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production networks, both at a macro and micro level. Our contributions are fourfold. First, we 
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from the filtered shocks confirms the intuition from the static model. Finally, we use this model 
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1 Introduction

The production of goods and the provision of services in modern economies typically

involves inputs that firms source from other producers, in addition to the value-added they

generate themselves. The existence of such input linkages gives rise to production networks,

which exist at various levels of aggregation such as plant-level, firm-level, industry-level,

and country-level. These production networks are very important in understanding how

shocks transmit through the economy. A shock to a producer that has a very peripheral

position in the network might have very muted transmission, unlike a shock to a central

supplier from which many other producers source inputs. For example, an adverse supply

shock to an important supplier of cement could negatively impact construction companies,

which could then in turn negatively affect the real estate industry, and so on.

In this paper, we focus on two key characteristics of producers in a production network:

their size and centrality. We make use of conventional notions of each characteristic. We

measure producer size either in real (and absolute) terms by the level of each producer’s

real output, or in nominal (and relative) terms by the producer’s Domar weight given by

the ratio of its sales to nominal GDP. Regarding centrality measures, which are relative by

construction, we focus on the first-order weighted outdegree (or simply ‘outdegree’), which

for a given producer is equal to the sum of shares of other producers’ input consumption

that it supplies.

Having defined our notions of producer size and centrality, our primary focus in this

paper is on understanding the relationship between them. First, do large producers also

tend to be central? Whilst one might expect this to be the case, it is not inconceivable

that there exist large producers which primarily supply final goods or services, and thus

have low centrality. In the context of the models we consider in the paper, this average

association between the levels of size and centrality is related to the steady-state size-

centrality relationship. Second, given a shock to a producer, do its size and centrality

tend to change and, if so, do they change in the same direction? Again, whilst one might

expect that they do, we show that the answer fundamentally depends on the nature of the

shock. More specifically, technology shocks tend to imply a negative relationship, while

demand shocks tend to imply a positive one. In the context of the models we consider,

this refers to the (dynamic) size-centrality relationship away from the steady state. To our

knowledge, this is the first paper to specifically analyse this relationship in a production

network.

Producer size and centrality (and their relationship) are important in understanding

both the aggregate and microeconomic effects of shocks. Regarding the former, the seminal

paper by Hulten (1978) demonstrated that the first-order aggregate impact of microeco-

nomic shocks is directly proportional to producer size (as measured by the producer’s
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Domar weight) in efficient economies. While the production network is irrelevant up to

first-order in such settings, Baqaee and Farhi (2019) show that producer centrality will

generally affect the second-order aggregate impact of microeconomic shocks. Moreover,

Baqaee and Farhi (2020) show that in absence of perfect competition and frictionless

markets, Hulten’s theorem does not apply even to first-order. Therefore, the aggregate

impact of microeconomic shocks depends both on producer size and centrality beyond the

first order in efficient economies, and even at the first order in inefficient ones. Focusing

instead on the microeconomic effects of shocks to a given producer on other producers,

one needs to know the production network and such effects generally depend on both

producer size and centrality (see Carvalho and Tahbaz-Salehi, 2019). The size-centrality

relationship is thus intimately related to shock transmission in production networks, both

at a macro and micro level.

In addition to analysing the empirical and model-implied relationship between size and

centrality, we also attempt to shed new light on the UK’s productivity growth slowdown

following the global financial crisis of 2008-09 by casting it into a production network

context in which producer size and centrality play a role. Several existing papers have

focused on decomposing the UK productivity growth ‘puzzle’ in an accounting sense. For

example, Tenreyro (2018) offers evidence that attributes around 75% of the slowdown to

two sectors: finance and manufacturing.1 Whilst insightful, such analyses do not identify

the underlying shocks nor do they distinguish idiosyncratic as opposed to common shocks

as potential drivers of the growth puzzle. In other words, do the observed slowdowns in

manufacturing and finance—which are both relatively large and central sectors—reflect

manufacturing-specific and/or finance-specific shocks? Or do they reflect common shocks

or, perhaps, shocks to other industries with which manufacturing and finance have signifi-

cant linkages? We aim to shed light on these questions.

Our contributions to the literature are the following. First, we analyse the charac-

teristics of the UK economy’s input-output network, showing that there are significant

asymmetries in the degree of importance of industries as input suppliers. To our knowl-

edge, this is the first paper to do so using UK data. We show that there is significant

time-variation in the input-output network over time, which is inconsistent with a Cobb-

Douglas aggregation of intermediate inputs in production. Second, we set up a simple

multisector model in which intermediate inputs are aggregated using a constant elasticity

of substitution (CES) aggregator and which features both supply (technology) and demand

(preference) shocks. We show that if there is a reasonable complementarity across inter-

mediate inputs to production, technology shocks generate a negative relationship between

size (as measured by real output) and centrality, which is inconsistent with the empirical

evidence. We show, uniquely, that demand shocks can help to reconcile the model’s

1See also Riley et al. (2018), who reach a similar conclusion.
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predictions with the data. Third, we consider a more general model with a production

network calibrated using UK data, which we use to filter out technology and demand

shocks. The implied size-centrality relationship resulting from the filtered shocks confirms

our findings from the simple model. We argue that as long as the elasticity of substitution

across intermediate inputs is less than unitary, demand-type shocks are needed in order

to reconcile the model implied size-centrality relationship with its empirical counterpart.

Fourth, we use this model to analyse the UK’s productivity growth puzzle through a

production network perspective and establish novel findings about its underlying drivers,

with a key role for industry-specific shocks emanating in the manufacturing sector in

driving the bulk of UK’s post-2010 slowdown in productivity growth.

Related Literature Acemoglu et al. (2012) reinvigorated the interest in the role of

production networks in the transmission of common and idiosyncratic shocks, albeit there

is a long literature preceding this study (e.g. Long and Plosser, 1983, and Dupor, 1999).

The key insight in this paper is that, in the presence of (intersectoral) input-output linkages,

microeconomic idiosyncratic shocks may lead to aggregate fluctuations. Their results

suggest that sizable aggregate volatility is obtained from sectoral idiosyncratic shocks

only if there exists significant asymmetry in the roles that sectors play as suppliers to

others. In production networks, complementarities and substitutability among production

inputs typically play a key role (e.g., Jones, 2011). Atalay (2017) shows that elasticities

of substitution (e.g. among intermediate inputs, or between value-added and intermediate

inputs) have a significant effect on the importance of idiosyncratic (as opposed to common)

shocks in driving aggregate fluctuations. Crucially, the existence of production networks

makes it more difficult to disentangle truly common components of shocks from network-

transmitted idiosyncratic shocks: a high degree of comovement in producers’ output

growth may arise both if common shocks are relatively important (even if the elasticities

of substitution across producers as input-suppliers are high) and if common shocks are

relatively unimportant provided that producers cannot easily substitute away across their

input suppliers, making the two possibilities observationally similar.

Outline The rest of the paper is organised as follows. Section 2 describes the data

that we use and analyses various features of the UK input-output network, providing

several stylized facts. Section 3 develops a simple model that we use to characterise the

implications of standard production network models for the size-centrality relationship.

Section 4 uses a more general model that allows us to analyse the implied size-centrality

relationship in a setting that is calibrated to match the UK input-output network. Section

5 applies this model to analyse the post-crisis productivity growth slowdown in the UK.

Section 6 concludes.
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2 Data and Stylized Facts

2.1 Data and Definitions

To analyse the key features of the UK production network, we will focus on the supply and

use tables that contain data on input-output linkages between industries.2 In Appendix

A, we describe the data used in this paper.

The input-output supply and use tables contain, for a given year, an N ×N matrix

of intermediate input flows between industries, where N is the number of industries.

Typically, rows represent input suppliers and columns input consumers (with every

industry appearing as each respectively). By dividing each entry in the table by the

sum in the respective column, we obtain shares that sum to one in each column and

that correspond to the fraction of industry i’s inputs produced by industry j (where i

is a consuming and j a producing industry). We will refer to this matrix containing

intermediate input shares as the weighted input-output matrix, Wt, with a typical element

ωijt. For later use, we also define the adjacency input-output matrix, At, as the matrix

whose entries aijt are a binary variable equal to one if ωijt > τ and zero otherwise, for

some chosen threshold τ .3

2.2 Stylized Facts About the UK Production Network

We now turn to analysing the weighted input-output matrix, Wt.

2.2.1 Weighted Indegrees

First, we can analyse the heterogeneity in industries’ role as input purchasers by multiplying

each entry in each column i by the share of total intermediate consumption to gross output

in industry i. Then, each column will sum to the share of intermediate consumption in

gross output in the respective industry, which Acemoglu et al. (2012) refer to as the

industry’s weighted indegree. Figure 1 shows the nonparametric estimate of the empirical

density of weighted indegrees of UK industries. Although the distribution has changed over

time, it is generally relatively symmetric and centered around 0.4–0.6, with the majority of

industries having an indegree at most one standard deviation from the mean.4 Of course,

industries may differ in terms of the distribution of their overall input purchases across

suppliers (e.g. whether they source most of their inputs from a few or many suppliers).

Nonetheless, this suggests that industries are relatively similar in their overall role as

2No comprehensive firm-level dataset on input-output linkages is available for the UK.
3Below, we set τ = 1%, the same parametrisation as in Acemoglu et al. (2012).
4Acemoglu et al. (2012) obtain similar findings for the US: the mean weighted indegree in the US is

around 0.55, with 71% of the industries’ weighted indegrees being at most one standard deviation from
this mean.
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input purchasers in that most industries purchases inputs that amount to around 50–60%

of their gross output.

Figure 1. Empirical densities of weighted indegrees in the UK
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2.2.2 Weighted Outdegrees

The heterogeneity across industries in their role as input suppliers can be conveniently

summarised by looking at the empirical weighted outdegree distribution. If this distribution

is highly positively-skewed, this would suggest that there are many industries supplying

highly-specialised inputs (to few other industries), and a few general-purpose input

suppliers that provide inputs to many other industries. Recall that we denote by ωijt the

share of industry i’s inputs that are produced by industry j at time t. Then, the first-order

weighted outdegree and second-order weighted outdegree of industry j are respectively

defined as:

D1,out
jt =

N∑
i=1

ωijt, and (1)

D2,out
jt =

N∑
i=1

ωijtD
1,out
it . (2)

Note that the first-order weighted outdegree measures the importance of a given industry

as a direct input supplier.5 The second-order weighted outdegree weights the input shares

by the first-order weighted outdegree of the consuming industry and is thus the first step

5The first-order weighted outdegrees equal the sum over all the weights of the network in which
industry j appears as an input-supplying industry. Therefore, this measure ranges from 0 if an industry
does not supply inputs to any other industries, to N if a single industry is the sole input supplier of every
industry in the economy.
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Figure 2. Empirical density and counter-cumulative distribution of weighted outdegrees
in the UK
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towards measuring indirect linkages.6

Figure 2 (left panel) shows the empirical density function of (first-order) weighted

outdegrees. In contrast to the empirical density functions of weighted indegrees, the

distributions of outdegrees are skewed, with relatively heavy right tails (the empirical

densities of second-order weighted outdegrees, not shown here, are similarly fat-tailed).7

Relatedly, the right panel in Figure 2 shows the empirical counter-cumulative distribution

function (CCDF) of weighted outdegrees.8 The horizontal axis is the weighted outdegree

for each industry (shown on a log scale), and the vertical axis (also shown on a log scale)

gives the probability that an industry has an outdegree larger than or equal any correspond

x-axis value. The linearity of the rightmost part of the distribution, in which industries

with the largest weighted outdegrees lie, suggests that it is well-approximated by a power

law distribution.9 In other words, a small number of input suppliers are responsible for

supplying the bulk of intermediate inputs.

6For instance, if two industries only supplied inputs to one other industry each, and if the respective
shares of those industries’ inputs attributable to these two industries were the same, then the two
supplying industries would have equal first-order outdegrees. But if one of the industries supplied its
inputs to an industry that is an important input supplier (and thus has a high outdegree) and the other
supplied its inputs to an industry producing only final goods, the former’s second-order outdegree would
be larger than its first-order outdegree and the latter’s second-order outdegree would instead be zero.

7The skewness of the empirical densities in Figure 2 is lower than that in Acemoglu et al. (2012),
which is unsurprising given that they have around 400 industries in their dataset. Importantly, the
skewness does not vanish as the number of industries increases, i.e. even at a high level of disaggregation
some industries supply a large fraction of all inputs.

8The overall skewness in the distribution of weighted outdegrees may reflect both skewness along the
extensive margin (number of supplying linkages a producer has) and the intensive margin (how important
the producer is as a supplier to another). Empirically, the vast majority of the skew in the distribution of
weighted outdegrees is driven by the intensive margin, i.e. relatively few suppliers are responsible for
supplying the bulk of material inputs.

9Carvalho (2014) obtains similar findings for the US.
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2.2.3 Bonacich Eigenvector Centrality

Measuring the importance of a node in a network using its weighted outdegree has its

drawbacks. More specifically, this measure only captures first-order connectednness in

that it only considers the immediate downstream customers. It may thus be considered

to be the simplest centrality measure based on Wt. Other centrality measures that

are intended to capture higher-order connectedness (including that of a degree higher

than two) exist and have been widely used. Typically, these measures embed the idea

that a node’s centrality (here, a node would correspond to an industry) is higher if its

neighbours (here, other industries that it has input-output linkages with) are themselves

well-connected.

Note that equations (1) and (2) can be written in matrix form as D1,out
t = Wt1 and

D2,out
t = W2

t1, respectively, where 1 denotes an N × 1 vector of ones. Importantly, we

could analogously define weighted outdegrees of higher orders. Bonacich (1987) introduced

a centrality measure that is closely related to the weighted outdegrees of all orders. More

specifically, given parameters β1 and β2, the Bonacich eigenvector centrality (Bjt) of

industry j is defined as:

Bjt(β1, β2) =
N∑
i=1

(β1 + β2Bit)ωijt. (3)

The parameter β1 is a normalisation parameter and only affects the length of the vector of

Bonacich centralities, whereas the parameter β2 reflects the degree to which an industry’s

centrality is a function of the centrality of those industries to whom it is connected. In

matrix form, equation (3) is given by:

Bt = β1Wt1 + β2WtBt. (4)

Solving for the vector of centralities Bt, we have that:

Bt = β1 [I− β2Wt]
−1 Wt1. (5)

Using the power series expansion of the inverted matrix in equation (5), we have that the

vector of Bonacich centralities is given by:

Bt =
[
β1Wt + β1β2W

2
t + . . .

]
1. (6)

Therefore, the Bonacich eigenvector centrality is an infinite-order centrality measure in the

sense that it captures both direct linkages (via first-order outdegrees) and indirect ones

(via second-order outdegrees, third-order outdegrees, and so on). In other words, in our

context, the Bonacich eigenvector centrality measure assigns to each industry a centrality
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score that is the sum of some baseline centrality level (common across all industries),

and the centrality score of each of its downstream customers.10 Figure 3 shows that the

distribution of Bonacich eigenvector centralities is also fat-tailed, with the right tail of its

CCDF (not shown) close to linear on a log-log scale, and thereby well-approximated by a

power law. Note also that the right tail of the empirical density of Bonacich centralities is

more prominent than that shown in Figure 2 for weighted outdegrees. Intuitively, once

we take higher-order connectedness into account, that tends to further emphasise the

role of central suppliers (in part because they also tend to supply inputs to more central

industries).

Figure 3. Empirical density of Bonacich centralities in the UK
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We can visualise the heterogeneity in industries’ importance as input suppliers by

graphically representing the UK input-output network. In Figure 4, each node corresponds

to an industry and its size is proportional to the industry’s Bonacich eigenvector centrality.

The flows of inputs are represented by lines connecting the nodes, with the direction of

the flow indicated by an arrow. Financial services (industry 64) are the most central

input supplier in each year for which UK supply-and-use tables are available.11 Several

manufacturing industries are also very central, most notably manufacture of chemicals and

chemical products (industry 20) and manufacture of basic metals (industry 24). Other

very central industries include construction (industries 41-43), electricity, gas, steam and

air conditioning supply (industry 35), computer programming, consultancy and related

activities (industry 62), and employment activities (industry 78).12 The majority of

10Note that we set β1 = 0.5/N and β2 = 0.5, where 0.5 is the share of intermediate inputs in production
11These financial service activities exclude insurance and pension funding. The UK’s supply-and-use

tables are available over 1997-2019.
12Employment activities (industry 78) include activities of employment placement agencies and other
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industries are, however, much less important as input suppliers to other industries. This

corroborates the earlier claim that most industries supply highly-specialised inputs (to

few other industries) whilst a few general-purpose input suppliers provide inputs to many

other industries.

Figure 4. A graphical representation of the UK input-output network in 2019
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2.2.4 Clustering in the Production Network

Beyond a visual inspection of Figure 4, we can also analyse more formally the extent

to which industries cluster in the input-output network. The clustering coefficient is a

standard network topology measure that captures the tendency to which nodes in a graph

(in our case, industries in the input-output network) tend to cluster together. We define

the average clustering coefficient as:

AverageClustering t =
1

N

N∑
i=1

1
2

[(
Wt + WT

t

) (
At + AT

t

)2
]
ii

stoti,t
(
dtoti,t − 1

)
− 2s↔i,t

, (7)

where stoti,t = (WT
t +Wt)i1, dtoti,t = (AT

t +At)i1, and s↔i,t = (WtAt+AtWt)ii/2, and where

the subscript i (ii) denotes the ith row (iith entry) in the corresponding matrix, and 1

human resources provision.
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denotes an N -dimensional vector of ones.13 In a ‘star economy’, with one producer sourcing

inputs from many other producers who are not themselves connected, the clustering

coefficients would all be 0. On the other hand, if each industry sourced a fraction equal

to 1/(N − 1) of its inputs from all others (excluding itself), then all clustering coefficients

would equal 1. Using our data, we find that the average clustering coefficient is very stable

over time, with a mean of 0.84, suggesting that the UK’s input-output network has a very

high level of clustering.14 More formally, this confirms the visual observation from Figure

4 that most ‘triangles’ (sets of three interconnected industries) include industries with

higher centrality.

2.2.5 Stability of Input-Output Linkages

We also analyse the stability of network linkages. One might expect that the stronger a

linkage (i.e. the larger is ωijt) and/or the more stable it is (i.e. the smaller the variance

of ωijt), the greater the potential that a shock will be transmitted via that particular

linkage. The (in)stability of a linkage can be related to the degree of substitutability

among intermediate inputs. For instance, if all elasticities of substitution are unitary

(i.e. the economy is Cobb-Douglas), all factor income shares are time-invariant so the

variance of ωijt would be zero. If instead the elasticity of substitution between intermediate

inputs is zero for all industries (i.e. if intermediate inputs are perfect complements) and

the elasticity of substitution between value-added and intermediate inputs is zero, all

intermediate inputs would be used in a constant proportion to output, thus implying that

the variance of output would be proportional to the variance of input shares.

To assess the stability of Wt, we compute the standard deviation of its entries, σ(ωij).

Figure 5 shows a scatterplot of the mean of ωij over time against its standard deviation.

We see a clear positive association—entries in Wt which are larger on average also tend

to be relatively more volatile. This is inconsistent with a Cobb-Douglas economy, which

implies a horizontal line in Figure 5, with σ(ωij) = 0.15 For this reason, the models we

consider in this paper do not feature a (fully) Cobb-Douglas economy and allow for a

time-varying production network.16

13This definition follows Clemente and Grassi (2017). Note that self-loops are not considered, i.e. the
main diagonals in W and A are replaced with zeros.

