
Staff Working Paper No. 1,038
September 2023

Deep learning model fragility and 
implications for financial stability 
and regulation

Staff Working Papers describe research in progress by the author(s) and are published to elicit comments 

and to further debate. Any views expressed are solely those of the author(s) and so cannot be taken to 

represent those of the Bank of England or to state Bank of England policy. This paper should therefore 

not be reported as representing the views of the Bank of England or members of the Monetary Policy 

Committee, Financial Policy Committee or Prudential Regulation Committee.

Rishabh Kumar, Adriano Koshiyama, Kleyton da Costa, Nigel Kingsman, 
Marvin Tewarrie, Emre Kazim, Arunita Roy, Philip Treleaven and Zac Lovell



Staff Working Paper No. 1,038

Deep learning model fragility and implications for financial 
stability and regulation
Rishabh Kumar,(1) Adriano Koshiyama,(2) Kleyton da Costa,(3) Nigel Kingsman,(4) 
Marvin Tewarrie,(5) Emre Kazim,(6) Arunita Roy,(7) Philip Treleaven(8) and 
Zac Lovell(9)

Abstract

Deep learning models are being utilised increasingly within finance. Given the models are 
opaque in nature and are now being deployed for internal and consumer facing decisions, 
there are increasing concerns around the trustworthiness of their results. We test the stability 
of predictions and explanations of different deep learning models, which differ between each 
other only via subtle changes to model settings, with each model trained over the same data. 
Our results show that the models produce similar predictions but different explanations, even 
when the differences in model architecture are due to arbitrary factors like random seeds. 
We compare this behaviour with traditional, interpretable, ‘glass-box models’, which show 
similar accuracies while maintaining stable explanations and predictions. Finally, we show 
a methodology based on network analysis to compare deep learning models. Our analysis 
has implications for the adoption and risk management of future deep learning models by 
regulated institutions.

Key words: Deep neural networks, fragility, robustness, explainability, regulation.

JEL classification: C450, C520, G180.  

(1) Bank of England. Email: rishabh.kumar@bankofengland.co.uk 
(2) University College London. Email: adriano.koshiyama.15@ucl.ac.uk
(3) University College London. Email: k.costa@cs.ucl.ac.uk 
(4) University College London. Email: nigel.kingsman.20@alumni.ucl.ac.uk
(5) Bank of England. Email: marvin.tewarrie@bankofengland.co.uk 
(6) University College London. Email: e.kazim@cs.ucl.ac.uk
(7) Reserve Bank of Australia. Email: RoyA@rba.gov.au 
(8) University College London. Email: p.treleaven@ucl.ac.uk 
(9) Bank of England. Email: zac.lovell@bankofengland.co.uk

mailto:Rishabh.Kumar%40bankofengland.co.uk?subject=
mailto:adriano.koshiyama.15%40ucl.ac.uk?subject=
mailto:k.costa%40cs.ucl.ac.uk?subject=
mailto:nigel.kingsman.20%40alumni.ucl.ac.uk?subject=
mailto:Marvin.Tewarrie%40bankofengland.co.uk?subject=
mailto:e.kazim%40cs.ucl.ac.uk?subject=
mailto:RoyA%40rba.gov.au?subject=
mailto:p.treleaven%40ucl.ac.uk?subject=
mailto:Zac.Lovell%40bankofengland.co.uk?subject=


The views expressed in this paper are those of the authors, and not necessarily those of the Bank of England 
or its committees. We are grateful to the participants from the ACM AI in Finance workshop, UCL’s Financial 
Computing and Analytics workshops and CEBRA 2022 conference for their feedback. The authors would also 
like to thank Philippe Bracke, Alice Parker, Andreas Joseph, Lewis Webber and an anonymous referee.

The Bank’s working paper series can be found at www.bankofengland.co.uk/working-paper/staff-working-papers 

Bank of England, Threadneedle Street, London, EC2R 8AH 
Email: enquiries@bankofengland.co.uk 

©2023 Bank of England  
ISSN 1749-9135 (on-line)



1 Introduction

Deep neural networks or deep learning (DL), a subfield of artificial intelligence (AI), is being rapidly

deployed in active financial applications (Bank of England, 2020). The advent of DL builds upon

previous technologies and represents a significant leap from prior data analytic techniques used

within the financial sector (Gensler and Bailey, 2020).

Surveys by the Bank of England (Bank of England, 2020) show that since the onset of the

Covid-19 Pandemic, the utilisation of machine learning (ML) and especially DL has increased

rapidly. DL is already being used in finance for fraud detection, regulatory compliance, market

surveillance, trading, asset management, risk management, credit underwriting, and insurance

underwriting.

