_\varepsilon + \frac{\gamma^2 \tau_v^2}{\tau_\varepsilon \tau_x}} a.$$
(A.5)

In A.5, $p_1(q)$ can be viewed as the competitive price, which gives the dealer zero expected profit.³² In equilibrium, the dealer's price offer is anticipated by the client. Therefore, substituting A.1 and A.5 into A.4, and matching coefficients yields a = 0, while rearranging gives the solution for λ :

$$\lambda = \frac{\gamma}{2} \frac{\left(1 + \frac{\gamma^2 \tau_v^2}{\tau_\varepsilon \tau_x (\tau_v + \tau_\varepsilon)}\right) + \frac{\eta}{1 + \delta} \left(1 - \frac{\gamma^2 \tau_v^2}{\tau_\varepsilon \tau_x (\tau_v + \tau_\varepsilon)}\right)}{\left(2 \frac{\eta}{1 + \delta} - 1\right) \frac{\gamma^2 \tau_v^2}{\tau_\varepsilon \tau_x} - (\tau_v + \tau_\varepsilon)}.$$
(A.6)

To verify that the size choice q in A.2 given by the client's FOC indeed maximizes the client's expected gain, we check the client's second order condition $2\lambda (\tau_v + \tau_{\varepsilon}) + \gamma > 0$, which is equivalent to $[2\eta/(1+\delta)-1]\gamma^2\tau_v^2 - \tau_{\varepsilon}\tau_x(\tau_v + \tau_{\varepsilon}) > 0$.

The key property allowing for a tractable bargaining solution is that the client's expected gain from trading A.3 (and thereby the client's reservation price p_0) does not directly depend on s and x but only through the requested size q. Even though the client's liquidity motive x and informational motive s are not uniquely determined by

³²To derive the conditional expectation $\mathbb{E}[v|q]$, we use the projection theorem. For that, note that the covariance between the asset value and trade size is $Cov [v, q] = (\tau_{\varepsilon}/\tau_v) / [2\lambda (\tau_{\varepsilon} + \tau_v) + \gamma]$, and the variance of the trade size is $Var [q] = [\gamma / (2\lambda (\tau_{\varepsilon} + \tau_v) + \gamma)]^2 [(\tau_{\varepsilon}/\gamma)^2 / \tau_{\varepsilon} + (\tau_{\varepsilon}/\gamma)^2 / \tau_v + 1/\tau_x]$.

her requested size q, the aggregate motive is. This nice equilibrium property renders the ensuing bargaining game one with complete information, so that the solution of Hoel (1987) applies.

The model simultaneously explains within-client size penalty and across-client size discount:

Proposition 2. (Within-client size penalty) In the linear-pricing PBE without delay, the trading cost $|p(q)| = \lambda |q|$ of a given client with bargaining power η is linearly increasing with her requested size |q|.

Next, we compare two clients with heterogeneous bargaining powers $\eta < \eta'$ to generate size discount.

Proposition 3. (Across-client size discount) In the linear-pricing PBE without delay, a client with higher bargaining power η has a larger average trade size $\mathbb{E}|q|$, while facing a lower average trading cost $\mathbb{E}|p|$.

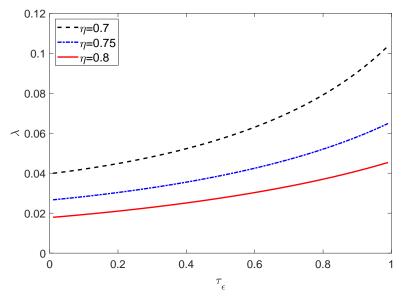
The above result follows immediately from the fact the average trade size $\mathbb{E}|q|$ is decreasing in $\lambda(\eta)$, while the average trading cost $\mathbb{E}|p|$ is increasing in $\lambda(\eta)$. On the other hand, $\lambda(\eta)$ is decreasing in bargaining power η .

A.3 Discussion

To highlight the novel features of the model, we perform simple comparative statics to explore the relationship between bargaining power and the size penalty as shown in Figure A.1.

The Figure plots the values of λ (vertical axis), as computed by A.6, for different values of τ_{ε} (horizontal axis). We trace out the relationship for three different values $\eta = \{0.7, 0.75, 0.8\}$, as shown by the dashed, dotted and solid lines, respectively. All three lines are monotonically increasing: the larger the precision of the signal (τ_{ε}) the larger the size penalty becomes. The intuition is similar to Kyle (1985): the more precise the informed client's signal, the more informative her trade becomes, which makes the dealer revise the price more aggressively when considering trading a given quantity during the bargaining process. Moreover, one possible way to connect our client-type variation in the data with the model is to regard more sophisticated clients as having higher values of τ_{ε} , so that this simple theoretical framework could rationalise why more sophisticated clients.

Furthermore, the τ_{ε} - λ relation largely depends on the client's bargaining power, η , as shown by the different lines in Figure A.1: lowering η is associated with an upward shift in the curve, which means that the size penalty becomes stronger as the client's bargaining power becomes weaker. In addition, we also find evidence for increased convexity in the τ_{ε} - λ relation as the client's bargaining power decreases, which means that the size penalty



Notes: this figure plots the value of λ (computed by A.6) for different values of $\tau_{\epsilon} = [0.01 : 0.01 : 0.99]$ and of $\eta = \{0.7, 0.75, 0.8\}$. The rest of the parameters are $\gamma = 0.2$, $\tau_v = 2$, $\tau_x = 0.1$, $\delta = 0.01$ so that the second order condition, $[2\eta/(1+\delta)-1]\gamma^2\tau_v^2 - \tau_{\varepsilon}\tau_x(\tau_v + \tau_{\varepsilon}) > 0$, is always satisfied.

becomes increasingly sensitive to the precision of private information. This highlights some of the rich interactions between informational and trading frictions that this simple model can generate, and which goes beyond the regression design of our empirical model. Future work could undertake a structural estimation of a version of this model (in the spirit of Odders-White and Ready (2008)) in order to explore the model's predictions further.