14To put this into a perspective, Clemente and Grassi (2017) find that a network consisting of banks
from the core 24 countries (as defined by the Bank for International Settlements (BIS)) has a clustering
coefficient of around 0.9.

15Strictly speaking, complete stability in input-output shares is only consistent with a Cobb-Douglas
aggregation of sectoral intermediates as long as sectors are not allowed to add/remove extra supplier
sectors at the extensive margin. In particular, Acemoglu and Azar (2020) show how Cobb-Douglas
aggregation can deliver time-varying input-output matrices through adjustment of supplier sectors at the
extensive margin.

16To put the time variation of Wt into a perspective, the coefficient of variation (defined as the ratio
of sample variance to sample mean) of the growth of outdegrees is larger than the coefficient of variation
of real gross output growth for around 2/3 of all industries. By contrast, the coefficients of variation of At
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Figure 5. Scatterplot of mean and standard deviation of intermediate input shares
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How does the time-variation in the input-output network relate to the correlation

between different industries’ output growth? Intuitively, one may expect that the higher

the importance of industry j as a supplier of inputs to industry i (so the higher is

ωijt) and/or the more stable this linkage is (so the lower is σ(ωijt)), the stronger the

co-movement between the output of industries i and j. First, we estimate the following

regression:

ρ(gij) = α + βωij + εij, i 6= j, (8)

where ρ(gij) denotes the correlation between the growth rates of gross output in industries

i and j and ωij denotes the average share of inputs from industry j in industry i’s total

intermediate consumption. We find β̂ = 1.38, statistically significant at the 1% level.

The pairwise correlations of gross output growth across industries tend to be higher the

higher is the average share of inputs they source from each other: a 1pp increase in the

average input share tends to be associated with close to a 0.014 increase in the correlation

based measures tend to be much smaller. Two such standard measures are industries’ degree—defined as∑N
j=1 aijt for each industry i—and their average path length—defined as 1

N−1
∑N

i6=j ShortDistijt where

ShortDistijt denotes the shortest distance between industries i and j in year t.17 The coefficient of
variation of industries’ average degree and average path length are lower than those of first-order weighted
outdegrees for 65% and 90% of the industries, respectively.
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coefficient of gross output growth rates.18 Next, we consider the following regression:

ρ(gij) = α + βωij + γσ̂(ωij) + εij, i 6= j, (9)

where σ̂(ωij) denotes the sample variance of ωijt. We now find that β̂ increases to 1.66

(and is still statistically significant at the 1% level), and γ̂ = −1.82 (and is significant

at the 5% level). Intuitively, in equation (8), the coefficient on the average share of

inputs (ω̄ij) was likely biased downwards, which is due to higher shares also being more

volatile (Figure 5) and higher volatility decreasing the correlation between output growth

rates. In other words, once we have controlled for the average share of inputs industries

source from each other, the pairwise correlations of gross output growth across industries

tend to be lower for those pairs where the respective share of inputs is more volatile.

Intuitively, insofar as the higher volatility of ωijt indicates greater substitutability across

input suppliers, a high elasticity of substitution implies that even small changes in relative

prices translate into large changes in input shares, increasing σ(ωijt).

2.3 Empirical Size-Centrality Relationship

Our primary focus in this paper is on the relationship between the size and centrality of

producers in a production network. Throughout, we use conventional notions of producer

size and centrality, measuring real (and absolute) producer size using levels of real gross

output, nominal (and relative) producer size using Domar weights, and centrality using

(first-order) weighted outdegrees.

Figure 6 shows a scatterplot of the average levels of outdegrees against real output and

Domar weights for all 79 industries in the UK over 1997-2019. There is a clear positive

(and possibly non-linear) relationship, with larger industries also generally being more

central. Importantly, since the sum of outdegrees across industries equals N = 79 in each

year, there should be no concerns about a spurious relationship driven by, say, a common

time trend.

18This finding is in line with Carvalho (2014), though based on Wt rather than the network distance
measure Carvalho (2014) uses, which is based on At.
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Figure 6. Scatterplot of the average levels of outdegrees and real output and Domar
weights, by industry
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Focusing on each industry separately, Figure 7 shows the correlation between the

growth rates of outdegrees and producer size (as measured by output or Domar weights).

The correlation coefficient is positive for 68% (76%) of industries if real output (Domar

weight) is the measure of producer size. In other words, on average and for many industries,

as they grow in size, they also tend to become more central in the production network. For

few industries, the opposite tends to be the case on average. As we argue in subsequent

sections, this relationship is intimately related to the nature of shocks in the economy,

particularly whether they are of a ‘demand’-type (pushing quantities and prices in the

same direction) or of a ‘supply’-type (pushing the two in opposite directions).

Figure 7. Correlation between the growth rates of outdegrees and real output and Domar
weights, by industry
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From a modelling perspective, our interest is in (i) the model-implied size-centrality
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relationship in steady state (related to Figure 6), and (ii) the model-implied size-centrality

relationship outside of steady state (related to Figure 7). Regarding the latter, in a

Cobb-Douglas economy—in which all elasticities of substitution are unitary—the input-

output network does not change in response to shocks, hence industries’ centralities are

time-invariant. In such an economy, Domar weights are also invariant to shocks. As

soon as one deviates from the Cobb-Douglas benchmark—as we do in the subsequent

sections—Domar weights and the input-output network may change in response to shocks.

Having provided evidence that the UK input-output network features highly asymmet-

rical producers in terms of their centrality and that the network exhibits significant time

variation, we next set up a model which features a time-varying input-output network that

we will use to analyse the implications of supply and demand shocks for the size-centrality

relationship.

3 Static Model

Consider a static and closed multisector economy, with a representative household and

perfectly competitive firms operating in N industries. The economy is static in the

sense that agents do not make any dynamic choices, but this economy could still have a

non-trivial temporal dimension depending on the time profile of exogenous shocks that

hit it. The representative firm in each industry may source its intermediate inputs from

any other industry, i.e. the economy features a production network. Importantly, each

industry bundles its intermediate inputs using a CES aggregator. This is in contrast

to the model in Acemoglu et al. (2012), which features a Cobb-Douglas economy, with

unitary elasticities of substitution, which imposes a time-invariant production network, i.e.

the weighted input-output matrix Wt = W for all t. However, in the previous section, we

showed that Wt exhibits significant time variation in the data. The simple model we set

up can, for different sets of shocks in the model, generate a different Wt.
19 Next, we set

out the structure of the model economy.

3.1 Representative Household

The representative household has Cobb-Douglas preferences over N distinct goods (each

produced by one of the N industries) summarised by the following utility function:

U(C1t, ..., CNt, Lt) =
N∏
i=1

Cγit
it −

Lφt
φ
, (10)

19Although the economy is static, we do not drop the time subscript so as to reflect that repeatedly
observing this economy in the presence of varying shocks would generate time variation in the endogenous
variables in the model.
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where Cit is the consumption of good i, and γit = Ditξi∑N
j=1Ditξi

. The steady-state consumption

share of good i is denoted by ξi and the exogenous shifters of households’ preferences

(‘preference shocks’) are denoted by Dit; clearly,
∑N

i=1 γit = 1. The representative consumer

supplies labour Lt, with the disutility of labour parametrised by φ, and receives a wage

Wt. The household’s budget constraint is given by:

N∑
i=1

PitCit = WtLt, (11)

where Pit denotes the price of good i.

3.2 Producers

Let i be any one of the N perfectly competitive industries in the economy. Each industry

produces a good that can be either consumed or used by other industries as an input

for production. Gross output in each industry, Qit, is produced using labour, Lit, and

intermediate inputs, Mit, according to a Cobb-Douglas production function:

Qit =
(
ZitL

αi
itM

1−αi
it

)ηi
, (12)

where Zit is an i.i.d. technology shock, αi denotes the share of labour income in gross

output, and ηi determines the returns to scale. If 0 < ηi < 1, the production function

exhibits decreasing returns to scale; if ηi = 1, the production function exhibits constant

returns to scale. We assume that the intermediate input bundle, Mit, is a CES aggregate

of the N intermediate inputs each industry sources from all of the other N industries

(including itself):

Mit =

[
N∑
j=1

µ
1
εM
ij M

εM−1

εM
ijt

] εM
εM−1

. (13)

The parameters µij correspond to the steady-state share of intermediate consumption from

industry j in industry i’s steady-state intermediate purchases from all other industries.

The key parameter in equation (13) is εM , which corresponds to the elasticity of

substitution across the inputs in the intermediate bundle. Letting εM → 1 turns the

aggregator Mit into a Cobb-Douglas one; in that case, regardless of the values of shocks

in the model (Zit and dit), the implied weighted input-output matrix Wt would be time-

invariant. Since the gross output production function is a Cobb-Douglas aggregate of

labour and intermediates, we know that for any sequence of shocks {Zit, dit}, the shares

of labour and intermediate inputs in gross output remain unchanged. However, if εM 6= 1,

the shares of individual intermediate inputs in gross output may vary with the shocks,
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resulting in a time-varying input-output network.

In Appendix B.1, we characterise the competitive equilibrium in this economy. Due to

perfect competition, we must have Pit = C ′(Qit) in equilibrium, where C ′(Qit) denotes

the marginal cost of producing Qit. From producers’ cost-minimisation problem, we thus

obtain that in equilibrium:

Pit =
Q

1−η
η

it

Zit

(
Wt

ηαi

)αi ( PM
it

η(1− αi)

)1−αi
, (14)

where PM
it denotes the ideal price index associated with industry i’s intermediate input

bundle, Mit, and is given by:

PM
it =

[
N∑
j=1

µijP
1−εM
jt

] 1
1−εM

. (15)

3.3 Equilibrium

In Appendix B.1, we show that the equilibrium of the model can be expressed as a system

of 3N equations in 3N + 1 unknowns, {Pit, Qit, Lit,Wt}Ni=1. To solve the model, we take

the consumer price index, Pt, as the numeraire and normalise it to equal 1 without loss

of generality, which yields an additional equation. The CES aggregation of intermediate

inputs does not allow for solving for the equilibrium analytically.20

Next, we derive our measures of producers’ centrality and size in this economy.

3.4 Producer Centrality

We measure the centrality of each industry using its first-order weighted outdegree.21 The

first-order weighted outdegree of industry j is given by

Dout
jt ≡

N∑
i=1

ωijt =
N∑
i=1

µij

(
Pjt
PM
it

)1−εM
. (16)

The first equality in equation (16) is definitional, and it implies that an industry becomes

more central as long as the sum of (nominal) sales of intermediates it makes to other

industries (including intra-industry intermediate sales) increases as a share of other

20Instead of considering a first-order approximation around a non-stochastic steady state, we also
cross-checked our arguments made below by solving the model numerically, yielding results consistent
with the arguments below.

21In Appendix B.3, we show that the conclusions we reach below also hold for other commonly used
centrality measures (such as second-order weighted outdegrees). In other words, as long as εM < 1,
industry j’s second-order weighted outdegree (and, by extension, its Bonacich centrality) are also increasing
in its price, Pjt.
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industries’ intermediate consumption. This therefore suggests that it is both quantities

sold and prices of intermediates that determine industries’ centrality. Importantly, the

second equality—which follows from the equilibrium conditions in the model—instead

suggests that the only equilibrium variables relevant for centrality are prices.22

In Appendix B.3, we show that the partial derivative of a given industry’s outdegree

with respect to its price is given by:

∂Dout
jt

∂Pjt
=

N∑
i=1

(1− εM)ωijt(1− ωijt)P−1
jt . (17)

Since 0 ≤ ωijt ≤ 1, the sign of this partial derivative is solely determined by εM . In the

Cobb-Douglas benchmark (εM = 1), this derivative equals zero and ωijt equals µij (see

equation (16)), which is time-invariant. If 0 < εM < 1 (i.e., there is a relatively low degree

of substitutability in the intermediate bundle), ωijt is increasing in Pjt. By contrast, if

εM > 1 (i.e., a relatively high degree of substitutability in the intermediate bundle), ωijt is

decreasing in Pjt. Therefore, εM is crucial in determining the relationship between prices

and producer centrality. In this economy, any time-variation in producer centrality will

result from the variation in prices, in turn driven by technology and preference shocks.

To understand the intuition behind the relationship between prices and centrality,

note that by substituting the optimal input demands for Mijt and the bundle Mit in the

definition of ωijt, we obtain the following relationship:

ωijt =
PjtMijt

PM
it Mit

=

[
Pjt
PM
it

]
︸ ︷︷ ︸

‘price’ effect

[(
PM
it

Pjt

)εM
µij

]
︸ ︷︷ ︸

‘quantity’ effect

. (18)

Suppose a shock decreases Pjt. All industries (including industry i) now want to substitute

towards good j as it is cheaper, i.e. the quantity of inputs they source from industry

j will increase. Since the price of any industry i’s bundle of intermediate inputs, PM
it ,

falls by less than Pjt (since good j is just one of the goods in the bundle, with a weight

less than 1), the ‘price’ effect in equation (18) falls. If εM = 1, the ‘quantity’ effect will

exactly offset the price effect and there will be no change in ωijt. If εM < 1, the increase

in the quantity effect will less than offset the fall in the price effect—because industries

do not easily substitute towards the now cheaper good j—and ωijt will fall, decreasing

the centrality of industry j by equation (16). The opposite happens if εM > 1, in which

case industries can substitute relatively easily across their intermediate inputs and will

increase the quantity of good j they consume in a way that will more than offset the fall

22See Appendix B.2 for a derivation of equation (16). Note that the assumption of perfect competition
guarantees that the representative firm in each industry charges the same price on the inputs that it sells
to any other industry.
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due to the price effect. Therefore, prices are a sufficient statistic to understand the effects

of shocks on producer centrality in this model, and the parameter which fundamentally

determines this relationship is εM .

Therefore, to understand how technology and preference shocks affect industries’

centrality, we need to understand how prices respond to these shocks. In the model in

this section, a closed-form solution for prices does not exist due to the CES aggregation

of intermediate inputs. Instead of resorting to an approximate solution for the dynamics

of this model around its steady state, we find its solution numerically in two example

economies assuming εM < 1 (consistent with our empirical estimates presented in the

next section) and using conventional values for the remaining model parameters. Our

results confirm that prices—and thus producer centrality—positively respond to (own)

negative productivity and/or positive preference shocks (see Appendix B.5). We also show

that this result holds true under two generalisations around the elasticity of substitution

across intermediate inputs, in particular to allowing for different values of εM across

producers, and to allowing for heterogeneous elasticities of substitution across subgroups

of intermediate inputs (see Appendices B.6 and B.7).

3.5 Producer Size

We consider two measures of producer size in the production network:

1. industries’ real gross output (Qit), and their

2. Domar weights (λit), defined as the ratio of industries’ nominal gross output (PitQit)

to nominal GDP; nominal GDP is given by
∑N

i=1

(
PitQit − PM

it Mit

)
.

The former measure is related to the real (and absolute) size of an industry in that an

increase in industry i’s real gross output need not entail a change in the other industries’

size. This is in contrast to Domar weights, computed from nominal variables and relative

by construction in that a change in industry i’s Domar weight necessarily entails a change

in at least one other industry’s Domar weight.23 We consider both real and nominal

notions of producer size given the key role of prices in determining the size-centrality

relationship.

How do our measures of size respond to technology and preference shocks? While

any industry’s real output and Domar weights may in principle respond to a shock to

any industry, the majority of variation in producer size (and centrality) will tend to be

driven by own shocks.24 First, real output (Qjt) always increases (decreases) in response

23Whilst Domar weights measure the importance of an industry as an output supplier to the entire
economy, our chosen measure of centrality (first-order weighted outdegrees) measures the importance of
an industry as an input supplier to the entire economy.

24We demonstrate this in Section 4 in a more general model that is calibrated to match the UK
production network.
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to positive (negative) shocks to technology (Zjt). As long as an industry has a positive

weight in the household’s consumption basket (i.e. γjt > 0), then a positive (negative)

preference shock will also increase real output of industry i. Second, to understand how

Domar weights respond to shocks, note that we must have, by definition:25

λjt =
PjtQjt

PtCt
=
PjtCjt
PtCt

+

∑N
i=1 PjtMijt

PtCt
. (19)

The first term after the second equality equals γjt, and the second term can be rewritten

so as to yield:26

λjt = γjt +
N∑
i=1

(1− αi)ωijtλit. (20)

Therefore, in equilibrium, industries’ Domar weights are a sum of their consumption

shares and a weighted-average of all Domar weights in the economy, where the weights

are a product of the shares of intermediates in output and intermediate input shares in

the bundle of intermediates. Assuming that αi = α (for simplicity), we can write equation

(20) in matrix form and solve for the Domar weights:

λt = [I− (1− α)Wt]
−1 γt. (21)

Using the power series expansion of the matrix multiplying γt, we obtain:

λt =
[
I + (1− α)Wt + (1− α)2W2

t + ...
]
γt. (22)

Note that by setting β1 = β2 = (1− α) in equation (6), we have that the Domar weights

are equal to the sum of the vector of consumption shares (γt) and the vector of modified

Bonacich centralities where in equation (22) the vector of ones is replaced by the vector of

consumption shares. Intuitively, on top of the sales that an industry generates by selling

final goods to the representative household, its total sales in equilibrium also include the

sale of intermediate goods which ultimately get transformed into final goods sold to the

household.27

Using equation (22), we can see that Domar weights will fall in response to positive

technology shocks (and vice versa). A positive technology shock to industry j will leave γt

unchanged (as it is pinned down solely by household preferences and preference shocks),

but it will tend to decrease the entries in the jth row of the matrix Wt, thereby lowering

25In this economy, nominal GDP—the denominator in the Domar weights—equals nominal aggregate
consumption.

26See Appendix B.4 for a derivation of equation (20).
27In the extreme case where the production network contains no non-trivial linkages, so Wt = I, the

Domar weights are given by: λt = [1 + (1− α)/α] γt = α−1γt.
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Table 1: Effect of Shocks to an Arbitrary Producer j on its Centrality and Size

Variable Positive Technology Shock Positive Preference Shock

(Zjt ↑) (Djt ↑)
Producer centrality (Djt) ↓ ↑
Producer size: Domar weight (λjt) ↓ ↑
Producer size: real output (Qjt) ↑ ↑
Notes: The effects shown correspond to a case where the elasticity of substitution

across intermediate inputs is less than 1.

The signs of the effects get reversed in case of negative shocks.

the j-th entry in λt, i.e. industry j’s Domar weight.

By contrast, equation (22) shows that a positive preference shock to industry j will

increase the jth element of γt and reduce the other elements.28 The effect of preference

shocks on prices (and thus the matrix Wt) in this (static) economy depends on the returns

to scale (ηi). If there are constant returns to scale, Wt will not change in response to

preference shocks. To the extent that there are decreasing returns to scale, a positive

preference shock to industry j will tend to increase entries in the jth row of Wt, further

increasing industry j’s Domar weight.

Table 1 summarises our conclusions. We find that technology shocks tend to contribute

to a negative relationship between producer centrality and real output, and a positive

relationship between producer centrality and Domar weights.29 Demand shocks, on the

other hand, tend to contribute to a positive size-centrality relationship.