However, due to DL models’ complexity and their reliance on latent features, the models’

explanations are often difficult to observe and explain. To overcome this challenge, a number of

techniques (referred to as “post-hoc explanation methods”) have been proposed to analyse the

models’ predictions and provide an interpretation of their decision drivers. In this paper, we focus

on one such techniques, SHAP (Lundberg and Lee, 2017), which has proven popular among DL

practitioners.

Furthermore, the architecture of DL models presents a paradox. Commentators (Gensler

and Bailey, 2020) state that DL models aim to provide state-of-the-art performance. However,

compared to commonly used linear methods, DL models are often subject to greater amounts of

non-determinism, which can lead to a greater variability of explanations and predictions. These

discussions about DL raise the importance of robustness (or stability) (Rudin, 2019) in how they

work.

Therefore, the lack of robustness that we uncover in the present paper could arise from both

the complex DL model but also the commonly used post-hoc explanations methods.1

Model robustness is important because we often aim to understand not just the model, but

the underlying phenomenon being modelled (Lipton, 2018). Moreover, understanding the expla-

nations of DL models is of interest for regulators, policy makers and members of the public alike.

Explanations that are fragile or non-robust, i.e. there are multiple explanations for a modelled

relationship, could produce morally hazardous incentives. The model builder could choose from

a set of available explanations the one that seems more likely to satisfy the internal governance

process and ignore the explanations that raise questions about the explanations of the model. In

addition, this lack of stability may create problems for financial loan applicants who might be re-

1For the tasks investigated in this paper, only a single hyperparameter term is passed to DeepLift SHAP (see
Section A.3.1), namely the baseline (which contained a subset of test samples) to be used for the calculation of SHAP
values. Noting that the setting of the baseline is a point of open discussion at the time of writing (Sundararajan
and Najmi, 2020a) and that performing a robust hyperparameter search for the SHAP method is computationally
expensive, the specific question of exact fragility of post-hoc explanations is left for future research.

1



jected for arbitrary reasons. As Selbst and colleagues (Selbst et al., 2019) point out, explanations

of models can act as a kind of argumentative support for its decisions.

Model fragility may produce another set of challenges on the macroeconomic front. DL frame-

works often use similar datasets and methodologies and are likely to generate pro-cyclical systemic

financial risks through herding and concentration of exposures (Gensler and Bailey, 2020). In such

a case, having robust explanations would help regulators investigate a model’s working and ensure

that it is consistent with fundamentals.

In this paper we examine a variety of these models and conduct simulations on two tasks:

a) Predicting credit card default and b) predicting stock returns. Credit cards are one of the

most popular sources of finance and the estimation of default risk has an impact on the availability

of credit as well as the profitability of credit providers (Stein, 2005). Survey data (Bank of England,

2020) suggests that DL models are increasingly employed in assessing default risk. The latter task

was chosen because of the popularity of DL models in assessing stock investment and trading

opportunities. Miscalculations of investment opportunities can lead to losses at the firm level. At

the aggregate level, the concentration of miscalculations can lead to incorrect asset price discovery

and misallocations.

Since multiple DL architectures are best suited for certain types of datasets, we utilise a Deep

Neural Network (DNN) architecture for the first task over tabular data, and we utilise long short

term memory (LSTM) and gated recurrent unit architectures (GRU) for the second task over

time-series data. After changing both the arbitrary (for example initial seed) and fundamental

(for example the layers of a network or the neurons) parts of a model, we capture the explanations

and predictions. Unlike traditional “glass-box” models, these “black-box” DL models do not reveal

which inputs of the model were most influential in reaching their predictions, i.e. their feature

importance. This is because DL models make predictions using latent features. To get human

understandable explanations, we utilise the DeepLift SHAP ((Shrikumar et al., 2016) (Shrikumar

et al., 2017) (Lundberg and Lee, 2017)) algorithm to estimate their feature importance.

Recent papers from the European Banking Authority (European Banking Authority, 2021),

FCA and Bank of England (Bank of England, 2022) have highlighted the need to provide “ex-

plainability” for governance. However, there is no discussion of the fragility of these explanations

itself. In this paper we show that, even if the financial institutions were to provide explanations

for their models, there is a risk that, due to the underlying fragility of DL frameworks, these ex-

planations would not show the true explanations of the model, increasing the risks for individual

firms and the financial system. Furthermore, more recently financial institutions have been asked

to strengthen their operational resilience frameworks (Prudential Regulatory Authority, 2022).