B Data Construction

The main data source for our regression results is the ZEN dataset which was the UK's transaction reporting system administered by the Financial Conduct Authority. A detailed description of transaction reporting in ZEN can be found here:

https://www.fca.org.uk/publication/finalised-guidance/fg15-03.pdf. Our sample period covers 2011m8-2017m12. There is no public version of ZEN, which is why this dataset has been used relatively rarely in the Academic literature (recent exceptions include Benos and Zikes (2018), Czech, Huang, Lou, and Wang (2021), Pinter and Uslu (2021) and Kondor and Pinter (2022)). The structure of the ZEN dataset is similar to the TRACE dataset that is often used to study the US corporate bond market. A notable difference compared to TRACE is that nearly all trade reports in ZEN include counterparty identities. (Ivanov, Orlov, and Schihl (2021) provides a recent comparison between the ZEN dataset and the TRACE dataset, using a common set of corporate bonds traded in both the UK and US). The ZEN dataset includes all secondary market trades, where at least one of the counterparties is an FCA-regulated entity. We drop duplicate trade reports as well as trade reports with missing client identifiers. We also exclude trades with inter-dealer brokers (IDBs), dealer-to-dealer trades, and client-to-client trades as well as trades of less than £1,000 in par value, and remove trades with erroneous price entries. We include both principal and agency trades in our sample. In our baseline sample, we end up with around 1.27 million observations for government bond trades, covering 57 government bonds and around 600 clients. About half of these clients can be classified as hedge funds and asset managers, and the remaining half comprises of pension funds, insurance companies, commercial banks, international organisations and others. Our sample of corporate bond trades (covering the sample period) includes around 1.23 million observations and around 2,800 corporate bonds.

Our sample of US Treasury securities also come from the ZEN dataset. Similar to our treatment of the UK data, we exclude trades with inter-dealer brokers (IDBs), dealer-to-dealer trades, and client-to-client trades as well as trades of less than \$1,000 in par value, and remove trades with erroneous price entries. We search for the same set of dealers and clients (as in our sample of UK gilts) and end up with around 1.3 million transactions for around 950 US Treasuries. We find that about 75% of our sample of UK gilt market clients trade Treasuries in our sample of US trades.

C Additional Tables

	(1)	(2)	(3)	(4)	(5)	(6)			
	Ν	Mean	p10	p50	p90	sd			
Trade Size (£s)									
Government Bonds									
All Clients	1274548	7825263	12856	850000	2.07e+07	$4.56e{+}07$			
Less Sophisticated Clients	601157	8569644	15000	1000000	$2.50e{+}07$	$4.58e{+}07$			
More Sophisticated Clients	673391	7160731	11000	600000	$1.86e{+}07$	$4.55e{+}07$			
Corporate Bonds									
All Clients	1227954	1228126	9000	200000	2850000	6111960			
Less Sophisticated Clients	561528	1283479	9000	100000	2600000	7350338			
More Sophisticated Clients	666426	1181485	9000	263000	3000000	4827430			

Table A.1: Summary Statistics on Trade Size

Notes: This table reports summary statistics for our baseline sample, covering the period from August 2011 to December 2017. Trade size is measured as the nominal size of the transaction in \pounds s. The summary statistics is split based on client types (more sophisticated = asset managers + hedge funds; and less sophisticated = pension funds, insurance companies, foreign central banks, commercial banks, other non-financials) as well as markets (government bond vs corporate bonds).

	(1)	(2)	(3)	(4)	(5)		
Alternative Cost Measure I: Using Day-Bond-Dealer Average for \overline{P}							
Trade Size	-0.103***	0.061^{**}	0.068^{***}	0.077^{***}	0.085^{***}		
	(-3.70)	(2.35)	(2.71)	(2.99)	(3.20)		
Ν	973952	973948	973948	969689	968913		
R^2	0.061	0.065	0.065	0.126	0.132		
Alternative Cost I	Measure II: U	Using Day-H	Bond-Within	n Day Avera	age for \overline{P}		
Trade Size	-0.180***	0.097***	0.115***	0.131***	0.149***		
	(-3.80)	(3.75)	(5.14)	(6.04)	(7.33)		
Ν	1261480	1261474	1261474	1256983	1256358		
R^2	0.052	0.063	0.064	0.133	0.139		
Alternative Cost	Measure III	: Using Day	-Bond-Sell	Buy Averag	ge for \overline{P}		
Trade Size	-0.220***	0.100***	0.119***	0.132***	0.156***		
	(-4.09)	(3.00)	(3.96)	(4.21)	(5.16)		
Ν	1271266	1271260	1271260	1266824	1266209		
R^2	0.003	0.010	0.011	0.087	0.093		
Alternative	Cost Measur	e IV: Using	Average II)B prices for	$r \overline{P}$		
Trade Size	-0.184***	0.151***	0.173***	0.185***	0.212***		
	(-3.41)	(4.47)	(5.58)	(5.91)	(6.91)		
Ν	1232310	1232304	1232304	1227792	1227163		
R^2	0.060	0.066	0.066	0.138	0.143		
Day#Bond FE	Yes	Yes	Yes	Yes	Yes		
Client FE	No	Yes	Yes	No	No		
Dealer FE	No	No	Yes	No	No		
Day#Dealer FE	No	No	No	Yes	Yes		
Month#Client FE	No	No	No	Yes	Yes		
${\rm Client} \# {\rm Dealer} ~{\rm FE}$	No	No	No	No	Yes		

Table A.2: Trading Costs and Trade Size in Government Bond Markets: Alternative Cost Measures

Notes: this table regresses trading costs on trade size and various fixed effects. The four different performance measures are in bp-points. The first measure computes \overline{P} in 3.1 as the average transaction price in bond k, trading day t and dealer j. The second measure computes \overline{P} in 3.1 as the average transaction price in bond k, in a given part of the trading day t. Using the time stamp for each trade, we divide trades into three groups, depending on whether the transaction occurred (i) before 11am, (ii) during 11am-3pm, or (iii) after 3pm. The third measure computes \overline{P} in 3.1 as the average transaction price in bond k, trading day t, separately for buy and sell trades. The fourth measure computes \overline{P} in 3.1 as the average transaction price in bond k, trading day t, using only trades on the inter-dealer market. To reduce noise, we winsorise the sample at the 1%-level. T-statistics in parentheses are based on robust standard errors, using two-way clustering at the day and client level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).