Our analysis above suggests that, as long as the production network is time-varying and

the elasticity of substitution among intermediate inputs is less than unitary, the canonical

models of production networks featuring only technology shocks tend to imply a strongly

negative relationship between producers’ output quantity and centrality, inconsistent

with our empirical evidence for the UK. In other words, an industry repeatedly hit by

negative supply-side shocks would therefore become simultaneously progressively smaller

yet more central, and vice versa. As we show, to our knowledge uniquely, introducing

demand-type shocks is a way to reconcile the model-implied size-centrality relationship

with its empirical counterpart. The model we introduce next is dynamic and features

both supply and demand shocks.

28This is true by construction, since
∑N

i=1 γit = 1.
29Note that technology shocks may imply a positive size-centrality relationship for the industries other

than the industry in which the shock originated. In practice, the majority of variation in industries’ size
and centrality will tend to be driven by their own shocks, hence our emphasis on the implied relationship
for the ‘shock-originating’ industry.
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4 Dynamic Model

We now consider a closed, multisector economy in which agents face dynamic optimisation

problems, drawing heavily on the model from Atalay (2017). This model economy relaxes

various potentially overly restrictive assumptions that were present in the simple model

from the previous section: now, both the representative consumer and the representative

firms in each industry make dynamic choices, industries also source capital inputs from

each other, and various elasticities (other than that across intermediate inputs) are not

necessarily unitary.

In this section, our contributions based on this model are threefold. First, we use it to

filter out the technology and preference shocks from the quarterly data on value-added

and price growth across all industries in the UK. By contrast, Atalay (2017) filters out

technology shocks only.30,31 Second, we derive the equations for our measures of producer

size and centrality, and show the implied size-centrality relationship as a result of the

filtered shocks. Third, through the lens of this model, we analyse the dynamics of UK

productivity growth and disentangle the relative importance of sector-specific and common

shocks.

We first provide a brief exposition of the model below.

4.1 Representative Household

The representative household derives utility from the N different consumption goods

(produced by the N industries) and disutility from supplying labour. The lifetime utility

is given by:

U0 = E0

∞∑
t=0

βt

log

 N∑
i=1

(
Ditξi∑N
i=1Ditξi

) 1
εD

C
εD−1

εD
it


εD
εD−1

− εLS
εLS + 1

(
N∑
i=1

Lit

) εLS+1

εLS

 ,
(23)

where β denotes the rate of time preference, ξi denotes the time-invariant differences in

the importance of consumption goods in aggregate consumption, Dit denotes a preference

shock to good i at time t, Cit denotes the final consumption purchases of good i at time t,

and Lit denotes the supply of labour to industry i at time t. In steady state, Dit = 1 for

all i and we assume
∑N

i=1 ξi = 1. The elasticities of substitution determine how easily the

consumer substitutes across the different consumption goods (εD) and how responsive the

30Also, while we filter out such shocks here, we instead simulated them in Appendix B.5.
31Specifically, Atalay (2017) filters out demand shocks only for the government sector as part of the

sensitivity analysis (in which case, he assumes away supply-side shocks in this sector). Instead, we retain
supply-side shocks for the government sector while also allowing for demand-side shocks in all industries.
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consumer’s desired labour supply is to the prevailing wage (εLS).

4.2 Producers

Each industry produces a quantity (Qit) of good J at time t using capital (Kit), labour

(Lit), and intermediate inputs (Mit) according to the following production function:

Qit = Aηiit

(1− µi)
1
εQ

((
Kit

αi

)αi ( Lit
1− αi

)1−αi
) εQ−1

εQ

+ µ
1
εQ

i M

εQ−1

εQ

it


ηi

εQ
εQ−1

. (24)

As in the simple model, the parameter ηi parameterises the degree of returns to scale. The

parameters µi and αi reflect long-run averages in each industry’s usage of intermediate

inputs, labour, and capital. These parameters will eventually be inferred from the factor

cost shares of each industry. Ait denote the factor-neutral technology level of industry i

at time t. Note that Ait may be correlated in any arbitrary way across industries. The

parameter εQ determines how easily value-added can be substituted with intermediate

inputs.

The evolution of capital in each industry is given by:

Ki,t+1 = (1− δK)Kit +Xit. (25)

The capital stock is accumulated via an industry-specific bundle of investment goods, Xit,

and depreciates at a rate δK , common across industries. The industry-specific investment

bundle is produced by combining the goods produced by potentially all industries:

Xit =

(
N∑
j=1

(
ΓXij
) 1
εX (Xijt)

εX−1

εX

) εX
εX−1

. (26)

The parameters ΓXij determine how important industry j is as an investment-good supplier

to industry i. The parameter εX parametrises the substitutability of various investment

goods in the investment bundle.

The intermediate input bundle of industry J is defined analogously:

Mit =

(
N∑
I=1

(
ΓMij
) 1
εM (Mijt)

εM−1

εM

) εM
εM−1

. (27)

Above, ΓMij determines how important industry j is as an intermediate-good supplier

to industry i, and εM parametrise how easily substitutable the various goods in the

intermediate bundle are.
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The market-clearing condition for each industry states that output can be used for

consumption, as an intermediate input, or for investment:

Qjt = Cjt +
N∑
i=1

(Mijt +Xijt). (28)

4.3 Exogenous Processes

LetAt denote the vector of factor-neutral technology shocks in theN industries, (At1, ..., AtN )′.

Similarly, let Dt denote the vector of preference shocks in the N industries, (Dt1, ..., DtN )′.

We assume the evolution of At and Dt follows a geometric random walk:

logAt = logAt−1 + ωAt , (29)

logDt = logDt−1 + ωDt . (30)

We do not impose any restrictions on any of the variance-covariance matrices.

4.4 Equilibrium and Log-Linear Equations for Size and Central-

ity

Since this economy satisfies the welfare theorems, it suffices to solve the social planner’s

problem.32 Given the non-linear nature of the model, we consider a first-order log-linear

approximation around the non-stochastic steady state (see Appendix C.1). The evolution

of output can be written as:

∆ logQt+1 = Π1∆ logQt +

[
Π2

... Π4

][
ωAt

ωDt

]
+

[
Π3

... Π5

][
ωAt−1

ωDt−1

]
, (31)

where the N ×N matrices Π1, Π2, Π3, Π4, and Π5 are functions of the model parameters

only.33 The baseline approach in Atalay (2017) assumes away preference shocks (i.e.

ωDt = 0) and uses data on industries’ output growth to filter out the technology shocks

using equation (31). As in Foerster et al. (2011), the equilibrium in this model permits

a VARMA(1,1) representation in industries’ output growth rates if preference shocks

are assumed away. Instead, we allow for preference shocks, so to filter all 2N shocks

in the model, we instead use data on industries’ value-added and prices, which admit a

VARMA(1,1) representation as well (see Subsection 4.6 below).

32The competitive equilibrium of the model is derived in Appendix F of Atalay (2017).
33See Appendix C.2 where we log-linearise the model’s equilibrium and solve for these matrices.
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4.4.1 Producer Size

As in the simple model, we use industries’ real output and Domar weight as measures

of their absolute and relative size, respectively. Denote the vector of log-deviations of

real output and Domar weights from their steady-state values as q̂t and λ̂t, respectively.

Denoting the vector of log-deviations of prices from their steady-state values as p̂t, we

can write nominal gross output as n̂t ≡ q̂t + p̂t. Thus, Domar weights are defined as

λ̂t = p̂t + q̂t − n̂gdpt · ι where n̂gdpt denotes the log-deviation of nominal GDP from its

steady state, and ι denotes an N × 1 vector of ones.

Appendices C.2 and C.5 show that our two measures of industries’ size can be expressed

as functions of the state variable (capital) and the shocks as follows:[
∆q̂t

∆λ̂t

]
=

[
Φk

Λk

]
∆k̂t +

[
Φa

Λa

]
ωAt +

[
Φd

Λd

]
ωDt , (32)

where the matrices in square brackets are functions of model parameters only.

4.4.2 Producer Centrality

As in the simple model, we consider first-order weighted outdegrees as our measure

of producer centrality. Appendix C.4 shows that, as in the simple model, first-order

outdegrees can be expressed as a function of prices only, namely d̂ot = Dp̂t, where D is a

matrix consisting of various terms involving the model parameters.34 The log-deviation of

first-order weighted outdegrees from their steady state values can be expressed as:

∆d̂ot = Dk∆k̂t + Daω
A
t + Ddω

D
t . (33)

In Appendix C.4, we show that as we approach the Cobb-Douglas benchmark (εM → 1),

the matrix D approaches the zero matrix. In other words, all intermediate shares become

constant (i.e., Wt = W), and so do outdegrees.

4.5 Calibration

For the purposes of this paper, the key parameter is the elasticity of substitution across

inputs in the intermediate bundle (εM). More specifically, as was the case in the simple

model (see equation (16)), the value of εM will determine the relationship between prices

and outdegrees, inter alia: as long as εM < 1, an idiosyncratic technology shock to an

industry that increases its price will simultaneously increase its outdegree. In addition,

as Atalay (2017) shows, this parameter will directly affect the relative importance of

34The difference is that in the simple model, this result was obtained as an analytical solution rather
than as a first-order approximation.
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industry-specific and common shocks as implied by the model filter: if εM is low (high),

industry-specific (common) shocks will tend to be relatively more important in explaining

aggregate GDP dynamics.

Before we proceed more formally in estimating εM , recall from equation (16) that

ωijt = µijp
1−εM
ijt , where pijt ≡ Pjt/P

M
it . As long as ωijt, µij, and pijt are all positive, we

can take logarithms of both sides of this equation to obtain:35

logωijt = log µij + (1− εM) log pijt. (34)

Clearly, there will be some industry i that does not source any inputs from industry j,

so µij = 0. This logarithmic transformation is thus applicable only to those nontrivial

(i, j) pairs from which we would aim to identify εM . Given a sample of T observations,

we have that:∑T
i=1(logωijt − logωij)

2

T − 1
= (1− εM)2

∑T
t=1(log pijt − log pij)

2

T − 1
, (35)

Denoting the two sample variances by σ̂2(logωijt) and σ̂2(log pijt), we have that the model

implies that:

(1− εM)2 =
σ̂2(logωijt)

σ̂2(log pijt)
. (36)

as long as σ̂2(log pijt) > 0. Equation (36) implies that if the ratio of variances of (logs of)

intermediate input shares and prices equals 1, εM = 0 which corresponds to a Leontief

aggregation of intermediate inputs. If instead intermediate input shares do not vary at all

(so σ̂2(logωijt) = 0), then εM = 1, i.e. intermediates are aggregated in a Cobb-Douglas

fashion. Finally, if instead the variability of intermediate input shares is relatively high

compared to that of prices, then εM will be tend to be larger than 1 (assuming εM > 0),

which corresponds to a case of highly substitutable inputs.

The relationship given by equation (36) is model-based, while its right-hand side

is observable. Figure 8 therefore shows the empirical distribution of the ratio on the

right-hand side of equation (36).36 The distribution is right-skewed and has a mean

(median) equal to around 0.37 (0.26). Assuming that εM > 0, this implies that the value

of εM corresponding to the mean (median) of this distribution equals 0.40 (0.50).

We now estimate εM more formally. As in Atalay (2017), we use industries’ first-order

condition with respect to intermediate inputs, and exploit their heterogeneous (direct and

indirect) exposures to military spending, which we use to construct the instrument that

35Although this equation comes from the simple model in Section 3, it is completely analogous to
equation (41), assuming away time-effects (φt) and that the model is “true” (νijt = 0).

36We make use of the supply and use tables as well as data on industries’ deflators; see Appendix A.
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Figure 8. Empirical density of the ratio of sample variances of input shares and prices
(see equation (36) in the main text)
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Notes : The horizontal axis corresponds to the ratio of the
sample variances of intermediate input shares and prices.

overcomes the endogeneity of prices in the first-order condition. The cost minimisation

condition of the industry i representative firm gives the relationship between the share of

intermediate inputs from industry j in industry i’s total intermediate consumption:

∆ log

(
PjtMijt

PM
it Mit

)
= φt + (1− εM)∆ log

(
Pjt
PM
it

)
+ νijt. (37)

Intuitively, assuming that military spending on industries’ intermediate inputs is exogenous

renders it as a valid instrument since it will be uncorrelated with the regression error term

(νijt).

Table 2 shows the results of our estimation using UK data. OLS yields estimates of

εM around 0.68, though these estimates are inconsistent insofar as Pjt/P
M
it is endogenous

in equation (37). IV estimation—which uses, in the first stage, three sets of instruments

based on industries’ heterogeneous exposures to UK military spending—yields estimates

of εM between 0.27–0.35, depending on whether year fixed effects, φt, in equation (37)

are included or not. All instruments are significant at the 1% level and the second-stage

estimate of εM is significant at the 5% level in our preferred specification, allowing for year

fixed effects. Note that the estimated value of εM of 0.35 in our preferred specification

is very close to 0.4, which we obtained in a cruder fashion using equation (36). We thus

set εM equal to 0.35. We calibrate the remaining elasticity parameters following Atalay

(2017).37

37Unlike in the baseline calibration in Atalay (2017), the value of εQ estimated or calibrated in a few
other recent papers has tended to be somewhat smaller than 1. For example, Peter and Ruane (2020)
estimate a value of 0.6 for the US, and Baqaee and Farhi (2019) use 0.5. Our results are generally robust
to an alternative calibration with εQ = 0.5. Our results are similarly robust to alternative (non-unitary)
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Table 2: Regression results related to equation (37)

Second stage (1) OLS (2) OLS, Year FE (3) IV (4) IV, Year FE
εM 0.680∗∗∗ 0.680∗∗∗ 0.273∗∗∗ 0.345∗∗

(0.015) (0.015) (0.266) (0.263)

First stage: Dependent variable is ∆ logPtI − logP in
tJ .

military spending shocktI 0.331∗∗∗ 0.385∗∗∗

(0.033) (0.050)

military spending shocktJ -0.205∗∗∗ -0.185∗∗∗

(0.029) (0.032)

military spending shocktJ’s suppliers -0.051∗∗∗ -0.045∗∗∗

(0.011) (0.012)

N 35343 35343 34623 34623
Adjusted R2 0.013 0.014 . .
Wu-Hausman test p-value 0.124 0.204
Cragg-Donald Statistic 37.968 38.593
Year Fixed Effects No Yes No Yes

Notes: Statistical significance: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Regarding the returns to scale parameters ηi, our baseline calibration maintains

the assumption of constant returns to scale.3839 Using UK supply and use tables, we

calibrate αi, ξi, µi, ΓMij , and ΓXij . We set the quarterly depreciation rate to equal 1.4%

to be consistent with the annual depreciation rate of around 5.5%, which is roughly the

average estimated by Oulton and Wallis (2016) since 1997.40 The calibrated values of all

parameters in the model are summarised in Table 3.

reasonable calibrations of εD.
38An alternative calibration we used involved estimating production function parameters for each

industry using firm-level BvD data for the UK. Using that approach, we set ηi equal to the sum of
resulting output elasticities with respect to inputs. Our results are largely unchanged across the baseline
and this alternative calibration of the returns to scale parameters.

39As we note elsewhere in the paper—see equation (122)—the relationship between outdegrees and
prices is independent of the returns to scale in both the (log-linearized) dynamic model and the simpler
static model. But an important difference between the two models is that in the static model, preference
shocks leave relative prices unaffected under constant returns to scale, which would leave the matrix Wt

and so outdegrees (so producer centrality) unchanged. This is not the case in the dynamic model–even
under constant returns to scale, preference shocks can affect relative prices (and so producer centrality).

40For simplicity, we assume that the (time-invariant) depreciation rate does not vary across sectors.
In practice, there is likely to be both time-variation in the depreciation rate (even if the asset-specific
depreciation rates are constant) as the composition of a sector’s capital assets changes over time (e.g. due
to greater use of IT, which tends to have higher depreciation than buildings, for example). Our findings
are not sensitive to reasonable variations of the depreciation rate.
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Table 3. Baseline calibration of model parameters

Parameter(s) Value Source

εQ 1 Atalay (2017)

εM 0.35 Estimated

εX 1 Atalay (2017)

εD 1 Atalay (2017)

εLS 2 Atalay (2017)

ηi 1 Atalay (2017)

αi Average share of labour expenses in J ’s GVA UK’s Supply and Use Tables

ξi Average J ’s share of final demand UK’s Supply and Use Tables

µi Average share of intermediates in J ’s GVA UK’s Supply and Use Tables

δK 0.014 Based on Oulton and Wallis (2016)

ΓM
ij Average share of intermediate inputs from j to i UK’s Supply and Use Tables

ΓX
ij Average share of GFCF flows from j to i UK’s Supply and Use Tables

β 0.99 Atalay et al. (2018)

Notes: ‘Averages’ refer to average values over 1997-2019. i and j denote 2-digit industries.

Having log-linearised and fully calibrated the model, we now describe our approach to

filtering out all shocks in the model.

4.6 Model Filter

In a novel application, we use quarterly data on UK industries’ value-added and prices

to filter out the technology and preference shocks in the model. Denote the vector of

log-deviations of value-added from its steady state as v̂t. Note that since we assume

εQ = 1, we have that the log-deviations of value-added equal those of gross output, i.e.

v̂t = q̂t (see Appendix C.3). Therefore, the value-added data, which the model will match

exactly, will also correspond to industries’ real output in the model. We target value-added

since we do not observe output growth by industry at a quarterly frequency. Recall also

that the first-order outdegrees can be expressed as functions of prices only.41 Therefore,

by exactly matching the data on industries’ prices, we ensure that the model matches

industries’ first-order outdegrees as well as possible.

Appendix C.3 shows that our model filter follows a VARMA(1,1) process:[
∆v̂t+1

∆p̂t+1

]
=

[
Ṽv 0

0 P̃p

][
∆v̂t

∆p̂t

]
+

[
Va Vd

Pa Pd

][
ωAt+1

ωDt+1

]
+

[
Ṽa Ṽd

P̃a P̃d

][
ωAt

ωDt

]
, (38)

where the matrices in bold only depend on the model parameters listed in Table 3. By

expressing each of the shocks as a function of data and the lagged shock itself and assuming

that the initial shocks are zero, we can solve equation (38) forward to filter out both

41In the model’s log-linear form, this also applies to higher-order measures of centrality, such as
Bonacich centrality.
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technology and preference shocks.42 Alternatively, we can use the Kalman filter. The two

methods are generally equivalent.43,44

Once we have filtered out the shocks, we can back out the model-implied size and

centrality variables—namely real gross output and Domar weights, and first-order weighted

outdegrees—using equations (32) and (33), respectively.

Panel (a) in Figure 9 shows the resulting correlations between our measures of size and

centrality implied by the filtered technology and preference shocks. The broad pattern

across industries shows mostly positive correlations between steady-state deviations of

size and centrality, similar to its empirical counterpart shown in Figure 7. The discrepan-

cies between the empirical and model-implied size-centrality relationship arise mainly a

consequence of (i) the fact that the model-implied relationship between outdegrees and

prices d̂outt = Dp̂t does not hold exactly in the data, and (ii) the fact that value-added

and output growth are not identical in the data, unlike in the model.