It should come as no surprise that central bankers are also actively looking at understanding

2



the interepretation of machine learning models and exploring their weaknesses. Bracke et al.,

propose the Quantitative Input Influence (QII) method for addressing ‘black-box’ problem when

predicting mortgage defaults (Philippe Bracke and Sen, 2019). Joseph (2019) utilises a surrogate

parametric regression analysis performed on a model’s Shapley value as a solution to the lack of

explainability of artificial neural networks (Joseph, 2019). Whilst Buckmann and Joseph (2022)

suggest a three step approach using comparative model evaluation, feature importance analysis

and statistical inference on Shapley value decompositions to enhance the modelling results and

explainability of ML models (Buckmann and Joseph, 2022).

This paper contributes to the nascent ML literature for finance by firstly, assessing the fragility

among DL models. The finance industry relies on the trust of end users. If DL models’ fragility

is pronounced then their deployment might negatively impact people’s trust in the system as

a whole and act as an impediment to the adoption of these models. Regulators often require

financial institutions to demonstrate robust governance structures around models2. Ambiguous

safety claims of DL models makes it crucial for the finance industry to understand DL models. It

is possible that current model governance structures, drafted for simpler models, may not have

considered all the risks generated by these new techniques (Gensler and Bailey, 2020). Secondly,

in this paper we provide an example tool based in network analysis to monitor these models

by looking at observable factors (explanations and predictions). Network analysis comprises a

set of techniques to represent the relationships between a group of agents as a graph, with each

agent being depicted as a node in the network and each relationship between a pair of agents

being depicted as a line between those agents’ nodes. The graph presentation offered by network

analysis provides a compact, visual means with which to communicate to the reader information

as to the occurrence of the relationships amongst a large number of agents at once. This is crucial

because regulators conduct “horizon-scanning” to pre-empt and assess fragility in the system. A

monitoring tool based on network analysis could provide a “SupTech” solution (Steenis, Huw van,

2019) and enable regulators to observe the system as a whole and stress test scenarios coming from

unseen events. Network analysis has been long suggested as tools by central bankers to utilise to

understand upcoming risks: According to Haldane (2013) “Network diagnostics ... may displace

atomised metrics such as VaR in the armoury of financial policymakers”. Network analysis,

moreover, does have a number of associated numerical measures or metrics that can prove helpful

in assessing how distinct networks differ from each other. This paper avails of such a metric to

present network comparisons to the reader.

The use of fragile DL models in crucial business decisions could affect operational resilience

and expose institutions to unforeseen risks. In Section 2 we lay out the challenges posed by DL

2see (Financial Conduct Authority, 2021; Federal Reserve, 2021), and (Prudential Regulatory Authority, 2018)

3



frameworks due to fragility; whilst in Section 4 we illustrate our experiments and results, and;

finally in Section 5 we highlight their implications for financial stability and regulation.

2 Background and Review of Literature

2.1 The Rashomon Effect and model fragility

In statistics, the Rashomon Effect 3 is a phenomenon where for a given set of data it’s possible to

construct many equally well-performing models that may differ greatly in their internal structure

(and hence in their inner explanations) (Breiman, 2001).

As an example, Dong and Rudin (2019) construct a Rashomon set for the recidivism data set

used in the COMPAS algorithm 4. They find that models in the Rashomon set differ significantly

in the importances assigned to certain variables. In particular, the importance of criminal history

is lower when the importance of race is higher, and vice versa. In such a case, taking one model

out of the Rashomon set to provide “the explanation” would not be an accurate reflection of the

patterns in the data - just because criminal history happens to be an unimportant variable in

that one explanation does not mean that it is objectively an unimportant variable. Each of those

models suggests a different explanation, even though they all have similar input-output mappings.

When we lack convergence of multiple methods on the same explanation, we have fragility with

the models (even if the input-output mappings are robust).

We demand that DL models are robust because they are often used to reveal and justify

underlying relationships. If the models are fragile then explanations generated by any single

model are likely to be insufficient.

2.2 Generating explanations for DL

In DL models, the relationship between inputs and predictions cannot be readily understood, even

if the structure and the parameters of the model can be observed.

Understanding a model’s behaviour is important in explaining the predictions made to support

a decision making process, debugging unexpected behaviour, refining modelling and data mining

processes, verifying that model behaviour is reasonable, and presenting the model’s predictions to

stakeholders.

Proposed explainability methods have two main scopes: (i) local methods for individual predic-

tions, where typical users might be individuals targeted by an algorithm, and (ii) global methods

3Generally speaking the term ”Rashomon effect” comes from the 1950 Japanese film Rashomon, in which a mur-
der is described in four contradictory ways by four witnesses. Thus the event is given contradictory interpretations
or descriptions by the individuals involved, thereby providing different perspectives and points of view of the same
incident (Davenport, 2009).