	(1)	(2)	(3)	(4)	(5)
	Basel	ine Cost M	easure		
Trade Size	-0.321***	0.085**	0.119***	0.117***	0.146***
	(-9.27)	(2.26)	(3.30)	(3.90)	(4.76)
Ν	1274295	1274289	1274289	1269855	1269238
R^2	0.321	0.319	0.319	0.458	0.468
Alternative Co	st Measure I	: Using Day	-Bond-Dea	ler Average	for \overline{P}
Trade Size	-0.127***	0.091***	0.102***	0.076***	0.090***
	(-5.47)	(2.97)	(3.34)	(2.70)	(3.10)
Ν	973952	973948	973948	969689	968913
R^2	0.313	0.303	0.303	0.443	0.456
Alternative Cost M	Measure II: U	Jsing Day-H	Bond-Within	n Day Avera	age for \overline{P}
Trade Size	-0.253***	0.065^{**}	0.097***	0.110***	0.136***
	(-8.64)	(2.25)	(3.49)	(4.37)	(5.15)
Ν	1261480	1261474	1261474	1256983	1256358
R^2	0.319	0.321	0.322	0.459	0.469
Alternative Cost	Measure III	: Using Day	-Bond-Sell/	Buy Averag	ge for \overline{P}
Trade Size	-0.324***	0.084^{**}	0.118^{***}	0.115^{***}	0.144***
	(-9.35)	(2.23)	(3.27)	(3.83)	(4.72)
Ν	1271266	1271260	1271260	1266824	1266209
R^2	0.278	0.276	0.276	0.424	0.435
Alternative (Cost Measure	e IV: Using	Average ID	B prices for	
Trade Size	-0.309***	0.122^{***}	0.156^{***}	0.153^{***}	0.188***
	(-8.60)	(3.04)	(4.02)	(4.68)	(5.63)
Ν	1232310	1232304	1232304	1227792	1227163
R^2	0.317	0.319	0.320	0.457	0.467
$\mathrm{Day}\#\mathrm{Bond}\ \mathrm{FE}$	Yes	Yes	Yes	Yes	Yes
Client FE	No	Yes	Yes	No	No
Dealer FE	No	No	Yes	No	No
$\mathrm{Day} \# \mathrm{Dealer}~\mathrm{FE}$	No	No	No	Yes	Yes
$Month \# Client \ FE$	No	No	No	Yes	Yes
${\rm Client} \# {\rm Dealer} ~{\rm FE}$	No	No	No	No	Yes

Table A.3: Trading Costs and Trade Size in Government Bond Markets Using Weighted Regressions: Alternative Cost Measures

Notes: this table regresses trading costs on trade size and various fixed effects. Each observation is weighted by the inverse of the total number of transactions of the given client. The four different performance measures are in bp-points. The first measure computes \overline{P} in 3.1 as the average transaction price in bond k, trading day t and dealer j. The second measure computes \overline{P} in 3.1 as the average transaction price in bond k, in a given part of the trading day t. Using the time stamp for each trade, we divide trades into three groups, depending on whether the transaction occurred (i) before 11am, (ii) during 11am-3pm, or (iii) after 3pm. The third measure computes \overline{P} in 3.1 as the average transaction price in bond k, trading day t, separately for buy and sell trades. The fourth measure computes \overline{P} in 3.1 as the average transaction price in bond k, trading day t, using only trades on the inter-dealer market. To reduce noise, we winsorise the sample at the 1%-level. T-statistics in parentheses are based on robust standard errors, using two-way clustering at the day and client level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).

	(1)	(2)	(3)	(4)	(5)
Alternative Cost Mea	sure I: Using	g Day-Bond	l-Dealer Ave	erage for \overline{P}	
Trade Size#LessSophisticated	-0.132***	0.009	0.016	0.026	0.037
	(-3.98)	(0.21)	(0.37)	(0.63)	(0.86)
Trade Size#MoreSophisticated	-0.073*	0.108^{***}	0.118^{***}	0.125^{***}	0.130***
	(-1.89)	(4.25)	(4.76)	(4.59)	(4.68)
p-values, eq. of coeff.	0.243	0.048	0.037	0.043	0.070
Ν	965894	965890	965890	958302	957486
R^2	0.109	0.112	0.112	0.195	0.201
Alternative Cost Measur	e II: Using I	Day-Bond-W	Vithin Day	Average for	\overline{P}
Trade Size#LessSophisticated	-0.188***	0.052	0.064*	0.088**	0.111***
	(-4.10)	(1.35)	(1.75)	(2.55)	(3.10)
Trade Size#MoreSophisticated	-0.171**	0.130***	0.155***	0.168***	0.178***
	(-2.42)	(4.43)	(6.86)	(8.12)	(8.98)
p-values, eq. of coeff.	0.840	0.105	0.032	0.045	0.097
Ν	1257860	1257854	1257854	1251253	1250635
R^2	0.096	0.107	0.108	0.198	0.204
Alternative Cost Measu	ıre III: Using	g Day-Bond	-Sell/Buy A	verage for	\overline{P}
Trade Size#LessSophisticated	-0.218***	0.057	0.067	0.079*	0.104**
	(-4.14)	(1.20)	(1.44)	(1.75)	(2.24)
Trade Size#MoreSophisticated	-0.218***	0.137***	0.166***	0.181***	0.195***
	(-2.73)	(3.29)	(4.81)	(5.09)	(5.65)
p-values, eq. of coeff.	0.997	0.203	0.085	0.072	0.115
N	1267885	1267879	1267879	1261353	1260735
R^2	0.051	0.058	0.059	0.160	0.165
Alternative Cost M	feasure IV: V	Using Avera	ge IDB prio	tes for \overline{P}	
Trade Size#LessSophisticated	-0.191***	0.111**	0.120**	0.131***	0.159***
	(-3.57)	(2.15)	(2.39)	(2.60)	(3.01)
Trade Size#MoreSophisticated	-0.182**	0.175***	0.209***	0.226***	0.244***
	(-2.24)	(4.37)	(6.19)	(6.99)	(7.74)
p-values, eq. of coeff.	0.924	0.322	0.141	0.106	0.167
N	1230452	1230446	1230446	1223760	1223136
R^2	0.107	0.112	0.112	0.208	0.212
Day#Bond#ClientType FE	Yes	Yes	Yes	Yes	Yes
Client FE	No	Yes	Yes	No	No
Dealer#ClientType FE	No	No	Yes	No	No
Day#Dealer#ClientType FE	No	No	No	Yes	Yes
Month#Client FE	No	No	No	Yes	Yes
Client#Dealer FE	No	No	No	No	Yes