Figure 9. Model-implied relationship between size and centrality
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Panel (b) in Figure 9 shows the implied size-centrality relationship resulting from the

filtered technology shocks only. We see that technology shocks tend to induce positive

correlation between Domar weights and outdegrees, but a negative one between real

output and outdegrees, consistent with our findings from the static model shown in Table

42We set the burn-in period to 7 quarters, so we discard the first 7 values of each filtered shock.
43More specifically, the convergence of the model filter will depend on the eigenvalues of[

Va Vd

Pa Pd

]−1 [
Ṽa Ṽd

P̃a P̃d

]
,

being less than 1 in modulus. See Atalay (2017) for a more elaborate discussion.
44Note that we do not need data on the state variable (capital, k̂t) to do this. As shown by Atalay (2017),

after solving for a variable in terms of capital and the shocks, the first-order log-linear approximation to
the equilibrium dynamics around the steady state has a VARMA representation, as long as an invertibility
condition is satisfied.
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1. Such strong negative co-movement between outdegrees and real output outside of

the steady state is at odds with the data (Figure 7). In contrast, panel (c) in Figure 9

shows that preference shocks alone induce very strong positive correlation between either

measure of producer size and centrality. Therefore, to match the empirical size-centrality

relationship as shown in Figure 7, a combination of supply and demand-type shocks is

needed. The relative importance of each type of shocks (which will partly depend on the

targets in the filtering procedure) will determine the extent to which the model can match

the empirical size-centrality relationship.

Although shocks transmit through the production network, the majority of variation in

value-added and prices will result from industries’ own shocks. To understand further the

patterns in Figure 9, it is therefore instructive to focus on ‘own-effects’ of shocks. Figure

10 shows the contemporaneous responses of our size and centrality measures to a positive

10% technology (or preference) shock for each industry.45,46 As in the simple model in

Section 3, both technology and preference shocks that are positive raise own real output.

Domar weights increase in the face of own preference shocks, and generally fall in response

to own technology shocks. Finally, outdegrees strongly fall in response to technology

shocks, and increase (though to a lesser extent) in response to a preference shock. As

industries’ own shocks account for the bulk of variation in own size and centrality, these

patterns thus help explain the results shown in Figure 9.

Figure 10. Contemporaneous effect to a +10% own technology/preference shock
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Recall that in the static model, the implied size-centrality relationship—as a function

45We focus on the contemporaneous effects of shocks since the dynamics of the model feature relatively
low persistence. Introducing capital adjustment costs in the model, for instance, would allow for greater
persistence in the dynamic responses to shocks.

46Although a 10% shock is reasonable given the size of filtered innovations, scaling is not our concern
since we want to illustrate the qualitative effects of these shocks; the effects of shocks are linear in the
size of the shock.
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of supply and demand shocks—depended crucially on the value of εM . Specifically, as

long as εM was less than 1, the static model suggested supply-side shocks would move

real output and centrality in opposite directions, unlike preference shocks. By varying the

value of εM and filtering out the resulting sets of shocks (keeping other model parameters

the same as in our baseline calibration), we find that the same result holds true in the

estimated dynamic model (see Table 4). With εM > 1, the effects of shocks on the

size-centrality relationship generally flips sign. Although the size-centrality relationship

in the data is not a targeted moment in the model filter, we nonetheless find that our

baseline calibration matches it better than alternative values of εM shown in Table 4.

In Table D.1 in Appendix D, we show that changing two other key parameters (εQ and

εD) does not change our fundamental findings about the effects of shocks on size and

centrality.

Table 4: Implied Size Centrality Relationship in Dynamic Model Under Different Values

of εM vs. Empirical Data Counterpart for the UK

Implied Size-Centrality Relationship Elasticity of Substitution Across Intermediates (εM ) Data

0.1 0.2 0.35 0.5 0.8 1 1.5

(baseline)

corr(d̂outt , q̂t), all shocks 0.03 0.02 0.00 -0.05 -0.21 -0.14 -0.27 0.12

corr(d̂outt , λ̂t), all shocks 0.31 0.27 0.23 0.13 0.06 0.11 -0.43 0.17

corr(d̂outt , q̂t), only technology shocks -0.49 -0.54 -0.67 -0.70 -0.77 -0.76 0.03 n.a.

corr(d̂outt , λ̂t), only technology shocks 0.73 0.69 0.58 0.46 -0.04 -0.45 0.66 n.a.

corr(d̂outt , q̂t), only preference shocks 0.89 0.88 0.86 0.84 0.81 0.75 -0.59 n.a.

corr(d̂outt , λ̂t), only preference shocks 0.92 0.91 0.90 0.90 0.88 0.84 -0.81 n.a.

Notes: d̂outt denotes producer centrality, q̂t denotes real gross output, and λ̂t denotes Domar weight (all in

terms of steady-state log deviations).

In summary, as in the simple model in Section 3, technology shocks tend to induce

negative (positive) comovement between real output (Domar weights) and outdegrees,

unlike preference shocks which tend to induce a positive size-centrality relationship. More

importantly, we show that demand-type shocks are needed in order to reconcile the model-

implied size-centrality relationship outside of steady state (Figure 9) with its empirical

counterpart (Figure 7).

Finally, recall that we found that the empirical size-centrality relationship in steady

state tends to be positive (Figure 6). This is also the case in this model, given our

calibration approach. For example, the steady-state input-output shares (γij) are calibrated

to match the average empirical counterparts over our sample, which underpin the empirical

results shown in Figure 6. The dynamic model is therefore able to match the empirical

size-centrality relationship both in and out of steady state.
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5 UK Productivity Growth Puzzle from a Produc-

tion Network Perspective

5.1 Deriving the Decompositions

We now focus on analysing the productivity growth slowdown in the UK following the

2008–09 recession using the dynamic model. The purpose of this application is to (i) show

that locating the growth ‘puzzle’ is different from identifying the underlying shocks, and (ii)

investigate how the existence of the production network—in particular, the heterogeneity

in industries’ size and centrality—affects (i).

Defining aggregate labour productivity as aggregate value-added divided by aggregate

labour, we can write it in log-linear form in the model from Section 4 as:

Ŷt − L̂t =
N∑
i=1

(
SYi v̂it − Lil̂it

)
= SY · v̂t − L · l̂t, (39)

where SYi corresponds to the steady-state share of industry i’s value-added in aggregate

value-added:

SYi =
(1− µi)PiQi∑N
i=1(1− µi)PiQi

, (40)

and Li denotes industry i’s steady-state share of aggregate labour. The growth of aggregate

labour productivity is thus given by:

∆Ŷt −∆L̂t = SY ∆v̂t − L∆l̂t

= SY
(
Vk∆k̂t + Vaω

A
t + Vdω

D
t

)
− L

(
Lk∆k̂t + Laω

A
t + Ldω

D
t

)
. (41)

where the matrices in bold depend on the model parameters only.47 Equation (41) shows

that we can decompose aggregate labour productivity growth into contributions from

industries and/or contributions from shocks. More precisely, since value-added and labour

are themselves VARMA(1,1) processes involving the underlying shocks, we can express

aggregate labour productivity itself in terms of the shocks. In doing historical decom-

positions of aggregate labour productivity growth, our interest will be in distinguishing

the contribution of an industry i (which could, in principle, reflect all shocks) from the

contribution of idiosyncratic shocks to industry i (which may affect the aggregate by also

transmitting to other industries).

In addition to idiosyncratic shocks, there may be common shocks that affect possibly

47Equation (41) makes use of equations (115) and (126) derived in Appendices C.3 and C.5, respectively.
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all industries. Once we have filtered out the shocks, we perform factor analysis to extract

the common component. In particular, we assume that there are possibly two common

factors affecting industries’ technology.48 We assume away the existence of common

preference shocks: unlike aggregate technology shocks, aggregate preference shocks do not

have an intuitive interpretation, but industry-specific preference shocks do.49

The relative importance of common shocks versus industry-specific shocks will mainly

depend on two factors: (i) the extent to which the targeted variables are correlated across

industries (in our case, value-added and labour growth), and (ii) the value of εM . If εM is

close to 0, industries source inputs from each other in an almost complementary fashion,

implying they do not substitute across them easily. In that case, a shock to a highly

central industry (such as finance) will act much like a common shock since many industries

are exposed to it and cannot substitute away. If instead εM is close to (or larger than)

one, industries can substitute across their input-suppliers relatively more easily so genuine

common shocks will be a much more likely source of cross-correlation in the observed

value-added/labour growth than shocks to any particular industry, no matter how central

that industry may be.

Since we are considering a first-order approximation around a non-stochastic steady

state, aggregate labour productivity depends on industries’ value-added and labour through

the time-invariant matrices, SY and L. In our baseline calibration, the values of the

entries in these matrices are related to the average data counterparts over our sample

(1997–2019).50 As a robustness check, we also consider two alternative calibrations: one

based on the 1997 data, and another based on the 2019 data. These alternative calibrations

yield very similar results to our baseline findings (see Figure 14 in Appendix D).

Note that backing out the shocks by matching industries’ value-added and prices

growth (as in Subsection 4.6) would not allow us to capture the actual movements in

industries’ labour sufficiently well (as this would not be a data moment that is targeted).

For this reason and for the purpose of this application, we back out the shocks by matching

48By construction, the common and sectoral (idiosyncratic) components add up to the total shock for
each industry. Note that Atalay (2017), whose dataset contains 30 sectors, allows for a single common
component. We have 79 industries so allowing for an additional common factor seems appropriate. This is
also comparable to Foerster et al. (2011), who allow for two common factors in a model with 117 sectors.

49Nonetheless, allowing for common preference shocks, consisting of one or two common factors, has a
negligible effect on our results.

50An important phenomenon that has taken place since the late 1990s in the UK has been the decline
of manufacturing sector’s share of labour, up until the 2008-09 crisis (from 16% in 1997 to 9% in 2009).
The steady-state matrix of industries’ shares of total labour, L, will thus not reflect the declining relative
importance of manufacturing for aggregate productivity growth solely due to its share of total labour
falling.
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the industries’ value-added and labour growth in the data using:[
∆v̂t+1

∆l̂t+1

]
=

[
Ṽv 0

0 L̃l

][
∆v̂t

∆l̂t

]
+

[
Va Vd

La Ld

][
ωAt+1

ωDt+1

]
+

[
Ṽa Ṽd

L̃a L̃d

][
ωAt

ωDt

]
. (42)

Again, all of the matrices determining the dynamics of the model are functions of the

model parameters listed in Table 3 only.

The attribution of the productivity growth slowdown to industries in equation (41)

will be affected by their size and centrality in two ways. First, for a given ∆v̂t or ∆l̂t,

larger industries will affect aggregate labour productivity more to the extent that their

share of total value-added, SY , and share of total labour, L, is larger. Second, column

j ∈ N in the matrices Vi (Li) for i ∈ (k, a, d), which will determine how value-added

(labour) in all industries respond to changes in industry j’s capital and its technology and

preference shocks, will generally have larger entries (in absolute size) for larger and/or

more central industries. Figure 11 illustrates this visually: it shows the effect of a 10%

technology shock in selected industries on other industries’ labour productivity. We can

see that shocks to the most central industries in the input-output network (e.g. basic

metals and finance) affect a disproportionately large number of other industries relative

to shocks to less central industries (e.g. agriculture and mining).

Figure 11. Ordered responses of other industries’ labour productivity to a 10% technology
shock in selected four industries
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Notes : The x-axis has 78 ticks, corresponding to 78 industries other than the industry which is

the source of the technology shock (in total, there are N = 79 industries). In each of the four

cases, the first tick corresponds to the most affected industry other than the industry in which

the shock has originated, the second tick to the second most affected industry other than the

industry in which the shock has originated, and so on.
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Figure 12. Aggregate labour productivity de-meaned growth: data vs. model
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Notes: *The model-implied series is based on de-meaned data on industries’ value-
added and jobs growth. The two series based on ONS data have been de-meaned
so as to ensure that all three series have the same mean over the period shown in
the figure (1999:Q4 to 2019:Q4). The two horizontal lines show the pre-2008 and
post-2010 averages in the data.

5.2 UK’s Productivity Growth Puzzle

The UK experienced very steady and relatively strong productivity growth prior to the

onset of the 2008–09 recession, with a clear slowdown of productivity growth post-crisis.

Many authors have referred to this slowdown as the UK’s productivity puzzle, or more

precisely, the growth puzzle. Using equation (41), we can directly compute the model-

implied aggregate labour productivity growth, since the value-added and labour dynamics

are exactly matched in the data. Figure 12 compares the resulting path with the data.

The correlation coefficient between the model-implied path and the data is 0.8 (0.6) if

imputed rents and extraterritorial activity are excluded (included).51 A convenient way

to conceptualise the growth puzzle is to think of it as the difference between average

post-crisis and pre-crisis growth. Throughout this section, we treat the period from

1999Q1–2007Q4 as ‘pre-crisis’, and 2010Q1–2019Q4 as ‘post-crisis’. We find that the

model-implied growth puzzle is around 0.26 percentage points (pp) lower growth per

quarter post-crisis, somewhat larger but close to the data counterpart of 0.18pp.

Using the filtered shocks from equation (42) and the dynamics of aggregate labour

productivity growth given by equation (41), we can analyse this slowdown by going beyond

51We exclude imputed rents and extraterritorial activity (section T) in the model, but we include the
ONS’s headline measure of output per worker for completeness. We do not exactly match the official
ONS aggregate data for two reasons. First, the log-linear approximation of the model dynamics does not
exactly match the ONS’s sectoral aggregation. Second, the parameters of the matrices SY and L are
time-invariant over the sample, unlike in the data.
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the accounting decomposition of the slowdown into industries’ contributions and analysing

the importance of various shocks in driving the puzzle. We make this distinction clear

below.

5.2.1 Accounting-Type Contributions of Industries

First, using equation (41), we can decompose aggregate labour productivity growth into

industries’ contributions. These contributions reflect all underlying shocks—common or

industry-specific—that have impacted a given industry and thereby affected aggregate

labour productivity. This exercise is conceptually similar to the decomposition in Tenreyro

(2018), who finds that three quarters of the UK’s productivity growth puzzle can be

accounted for by manufacturing and finance.52

The top panel (a) of Figure 13 shows the results of our historical decomposition. We

can see that the dynamics of aggregate productivity have been significantly driven by

the manufacturing sector. Albeit significantly smaller, the contributions from finance are

also non-negligible. Note that these contributions reflect potentially all underlying shocks,

be it industry-specific or common. The difference between the average pre-crisis and

post-crisis contribution to quarterly aggregate productivity growth from manufacturing is

-0.37pp. Therefore, the post-2010 slowdown in manufacturing growth alone can account

for more than the entirety of the aggregate growth puzzle (-0.26pp). Other sectors that

have contributed negatively (albeit to a much lesser extent than manufacturing) include

mining, finance, and ICT. By contrast, real estate along with admin and support and

public services have provided a partial offset given their better productivity performance

post-crisis than pre-crisis.

5.2.2 Contributions of Industry-Specific and Common Shocks

Using equation (41), we can also decompose aggregate labour productivity growth into

the contributions from the underlying shocks, including any common shocks. Intuitively,

the total contribution of the (filtered) idiosyncratic shock to, say, finance will include its

effect on aggregate labour productivity via potentially all industries, not only finance.

Panel (b) in Figure 13 shows the results.

We can see that the common technology shock has been important around the 2008-9

crisis years. On net, we find that its contributions have been generally more positive

post-crisis than pre-crisis. By contrast, the contributions of manufacturing-specific shocks

have been persistently negative and very sizeable since the crisis, in contrast to the

52The main difference relative to Tenreyro (2018) is that the linearity of aggregate labour productivity
in sectoral contributions and/or shocks here comes from the log-linear nature of the approximation around
the steady state. Instead, the approach in Tenreyro (2018) directly exploits the bottom-up aggregation of
national statistics.
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Figure 13. Historical decomposition of contributions to aggregate labour productivity
fluctuations

(a) Accounting contributions (by sector)
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Notes: All 2-digit industries included.

pre-crisis period. It also appears that the manufacturing sector’s accounting contributions,

shown in panel (a), tend to subsume the contributions from common technology shocks

to a meaningful degree. Intuitively, although technology shocks in this model propagate

both upstream (i.e. towards one’s input suppliers) and downstream (i.e. towards one’s

input purchasers), the downstream propagation is stronger.53 As the most central input-

supplying sector in the economy by far, manufacturing thereby ends up absorbing most of

the common technology shock.

We can compare the average contributions of idiosyncratic and common shocks post-

crisis and pre-crisis; any differences in these contributions will have affected the growth

puzzle. The red bars in Figure 14 show that the drag from more negative manufacturing-

53Intuitively, technology shocks change the prices faced by purchasers of inputs, creating powerful
downstream propagation. See Acemoglu, Akcigit and Kerr (2015) for a more elaborate discussion of the
propagation of shocks upstream and downstream in the network. Note that demand-side shocks have
much more minor effects on prices and propagate mainly upstream as affected industries adjust their
production levels and thus input demands.
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specific shocks post-crisis has been particularly large, at -0.65pp per quarter. This has

been partially offset by the common tehnology shocks which have been, on average,

0.13pp higher per quarter post-crisis than pre-crisis. Several sectors—most notably,

administrative and support services activities (“Admin & Support”) and mining and

quarrying (“Mining”)—have experienced significantly more positive shocks post-crisis

relative to pre-crisis than their accounting contributions (reflecting possibly all shocks)

would suggest.54

Figure 14. Contributions to the growth puzzle: sectors vs. shocks
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In the previous section, we argued that the value of εM is key in determining the effect

of shocks on the size-centrality relationship. Here, we find that our baseline results around

the contributions of shocks to the UK’s productivity growth puzzle are largely robust to

varying εM (Table 5). The exceptions are that we find that common and finance-specific

shocks generally tend to become more important in explaining the puzzle as εM increases.

This is to be expected, as when εM is higher, the model filter is more likely to attribute

common variation in industries’ productivity dynamics to common factors (as it is easier

to substitute away from idiosyncratic sources of variation). Importantly, as the most

central sector in the economy, shocks to the financial sector act much like common shocks

54Another way to visualise the growth puzzle is to compare the performance of sectors post-crisis over
time (i.e. without averaging) relative to their pre-crisis average performance. Figure D.1 in Appendix D
shows that manufacturing is a clear outlier, having underperformed by far the most its pre-crisis growth,
followed by finance, ICT and mining. Our results suggest fairly persistent deviations from pre-crisis
contributions, hence the results echo those obtained by averaging pre- and post-crisis performance in
Figure 14.
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(i.e., it is difficult to substitute away from them, even with a high εM). That said, the

ability of the model to match the aggregate productivity growth in the data generally falls

meaningfully as εM rises above 0.5. In Table D.2 in Appendix D, we show that changing

two other key parameters (εQ and εD) does not change our fundamental findings about

the drivers of the UK’s productivity growth slowdown.

Table 5: Contributions of Sector-Specific/Common Shocks to UK’s Post-2010

Productivity Growth Puzzle for Different Values of εM

Contribution to Productivity Elasticity of Substitution Across Intermediates (εM ) Data

Growth Puzzle 0.1 0.2 0.35 0.5 0.8 1 1.3

(baseline)

Manufacturing-specific shocks -0.63 -0.65 -0.65 -0.60 -0.66 -0.57 -0.31 n.a.

Finance-specific shocks -0.03 -0.03 -0.04 -0.07 -0.08 -0.11 -0.16 n.a.

Other sectors’ specific shocks 0.30 0.30 0.30 0.41 0.35 0.55 0.23 n.a.

Common shocks 0.12 0.13 0.13 -0.01 0.10 -0.13 -0.22 n.a.

Total growth puzzle -0.24 -0.24 -0.26 -0.27 -0.28 -0.27 -0.46 -0.18

Correlation of model-implied aggregate 0.79 0.78 0.77 0.75 0.70 0.62 0.25 n.a.

productivity growth and data counterpart

Notes: All other model parameters set according to the baseline calibration, shown in Table 3.

5.3 The Covid-2019 Pandemic

Our sample in the preceding analysis ended in 2019Q4, just before the Covid-19 pandemic.