4The Correctional Offender Management Profiling for Alternative Sanctions, or “COMPAS”, algorithm is widely
used across the U.S. justice system to assess the likelihood of a defendant becoming a recidivist)

4



for overall models, where typical users might be researchers and designers of algorithms interested

in the general insights that the model produces. These methods can be intrinsic (by definition

model-specific), with the model requiring no additional techniques to aid explainability, or post

hoc (usually model agnostic Molnar (2021)), with techniques enhancing explainability after model

training.

Researchers Ribeiro et al. (2016) defend the use of the model-agnostic approach, arguing that

it increases confidence in the use of black-box models. In this study, we focus on a state-of-the-

art model-agnostic approach, SHAP (SHapley Additive exPlanations) Lundberg and Lee (2017).

SHAP proposes to explain the output of ML models using Shapley values.

Shapley values Shapley (1953b) were initially developed for the Game Theory domain to allo-

cate payouts to players depending on their contribution to a total payoff in a cooperative game.

In our context, each feature passed to the model is a player that participates in the game; the

prediction is the payoff and the Shapley values are the payout to allocate to each feature depending

on its contribution to the prediction (Shapley, 1953a).

DeepLIFT Shrikumar et al. (2017) computes the impact that each of the input features has on

the model’s output value using backpropagation. For each part of the DL network, it considers

how the difference between the output and a reference output value can be explained by the

difference between the input and a reference input value, where the reference output value is the

output generated by that part of the network when passed the reference input value.

DeepLift SHAP, referred to as ‘Deep SHAP’ by Lundberg and Lee Lundberg and Lee (2017),

combines SHAP values calculated for smaller parts of a network in order to generate SHAP values

for the entire network using the same backpropagation methodology as DeepLIFT. Application of

DeepLIFT is discussed in detail in the following section.

3 Identifying fragility and its implications in DL models

To understand DL model fragility and its implication for macrosystemic and the micro-consumer

issues, we first create a set of DL models for credit default and stock market return predictions

respectively. For each dataset, we train a collection of models differentiated by subtle variations

in model architectures and model settings.

In all cases, we use the mean squared error loss function,

L =
1

n

n∑
i=1

(ŷi − yi)
2, (1)

for model training, where ŷi is the model prediction for the i-th training sample, yi is the true

outcome associated with the i-th training sample, and the training set comprises n samples. Then

5



we estimate the similarity of the models’ explanations and predictions.

3.1 Model fragility and Hyperparameters

Understanding the behaviour of DL models poses several challenges. Firstly, DL models make

their predictions on hidden variables, which are often uninterpretable as the system learns its

own representation of the data which may not align with a human mental model Gensler and

Bailey, 2020. Secondly, with different hyperparameters, the paramerters of the model may not

be same across different builds of a model even when the input and output values are the same.

To overcome these challenges, we decide to focus on the observable elements: the explanations

and the predictions of the model. With Shapley values (using SHAP), we create a explanations

similarity metric (a measure of how similar the explanations are between two models) and an

predictions similarity metric (a measure of how similar the predictions generated by a model are

to that of another model).

Shapley values (Shapley, 1953b) originated from a sub field of game theory called “cooperative

game theory”, which aims to allocate payouts to players depending on their contribution to the

total. In our context, each feature is a player that participates in the game; the prediction is the

payout and the Shapley values communicate how the feature contribution (payout) can be diffused

across features.

Shapley value is a concept constructed on a solid axiomatic and theoretical foundation (Algaba

et al., 2019). In Shapley (1953a), are defined four axioms. First, the efficiency axiom says that

the sum of payoffs for all players must be equal to the total worth of the coalition. Second, the

null player axiom says if a player’s contribution is equal to 0, their payoff is equal to 0. Third,

the symmetry axiom says if two players have symmetric contributions, they receive equal payoffs.

And, finally, the additivity axiom says the selected payoff vector for the sum of two players must

be the sum of the payoff vector for each player.

If we consider a sample with n features x1, . . . , xn, z ∈ {0, 1}n where the i-th component of

z, zi, is set to zero to represent the absence of feature i and to one to represent the presence of

feature i, and a prediction model v(z) → R, then we can define the Shapley value of the i-th

feature5 as the weighted average of the marginal prediction value of including feature i across all

possible absence/presence combinations of the remaining features:

ϕi(v) =
∑

F⊆{z1,...,zn}\{zi}

|F |! (n− |F | − 1)!

n!
(v (F ∪ {zi})− v(F )) (2)

where F is the collection of possible absence/presence combinations.

For our study we utilise the DeepLift - SHAP algorithm to calculate the Shapley values for

5See the contributions proposed by Sundararajan and Najmi (2020b), Molnar (2021), Lundberg and Lee (2017).