Table A.4: Trading Costs and Trade Size in Government Bond Markets: More Sophisticated Clients vs Less Sophisticated Clients, Using Alternative Cost Measures

Notes: this table regresses trading costs on trade size interacted with client type dummies as well as various fixed effects (regression 4.3). The four different performance measures are in bp-points. The first measure computes \overline{P} in 3.1 as the average transaction price in bond k, trading day t and dealer j. The second measure computes \overline{P} in 3.1 as the average transaction price in bond k, in a given part of the trading day t. Using the time stamp for each trade, we divide trades into three groups, depending on whether the transaction occurred (i) before 11am, (ii) during 11am-3pm, or (iii) after 3pm. The third measure computes \overline{P} in 3.1 as the average transaction price in bond k, trading day t, using only trades. The fourth measure computes \overline{P} in 3.1 as the average transaction price in bond k, trading day t, using only trades on the inter-dealer market. To reduce noise, we winsorise the sample at the 1%-level. T-statistics in parentheses are based on robust standard errors, using two-way clustering at the day and client level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01). The p-values correspond to the testing for the equality of coefficients.

	(1)	(2)	(3)	(4)	(5)
Alternative Cost Mea	asure I: Usin	g Day-Bond	l-Dealer Av	erage for \overline{P}	
Less Sophisticated Clients					
Trade Size#SmallNews	0.005	0.023	0.019	0.035	0.044
	(0.12)	(0.52)	(0.45)	(0.78)	(0.95)
Trade Size#LargeNews	0.018	0.024	0.010	0.015	0.028
	(0.39)	(0.54)	(0.23)	(0.33)	(0.60)
p-values, eq. of coeff.	0.610	0.960	0.723	0.476	0.565
More Sophisticated Clients					
Trade Size#SmallNews	0.114^{***}	0.114^{***}	0.110^{***}	0.113^{***}	0.122***
	(3.62)	(3.62)	(3.49)	(3.48)	(3.76)
Trade Size#LargeNews	0.127***	0.125^{***}	0.139^{***}	0.133^{***}	0.141***
	(4.70)	(4.42)	(4.62)	(4.07)	(4.15)
p-values, eq. of coeff.	0.591	0.631	0.343	0.479	0.498
Ν	901677	897696	898657	894597	893772
R^2	0.112	0.142	0.164	0.194	0.199
Alternative Cost Measur	re II: Using	Day-Bond-V	Within Day	Average for	\overline{P}
Less Sophisticated Clients					
Trade Size#SmallNews	0.065	0.088^{**}	0.072^{**}	0.097^{***}	0.120***
	(1.64)	(2.14)	(2.00)	(2.60)	(3.11)
Trade Size#LargeNews	0.065^{*}	0.080^{**}	0.065^{*}	0.084^{**}	0.110^{***}
	(1.81)	(2.15)	(1.84)	(2.36)	(2.93)
p-values, eq. of coeff.	0.987	0.654	0.733	0.487	0.600
More Sophisticated Clients					
Trade Size#SmallNews	0.147^{***}	0.164^{***}	0.147^{***}	0.161^{***}	0.173^{***}
	(5.51)	(6.46)	(5.70)	(6.81)	(7.64)
Trade Size#LargeNews	0.163^{***}	0.173^{***}	0.164^{***}	0.170^{***}	0.181^{***}
	(6.12)	(6.52)	(6.35)	(6.91)	(7.53)
p-values, eq. of coeff.	0.422	0.627	0.386	0.633	0.649
Ν	1170316	1166823	1167791	1164241	1163626
R^2	0.107	0.138	0.169	0.196	0.201
Day#Bond#ClientType FE	Yes	Yes	Yes	Yes	Yes
Client FE	Yes	No	No	No	No
Dealer #ClientType FE	Yes	Yes	Yes	No	No
Day#Dealer#ClientType FE	No	No	Yes	Yes	Yes
$Month \# Client \ FE$	No	Yes	No	Yes	Yes
Client#Dealer FE	No	No	No	No	Yes

Table A.5: Trading Costs and Trade Size in Government Bond Markets: Big vs Small Macroeconomic News, Using Alternative Cost Measures

Notes: this table regresses trading costs on trade size interacted with client type and macroeconomic surprise dummies as well as various fixed effects (regression 4.4). The four different performance measures are in bp-points. The first measure computes \overline{P} in 3.1 as the average transaction price in bond k, trading day t and dealer j. The second measure computes \overline{P} in 3.1 as the average transaction price in bond k, in a given part of the trading day t. Using the time stamp for each trade, we divide trades into three groups, depending on whether the transaction occurred (i) before 11am, (ii) during 11am-3pm, or (iii) after 3pm. The third measure computes \overline{P} in 3.1 as the average transaction price in bond k, trading day t, separately for buy and sell trades. The fourth measure computes \overline{P} in 3.1 as the average transaction price in bond k, trading day t, using only trades on the inter-dealer market. To reduce noise, we winsorise the sample at the 1%-level. T-statistics in parentheses are based on robust standard errors, using two-way clustering at the day and client level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01). The p-values correspond to the testing for the equality of coefficients.