Including the subsequent two years in our sample55, we find that the model continues

to match the actual data well (left-panel in Figure 15). Looking at the contributions

of shocks, our model suggests that the initial sharp downturn in 2020 as well as the

subsequent jump in the year-over-year growth rate of aggregate productivity are primarily

attributable to a common shock. This result is intuitive given the nature of the underlying

pandemic shock, which entailed broad-based restrictions on social and economic activity.

55Given the unusual nature and size of the Covid-19 shock, we refrain from using the data in the
period contaminated by the pandemic in our baseline analysis above, and the results in this section should
be seen as illustrative.
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Figure 15. Contributions to the growth puzzle: sectors vs. sectoral shocks (dashed)
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Overall, casting the UK productivity growth puzzle into a multisector model with a

production network allowed us to establish novel findings about its underlying drivers.

First, the majority of variation in aggregate productivity growth is driven by industry-

specific shocks. Second, the common technology shock has been more important around

the crisis years and the Covid-19 pandemic, and its contributions have been generally

more positive post-crisis than pre-crisis (excluding the Covid-19 period). Third, both in

an accounting sense and as a source of industry-specific shocks, manufacturing has been

by far the largest negative contributor to the UK’s post-2010 slowdown in productivity

growth. Finally, several sectors—most notably, admin and support services activities

as well as a number of public services—have experienced notably more positive shocks

post-crisis relative to pre-crisis than their accounting contributions (reflecting possibly all

shocks) would suggest.

6 Conclusion

In this paper, we focused on two key characteristics of producers in a production net-

work—their size and centrality—and their relationship in and outside of steady state.

Existing literature shows that these characteristics are intimately related to the extent of

shock transmission in production networks, both at a macro and micro level.

We analysed the characteristics of the UK economy’s input-output network, showing

that there are significant asymmetries in the degree of importance of industries as input

suppliers. We showed that there is significant time-variation in the input-output network

over time, which is inconsistent with a Cobb-Douglas aggregation of intermediate inputs

in the production function. We also show that the empirical size-centrality relationship

tends to be positive in steady state as well as away from it for most industries.

To conceptualise time-variation in the input-output network in a model with a pro-
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duction network, we set up a simple multisector model with a CES-type aggregation

of intermediate inputs, featuring technology and demand shocks. We show that the

link between shocks and producer centrality—and thus on its relationship with producer

size—is closely related to the degree of input substitutability. As long as the elasticity of

substitution is less than unitary, we show that technology shocks tend to induce negative

(positive) co-movement between real output (Domar weights) and outdegrees, unlike

preference shocks which tend to induce a positive size-centrality relationship.

We then consider a more general, dynamic model with an input-output network that

we calibrate using UK data. We use this model to filter out technology and demand

shocks, and show that the implied size-centrality relationship based on the filtered shocks

can be reconciled with this empirical counterpart only in presence of both supply-side

and demand-type shocks. These results thus confirm the conclusions reached within the

simple model.

Finally, we use this model to analyse the UK’s post-2010 productivity growth slowdown

from a production network perspective, distinguishing industries’ accounting contributions

from the contributions of industry-specific and common shocks. We find that idiosyn-

cratic shocks to the manufacturing sector have played a key role in driving the aggregate

productivity slowdown.
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Appendices

A. Data

All data used in this paper is provided by the Office for National Statistics (ONS) and is

publicly available.

Supply and Use Tables

The supply and use tables are published annually and available to download via this link.

The vintage used in this paper was released on 29 October 2021.

Gross Value-Added (GVA) data

The data on industries’ value-added can be obtained from the ONS’s GDP(O) low-level

aggregates dataset, available at this link. The vintage we use was released on 31 March

2022. The quarterly CVM GVA data are available from 1990Q1 to 2021Q4.

Jobs data

The data on jobs per industry can be downloaded via this link. The vintage we use was

released on 15 March 2022. The quarterly jobs data are available from 1978Q2 to 2021Q4.

Deflators data

The data on industries’ price deflators can be obtained via this link. The vintage we use

was released on 15 March 2022.

Therefore, the full dataset used to obtain our baseline results and to filter out the shocks

has T = 87 (1997Q2–2019Q4) and N = 91. The burn-in period is set to equal 7 quarters.

Seasonal adjustment

To seasonally adjust the data, we use the Census X-13 method in EViews.
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B. Derivations Related to Section 3

B.1 Competitive Equilibrium

A competitive equilibrium of this economy consists of prices (P1t, ..., PNt), wage Wt, labour

(L1t, ..., LNt), consumption (C1t, ..., CNt), and quantities ({Mijt}i,j∈(1,...,N)) such that the

representative consumer maximises her utility (subject to the budget constraint), the

representative firms in each industry maximise profits, markets clear and the resource

constraints are satisfied, that is

Cit +
N∑
j=1

Mijt = Qit, ∀i = 1, ..., N, (43)

N∑
i=1

PitCit = WtLt. (44)

N∑
i=1

Lit = Lt. (45)

The consumer’s problem is

max
{Cit}i∈(1,...,N)

N∏
i=1

Cγit
it −

Lφt
φ

s.t.
N∑
i=1

PitCit = WtLt. (46)

The first-order condition (FOC) with respect to Cit is given by

γitC
γit−1
it

N∏
j 6=i

C
γjt
jt = µitPit,

γitCt
Cit

= µitPit. (47)

where µit is the Lagrange multiplier on the constraint. The FOC w.r.t. Lt is given by

Lφ−1
t = µitWt. (48)

We thus must have that:

γitCt
Cit

=
Lφ−1
t

Wt

Pit. (49)

45



Note that the ideal price index is given by Pt =
∏N

i=1

(
Pit
γit

)γit
, which yields:

γitWtLt
PtCit

=
Lφ−1
t

Wt

Pit. (50)

Solving for Cit, we have that:

Cit =
γitW

2
t L

2−φ
t

PitPt

. (51)

To produce a given amount Qit, the representative firm in each industry i faces the

following cost-minimisation problem:

min
Lit,{Mijt}j 6=i∈(1,...,N)

WtLit +
N∑
j=1

PjtMijt − λit
[(
ZitL

αi
itM

1−αi
it

)ηi −Qit

]
.

The FOC with respect to Lit is given by:

Wt − λit
(
ηiαiL

ηiαi−1
it Zηi

itM
ηi(1−αi)
it

)
= 0. (52)

Multiplying both sides by Lit, we have that:

WtLit = λitηαiQit, i.e. Lit =
λitηαiQit

Wt

. (53)

where λit is the Lagrange multiplier, and the FOC with respect to Mijt is given by:

Pjt − λit
(
Zηi
it L

ηiαi
it

ηi(1− αi)εM
εM − 1

M
ηi(1−αi)εM−εM+1

εM
it µ

1
εM
ij

εM − 1

εM
M

−1
εM
ijt

)
= 0, (54)

which can be simplified to obtain:

Pjt − λit
(
Zηi
it L

ηiαi
it ηi(1− αi)M

ηi(1−αi)εM−εM+1

εM
it µ

1
εM
ij M

−1
εM
ijt

)
= 0. (55)

Multiplying both sides of this equation by Mijt and rearranging, we have that:

Mijt =

λitηi(1− αi)QitM
1−εM
εM

it µ
1
εM
ij

Pjt


εM

. (56)

46



Let the natural price index for Mit be denoted by PM
it . Since Mit is a CES aggregator,

we have that the corresponding natural price index is given by:

PM
it =

[
N∑
j=1

µijP
1−εM
jt

] 1
1−εM

. (57)

Using the FOC with respect to Mijt, it then follows that:

PM
it = λitηi(1− αi)QitM

−1
it , (58)

or, equivalently:

Mit =
λitηi(1− αi)Qit

PM
it

. (59)

By plugging the cost-minimising values of Lit and Mit back into the production function,

we have that at the cost-minimising solution:

Qit = Zηi
it

(
λitηiαiQit

Wt

)ηiαi (λitηi(1− αi)Qit

PM
it

)ηi(1−αi)
. (60)

We can then solve for λit, which yields:

λit = ζi
Q

1−ηi
ηi

it

Zit
Wαi
t (PM

it )1−αi , (61)

where ζi = (ηiαi)
−αi [ηi(1− αi)]−(1−αi). It then follows that the cost-minimising solutions

for Lit, Mit, and Mijt are given by:

Lit = ζiηiαi
Q

1
ηi
it

Zit
Wαi−1
t (PM

it )1−αi , (62)

Mit = ζiηi(1− αi)
Q

1
ηi
it

Zit
Wαi
t (PM

it )−αi , (63)

Mijt =
ζiηi(1− αi)Wαi

t (PM
it )εi−αiQ

1
ηi
it µij

ZitP
εM
jt

(64)

Therefore, it follows that the total cost at the optimum is given by:

C(Qit) = WtLit + PM
it Mit

= Q
1
ηi
it

(
ζiηiαi
Zit

Wαi
t (PM

it )1−αi +
ζiηi(1− αi)Wαi

t (PM
it )εM−αi

Zit

N∑
j=1

µijP
1−εM
jt

)
. (65)
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Recalling that ζi = (ηiαi)
−αi [ηi(1− αi)]−(1−αi), the marginal cost, C ′(Qit), is given by:

C ′(Qit) =
Q

1−ηi
ηi

it

Zit

(
Wt

ηiαi

)αi ( PM
it

ηi(1− αi)

)1−αi
. (66)

Since all markets are perfectly competitive, it must be the case that Pit = C ′(Qit), i.e.:

Pit =
Q

1−ηi
ηi

it

Zit

(
Wt

ηiαi

)αi ( PM
it

ηi(1− αi)

)1−αi
. (67)

Plugging the solutions for Cit (from the representative consumer’s problem) and Mjit

(from the representative firms’ problem) into the market clearing condition, we have that:

Qit =
γitW

2
t L

2−φ
t

PitPt

+
N∑
j=1

ζjηj(1− αj)W
αj
t (PM

jt )εM−αjQ
1
ηj

jt µji

ZjtP
εM
it

. (68)

Therefore, the equilibrium of this economy is fully characterised by a system of 3N + 1

equations in the same number of unknowns ((Pit))i=1,...,N , (Qit))i=1,...,N , (Lit))i=1,...,N ,Wt)

given by:

Pit =
Q

1−ηi
ηi

it

Zit

(
Wt

ηiαi

)αi ( PM
it

ηi(1− αi)

)1−αi
, (69)

Qit =
γitW

2
t L

2−φ
t

PitPt

+
N∑
j=1

ζjηj(1− αj)W
αj
t (PM

jt )εM−αjQ
1
ηj

jt µji

ZjtP
εM
it

, (70)

Lit = ζiηiαi
Q

1
ηi
it

Zit
Wαi−1
t (PM

it )1−αi , (71)

Wt

N∑
i=1

Lit =
N∏
i=1

Cγit
it Pt. (72)

where, without loss of generality, we take the consumer price index as the numeraire and

set Pt = 1.

B.2 Equilibrium intermediate input shares

By definition, the share of industry i’s intermediate input expenses attributable to goods

sourced from industry j is given by:

ωijt ≡
PjtMijt

PM
it Mit

. (73)
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Having solved for the optimal intermediate input demands in Appendix B.1, we have that

the equilibrium intermediate input shares are given by:

ωijt =

Pjt

(
ζiηi(1−αi)W

αi
t (PMit )εM−αiQ

1
ηi
it µij

ZitP
εM
jt

)

PM
it

(
ζiηi(1− αi)Q

1
ηi
it

Zit
Wαi
t (PM

it )−αi

)

= µij

(
Pjt
PM
it

)1−εM
. (74)

B.3 First-Order and Second-Order Weighted Outdegrees

The first-order weighted outdegree of industry j is given by:

D1,out
jt ≡

N∑
i=1

ωijt =
N∑
i=1

µij

(
Pjt
PM
it

)1−εM
. (75)

By definition, the second-order weighted outdegree of industry j is given by:

D2,out
jt ≡

N∑
i=1

ωijtD
1,out
it . (76)

We now turn to characterising the responses of first-order and second-order weighted

outdegrees in response to technology and demand shocks. Note that, by definition:

∂D2,out
jt

∂Pjt
=

N∑
i=1

[
∂ωijt
∂Pjt

D1,out
it + ωijt

∂D1,out
it

∂Pjt

]
,

Since Pjt has a weight of at most one in PM
it , the first partial derivative (∂ωijt/∂Pjt) is

non-negative, and it will generally be positive as long as industry i sources inputs from

industries other than industry j as well. Regarding the second partial derivative, note

that:

∂Dout
it

∂Pjt
=

N∑
k=1

[
µkiP

1−εM
it (εM − 1)(PM

kt )εM−2µkjP
−εM
jt (PM

kt )εM
]
,

which is clearly negative if εM < 1. Note that the above equation can be rewritten as:

∂Dout
it

∂Pjt
=

N∑
k=1

[
ωkit(εM − 1)ωkjtP

−1
jt

]
.
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If i = j, then:

∂Dout
jt

∂Pjt
=

N∑
i=1

(1− εM)ωijt(1− ωijt)P−1
jt .

Therefore, we have that the partial derivative of industry j’s second-order weighted

outdegree with respect to its price is given by:

∂D2,out
jt

∂Pjt
=

N∑
i=1

∂ωijt
∂Pjt

D1,out
it +

N∑
i=1

ωijt
∂D1,out

it

∂Pjt

=
N∑
i=1

(1− εM)ωijt(1− ωijt)P−1
jt

N∑
k=1

ωkit +
N∑

i=1,i 6=j

ωijt

N∑
k=1

[
ωkit(εM − 1)ωkjtP

−1
jt

]
+ ωjjt

N∑
i=1

(1− εM)ωijt(1− ωijt)P−1
jt

= (1− εM)P−1
jt

N∑
i=1,i 6=j

ωijt

N∑
k=1

ωkit (1− ωijt − ωkjt)

+ (1− εM)P−1
jt ωjjt

N∑
k=1

ωkjt (2− ωjjt − ωkjt) ,

which can be rewritten as:

∂D2,out
jt

∂Pjt
= (1− εM)P−1

jt

[
N∑
i=1

ωijt

N∑
k=1

ωkit (1− ωijt − ωkjt) + ωjjt

N∑
k=1

ωkjt

]
.

This derivative will be non-negative if:

N∑
i=1

ωijt

N∑
k=1

ωkit (1− ωijt − ωkjt) +
N∑
i=1

ωijtωjjt ≥ 0, i.e.

N∑
i=1

ωijtωjjt ≥
N∑
i=1

ωijt

N∑
k=1

ωkit (ωijt + ωkjt − 1) .

The above condition can be written as:

D2,out
jt + ωjjtD

1,out
jt ≥

N∑
i=1

ωijt

N∑
k=1

ωkit (ωijt + ωkjt) , (77)

which is strictly satisfied if ωijt + ωkjt < 1, which will typically be the case. Note that if

ωijt + ωkjt = 1, then the right-hand side equals D2,out
jt .

Note that the maximum value of ωijt + ωkjt for any (i, k) ∈ N pair is 2. For a given

ωkjt, the maximum value of ωkit is 1− ωkjt. So the maximum value of the right-hand side
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in equation (77) is given by the right-hand side of the inequality below:

N∑
i=1

ωijtωjjt >

N∑
i=1

ωijt

N∑
k=1

(1− ωkjt) (ωijt + ωkjt − 1)

Suppose that ωjjt = 0, which makes the left-hand side of the above inequality as small as

possible. For the inequality to still hold, we thus need that:

N∑
i=1

ωijt

N∑
k=1,k 6=j

(1− ωkjt) (ωijt − (1− ωkjt)) +
N∑
i=1

ωijt(1− ωjjt) (ωijt − (1− ωjjt)) < 0

or, equivalently, that:

N∑
i=1

ωijt

N∑
k=1,k 6=j

[(1− ωkjt) (ωijt − ωijt(1− ωkjt))− (1− ωijt)] < 0. (78)

Treating ωijt as given, the expression inside the second sum is maximised when:

1− ωkjt − ωijt − ωkjt + 1 = 0, i.e. ωkjt =
2− ωijt

2
.

If k = i, then clearly ωkjt = 2/3. It can then be easily shown that the term inside the

second sum in equation (78) is given by:

(1− ωkjt) (ωijt − (1− ωkjt))− (1− ωijt) = −3

4
ω2
ijt − ωijt < 0 if ωijt 6= 0.

Intuitively, since ωijt increases with Pjt for all i, then at least some of the remaining shares

ωikt (k 6= j) have to fall. This reduces other industries’ (k 6= j) outdegrees, but the sum

of all outdegrees must always equal N , by definition. For industry j, the increases in ωijt

more than offset the falls in D1,out
it , so D2,out

jt is increasing in Pjt.

B.4 Derivation of equation (20)

Recall from equation (19) that industry j’s Domar weight is given by:

λjt =
PjtQjt

PtCt
=
PjtCjt
PtCt

+
N∑
i=1

PjtMijt

PtCt
.

Using the definition of ωijt, we can rewrite the above equation as:

λjt =
PjtCjt
PtCt

+
N∑
i=1

ωijt
Pjt

PtCt

PM
it Mit

Pjt
.

51



Since γit = PjtCjt/(PtCt) and (1− αi) = PM
it Mit/(PitQit), we finally have that:

λjt = γit +
N∑
i=1

(1− αi)ωijtλit.

B.5 Size-Centrality Relationship in Two Simple Economies

Consider two simple economies consisting of four industries and a representative consumer.

In both examples, we assume that (i) the labour share in gross output equals 40% for all

industries (i.e. αi = α = 0.4), (ii) there are slightly decreasing returns to scale (ηi = 0.95),

implying that preference shocks affect relative prices, (iii) intermediate inputs are gross

complements (εM = 0.4), and (iv) the Frisch elasticity of labour supply equals 2 (i.e.

φ = 1.5). The two crucial parameters for the purposes of this exercise are εM and ηi:

εM < 1 implies that shocks to industry j that lower (raise) its price will lower (raise) its

centrality as measured by its outdegree, and ηi < 1 implies that relative prices (and thus

also outdegrees) need not be invariant to preference shocks.56

Example 1: Symmetric Economy

Consider a N = 4 economy consisting of identical industries and a representative

household, i.e. it is perfectly symmetric (Figure B.1). In particular, assume that

the steady-state intermediate input shares µij = 1/4 for all (i, j) pairs, and that the

steady-state consumption shares ξi = 1/4 for all i. We further assume that all shocks

follow an AR(1) process, and consider separately a 20% increase in Z1t at time t = 1, and

a 20% increase in D1t at time t = 1. The effect of these innovations will die out gradually

as we set the AR(1) coefficient to 0.9.

56If ηi = 1, preference shocks will have no effect on relative prices. If εM = 1, industries’ centralities
will be independent of shocks.

52



Figure B.1. Graphical representation of the economy in Example 1
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Figure B.2 shows the responses to the positive technology shock to industry 1.

This shock will make industry 1 relatively more productive than the other industries,

driving its real output up and its price down. Its outdegree and Domar weight fall, and

the opposite happens to the other industries, whose responses are identical given the

symmetric nature of this economy. Intuitively, since P1t falls by more than the other

prices upon impact, the outdegree of industry 1 falls. Although the real output of all

industries increases, nominal output of industry 1 increases by less due to the offsetting

effect of its price falling by more, and hence its Domar weight falls upon impact. In other

words, idiosyncratic technology shocks imply a negative (positive) relationship between

output (Domar weights) and centrality for the industry in which the shock originates. For

the other industries, the implied size-centrality relationship is positive.