6



the neural networks. DeepLIFT (Shrikumar et al. (2017)) uses backpropagation to compute the

impact that each of the input terms to the model has on the model’s output value. It does this

by considering, at each part of a deep learning network, how the difference between the output

value for that part of the network and a reference output value for that part of the network can be

explained by the difference between the input value for that part of the network and a reference

input value for that part of the network (where such reference input value generates the reference

output value).

Explicitly, using the nomenclature of DeepLift Shrikumar et al. (2017), if we consider the

output value, t, of a specific neuron to be of interest, and we let x1, x2, . . . , xn represent inputs

(where such inputs can either be the predictions of neurons immediately preceding our neuron of

interest in the network, or the predictions of neurons earlier in the network, or even the inputs

to the overall network) that are sufficient to compute the output value of that neuron of interest,

then DeepLIFT gives
n∑

i=1

C∆xi∆t = ∆t (3)

where, with t0 representing the reference output value for the neuron, ∆t = t − t0 is the

difference of the output from the reference, and C∆xi∆t is the contribution score assigned to ∆xi.

For each input xi, C∆xi∆t can be considered that part of ∆t which can be “blamed” on the

difference of xi from it’s reference value (part of the reference input value above), x0
i (and thus,

for completeness, ∆xi = xi−x0
i ). Note that t

0 is the output value of the neuron, and x0 the input

value to the neuron, which is observed when a reference input is passed to the first layer of the

network. That reference input is set by the user relying on domain-specific knowledge. As will be

seen below however, DeepLift SHAP by default restricts this by setting the reference input to the

first layer of the network to be comprised of the average feature values from the relevant dataset.

We can then proceed by defining a “multiplier”, m∆xi∆t, as

m∆xi∆t =
C∆xi∆t

∆xi
(4)

which gives us finite differences, quantities which are similar to the partial derivative ∂t
∂xi

(which

are finite differences as ∆xi → 0). DeepLIFT then is able to combine these multipliers, using a

“chain rule for multipliers” Shrikumar et al. (2017) to compute the multipliers for the network’s

overall predictions with respect to the network’s inputs and thus compute the “blame” to assign

to each input for the network’s overall output value.

Lundberg and Lee Lundberg and Lee (2017) connect the Shapley values discussed above with

DeepLIFT. To do so, they first present SHAP (Shapley Additive Explanations), a methodology

that extends the use of Shapley values to prediction models that demand the presence of all

7



features (that is, on any forward pass through the prediction model, no features can be omitted

as can be the case when calculating Shapley values). The concept of feature absence is replaced

by the concept of reference value - i.e. feature importance considers the change in the prediction

model output as compared to that feature taking a reference value. The existence of a unique

solution, given by SHAP values, for six additive feature importance methods analyzed is shown.

Lin et al. (2019) cite SHAP as a state-of-the-art explainability technique.

DeepLift SHAP, referred to as ”Deep SHAP” Lundberg and Lee (2017), combines SHAP values

calculated for smaller parts of a network in order to generate SHAP values for an entire network

using the same backpropagation as exhibited by DeepLIFT using the “chain rule for multipliers”.

The use of DeepLIFT in this way relies on the multipliers of equation 4 being re-defined in terms

of SHAP values:

m∆xi∆t =
ϕi(f

∗)

∆xi
(5)

where f∗ is the function between the input x and the output value of the neuron of interest,

ϕi() is the Shapley value of the i-th feature (as per Equation 2) and where x0
i is set to equal

E[xi] for all i (i.e. the reference input to the neuron is equal to the expected input to the neuron,

that is the mean average input when considering all data sample, an input that would yield the

neuron output that would be predicted in the absence of knowing any of the input values). By

combining importance values computed for smaller parts of the network, which can be more easily

solved efficiently, DeepLift SHAP is able to offer a fast approximation of SHAP values for an entire

network. In this paper we use the term SHAP, Shapley values and explanations interchangeably.

Explanations and predictions similarity are measured as the pairwise mean absolute deviation

of SHAP/prediction values respectively. This value is re-scaled from 0 to 100, with a score of

100 implying duplication and 0 implying uniqueness. For a single pair of models, we calculate the

mean absolute deviation of the SHAP/prediction values for model α, with SHAP/prediction values

{sα,1, sα,2, . . . , sα,n}, and model β, with SHAP/prediction values {sβ,1, sβ,2, . . . , sβ,n}, where n is

the number of features, as

SimilarityMAD
α,β =

1

n

n∑
i=1

|sα,i − sβ,i| (6)

which are then scaled from 0 to 100 to give the relevant similarity figure between models α and β:

Similarityα,β =

100×
SimilarityMAD

α,β −max(SimilarityMAD)

min(SimilarityMAD)−max(SimilarityMAD)