	(1)	(2)	(3)	(4)	(5)
Alternative Cost Measu	ıre III: Using	g Day-Bond	l-Sell/Buy A	Average for	\overline{P}
Less Sophisticated Clients					
Trade Size#SmallNews	0.062	0.081	0.062	0.082^{*}	0.104^{**}
	(1.26)	(1.57)	(1.36)	(1.71)	(2.10)
Trade Size#LargeNews	0.067	0.068	0.064	0.073	0.105^{**}
	(1.40)	(1.36)	(1.35)	(1.52)	(2.06)
p-values, eq. of coeff.	0.876	0.634	0.936	0.788	0.987
More Sophisticated Clients					
Trade Size#SmallNews	0.145^{***}	0.156^{***}	0.138^{***}	0.151^{***}	0.168^{***}
	(3.91)	(3.96)	(3.44)	(3.57)	(4.08)
Trade Size#LargeNews	0.194^{***}	0.206***	0.201***	0.205^{***}	0.221^{***}
	(4.56)	(4.81)	(4.80)	(4.84)	(5.23)
p-values, eq. of coeff.	0.112	0.099	0.082	0.130	0.134
Ν	1179331	1175860	1176855	1173330	1172712
R^2	0.058	0.090	0.129	0.157	0.162
Alternative Cost M	feasure IV:	Using Avera	ge IDB prie	ces for \overline{P}	
Less Sophisticated Clients					
Trade Size#SmallNews	0.125**	0.147^{**}	0.126^{**}	0.148^{***}	0.175^{***}
	(2.25)	(2.52)	(2.43)	(2.73)	(3.08)
Trade Size#LargeNews	0.118^{**}	0.117^{**}	0.113**	0.119^{**}	0.153^{***}
	(2.33)	(2.19)	(2.24)	(2.31)	(2.80)
p-values, eq. of coeff.	0.803	0.343	0.651	0.351	0.508
More Sophisticated Clients					
Trade Size#SmallNews	0.166^{***}	0.182***	0.163^{***}	0.177^{***}	0.197^{***}
	(4.16)	(4.33)	(4.10)	(4.31)	(4.86)
Trade Size#LargeNews	0.254^{***}	0.267^{***}	0.253^{***}	0.260^{***}	0.279^{***}
	(5.95)	(6.10)	(6.37)	(6.45)	(7.00)
p-values, eq. of coeff.	0.017	0.017	0.033	0.049	0.052
Ν	1146316	1142804	1143736	1140154	1139534
R^2	0.112	0.141	0.179	0.205	0.210
Day#Bond#ClientType FE	Yes	Yes	Yes	Yes	Yes
Client FE	Yes	No	No	No	No
Dealer #ClientType FE	Yes	Yes	Yes	No	No
Day#Dealer#ClientType FE	No	No	Yes	Yes	Yes
Month#Client FE	No	Yes	No	Yes	Yes
Client#Dealer FE	No	No	No	No	Yes

Table A.6: Trading Costs and Trade Size in Government Bond Markets: Big vs Small Macroeconomic News, Using Alternative Cost Measures

Notes: this table regresses trading costs on trade size interacted with client type and macroeconomic surprise dummies as well as various fixed effects (regression 4.4). The four different performance measures are in bp-points. The first measure computes \overline{P} in 3.1 as the average transaction price in bond k, trading day t and dealer j. The second measure computes \overline{P} in 3.1 as the average transaction price in bond k, in a given part of the trading day t. Using the time stamp for each trade, we divide trades into three groups, depending on whether the transaction occurred (i) before 11am, (ii) during 11am-3pm, or (iii) after 3pm. The third measure computes \overline{P} in 3.1 as the average transaction price in bond k, trading day t, separately for buy and sell trades. The fourth measure computes \overline{P} in 3.1 as the average transaction price in bond k, trading day t, using only trades on the inter-dealer market. To reduce noise, we winsorise the sample at the 1%-level. T-statistics in parentheses are based on robust standard errors, using two-way clustering at the day and client level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01). The p-values correspond to the testing for the equality of coefficients.

Table A.7: Client	Activity During	Davs with Big	and Small Macroecon	nomic Surprises

	(1)	(2)	(3)	(4)
	Average Daily	Average Daily	Average Daily	Number
	Transactions	Volume (£s)	Number of Clients	of Days
Less Sophisticated Clients				
Small Surprise Days	361	3.46e + 09	69	737
Big Surprise Days	391	3.83e + 09	72	757
More Sophisticated Clients				
Small Surprise Days	402	3.24e + 09	70	737
Big Surprise Days	433	3.49e + 09	73	757

Notes: This table reports summary statistics on the activity of different client types on days with small and big macroeconomic surprises. The data covers the period from August 2011 to December 2017. The classification of small and big surprise days builds on the high-frequency methodology of Swanson and Williams (2014): we identify trading days when the surprise component of US and UK macroeconomic announcements were high, by sort trading days into two groups, based on whether the magnitude of the surprise on day t was smaller or bigger than the sample median.