Figure B.2. Responses to a positive technology shock in industry 1 (Example 1)
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Figure B.3 shows the responses to the positive demand shock in industry 1. The
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exogenous increase in the household’s ‘taste’ for the output of industry 1 will drive its real

output and price up, so industry 1’s outdegree, real output, and Domar weight all increase.

The opposite happens to the other industries. Intuitively, since P1t increases by more

than the other prices, industry 1’s outdegree increases. Therefore, idiosyncratic preference

shocks imply a positive size-centrality relationship for all industries. Note, however, that

although the demand shock in industry 1 increases its outdegree, the effect is very small.

Intuitively, demand shocks leave relative prices unchanged in this economy as long as

there are constant returns to scale.57 Since we assume slightly decreasing returns to scale

(η = 0.95), demand shocks do affect prices, but only slightly.

Figure B.3. Responses to a positive demand shock in industry 1 (Example 1)
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Example 2: Separate Production of Intermediate and Final Goods

Consider now a different N = 4 economy consisting of industries 1 and 2, which produce

intermediate goods only without sourcing from each other, and industries 3 and 4,

which produce final goods only and source their intermediate inputs from industries

1 and 2 (Figure B.4). Suppose further that industry 2 is relatively more important

as an input supplier than industry 1. We will parametrise this economy by setting

the intermediate input shares µ11 = µ22 = 1, µ31 = µ41 = 0.3, µ32 = µ42 = 0.7, and

µij = 0 for all other (i, j) pairs. Assume further that industry 3 is relatively less

important as a final good producer than industry 4, i.e. ξ3 = 0.3. We first consider

a 20% increase in Z1t at time t = 1, and then separately a 20% increase in D3t at time t = 1.

57If ηi = 1, we can solve for prices in equation (14) (taking Wt as the numeraire) independently of the
demand shocks.
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Figure B.4. Graphical representation of the economy in Example 2
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Figure B.5 shows the responses to a positive technology shock to industry 1. This

shock makes one of the two input-supplying industries relatively more productive than

before, reducing its marginal cost and allowing it to set a lower price. Since industry

1’s price falls by more than that of industry 2, industry 1’s outdegree falls and that of

industry 2 (equal to 4−Dout
1t ) increases. Final-good-producing industries 3 and 4 have,

by construction, zero outdegrees. Real output increases across all industries. The Domar

weight of industry 1 falls and that of industry 2 increases. The Domar weights of the final

good producers are unchanged since they only depend on consumer preferences:

PitQit

PtCt
=
PitCit
PtCt

= γit, i = 3, 4. (79)

which is a consequence of the Cobb-Douglas nature of consumer preferences. Therefore,

in this economy which features a completely separate production of intermediate and final

goods, the implied size-centrality relationship due to technology shocks to intermediate

producers is the same as in the symmetric economy in example 1.58

58The final-good producers in this economy have, by construction, zero centrality. Since technology
shocks to them do not affect the relative price of the intermediate-good producers, they imply no
relationship between size and centrality for any industry.
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Figure B.5. Responses to a positive technology shock in industry 1 (Example 2)
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Figure B.6 shows the impulse responses to a positive demand shock in industry 3.

This shock increases the consumer’s taste for the output of industry 3. Note that the

outdegrees of all industries are unchanged. Intuitively, the outdegrees of industries 1

and 2 are a function of P1t and P2t only (and some parameters), and the relative price

P1t/P2t is constant as long as there are no technology shocks to industries 1 and 2. The

figure also shows that real output of industry 3 increases, whilst that of industry 4

falls; this is expected given the ‘shift’ in consumer preferences. Real gross output of the

input-supplying industries 1 and 2 increases slighly. Finally, whilst the Domar weight of

industry 3 increases and that of industry 4 falls, the Domar weights of the input suppliers

are unchanged. Note that the Domar weights of industries 1 and 2 are independent of all

shocks in the model, and do not change because the relative price P1t/P2t is independent

of demand shocks.59 Therefore, if the production of intermediate and final goods is

completely separated, demand shocks imply no relationship between size and centrality

(since centrality is independent of them).

Figure B.6. Responses to a positive demand shock in industry 3 (Example 2)
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59If there are also constant returns to scale, the Domar weights of industries 1 and 2 sum to (1−α)/α.
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Overall, these two examples based on the simple model from Section 3 suggest that,

in general, technology shocks tend to imply a negative relationship between real output

and outdegrees, and a positive one between Domar weights and outdegrees.60 Demand

shocks, on the other hand, tend to imply a positive size-centrality relationship regardless

of whether one takes output or Domar weight as the measure of size.

B.6 Two Generalisations of the Elasticity of Substitution

Across Intermediate Inputs

Generalisation 1: Different εM Across Producers

We implicitly assumed above that εM is identical across all producers. Allowing εM to

differ across producers would simply require replacing εM by the producer-specific εiM in

equation (16).61 This is because the only elasticities that appear in the cost-minimisation

problem of each producer are those characterising its own production process. The effect

of changing Pjt on PM
it in equation (16) will depend on εiM (and not εjM), but since the

weight of Pjt in PM
it will typically be less than one, the change in PM

it will tend to be

less than proportional, at least in the range of empirically plausible values of εiM . The

intuition from above would thus apply: as long as εiM < 1, a shock that causes industry

j’s own price Pjt to increase (decrease) will lead to an increase (decrease) in industry j’s

outdegree.

Generalisation 2: More vs. Less Substitutable Intermediate Inputs

Another assumption that we made above is that within the bundle of intermediate inputs

(Mit), all inputs are equally substitutable (or complementary). One might instead argue

that, for a given producer, there may exist multiple kinds of intermediate inputs. More

specifically, suppose that each producer faces a set of (almost) essential intermediate inputs,

S, and a set consisting of the remaining intermediate inputs, N . Intermediate inputs such

as electricity, gas, and water could plausibly belong to the former set, and others such as

water transport and air transport could belong to the latter set. Producers would then

bundle together the two sets of inputs, each consisting of (different) intermediate inputs

themselves. Assuming the bundling is consistent with CES aggregation, the bundle (Mit)

would be characterised by three elasticities of substitution. First, substitutability within

the two sets of inputs would be determined by potentially different elasticities εS and εN ,

60As Example 1 shows, technology shocks may imply a positive size-centrality relationship for the
industries other than the industry in which the shock originated. However, in more realistic settings such
as that in Section 4, the majority of variation in industries’ size and centrality will tend to be driven by
their own shocks, hence our emphasis on the implied relationship for the ‘shock-originating’ industry.

61Similarly, we assume throughout that εM is time-invariant. Relaxing this assumption would amount
to replacing εM by εM,t in equation (16), with the underlying logic unchanged.
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respectively. Second, the extent to which producers can substitute across the two sets of

inputs would be determined by εSN .

In Appendix B.7, we show that the first-order weighted outdegree of industry j

belonging to set κ = {S,N} is given by:

Dout
jt =

N∑
i=1

µij

(
Pjt

P κ
it

)1−εκ (
P κ
it

PM
it

)1−εSN

, (80)

where εκ corresponds to εS (εN ) if j ∈ S (j ∈ N ), and similarly for P κ
it , which denotes

the ideal price index associated with the bundle of (almost) essential inputs (κ = S) or

the remaining inputs (κ = N ), respectively.

In Appendix B.7, we show that the partial derivative of industry j’s outdegree (where

j belongs to κ = {S,N}) with respect to its price is given by:

∂Dout
jt

∂Pjt
=

N∑
i=1

µij

[
1− εκ − (εSN − εκ)

ωijt
ωκ
it

− (1− εSN )ωijt

](
P κ
it

Pjt

)εκ (PM
it

P κ
it

)εSN 1

PM
it

,

(81)

where ωκ
it = (P κ

itM
κ
it )/(P

M
it Mit), i.e. the equilibrium share of expenses on the set of κ

inputs in industry i’s total intermediate consumption. In Appendix B.7, we show that if

εSN < 1—which seems plausible given our interpretation of the sets S and N—the value

of εκ that ensures that industry j’s outdegree is increasing in its own price is given by:

εκ <
ωκ
it − ωijt [(1− εSN )ωκ

it + εSN ]

ωκ
it − ωijt

. (82)

Note that the term (1− εSN )ωκ
it + εSN is smaller than 1 if εSN < 1, as we just assumed.

The right-hand side in equation (82) is thus larger than 1. Therefore, if there exists a set

of essential inputs alongside a set of remaining inputs, and if the elasticity of substitution

between these two sets of inputs is less than unity, then the positive relationship between

industries’ outdegrees and their prices is conditional on the elasticity of substitution

within the set they produce in being strictly less than the value on the right-hand side of

(82)—which is a weaker requirement than that in equation (17), which required that this

elasticity is less than 1.62 In other words, to the extent that the intermediate aggregation

process—featuring essential and less essential inputs—is more realistic than that in the

baseline model, the condition that ensures that there exists a positive relationship between

outdegrees and own prices is relatively easier to satisfy.63

62We clearly recover this condition if εSN = 1.
63For example, if εSN = 0.1, ωκ

it = 0.3, and ωijt = 0.05, then industry j’s outdegree is increasing in its
price (Pjt) as long as εκ < 1.166.
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B.7 More vs. Less Substitutable Intermediate Inputs

For ease of exposition (and without loss of generality for the sake of argument), assume

that ηi = 1, i.e. all industries produce under constant returns to scale. Relative to the

baseline model, we now have that the bundle of intermediate inputs consists of two sets

of inputs, some (almost) essential and other which are non-essential, and is given by

Mit =

[
δ

1
εSN
i (MS

it )
εSN−1

εSN + (1− δi)
1

εSN (MN
it )

εSN−1

εSN

] εSN
εSN−1

. In turn, the bundle of essential

inputs is given by MS
it =

[∑
j∈S µ̃

1
εS
ij M

εS−1

εS
ijt

] εS
εS−1

and the non-essential bundle is given

by MN
it =

[∑
j∈N µ̃

1
εN
ij M

εN−1

εN
ijt

] εN
εN−1

where µ̃ij = µij/δi if j ∈ S and µ̃ij = µij/(1 − δi) if

j ∈ N .

To derive the equation for intermediate input shares (and thus for industries’ weighted

outdegrees), one may follow the steps from Appendix B.3. The main difference is that,

now, there is an FOC with respect to Mijt if j ∈ S, namely:

Pjt − λit
[
ZitL

αi
it

(
(1− αi)εSN
εSN − 1

M
(1−αi)εSN−εSN+1

εSN
it δ

1
εSN
i

εSN − 1

εSN
(MS

it )
−1
εSN

)
(

εS
εS − 1

(MS
it )

1
εS µ̃

1
εS
ij

εS − 1

εS
M
−1
εS
ijt

)]
= 0. (83)

Now, the natural price index for Mit is given by:

PM
it =

[
δi(P

S
it )

1−εSN + (1− δi)(PNit )1−εSN
] 1

1−εSN ,

and the two subindices as

P Sit =

(∑
j∈S

µ̃ijP
1−εS
jt

) 1
1−εS

,

PNit =

(∑
j∈N

µ̃ijP
1−εN
jt

) 1
1−εN

.

It can then be shown that:

P Sit = λit(1− αi)QitM
1−εSN
εSN

it δ
1

εSN
i (MS

it )
−1
εSN ,

PNit = λit(1− αi)QitM
1−εSN
εSN

it (1− δi)
1

εSN (MN
it )

−1
εSN .
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Following analogous steps to those in B.3, it can be easily shown that the intermediate

input shares in equilibrium are now given by:

ωijt =

µij
(
Pjt
PSit

)1−εS ( PSjt
PMit

)1−εSN
if j ∈ S,

µij

(
Pjt
PNit

)1−εN (PNjt
PMit

)1−εSN
if j ∈ N .

Without loss of generality, let us focus on j ∈ S. The first-order weighted outdegree

of industry j is given by:

Dout
jt ≡

N∑
i=1

ωijt =
N∑
i=1

µij

(
Pjt
P Sit

)1−εS ( P Sit
PM
it

)1−εSN
.

Note that the partial derivatives of the price indices corresponding to essential and

non-essential inputs with respect to Pjt are given by:

∂P Sit
∂Pjt

=
1

1− εS

[∑
j∈S

µ̃ijP
1−εS
jt

] 1−1+εS
1−εS

µ̃ij(1− εS)P−εSjt

= µ̃ij

(
Pjt
P Sit

)−εS
,

and

∂PM
jt

∂Pjt
=

1

1− εSN
(PM

it )εSN δi(1− εSN )(P Sit )
−εSN ∂P

S
it

∂Pjt

= δi

(
P Sit
PM
it

)−εSN
µ̃ij

(
Pjt
P Sit

)−εS
.

Therefore, we have that the partial derivative of industry j’s outdegree with respect to its
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own price is given by:

∂Dout
jt

∂Pjt
=

N∑
i=1

[
µij(1− εS)P−εSjt (P Sit )

εS−εSN (PM
it )εSN−1

+ µijP
1−εS
jt (εS − εSN )(P Sit )

εS−εSN−1∂P
S
it

∂Pjt
(PM

it )εSN−1

+ µijP
1−εS
jt (P Sit )

εS−εSN (εSN − 1)(PM
it )εSN−2

∂PM
jt

∂Pjt

]
=

N∑
i=1

[
µij(1− εS)P−εSjt (P Sit )

εS−εSN (PM
it )εSN−1

+ µijP
1−εS
jt (εS − εSN )(P Sit )

εS−εSN−1µ̃ij

(
Pjt
P Sit

)−εS
(PM

it )εSN−1

+ µijP
1−εS
jt (P Sit )

εS−εSN (εSN − 1)(PM
it )εSN−2δi

(
P Sit
PM
it

)−εS
µ̃ij

(
Pjt
P Sit

)−εS ]
.

Taking out the first term inside the square brackets, we can rewrite this as:

∂Dout
jt

∂Pjt
=

N∑
i=1

[
µij(1− εS)P−εSjt (P Sit )

εS−εSN (PM
it )εSN−1

(
1 +

εS − εSN
1− εS

Pjt(P
S
it )
−1µ̃ij

(
Pjt
P Sit

)−εS
+
εSN − 1

1− εS
Pjt(P

M
it )−1δi

(
P Sit
PM
it

)−εSN
µ̃ij

(
Pjt
P Sit

)−εS )]
.

Assuming εS < 1, i.e. the essential inputs are relative complements, the sign of ∂Dout
jt /∂Pjt

is thus determined by the sign of the term multiplying it. Define ωSit as the share of

expenditure on an essential input i in industry i’s total expenditure on intermediate

inputs, i.e.:

ωSit =
P SitM

S
it

PM
it Mit

=
P Sit δiMit(P

S
it )
−εSN (PM

it )εSN

PM
it Mit

= δi

(
P Sit
PM
it

)1−εSN
.
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Note that:

Pjt(P
S
it )
−1µ̃ij

(
Pjt
P Sit

)−εS
=

P 1−εS
jt

(P Sit )
1−εS

µ̃ij

= ωijtδ
−1
i

(
P Sit
PM
it

)εSN−1

=
ωijt
ωSit

.

Note also that:

Pjt(P
M
it )−1δi

(
P Sit
PM
it

)−εSN
µ̃ij

(
Pjt
P Sit

)−εS
=
ωijt
ωSit

(P Sit )(P
M
it )−1δi

(
P Sit
PM
it

)−εSN
=
ωijt
ωSit

ωSit = ωijt.

Therefore, we have that:

∂Dout
jt

∂Pjt
=

N∑
i=1

[
µij(1− εS)P−εSjt (P Sit )

εS−εSN (PM
it )εSN−1

(
1 +

εS − εSN
1− εS

ωijt
ωSit

+
εSN − 1

1− εS
ωijt

)]

=
N∑
i=1

[
µijP

−εS
jt (P Sit )

εS−εSN (PM
it )εSN−1

(
1− εS − (εSN − εS)

ωijt
ωSit
− (1− εSN )ωijt

)]
.

(84)

If εS = εSN , we recover the expression for ∂Dout
jt /∂Pjt from our baseline model in which

the elasticity of substitution across intermediate inputs is the same for all inputs. If

εS 6= εSN , then a sufficient condition for industry j’s first-order weighted outdegree to be

increasing in its price if:

1− εS − (εSN − εS)
ωijt
ωSit
− (1− εSN )ωijt > 0.

We can rewrite this inequality as:

(1− εS)ωSit − (εSN − εS)ωijt − (1− εSN )ωijtω
S
it > 0.

Collecting the terms involving εS on the left-hand side, we have that:

(
ωijt − ωSit

)
εS > (1− εSN )ωijtω

S
it − ωSit + εSNωijt

As long as ωSit > ωijt, i.e. that the share of expenditure on essential inputs in total

intermediate consumption exceeds the share of an individual good j in total intermediate
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consumption, we have that industry j’s outdegree is increasing in its price if:

εS <
ωSit − ωijt

[
(1− εSN )ωSit + εSN

]
ωSit − ωijt

. (85)

Consider the following three (exhaustive) possibilities. First, the right-hand side of equation

(85) equals one if εSN = 1. Second, it will be greater than one if (1− εSN )ωSit + εSN < 1.

Note that this condition can be equivalently written as εSN
(
1− ωSit

)
< 1 − ωSit, which

simplifies to the requirement that εSN < 1. Third, the right-hand side of equation (85)

will be smaller than one if (1− εSN )ωSit + εSN > 1. This condition similarly simplifies to a

requirement that εSN > 1.

Recall that we assumed earlier that εS < 1. Since one may reasonably expect that

εSN will also be smaller than one in practice—implying that the sets of essential and

non-essential inputs are relative complements—we have that the sufficient condition to

ensure that industry j’s outdegree is increasing in its price is given by:

εS <
ωijt

[
(1− εSN )ωSit + εSN

]
− ωSit

ωijt − ωSit
, (86)

where the right-hand side of inequality (85) is larger than one. In other words, if the

‘between-elasticity’ (εSN ) is less than 1, then the within-elasticity (εS) may exceed unity

but must not be larger than the right-hand-side expression in inequality (86) in order to

ensure that industries’ first-order weighted outdegrees increase with own prices.

Recall that in deriving the condition given by (85), we focused on the case j ∈ S. This

was without loss of generality and an analogous condition applies for j ∈ N .
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C. Derivations Related to Section 4

Throughout this section, matrices will be denoted in bold. We allow for labour-augmenting

technology shocks in these derivations, but we assume them away in Section 4 and instead

focus on TFP (and demand) shocks.

C.1 Solving for the Non-Stochastic Steady State

Our model economy is identical to that in Atalay (2017) except that we allow for there to

(potentially) be non-constant returns to scale. In other words, we allow the values of ηi to

be potentially different from one. As a result, the steady state of the economy in Section

4 will potentially be different from that in Atalay (2017) even if all the other parameters

had identical values. In solving for the steady state, we will make extensive references to

Appendix F in Atalay (2017).

First, we want to show how the cost-minimising solutions for intermediate inputs and

the capital-labour bundle change under non-constant returns to scale. The price index of

a bundle of intermediate goods in industry J is given by P in
tJ =

[∑N
I=1 ΓMIJP

1−εM
tI

] 1
1−εM .

Using the first-order condition with respect to MI→J , we have that with a potentially

non-unitary ηJ (assuming that the steady-state values of technology are AJ = 1 for all J):

P 1−εM
I

P 1−εM
J

=

(
µJ
MJ

) 1−εM
εQ

(
MJΓMIJ
MI→J

) 1−εM
εM

η1−εM
J Q

(1−εM )
εQ(ηJ−1)+1

ηJεQ

J .