(7)

8



After computing the scaled similarity index values for all model pairs, separately, for expla-

nations and predictions, we use ordinary least squares (OLS) regression to solve for the weight

vector, w, and intercept, b, giving the solution of best fit for the following set of equations:

yj = w⊤xj + b ∀j ∈ 1, . . . ,m (8)

where yj is the scaled similarity index for the j-th model pair for explanations or predictions

respectively, xj is the vector of dummies for differences in hyperparameters for the j-th model

pair (the k-th element of the vector of dummies takes a value of one if the k-th hyperparameter

differs between the two models, and takes a value of zero otherwise) and m is the total number

of model pairs. If all models with subtle changes to their hyperparameters were providing similar

explanations and predictions respectively then we would find that the respective intercept term,

b, tends towards 100 and all the terms {wi} of the respective weight vector w tends towards zero.

An illustrative example is provided in the appendix under section A.5.

3.2 Comparing with traditional models

We compare the explanations provided by DL models with logistic regression for the credit scoring

dataset and auto-regressive models for the stock returns (time-series) dataset respecitvely. This

was done to provide a benchmark to compare model fragility.

3.2.1 Logistic Regression

In its simplest form, logistic regression uses the specific sigmoid function, σ(x) = 1/(1+exp(−x)),

to model a binary variable. With a feature vector x ∈ Rn, a weight vector w ∈ Rn and an intercept

parameter b ∈ R, we compute the probability P (ŷ = 1) for the binary variable ŷ ∈ {−1, 1} as

f(x) = σ(w⊤x+ b) ∈ (0, 1) (9)

For training, we use the logistic loss function L(w, b):

ℓ(w⊤xi + b, yi) = log(1 + exp(−yi(w⊤xi + b))) (10)

L(w, b) =
m∑
i=1

ℓ(w⊤xi + b, yi) (11)

where there are m samples in the training set. Standard convex solvers can be used to find the

(w, b) pair that minimise L(w, b). We loop through various solvers (‘newton-cg’, ‘lbfgs’, ‘liblinear’,

‘sag’, ‘saga’) and their recommended penalties.

9



3.2.2 Auto Regression

To predict stock returns we construct an autoregression model with lagged variables of order one

as input variables. We utilise Python’s statsmodels library Seabold and Perktold (2010). We seek

the solution for the weight vector, w, and intercept, b, of best fit, through minimisation of the loss

function as per Equation 1, for the following set of equations:

yt = w⊤xt−1 + b ∀t ∈ 1, . . . ,m (12)

where yt is the stock return of the dependent stock for the current time period, xt−1 is the vector

containing the performances of the independent stocks for the preceding time period, and m is

the number of time periods.

3.3 Comparing DL models using network analysis

Financial policy makers and regulators often need to understand the interactions and workings of

financial participants as a whole. To quantify the behaviours of simulated models in the market we

utilise network analysis based representations. Network analysis comprises a set of techniques to

represent the relationships between a group of agents as a graph, with each agent being depicted

as a node in the network and each relationship between a pair of agents being depicted as a

line between those agents’ nodes. The graph presentation offered by network analysis provides a

compact, visual means with which to communicate to the reader information as to the occurrence

of the relationships amongst a large number of agents at once. This could allow policy makers and

regulators to visually observe the effects of model output, and in particular how similar market

participants’ models’ outputs are, in the market setting. In particular, policy makers would be

able to observe how market participants’ model outputs might converge or diverge during periods

of market stress. As stated earlier, network analysis has long been proposed as tool policy makers

could rely upon (Haldane, 2013). Network analysis, moreover, does have a number of associated

numerical measures or metrics that can prove helpful in assessing how distinct networks differ

from each other. This paper avails of such a metric to present network comparisons to the reader,

and is described below.

We model network graphs on two specific data - explanations and predictions. Metrics from

network analysis methods such as degree centrality (DC) could enable regulators to monitor and

supervise the model predictions. With this method, one could interpret the models as agents in

the market and their behaviours could be mapped using network graphs.

We use the Pearson correlation coefficient over explanations and predictions pairs to construct

links between the models or agents. The coefficient is a statistical measure that quantifies the

10



relationship between two variables. Revisiting our nomenclature from Subsection 3.1, we can

compute the value of the Pearson correlation coefficient by ραβ for a pair of models, α and β, where

model α has SHAP/prediction values {sα,1, sα,2, . . . , sα,n}, and model β has SHAP/prediction

values {sβ,1, sβ,2, . . . , sβ,n}, where n is the number of features, as

ραβ =

∑n
i=1(sα,i − s̄α)(sβ,i − s̄β)√∑n

i=1(sα,i − s̄α)2
√∑n

i=1(sβ,i − s̄β)2
(13)

where s̄α is the mean average of the values {sα,1, sα,2, . . . , sα,n}, and s̄β is the mean average of

the values {sβ,1, sβ,2, . . . , sβ,n}.