	(1)	(2)	(3)	(4)
Alternative Cost Measure I:	Using Day-	Bond-Deale	er Average f	for \overline{P}
Less Sophisticated Clients				
$Trade \ Size \# Government Bonds$	0.066^{*}	0.079^{**}	0.097^{**}	0.108^{***}
	(1.75)	(2.05)	(2.37)	(2.65)
Trade Size#CorporateBonds	0.201	0.112	0.107	0.113
	(1.50)	(0.76)	(0.71)	(0.72)
p-values, eq. of coeff.	0.247	0.797	0.940	0.970
More Sophisticated Clients				
Trade Size#GovernmentBonds	0.116^{***}	0.127^{***}	0.132^{***}	0.134^{***}
	(4.50)	(4.58)	(5.07)	(4.98)
Trade Size#CorporateBonds	0.377^{**}	0.342^{**}	0.360^{**}	0.360^{**}
	(2.52)	(2.22)	(2.23)	(2.17)
p-values, eq. of coeff.	0.074	0.142	0.142	0.155
Ν	790073	783440	783038	782305
R^2	0.360	0.433	0.437	0.440
Alternative Cost Measure II: U	sing Day-B	ond-Within	Day Averag	ge for \overline{P}
Less Sophisticated Clients				
Trade Size#GovernmentBonds	0.099^{**}	0.108^{***}	0.141^{***}	0.146^{***}
	(2.28)	(2.71)	(3.70)	(3.83)
Trade Size#CorporateBonds	0.263	0.298^{*}	0.299^{*}	0.310^{*}
	(1.53)	(1.72)	(1.70)	(1.70)
p-values, eq. of coeff.	0.268	0.216	0.318	0.316
More Sophisticated Clients				
Trade Size#GovernmentBonds	0.144^{***}	0.169^{***}	0.171***	0.177^{***}
	(5.14)	(6.94)	(7.50)	(7.70)
Trade Size#CorporateBonds	0.730***	0.705***	0.717***	0.728^{***}
	(4.56)	(4.67)	(4.62)	(4.55)
p-values, eq. of coeff.	0.000	0.000	0.000	0.000
N	1036375	1029952	1029616	1028996
R^2	0.357	0.436	0.441	0.445
Day#Bond#ClientType FE	Yes	Yes	Yes	Yes
Client#Market FE	Yes	Yes	Yes	No
Dealer#Market#ClientType FE	Yes	Yes	Yes	No
Day#Dealer#ClientType FE	No	Yes	Yes	Yes
Month#Client FE	No	Yes	Yes	Yes
Client#Dealer	No	No	Yes	No
Client#Dealer#Market FE	No	No	No	Yes

Table A.8: Trading Costs and Trade Size in Government vs Corporate Bond Markets: Using Alternative Cost Measures

Notes: this table regresses trading costs on trade size interacted with client type and bond market dummies as well as various fixed effects (regression 4.5). The four different performance measures are in bp-points. The first measure computes \overline{P} in 3.1 as the average transaction price in bond k, trading day t and dealer j. The second measure computes \overline{P} in 3.1 as the average transaction price in bond k, in a given part of the trading day t. Using the time stamp for each trade, we divide trades into three groups, depending on whether the transaction occurred (i) before 11am, (ii) during 11am-3pm, or (iii) after 3pm. The third measure computes \overline{P} in 3.1 as the average transaction price in bond k, trading day t, separately for buy and sell trades. The fourth measure computes \overline{P} in 3.1 as the average transaction price in bond k, trading day t, using only trades on the inter-dealer market. To reduce noise, we winsorise the sample at the 1%-level. T-statistics in parentheses are based on robust standard errors, using two-way clustering at the day and client level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01). The p-values correspond to the testing for the equality of coefficients.

	(1)	(2)	(3)	(4)
Alternative Cost Measure III:	Using Day-	Bond-Sell/I	Buy Average	e for \overline{P}
Less Sophisticated Clients				
$Trade \ Size \# Government Bonds$	0.071	0.086^{*}	0.124^{***}	0.115^{**}
	(1.33)	(1.86)	(2.79)	(2.50)
Trade Size#CorporateBonds	0.130	0.138	0.174	0.216
	(0.61)	(0.64)	(0.79)	(0.98)
p-values, eq. of coeff.	0.744	0.786	0.799	0.601
More Sophisticated Clients				
Trade Size#GovernmentBonds	0.147^{***}	0.176^{***}	0.187^{***}	0.183^{***}
	(3.81)	(4.68)	(5.19)	(5.08)
Trade Size#CorporateBonds	0.686^{**}	0.674^{**}	0.750^{***}	0.854^{***}
	(2.48)	(2.47)	(2.76)	(3.15)
p-values, eq. of coeff.	0.043	0.060	0.037	0.012
Ν	1054855	1048593	1048276	1047673
R^2	0.171	0.276	0.283	0.287
Alternative Cost Measure	e IV: Using	Average ID	B prices for	\overline{P}
Less Sophisticated Clients				
Trade Size#GovernmentBonds	0.111^{*}	0.125**	0.167^{***}	0.151***
	(1.74)	(2.43)	(3.29)	(2.88)
Trade Size#CorporateBonds	0.300	0.255	0.165	0.215
	(1.38)	(1.26)	(0.80)	(1.06)
p-values, eq. of coeff.	0.362	0.496	0.992	0.741
More Sophisticated Clients				
Trade Size#GovernmentBonds	0.193***	0.209***	0.230***	0.230***
	(5.11)	(5.36)	(6.06)	(6.10)
Trade Size#CorporateBonds	0.779***	0.767***	0.809***	0.876***
	(3.85)	(3.71)	(3.87)	(4.37)
p-values, eq. of coeff.	0.002	0.006	0.005	0.001
Ν	768755	761318	760936	760134
R^2	0.267	0.377	0.383	0.386
Day#Bond#ClientType FE	Yes	Yes	Yes	Yes
Client#Market FE	Yes	Yes	Yes	No
Dealer#Market#ClientType FE	Yes	Yes	Yes	No
Day#Dealer#ClientType FE	No	Yes	Yes	Yes
Month#Client FE	No	Yes	Yes	Yes
Client#Dealer	No	No	Yes	No
Client#Dealer#Market FE	No	No	No	Yes

Table A.9: Trading Costs and Trade Size in Government vs Corporate Bond Markets: Using Alternative Cost Measures

Notes: this table regresses trading costs on trade size interacted with client type and bond market dummies as well as various fixed effects (regression 4.5). The four different performance measures are in bp-points. The first measure computes \overline{P} in 3.1 as the average transaction price in bond k, trading day t and dealer j. The second measure computes \overline{P} in 3.1 as the average transaction price in bond k, in a given part of the trading day t. Using the time stamp for each trade, we divide trades into three groups, depending on whether the transaction occurred (i) before 11am, (ii) during 11am-3pm, or (iii) after 3pm. The third measure computes \overline{P} in 3.1 as the average transaction price in bond k, trading day t, separately for buy and sell trades. The fourth measure computes \overline{P} in 3.1 as the average transaction price in bond k, trading day t, using only trades on the inter-dealer market. To reduce noise, we winsorise the sample at the 1%-level. T-statistics in parentheses are based on robust standard errors, using two-way clustering at the day and client level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01). The p-values correspond to the testing for the equality of coefficients.