We can rearrange this equation so as to have P in
J on one side, obtaining:

P in
J = PJ

(
µJ
MJ

) 1
εQ

M
1
εM
J ηJQ

εQ(ηJ−1)+1

ηJεQ

J

 N∑
I=1

ΓMIJ

(
ΓMIJ
MI→J

) 1−εM
εM

 1
1−εM

.

Note that, by definition, MtJ =
[∑N

I=1(ΓMIJ)
1
εM (Mt,J→I)

εM−1

εM

] εM
εM−1

. The above equation

can thus be simplified to:

(
P in
J

PJ

)1−εQ
=

(
µJ
MJ

) 1−εQ
εQ

η
1−εQ
J Q

(1−εQ)
εQ(ηJ−1)+1

ηJεQ

J . (87)

If we have constant returns to scale (i.e. ηJ = 1), then the above equation simplifies to:

(
P in
J

PJ

)1−εQ
=

(
µJ
MJ

) 1−εQ
εQ

Q

1−εQ
εQ

J
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which corresponds to equation (35) in Appendix F of Atalay (2017). But with a non-unitary

ηJ , we have that: (
P in
J

PJ

)1−εQ
µJη

εQ−1
J Q

(εQ(ηJ−1)+1)
(εQ−1)

ηJεQ

J = µ
1
εQ

J M

εQ−1

εQ

J . (88)

The cost-minimising choice for the capital-labour bundle will also depend on ηJ and is

given by:

(1− µJ)
1
εQ

((
KJ

αJ

)αJ ( LJ
1− αJ

)1−αj
) εQ−1

εQ

= η
εQ−1
J (1− µJ)Q

(εQ(ηJ−1)+1)
(εQ−1)

ηJεQ

J ×


(

1−β(1−δK)
β

)αJ [∑
ΓXIJ(PI)

1−εX )
] αJ

1−εX

PJ

1−εQ

.

(89)

Next, we substitute the cost-minimising solutions for the capital-labour bundle and

intermediate inputs—given by equations (88) and (89)—into the production function,

which at steady state is given by:

QJ =

(1− µJ)
1
εQ

((
KJ

αJ

)αJ ( LJ
1− αJ

)1−αj
) εQ−1

εQ

+ µ
1
εQ

J (MJ)
εQ−1

εQ


ηJ

εQ
εQ−1

,

to obtain:

QJ =

[
η
εQ−1
J (1− µJ)Q

(εQ(ηJ−1)+1)
(εQ−1)

ηJεQ

J


(

1−β(1−δK)
β

)αJ [∑
ΓXIJ(PI)

1−εX )
] αJ

1−εX

PJ

1−εQ

+

(
P in
J

PJ

)1−εQ
µJη

εQ−1
J Q

(εQ(ηJ−1)+1)
(εQ−1)

ηJεQ

J

] ηJεQ
εQ−1

.

We can see that QJ will drop out of the above equation under constant returns to scale,

but not under non-constant returns to scale. We can simplify to above equation to obtain:

Q

εQ−1

ηJεQ
(1−(εQ(ηJ−1)+1))

J = η
εQ−1
J (1− µJ)


(

1−β(1−δK)
β

)αJ [∑
ΓXIJ(PI)

1−εX )
] αJ

1−εX

PJ

1−εQ

+

(
P in
J

PJ

)1−εQ
µJη

εQ−1
J . (90)

65



Equation (90) gives us a set of N equations in prices and quantities, and we need another

set of N equations in order to solve for the steady-state prices and quantities. As in the

simple model, we make use of the goods-market clearing condition. The market clearing

condition for good J is given by:

QJ = δCJCJ +
N∑
I=1

(MJ→I +XJ→I). (91)

We thus need to write the right-hand side of the above equation in terms of prices and

quantities. The consumption of good J will still be given by equation (39) in Appendix F

of Atalay (2017). The solution for MJ→I will, however, depend on ηJ and we make use of

the first-order condition with respect to it, which is given by:

MJ→I = (µI)
εM
εQ (MI)

εQ−εM
εQ ΓMJI

(
PI
PJ

)εM (
ηIQ

εQ(ηI−1)+1

ηIεQ

I

)εM

. (92)

Using equation (88), we can substitute in for MI since:

MI =

(
P in
I

PI

)−εQ
µIη

εQ
I Q

εQ(ηI−1)+1

ηI
I .

We thus have that:

MJ→I =

(
ηIQ

εQ(ηI−1)+1

ηIεQ

I

)εQ

µIΓ
M
JIP

−εM
J (P in

I )εM−εQP
εQ
I .

Next, we solve for the investment input purchases by industry I sourced from industry

J . The cost-minimising optimality condition for capital, which equates the rental price of

a unit of capital to its marginal revenue product, is given by:

1− β(1− δK)

β

[∑
ΓXIJ(PI)

1−εX
] 1

1−εX = PJ(1− µJ)
1
εQ ηJQ

εQ(ηJ−1)+1

ηJεQ

J

·
(
KJ

αJ

)αJ εQ−1

εQ
−1(

LJ
1− αJ

)(1−αJ )
εQ−1

εQ

.

Using the cost-minimising solution for the capital-labour bundle given by equation (89),

the above equation can be simplified to yield:(
KJ

αJ

)
=

[
1− β(1− δK)

β

(∑
ΓXIJ(PI)

1−εX
) 1

1−εX

]−1+αJ (1−εQ)

η
εQ
J Q

εQ(ηJ−1)+1

ηJ
J (1− µJ)(PJ)εQ .

(93)
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Recall that XJ = δKKJ . Using equation (93), we thus have that the cost-minimising

solution for the investment input purchases of industry I from industry J is given by:

XJ→I = XIΓ
X
JI

(
PJ
P inv
I

)−εX
= XIΓ

X
JI(PJ)−εX (P inv

I )εX

= ΓXJI(PJ)−εX (1− µI)η
εQ
I Q

εQ(ηI−1)+1

ηI
I αIδK

·
(

1− β(1− δK)

β

)−1+αI(1−εQ) [∑
ΓXJI(PJ)1−εX

] εX−1+αI (1−εQ)

1−εX (PI)
εQ . (94)

Finally, we can substitute the solutions for CJ , MJ→I , and XJ→I (given by equation

(39) in Appendix F of Atalay (2017), equation (88), and equation (94), respectively) into

the market clearing condition for each good J (given by equation (91)) to obtain:

QJ −
N∑
I=1

Γ̃JIη
εQ
J Q

εQ(ηI−1)+1

ηI
I = ξJ(δCJ )εD

(
1− β(1− δCJ )

β

)−εD
(PJ)−εDC̄1−εD , (95)

which along with the set of N equations given by equation (90) yields a system of 2N

equations in 2N unknowns, QJ and PJ for all J ∈ (1, ..., N), which we can solve using

linear algebra. More specifically, we solve this system of equations as follows. First, we use

equation (90) to express QJ as a function of prices only. We then substitute for quantities

in equation (93) and solve the resulting system of N equations in N unknowns.

In terms of the steady-state shares derived on page 55 in Appendix F of Atalay

(2017), introducing potentially non-constant returns to scale implies that the first equation

(equation (42) in Atalay’s (2017) Appendix F) will change. To see why, start from the

FOC w.r.t. LJ and substitute in the cost-minimising solution for the capital-labour bundle

to get:

1 = P
εQ
J η

εQ
J (1− µJ)Q

εQ(ηJ−1)+1

ηJ
J

[(
1− β(1− δK)

β

)
P inv
J

]αJ (1−εQ)

.

The next two equations (with CJ and SCI on the left-hand side, respectively) are

invariant to the degree of returns to scale. The subsequent equation, with MJ→I/QJ on

the left-hand side, will change to:

MJ→I

QJ

=
1

QJ

η
εQ
I Q

εQ(ηI−1)+1

ηI
I µIΓ

M
JIP

−εM
J (P in

I )εM−εQP
εQ
I .

The equation with XJ→I/QJ on the left-hand side will similarly change, with QI in the

equation Atalay (2017) derives replaced by η
εQ
I Q

εQ(ηI−1)+1

ηI
I . Finally, equations (44) and

(45) on page 55 of Atalay (2017) will remain unchanged regardless of whether ηI = 1 for
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all I.

C.2 Log-Linearisation of the Model Equilibrium

We now log-linearise the model equilibrium conditions. Relaxing the assumption of

constant returns to scale will imply the following changes to the log-linear equations

derived in Appendix F.2 in Atalay (2017). First, the equation for the relative price

between industries I and J will change to:

p̂tI − p̂tJ =
εQ − 1

εQ
âtJ +

εQ(ηJ − 1) + 1

ηJεQ
q̂tJ +

(
1

εM
− 1

εQ

)
m̂tJ −

1

εM
m̂t,I→J ,

i.e. the coefficient multiplying q̂tJ will change. Second, the equation for labour will change

analogously, with the coefficient multiplying q̂tJ changing from 1
εQ

to
εQ(ηJ−1)+1

ηJεQ
:

1

εLS

N∑
J ′=1

SLJ ′ l̂tJ ′ = p̂tJ +
εQ − 1

εQ
âtJ +

(εQ − 1)(1− αJ)

εQ
b̂tJ +

εQ(ηJ − 1) + 1

ηJεQ
q̂tJ

+ αJ
εQ − 1

εQ
k̂tJ + εαJ − 1− αJεQεQl̂tJ .

Third, the log-linearised FOC w.r.t. Kt+1,J will change similarly to:

1

1− β(1− δK)
p̂invtJ −

β(1− δK)

1− β(1− δK)
p̂invt+1,J = p̂t+1,J +

εQ(ηJ − 1) + 1

ηJεQ
q̂t+1,J

+
εQ − 1

εQ
ât+1,J +

(εQ − 1)(1− αJ)

εQ
b̂t+1,J

+
(εQ − 1)(1− αJ)

εQ
l̂t+1,J +

[
−1 +

αJ(εQ − 1)

εQ

]
k̂t+1,J .

Finally, the log-linearized form of the production function will change to:

q̂tJ = ηJ

[
α̂tJ + αJ(1− SMJ

)k̂tJ + (1− αJ)(1− SMJ
)b̂tJ + (1− αJ)(1− SMJ

)l̂tJ + SMJ
m̂tJ

]
.

The remaining equations shown on page 56 in Appendix F.2 of Atalay (2017) will remain

unchanged.

Accordingly, the bottom four equations on page 57 of Appendix F.2 of Atalay (2017)

will change. Let Σ denote diag(η), where η denotes the N × 1 vector of ηJ ’s. Then, we

will have that in the equation with m̂t on the left-hand side, the coefficient on q̂t on the

right-hand side will change to εM
εQ

[εQ (Σ− I) + I] Σ−1T1. Similarly, in the equations with
1
εLS

SLl̂t and p̂invt on the left-hand side, the coefficient on q̂t on the right-hand side will

change to 1
εQ

[εQ (Σ− I) + I] Σ−1. Finally, we have that Σ will premultiply all terms on

the right-hand side in the last equation (corresponding to the log-linearised production
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function in matrix form):

q̂t = Σ
[
ât + (I− α)(I− SM)b̂t + α(I− SM)k̂t + (I− α)(I− SM)l̂t + SMM̂t

]
,

where M̂t = (εQ − 1)ât + [εQ (Σ− I) + I] Σ−1q̂t + εQ(I− SM1 )p̂t. Substituting in for M̂t,

collecting the terms involving q̂t on the left-hand side, and solving for q̂t yields:

q̂t =
[
Σ−1 − SM [εQ(Σ− I) + I] Σ−1

]−1

[
(I + SM(εQ − 1))ât + (I− α)(I− SM)b̂t

+ α(I− SM)k̂t + (I− α)(I− SM)l̂t + SMεQ(I− SM1 )p̂t

]
. (96)

We can then plug the above equation for q̂t into the remaining log-linear equations shown

in Step 3 on page 59 in Atalay’s (2017) Appendix F. First, we have that in the equation

involving ĉt and ĉt+1 (inter alia):

0 = δ−1
C S̃QC ĉt+1 + (I− δ−1

C )S̃QC ĉt + (εQ − 1)S̃QMT1ât + S̃QXT1δ
−1
K k̂t+1 + S̃QXT1(1− δ−1

K )k̂t

+
[
εQS̃

Q
MT1(I− SM1 ) + εM S̃

Q
M [T1S

M
1 − T2] + εX S̃

Q
X [T1S

X
1 − T2]

]
p̂t

−
(
I− S̃QMT1

) [
Σ−1 − SM [εQ(Σ− I) + I] Σ−1

]−1

[
(I + SM(εQ − 1))ât

+ (I− α)(I− SM)b̂t + α(I− SM)k̂t + (I− α)(I− SM)l̂t + SMεQ(I− SM1 )p̂t

]
.

Collecting terms, we have that:

0 = δ−1
C S̃QC ĉt+1 + (I− δ−1

C )S̃QC ĉt

+
[
(εQ − 1)S̃QMT1 −

(
I− S̃QMT1

) [
Σ−1 − SM [εQ(Σ− I) + I] Σ−1

]−1
(I + SM(εQ − 1))

]
ât

−
[(

I− S̃QMT1

) [
Σ−1 − SM [εQ(Σ− I) + I] Σ−1

]−1
(I− α)(I− SM)

]
b̂t

+ S̃QXT1δ
−1
K k̂t+1 +

[
S̃QXT1(1− δ−1

K )−
(
I− S̃QMT1

) [
Σ−1 − SM [εQ(Σ− I) + I] Σ−1

]−1
α(I− SM)

]
k̂t

−
{(

I− S̃QMT1

) [
Σ−1 − SM [εQ(Σ− I) + I] Σ−1

]−1
(I− α)(I− SM)

}
l̂t

+

[
εQS̃

Q
MT1(I− SM1 ) + εM S̃

Q
M [T1S

M
1 − T2] + εX S̃

Q
X [T1S

X
1 − T2]

−
(
I− S̃QMT1

) [
Σ−1 − SM [εQ(Σ− I) + I] Σ−1

]−1
SMεQ(I− SM1 )

]
p̂t.

69



We also have the following equation, which is unaffected by the degree of returns to

scale:

p̂t = β(I− δC)p̂t+1 −
1

εD
(I− β(I− δC))

[
I− SCI (εD − 1)

]
ĉt+1.

We also have the following equation:

SX1 p̂t =
[
β̃I + β(1− δK)SX1

]
p̂t+1 +

β̃

εQ
[εQ(Σ− I) + I] Σ−1q̂t+1

+ β̃
εQ − 1

εQ
ât+1 + β̃

(
−I + α

εQ − 1

εQ

)
k̂t+1 + β̃(I− α)

εQ − 1

εQ
(l̂t+1 + b̂t+1).

Plugging in for q̂t from equation (96), we have that:

SX1 p̂t =
[
β̃I + β(1− δK)SX1 + fSMεQ(I− SM1 )

]
p̂t+1

+

[
β̃
εQ − 1

εQ
+ f(I + SM(εQ − 1))

]
ât+1

+

[
β̃

(
−I + α

εQ − 1

εQ

)
+ fα(I− SM)

]
k̂t+1

+

[
β̃(I− α)

εQ − 1

εQ
+ f(I− α)(I− SM)

]
b̂t+1

+

[
β̃(I− α)

εQ − 1

εQ
+ f(I− α)(I− SM)

]
l̂t+1

where f ≡ β̃
εQ

[εQ(Σ− I) + I] Σ−1 [Σ−1 − SM [εQ(Σ− I) + I] Σ−1]
−1

.

Finally, in the equation involving l̂t, we have that:

1

εLS
SLl̂t = p̂t +

εQ − 1

εQ
ât +

(εQ − 1)(I − α)

εQ
b̂t

+
1

εQ
[εQ(Σ− I) + I] Σ−1q̂t +

εQ − 1

εQ
αk̂t +

α− 1− αεQ
εQ

l̂t,

which we can rewrite by substituting in for q̂t using equation (96). Letting Θ ≡
[Σ−1 − SM [εQ(Σ− I) + I] Σ−1]

−1
, we have that:

q̂t = Θ

[
(I + SM(εQ − 1))ât + (I− α)(I− SM)b̂t + α(I− SM)k̂t

+ (I− α)(I− SM)l̂t + SMεQ(I− SM1 )p̂t

]
, (97)
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which can be rearranged to yield:[
1

εLS
SL − α− 1− αεQ

εQ
− 1

εQ
Θ(I− α)(I− SM)

]
l̂t =

[
I + ΘSMεQ(I− SM1 )

]
p̂t

+

[
εQ − 1

εQ
+ Θ(I + SM(εQ − 1))

]
ât

+

[
(εQ − 1)(I − α)

εQ
+ Θ(I− α)(I− SM)

]
b̂t

+

[
εQ − 1

εQ
α + Θα(I− SM)

]
k̂t.

Simplifying the notation, the above equation can be rewritten as:

l̂t = Lpp̂t + Laât + Lbb̂t + Lkk̂t. (98)

We can similarly simplify the notation in the remaining three equations:

0 = C1
c ĉt+1 + Ccĉt + Caât + Cbb̂t + Ck+k̂t+1 + Ckk̂t + Cpp̂t + Cl l̂t, (99)

p̂t = β(I− δC)p̂t+1 −
1

εD
(I− β(I− δC))[I + SCI (εD − 1)]ĉt+1, (100)

SX1 p̂t = P+
p p̂t+1 + Paât+1 + Pkk̂t+1 + Pbb̂t+1 + Pl l̂t+1. (101)

Substituting for l̂t using equation (98) into equations (99)-(101), we have that:

0 = C+
c ĉt+1 + Ccĉt + [Ca + ClLa] ât + [Cb + ClLb] b̂t + Ck+k̂t+1 + [Ck + ClLk] k̂t + [Cp + ClLp] p̂t,

p̂t = β(I− δC)p̂t+1 −
1

εD
(I− β(I− δC))[I + SCI (εD − 1)]ĉt+1,

SX1 p̂t =
[
P+
p + PlLp

]
p̂t+1 + [Pa + PlLa] ât+1 + [Pk + PlLk] k̂t+1 + [Pb + PlLb] b̂t+1. (102)

Since we are assuming away durable goods (i.e. δC = 1), we have from equation (100)

that ĉt+1 is given by:

ĉt+1 = −εD[I + SCI (εD − 1)]−1p̂t. (103)

Plugging in for ĉt+1 above, we have that:

0 = Ccĉt + [Ca + ClLa] ât + [Cb + ClLb] b̂t + Ck+k̂t+1 + [Ck + ClLk] k̂t
+
[
−εDC1

c [I + SCI (εD − 1)]−1 + Cp + ClLp
]
p̂t.
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The log-linearized equation for consumption as a function of prices and demand shocks

is:64

ĉt = d̂t − εD
[
I + SCI (εD − 1)

]−1
p̂t. (104)

By substituting out ĉt using the above equation, we obtain:

0 = Ccd̂t + [Ca + ClLa] ât + [Cb + ClLb] b̂t + Ck+k̂t+1 + [Ck + ClLk] k̂t
+
[
−εD

(
C1
c + Cc

)
[I + SCI (εD − 1)]−1 + Cp + ClLp

]
p̂t. (105)

Note that Equations (102) and (105) can be written in matrix form as:

[
p̂t+1

k̂t+1

]
=

[
Ψpp Ψpk

Ψkp Ψkk

][
p̂t

k̂t

]
+

[
Φpa Ψpb Ψpd

Φka Ψkb Ψkd

]âtb̂t
d̂t

 ,
where the multiplying matrices (in bold) are defined by solving the equations (102) and

(105) for p̂t+1 and k̂t+1, respectively, in terms of k̂t, p̂t, and the shocks (ât, b̂t, and d̂t).