The coefficient takes a value between -1 and 1, where a value of -1 indicates a perfect negative

correlation (where, for example, it would be observed that as model α predicts higher values, model

β predicts lower values, and vice versa), a value of 0 indicates no correlation, and a value of 1

indicates a perfect positive correlation (where it would be observed that as model α predicts higher

values, model β would also predict higher values, and vice versa). The correlation coefficient is

interesting to look at in various contexts because it allows us to quantify the strength and direction

of the relationship between two variables. For this study, correlation analysis is important because

it provides a metric with which to measure the strength of relationship between sets of predictions,

with each set of predictions generated by a distinct model (agent), and the strength of relationship

between sets of explanations, with each set of explanations generated by a distinct model (agent).

The correlation matrices of agents’ explanations or predictions can be interpreted as weighted

networks where all node pairs (i.e. agents) are connected. Specifically, agents i and j are con-

nected by a weight of ρij ∈ [−1, 1], which is the Pearson correlation coefficient between agents’

explanations or predictions. The Pearson correlation coefficient has been used extensively in the

network analysis of time series of stock prices (Mantegna (1999)). Using a ‘winner takes all’ (Chi

et al., 2010) method we set a minimum correlation threshold6 to remove some edges from the

diagram, leaving only the edges whose Pearson correlation coefficient are in the top quartile.This

gives us with a filtered n× n correlation matrix C whose (i, j)-th element can be written as

cij = Jρij ≥ xk + f · (xk+1 − xk)Kρij (14)

where JP K is equal to 1 if P is true, and equal to 0 otherwise. xk is the kth observation in ascending

order (rounded up to one decimal place), f is the fractional part of (n+ 1) · 0.75, and xk+1 is the

(k+1)th observation (also rounded up to one decimal place).

6By setting the 75th percentile as a threshold, we limit our analysis to the top 25% of the strongest relationships
in the data set. By utilising a distributional cut-off we develop a comparable set, of strong correlations, among the
predictions and explanations.

11



The adjacency matrix represents a graph as a matrix, with entries indicating the connections

between vertices. An entry of 1 indicates a connection (link), while an entry of 0 indicates no

connection. We arrive at the adjacency matrix by performing a further operation on the filtered

correlation matrix, C, so that each element aij of the adjacency matrix, A, can be computed as

aij = Jcij ≥ 0K for i ̸= j,

aii = 0.
(15)

The adjacency matrix can be obtained from an edge list or an adjacency list representation of

the graph. A node with several edges has a high similarity on explanations and predictions with

different models. Degree Centrality (DC) captures the number of edges that one specific node has.

If a node has a large number of edges it is reasonable to admit that this node is relevant for the

network. In our experiment, a node represents a model with unique architecture. Considering DC

as shown in Boccaletti et al. (2006), a graph G can be described by an adjacency matrix A (the

diagonal contains zeros), an n×n square matrix whose entries aij (i, j = 1, 2, . . . , N) are equal to

1 if a link between nodes i and j exists, and zero otherwise. Considering an undirected graph, we

use the degree centrality definition whereby, for a given node i, the degree centrality (ki) is the

fraction of nodes that node i is connected to. The degree centrality is thus calculated as

ki =
1

n

n∑
j=1

aij . (16)

where i and j are nodes, and aij is an entry in the adjacency matrix A. It should be noted that

our DC calculation is invariant to the size of the network and thus presents itself as a measure

that can be used to compare how the connectedness of one network differs from that of another

network (without requiring the networks to be equally sized).

A highly correlated dense network shows that there are strong and numerous relationships

between the nodes. This indicates that the agents are highly interconnected and that predic-

tions/explanations generated by one agent are shared by other agents, which can be a weakness

if the agents have the same biases and errors.

On the other hand, a sparse network shows that there are fewer and weaker relationships

between the nodes. This may indicate that the agents are less interconnected and that the pre-

dictions/explanations of one agent will not necessarily be shared with the other agents, making

the network more resilient to biases and errors that can cause systemic weaknesses.

12



3.4 Simulations

We simulate different variations of neural network models and then capture their predictions and

explanations. Code is provided in our GitHub repository7. Algorithm 1 describes our methodology.