	(1)	(2)	(3)	(4)
Less So	phisticated	Clients		
Trade Size#GovernmentBonds	0.077	0.083*	0.110**	0.116**
	(1.53)	(1.71)	(2.23)	(2.30)
Trade Size#CorporateBonds	0.447^{***}	0.426^{***}	0.353^{**}	0.352^{**}
	(2.87)	(2.90)	(2.43)	(2.40)
p-values, eq. of coeff.	0.007	0.008	0.055	0.067
More Sc	phisticated	Clients		
Trade Size#GovernmentBonds	0.174***	0.197***	0.205***	0.206***
	(4.84)	(5.40)	(5.75)	(5.74)
Trade Size#CorporateBonds	0.670^{***}	0.705^{***}	0.743^{***}	0.789***
	(4.03)	(4.48)	(4.72)	(5.03)
p-values, eq. of coeff.	0.002	0.000	0.000	0.000
Ν	1962998	1957464	1956891	1955799
R^2	0.287	0.350	0.356	0.358
Day#Bond#ClientType FE	Yes	Yes	Yes	Yes
Client#Market FE	Yes	Yes	Yes	No
Dealer#Market#ClientType FE	Yes	Yes	Yes	No
Day#Dealer#ClientType FE	No	Yes	Yes	Yes
$Month \# Client \ FE$	No	Yes	Yes	Yes
Client #Dealer	No	No	Yes	No
Client#Dealer#Market FE	No	No	No	Yes

Table A.10: Trading Costs and Trade Size: Government vs Corporate Bonds Markets: All Clients Included

Notes: this table regresses trading costs (measured in bp-points) on trade size (measured as log of the nominal size of the trade in £s) interacted with an indicator variable taking value 2 (1) if the trade takes place in the corporate (government) bond market. The regression also includes various fixed effects. The upper (lower) panel shows the results for less (more) sophisticated clients. To reduce noise, we winsorise the sample at the 1%-level. T-statistics in parentheses are based on robust standard errors, using two-way clustering at the day and client level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01). The p-values correspond to the testing for the equality of coefficients, within a given client type.

Table A.11: Average Trade Size of More Sophisticated Clients Relative to Less Sophisticated Clients

	(1)	(2)	(3)	(4)
More Sophisticated Clients	-0.356	-0.162	-0.120	-0.085
	(-1.39)	(-0.76)	(-0.61)	(-0.58)
Ν	1274295	1274295	1273531	973952
R^2	0.149	0.282	0.350	0.566
Day#Bond FE	Yes	Yes	Yes	No
Dealer FE	No	Yes	No	No
Day#Dealer FE	No	No	Yes	No
${\rm Day} \# {\rm Bond} \# {\rm Dealer} \ {\rm FE}$	No	No	No	Yes

Notes: this table regresses trade size on a dummy that takes value 1 if the client is more sophisticated (asset managers and hedge funds) and 0 if they are less sophisticated (pension funds, central banks etc.) and various fixed effects. To reduce noise, we winsorise the sample at the 1%-level. T-statistics in parentheses are based on robust standard errors, using two-way clustering at the day and client level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).

	(1)	(2)	(3)	(4)	(5)		
Less Sophisticated Clients							
Trade Size $Q = 2$	-0.061	-0.065	-0.021	-0.029	0.015		
	(-0.51)	(-0.53)	(-0.20)	(-0.27)	(0.14)		
Trade Size $Q = 3$	0.247	0.221	0.224	0.225	0.285^{*}		
	(1.49)	(1.30)	(1.44)	(1.38)	(1.72)		
Trade Size $Q = 4$	0.353^{*}	0.363^{*}	0.356^{*}	0.390^{*}	0.479^{**}		
	(1.81)	(1.71)	(1.86)	(1.88)	(2.24)		
Ν	598874	596569	597365	595007	594602		
R^2	0.112	0.143	0.179	0.206	0.212		
More Sophisticated Clients							
Trade Size $Q = 2$	0.008	0.030	0.084	0.071	0.084		
	(0.06)	(0.19)	(0.70)	(0.60)	(0.70)		
Trade Size $Q = 3$	0.242	0.257	0.301^{**}	0.299^{**}	0.319^{**}		
	(1.41)	(1.53)	(2.20)	(2.27)	(2.47)		
Trade Size $Q = 4$	0.664^{***}	0.693***	0.705^{***}	0.701^{***}	0.744^{***}		
	(3.91)	(4.02)	(4.23)	(4.06)	(4.36)		
Ν	672232	670823	670987	669573	669361		
R^2	0.102	0.132	0.172	0.198	0.203		
Day#Bond FE	Yes	Yes	Yes	Yes	Yes		
Client FE	No	Yes	Yes	No	No		
Dealer FE	No	No	Yes	No	No		
$\mathrm{Day} \# \mathrm{Dealer}~\mathrm{FE}$	No	No	No	Yes	Yes		
$Month \# Client \ FE$	No	No	No	Yes	Yes		
${\rm Client} \# {\rm Dealer} \ {\rm FE}$	No	No	No	No	Yes		

Table A.12: Trading Costs and Trade Size: Non-linearities

Notes: this table regresses trading costs on trade size and various fixed effects. The performance measures are in bp-points. To reduce noise, we winsorise the sample at the 1%-level. T-statistics in parentheses are based on robust standard errors, using two-way clustering at the day and client level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).