Using the Blanchard-Kahn decomposition, one can obtain the following two equations

(see Appendix F.4 in Atalay (2017)):

k̂t+1 = Mkkk̂t + [Mka,Mkb,Mkd]

âtb̂t
d̂t

 , (106)

p̂t = Ψ−1
21 k̂t+1 −Ψ−1

21 Ψ22k̂t −Ψ−1
21 Φd

2

âtb̂t
d̂t

 . (107)

By substituting for k̂t+1 in equation (107) using equation (106), we can express p̂t as a

function of the state variable, k̂t, and the shocks, i.e.:

p̂t = Pkk̂t + Paât + Pbb̂t + Pdd̂t. (108)

Next, by substituting for l̂t in equation (97) using equation (98), we obtain q̂t as a

function of k̂t, p̂t, and the shocks. We can then in turn plug in for p̂t (using equation (108)

above) and express q̂t also solely as a function of the state variable, k̂t, and the shocks:

q̂t = Φkk̂t + Φaât + Φbb̂t + Φdd̂t. (109)

64For a derivation of this equation, see page 72 in Appendix F in Atalay (2017).
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where the matrices in bold depend (non-linearly) on model parameters only. Taking

differences on both sides of equation (109), assuming away labour-augmenting technology

shocks (so b̂t = 0 for all t), and denoting ∆ât by ωAt+1 and ∆d̂t by ωDt+1, we can derive the

equation for ∆q̂t in the top row of equation (35):

∆q̂t = Φk∆k̂t + Φaω
A
t + Φdω

D
t . (110)

C.3 Deriving the log-linearised equation for value-added

By definition, nominal value-added in industry J in period t is given by:

V AtJ = PtJQtJ −MtJP
in
tJ . (111)

Recall that the intermediate input bundle, MtJ , is given by equation (27). Recall also that

the first-order condition with respect to MJ→I is given by equation (96), as corresponding

to the steady state. Adding time-subscripts in that equation and re-introducing shocks

(which are normalised to unity in steady state), we have that:

M
εM−1

εM
t,I→J =

[(
PtJ
PtI

)
(AtJ)

εQ−1

εQ

(
µJ
MtJ

) 1
εQ (

MtJΓMIJ
) 1
εM ηJQ

εQ(ηJ−1)+1

εQηJ

tJ

]εM−1

.

Pre-multiplying both sides by (ΓMIJ)
1
εM , summing over all industries I ∈ {1, . . . , N}, and

raising the resulting sums on both sides to the power of εM/(εM − 1), one obtains the

following equation:

MtJ = P εM
tJ (AtJ)

(εQ−1)εM
εQ

(
µJ
MtJ

) εM
εQ

MtJ

[
ηJQ

εQ(ηJ−1)+1

εQηJ

tJ

]εM
(P in

tJ )−εM ,

which can be rewritten as:

MtJ =

(
PtJ
P in
tJ

)εQ
(AtJ)εQ−1µJη

εQ
J Q

εQ(ηJ−1)+1

ηJ
tJ . (112)

Using the above equation, we can substitute in for MtJ in equation (111), which gives:

V AtJ = PtJQtJ

[
1−

(
P in
tJ

PtJ

)1−εQ
(AtJ)εQ−1µJη

εQ
J Q

εQ(ηJ−1)+1−ηJ
ηJ

tJ

]
.

Therefore, real value-added of industry J in period t (VtJ) is given by:

VtJ ≡
V AtJ
PtJ

= QtJ

[
1−

(
P in
tJ

PtJ

)1−εQ
(AtJ)εQ−1µJη

εQ
J Q

εQ(ηJ−1)+1−ηJ
ηJ

tJ

]
. (113)
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In order to log-linearize equation (113), we can rewrite it as:

VtJ
QtJ

= 1−
(
P in
tJ

PtJ

)1−εQ
(AtJ)εQ−1µJη

εQ
J Q

εQ(ηJ−1)+1−ηJ
ηJ

tJ ,

which can in turn be rewritten as:

VJ
QJ

ev̂tJ−q̂tJ = 1−
(
P in
J

PJ

)1−εQ
e(1−εQ)(p̂intJ−p̂tJ )e(εQ−1)âtJµJη

εQ
J Q

εQ(ηJ−1)+1−ηJ
ηJ

J e

(
εQ(ηJ−1)+1−ηJ

ηJ

)
q̂tJ
.

To proceed, we make use of the following steady-state relationship, VJ/QJ = 1− µJ , and

the approximation that ex ≈ 1 + x if x is small enough. We thus get:

(1− µJ)(1 + v̂tJ − q̂tJ) = 1−
(
P in
J

PJ

)1−εQ [
1 + (1− εQ)

(
p̂intJ − p̂tJ

) ]
· µJη

εQ
J Q

εQ(ηJ−1)+1−ηJ
ηJ

J

(
1 + (εQ − 1)ât

)[
1 +

(
εQ(ηJ − 1) + 1− ηJ

ηJ

)
q̂tJ

]
.

Next, using the approximation that x̂tŷt ≈ 0 for any x̂t and ŷt denoting (log) deviations

of xt and yt from their steady-state values, we obtain:

(1− µJ)(1 + v̂tJ − q̂tJ) = 1−
(
P in
J

PJ

)1−εQ
µJη

εQ
J Q

εQ(ηJ−1)+1−ηJ
ηJ

J

·
[
1 + (1− εQ)

(
p̂intJ − p̂tJ

)
+ (εQ − 1)ât +

(
εQ(ηJ − 1) + 1− ηJ

ηJ

)
q̂tJ

]
.

Note that in steady state—in which all of the variables with a hat in the above equation

equal zero—we have that:

1− µJ = 1−
(
P in
J

PJ

)1−εQ
µJη

εQ
J Q

εQ(ηJ−1)+1−ηJ
ηJ

J . (114)

Therefore, cancelling out the steady-state terms, we get:

(1− µJ)(v̂tJ − q̂tJ) = −
(
P in
J

PJ

)1−εQ
µJη

εQ
J Q

εQ(ηJ−1)+1−ηJ
ηJ

J

·
[
(1− εQ)

(
p̂intJ − p̂tJ

)
+ (εQ − 1)ât +

(
εQ(ηJ − 1) + 1− ηJ

ηJ

)
q̂tJ

]
Taking value-added on the left-hand side, we finally obtain:

v̂tJ = q̂tJ −
(
P in
J

PJ

)1−εQ µJ
1− µJ

η
εQ
J Q

εQ(ηJ−1)+1−ηJ
ηJ

J

·
[
(1− εQ)

(
p̂intJ − p̂tJ

)
+ (εQ − 1)ât +

(
εQ(ηJ − 1) + 1− ηJ

ηJ

)
q̂tJ

]
. (115)
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Note that in the presence of constant returns to scale (ηJ = 1), equation (115) becomes:

v̂tJ = q̂tJ −
µJ

1− µJ
[
(1− εQ)

[
p̂intJ − p̂tJ

]
+ (εQ − 1)ât

]
.

In matrix form, we can write equation (115) as:

v̂t = Vq q̂t + Vpp̂t + Vaât, (116)

where we use the relationship that between the vector of output prices and the prices of

intermediate input bundles in each industry.

Recall from equations (108) and (109) that both q̂t and p̂t can be expressed as functions

of k̂t and the shocks only. Therefore, we can substitute for q̂t and p̂t in equation (116) to

express value-added as a function of k̂t and the shocks. In other words, one obtains:

v̂t = Vkk̂t + Vaât + Vbb̂t + Vdd̂t. (117)

As long as V−1
k exists, we can equivalently write the above equation as:

k̂t = V−1
k v̂t −V−1

k Vaât −V−1
k Vbb̂t −V−1

k Vdd̂t. (118)

We thus have that one period ahead:

v̂t+1 = Vkk̂t+1 + Vaât+1 + Vbb̂t+1 + Vdd̂t+1

= Vk

(
Mkkk̂t +Mkaât +Mkbb̂t +Mkdd̂t

)
+ Vaât+1 + Vbb̂t+1 + Vdd̂t+1.

where we make use of equation (106) in the second line. By plugging in for k̂t in the above

equation using equation (118), we therefore obtain v̂t+1 as a function of the shocks at time

t+ 1 (ât+1,b̂t+1, and d̂t+1), the shocks at time t (ât,b̂t, and d̂t), and v̂t. Taking differences

on both sides of this resulting equation and assuming away labour-augmenting technology

shocks, we obtain the top row of equation (38) in the main text:

∆v̂t+1 = Ṽv∆v̂t + [Va Vd]

[
ωAt+1

ωDt+1

]
+ [Ṽa Ṽd]

[
ωAt

ωDt

]
. (119)

Starting from equation (108) for the vector of prices, p̂t, and following the analogous steps

shown above for the vector of value-added (in equation (117)), we obtain the bottom row

of equation (38).
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C.4 Deriving the log-linear equation for outdegrees

The first-order weighted outdegree of industry J at time t is defined by:

doJt =
N∑
I=1

wJ→I,t.

Log-linearizing the above summation, we have that:

doJt =
N∑
I=1

ωJ→I
dJ

ω̂J→I,t,

where

ω̂J→I,t = m̂J→I,t + p̂J,t − m̂I,t − p̂inI,t.

We can thus show that

d̂ot = W
[
m̂t − T1M̂t + T2p̂t − T1p̂

int
t

]
,

where WN×N2 is a matrix that has, e.g., [w1→1/d
o
1 w1→2/d

o
1 ... w1→N/d

o
1 0 . . . . . . 0]

in its first row, and similarly in the other rows (steady-state values of input shares and

outdegrees). Note that above:

m̂t =



m̂11t

m̂12t

. . .

m̂1Nt

. . .

m̂N1t

m̂N2t

. . .

m̂NNt


N2×1

, M̂t =


m̂1t

m̂2t

. . .

m̂Nt


N×1

, p̂t =


p̂1t

p̂2t

. . .

p̂Nt


N×1

, p̂intt =


p̂int1t

p̂int2t

. . .

p̂intNt


N×1

,

where the multiplying matrices are given by T1 = 1⊗ I and T2 = I⊗ 1, where ⊗ denotes

the Kronecker product.

Under the assumption of constant returns to scale, the log-linear equation for the
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vector of intermediate input bundles in each industry is given by:65

m̂t =
εM
εQ

(εQ − 1)T1ât +
εM
εQ
T1q̂t +

(
1− εM

εQ

)
T1M̂t + εM [T1 − T2]p̂t.

Instead, allowing for potentially non-constant returns to scale, we will have that:

m̂t =
εM
εQ

(εQ − 1)T1ât +
εM
εQ
T1 [εQ(Σ− I) + I] Σ−1q̂t +

(
1− εM

εQ

)
T1M̂t + εM [T1 − T2]p̂t.

(120)

Recall from above that the N × 1 vector of intermediate input bundles (M̂t) is given by:

M̂t = (εQ − 1)ât + [εQ(Σ− I) + I] Σ−1q̂t + εQ(I− SM1 )p̂t.

Substituting in for M̂t in equation (120) and simplifying, we have that:

m̂t = (εQ − 1)T1ât + T1 [εQ(Σ− I) + I] Σ−1q̂t +

((
1− εM

εQ

)
εQT1(I− SM1 + εM [T1 − T2]

)
p̂t.

By definition, we have that:

d̂ot = W
[
m̂t − T1M̂t + T2p̂t − T1p̂

int
t

]
N2×1

. (121)

Substituting in for m̂t, M̂t, and p̂intt (which, by definition, equals SM1 p̂t), we have that:

d̂ot = W

[
(εQ − 1)T1ât + T1 [εQ(Σ− I) + I] Σ−1q̂t +

((
1− εM

εQ

)
εQT1(I− SM1 ) + εM [T1 − T2]

)
p̂t

]
−W

[
(εQ − 1)T1ât + T1 [εQ(Σ− I) + I] Σ−1q̂t + εQT1(I− SM1 )p̂t

]
+ W

(
T2 − T1S

M
1

)
p̂t,

which can be further simplified to yield:

d̂ot = W

[(
1− εM

εQ

)
εQT1(I− SM1 ) + εM(T1 − T2)− εQT1(I− SM1 ) +

(
T2 − T1S

M
1

)]
p̂t

≡ Dp̂t. (122)

Therefore, as equation (122) shows, the relationship between outdegrees and prices is

independent of the returns to scale. This was also the case in the simple model in section

3.

Finally, recall from equation (108) that we can express the vector of prices, p̂t, as a

function of the state variable, k̂t, and the shocks. By substituting for p̂t into equation

(122), we can obtain an equation for the outdegrees as a function of the state variable and

65For a derivation of this equation, see page 57 in Atalay (2017).
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shocks only, shown as equation (33) in the main text:

∆d̂ot = D
[
Pkk̂t + Paât + Pdd̂t

]
= Dk∆k̂t + Daω

A
t + Ddω

D
t . (123)

The above equation assumes away labour-augmenting technology shocks (so ωBt = 0 for

all t).

C.5 Deriving the log-linearised equation for Domar weights

Since we have taken steady-state labour as the numeraire good (by normalising∑N
I=1 L

1/εLS
I = 1), the aggregate price index (of GDP) cannot be taken as the numeraire.

By definition, nominal GDP is given by:

NGDPt =
N∑
J=1

PtJVtJ ,

where VtJ is the value-added of industry J and PtJ the corresponding output price of

industry J . In log-linear terms, this is equivalent to:

N̂GDP t =
N∑
J=1

PJVJ∑N
J=1 PJVJ

(p̂tJ + v̂tJ) .

We can write this as

N̂GDP t = N (p̂t + v̂t) ,

where N is a 1×N row vector that has PJVJ∑N
J=1 PJVJ

in the Jth column.

Now, recall that the Domar weights are given by λtJ ≡ PtJQtJ/NGDPt, where NGDPt

denotes nominal GDP at time t. The log-linear approximation to the deviations of Domar

weights from their steady-state values is given by:

λ̂t = p̂t + q̂t − N̂GDP t · ι, (124)

where N̂GDP t denotes the log-deviation of nominal GDP from its steady state, and ι

denotes a vector of ones.

Therefore, we have that λ̂t = p̂t + q̂t −N′ (p̂t + v̂t) where N′ is just the row vector N

stacked N times. This can be written as:

λ̂t = (I−N′) p̂t + q̂t −N′v̂t.
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Using equation (116), we can express the Domar weights as:

λ̂t = (I−N′ + N′Xp)︸ ︷︷ ︸
Wp

p̂t + (I−N′)︸ ︷︷ ︸
Wq

q̂t + N′Xa︸ ︷︷ ︸
Wa

ât.

We want to express the Domar weights in terms of the state variable (capital) and

shocks only. We have that:

λ̂t = Wpp̂t + Wq q̂t + Waât

= Wp

[
Pkk̂t + Paât + Pbb̂t + Pdd̂t

]
+ Wq

[
Φkk̂t + Φaât + Φbb̂t + Φdd̂t

]
+ Waât

= Λkk̂t + Λaât + Λbb̂t + Λdd̂t.

Taking differences on both sides and assuming away labour-augmenting technology shocks,

we obtain the bottom row of equation (32) shown in the main text:

∆λ̂t = Λk∆k̂t + Λaω
A
t + Λdω

D
t . (125)

C.6 Deriving the log-linearised equation for labour

From the bottom of page 60 in Atalay (2017), we have that:

l̂t = Λkk̂t + Λaât + Λbb̂t + Λpp̂t.

Substituting in for p̂t using equation (108), we have that:

l̂t = Λkk̂t + Λaât + Λbb̂t + Λp

[
Pkk̂t + Paât + Pbb̂t + Pdd̂t

]
= Lkk̂t + Laât + Lbb̂t + Ldd̂t. (126)

One period ahead:

l̂t+1 = Lkk̂t+1 + Laât+1 + Lbb̂t+1 + Ldd̂t+1

= Lk

(
Mkkk̂t +Mkaât +Mkbb̂t +Mkdd̂t

)
+ Laât+1 + Lbb̂t+1 + Ldd̂t+1

where we make use of equation (106) in the second line above. As long as Lk is invertible,

we can solve for k̂t using equation (126) and substitute k̂t from the above equation to

obtain:

l̂t+1 = Lk

(
Mkk

[
L−1
k l̂t − L−1

k Laât − L−1
k Lbb̂t − L−1

k Ldd̂t

]
+Mkaât +Mkbb̂t +Mkdd̂t

)
+ Lbb̂t+1 + Laât+1 + Ldd̂t+1,
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so we finally get:

∆l̂t+1 = L̃l∆l̂t + Laω
A
t+1 + Lbω

B
t+1 + Ldω

D
t+1 + L̃aω

A
t + L̃bω

B
t + L̃dω

D
t . (127)

By assuming away labour-augmenting technology shocks, we recover the bottom row of

equation (42) shown in the main text.
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D. Robustness Analysis for Section 4

Table D.1: Implied Size Centrality Relationship in Dynamic Model Under Different

Values of εQ and εD vs. Empirical Data Counterpart for the UK

Implied Size-Centrality Relationship Value of εQ Value of εD Data

0.5 1 1.3 0.8 1 1.3

(baseline) (baseline)

corr(d̂outt , q̂t) given all shocks -0.18 0.00 0.19 -0.05 0.00 -0.02 0.12

corr(d̂outt , λ̂t) given all shocks 0.06 0.23 0.41 0.21 0.23 0.25 0.17

corr(d̂outt , q̂t) given only technology shocks -0.78 -0.67 -0.52 -0.60 -0.67 -0.71 n.a.

corr(d̂outt , λ̂t) given only technology shocks 0.61 0.58 0.49 0.76 0.58 0.19 n.a.

corr(d̂outt , q̂t) given only preference shocks 0.96 0.86 0.84 0.87 0.86 0.83 n.a.

corr(d̂outt , λ̂t) given only preference shocks 0.97 0.90 0.90 0.91 0.90 0.90 n.a.

Notes: d̂outt denotes producer centrality, q̂t denotes real gross output, and λ̂t denotes Domar weight (all in

terms of steady-state log deviations).

Table D.2: Contributions of Sector-Specific/Common Shocks to UK’s Post-2010

Productivity Growth Puzzle for Different Values of εQ and εD

Contribution to Productivity Growth Puzzle Value of εQ Value of εD Data

0.5 1 1.3 0.8 1 1.3

(baseline) (baseline)

Manufacturing-specific shocks -0.54 -0.65 -0.66 -0.65 -0.65 -0.66 n.a.

Finance-specific shocks -0.00 -0.04 -0.09 -0.02 -0.04 -0.06 n.a.

Other sectors’ specific shocks 0.15 0.30 0.40 0.35 0.30 0.25 n.a.

Common shocks 0.15 0.13 0.09 0.16 0.13 0.12 n.a.

Total growth puzzle -0.24 -0.26 -0.26 -0.15 -0.26 -0.35 -0.18

Correlation of model-implied aggregate 0.76 0.77 0.74 0.75 0.77 0.76 n.a.

productivity growth and data counterpart

Notes: All other model parameters set according to the baseline calibration, shown in Table 3.
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Figure D.1. Contributions to the growth puzzle: sectors vs. sectoral shocks (dashed)
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Figure D.2. Robustness of Baseline Results in Figure 14 in Alternative Parametrisations
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