	(2)	(3)	(4)	(5)				
Non-Agency Trades								
Trade Size	0.173***	0.194***	0.208***	0.222***				
	(4.37)	(5.20)	(5.41)	(5.71)				
Agency Trades								
Trade Size	0.058	0.113*	0.078	0.079				
	(0.88)	(1.72)	(1.26)	(1.29)				
p-values, eq. of coeff.	0.074	0.257	0.049	0.027				
Ν	656472	656472	647277	647029				
R^2	0.159	0.160	0.282	0.286				
Day#Bond	Yes	Yes	Yes	Yes				
Client FE	Yes	Yes	No	No				
Dealer	No	Yes	No	No				
Day #Dealer	No	No	Yes	Yes				
$Month \# Client \ FE$	No	No	Yes	Yes				
$Client \# Dealer \ FE$	No	No	No	Yes				

Table A.13: Trading Costs and Trade Size: Agency Trades of More Sophisticated Clients

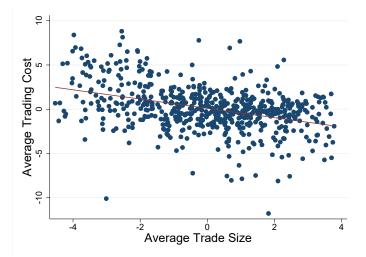
Notes: this table regresses trading costs on trade size interacted with a dummy variable (taking value 1 if the given trade is an agency trade) as well as on various fixed effects. The performance measures are in bp-points. To reduce noise, we winsorise the sample at the 1%-level. T-statistics in parentheses are based on robust standard errors, using two-way clustering at the day and client level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01). The p-values correspond to the testing for the equality of coefficients.

D Additional Figures

Figure A.2: Trading Costs and Trader Size in the Cross-Section

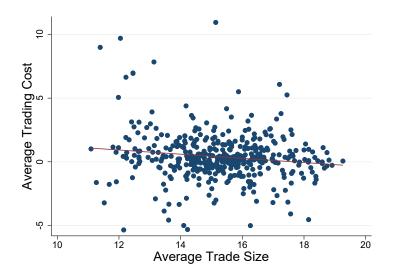
Notes: this figure shows a scatter plot of average client trading costs (vertical axis) against average trader size (horizontal axis) at the client-level in the UK government bond market. Average trading cost is the unweighted mean of our baseline measure 3.1 at the client-level. Trader size is measured as traders' monthly trading volume average across months. To reduce noise, the dataset is trimmed at 1%-level, leaving 586 observations. The estimated $\hat{\gamma} = -0.43$ with t-stat (based on robust standard errors) of -8.8.

Figure A.3: Trading Costs and Trade Size in the Cross-Section: Adding Controls



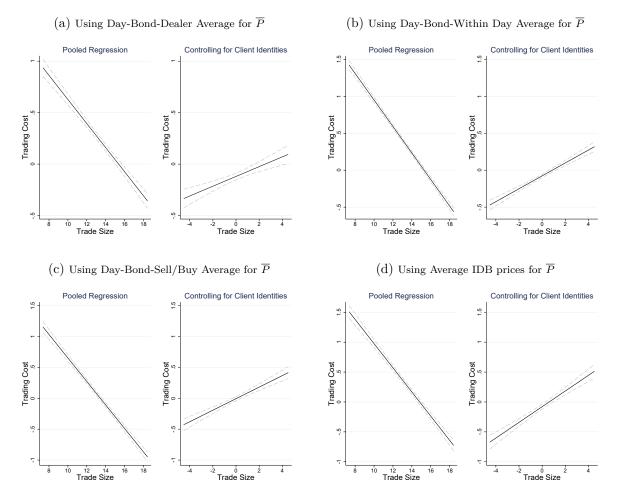
Notes: this figure shows a scatter plot of average client trading costs (vertical axis) against average trade size (horizontal axis) at the client-level in the UK government bond market. Average trading cost is the unweighted mean of our baseline cost measure 3.1 at the client-level. Average trade size is the natural logarithm of the average nominal size of a client's transactions. To reduce noise, the dataset is trimmed at 1%-level, leaving 586 observations. The estimated $\hat{\gamma} = -0.52$ with t-stat (based on robust standard errors) of -9.2.

Figure A.4: Trading Costs and Trader Size in the Cross-Section: Evidence from the US



Notes: this figure shows a scatter plot of average client trading costs (vertical axis) against average trade size (horizontal axis) at the client-level in the US government bond market. Average trading cost is the client-specific mean of our baseline cost measure 3.1. Average trade size is the natural logarithm of the average nominal size of a client's transactions. To reduce noise, the dataset is trimmed at 1%-level, leaving 586 observations. The estimated $\hat{\gamma} = -0.16$ with t-stat (based on robust standard errors) of -2.6.

Figure A.5: The Relation between Trade Size and Trading Costs: Using Alternative Cost Measures



Notes: The figures show a linear regression line on the pooled, transaction-level data (left panel) and on the data after we removed client-specific averages from trading costs and trade size corresponding to each trade. The four different trading cost measures are measured by 3.1 (building on O'Hara and Zhou (2021)) with different definitions of \overline{P} , and trade size is measured as the natural logarithm of the trade's notional. The four different performance measures are in bp-points. The first measure computes \overline{P} in 3.1 as the average transaction price in bond k, trading day t and dealer j. The second measure computes \overline{P} in 3.1 as the average transaction price in bond k, in a given part of the trading day t. Using the time stamp for each trade, we divide trades into three groups, depending on whether the transaction occurred (i) before 11am, (ii) during 11am-3pm, or (iii) after 3pm. The third measure computes \overline{P} in 3.1 as the average transaction price in bond k, trading day t, separately for buy and sell trades. The fourth measure computes \overline{P} in 3.1 as the average transaction price in bond k, trading day t, using only trades on the inter-dealer market. The confidence bands are based on 95% standard errors as in Gallup (2019).