Algorithm 1 Function for simulations of explanations and predictions

Require: Data randomly split a into train data and test data with
the same seed parameter
for Enumerate product of setup parameters: seed count, number of epochs,

learning rate, number of nodes in hidden layer, optimizer do

class.model← number of nodes in hidden layer

Class.Optimizer ← model, optimizer, learning rate

Class.Optimizer.train← train data, number of epochs

Class.Optimizer.evaluate← test data

return modelPredictions
predictionsList← modelPredictions

func.getSHAPvalues← model, test data

return SHAPvalues
SHAPlist← SHAPlist+ SHAPvalues

end for
return modelPredictions, SHAPList,modelHyperParameters

aFor the credit data models the train test split is a randomly shuffled dataset with 80:20 train-test split. For
stock market analysis we trained the models on two time periods. In the first period models are trained and test
prior to the financial crisis (with 80:20 train-test split). In the second scenario the models were trained before the
crisis but tested during the crisis period. Please refer to section 4.2 for exact dates.

4 Experiments

4.1 Experiment 1: Credit Default Dataset

The dataset by Yeh and Lien Yeh and Lien (2009) contains data about customer defaults payment

in Taiwan. This is the larger dataset used in this study. The two target classes have 23364 cases

(77.88%) of ‘good credit’ and 6636 cases (22.12%) of ‘bad credit’. This dataset has been utilised

by various academic studies that studied credit rating Jadhav et al. (2018) and credit defaults

Chishti and Awan (2019). More details are found in the appendix section under B.

4.1.1 Model Fragility

We captured model predictions and explanations per model and then compared each models’

predictions and explanations with all other models. The dataset also contained dummies for

hyperparameters. Through our calculations we generated a dataset that had dummy values for

7https://github.com/bank-of-england/deep-learning-herding

13



hyperparameter changes and an index which represents the similarity of predictions and explana-

tions.

Table 1: explanations and predictive similarity regression for credit default. Standard errors in
parentheses. (see section 4.1.1) [Generalisation loss mean 0.13]

Explanations Predictive
Intercept 52.8*** (0.9) 73.9*** (0.8)
Seed -3.9*** (0.7) -8.3*** (0.6)
Epochs -0.0*** (0.0) -0.0*** (0.0)
Learning Rate -3.7*** (0.6) -3.9*** (0.5)
Hidden Layer Size -3.7*** (0.7) -6.2*** (0.6)
Optimiser: Adam -1.2*** (0.3) -1.9*** (0.3)
Optimiser: SGD -1.2*** (0.3) -1.9*** (0.3)
*p<.1, ** p<.05, ***p<.01

In the above table we regress the index for pairwise similarities of explanations and predictions on the dummy
variable that reflect hyper-parameter changes. The similarity indexes are scaled from 0 to 100 where 100 reflects
duplication among a pair of model. The intercept stipulates the average similarity when controlling for changes to
hyper-parameters among two models. We note that predictive similarity intercept is about 1.4 times higher than
explanation similarity intercept that indicates models are more likely to have similar predictions but more dissimilar
explanations. The coefficients on the dummy variable changes indicate that changes to hyper-parameter affects
two models predictions and explanations. Even arbitrary changes such as model seed can affect models diverging
in predictions and explanations.

Table 1 shows the coefficients for linear regression (see Section 3.1) generated from our results

for explanations and predictive similarity, where the dummies for hyperparameter changes are

features and the similarities indexes are targets. The “Intercept” term in Table 1 is the constant

value from the regression, which reflects the average explanations and predictive similarity. The

other regressors show the average impact of changes to the hyperparameters on the target. This

table highlights that models are on average more likely to have similar predictions but their

explanations will vary substantially. It also shows that factors like the seed of a model can

significantly affect explanations and predictions.

We expected that since all models optimise on the same data - generating the same approx-

imation function - all models would converge and become identical in their explanations and

predictions. The performance for these models were also very similar if not the same (test ac-

curacy mean ∼ 78%-80%). These results show that even with very subtle differences we get a

Rashomon set, multiple models with similar performance but different in their inner explanations.

The implications of this finding are discussed in a later section.

4.1.2 Comparing fragility of traditional methods with DL

In the previous subsection, we noted a multiplicity of DL models that perform similarly but have

different inner explanations. Motivated by this, we explore if a comparable dissimilarity exists in

explanations when using logistic regression, a technique commonly used for credit scoring Centre

for Data Ethics and Innovation (2020). In the charts below we only consider DNN models with

14



high levels of performance based on test accuracy (above 78%). Figures 1a and 1b compare the

mean error chart for explanations of logistic regression (log-odds) and DNN (SHAP).

The graphs highlight that when it comes to DNN models the explanations have high variability,

where often an explanation can even switch directions from being positive to negative. On the

other side, logistic regression provides consistent global explanations that do not change over their

hyperparameters.

To understand the variability among deep learning models we visualise the most and least

important variables from the set of equally performing models. If the DL models were robust then

there must be one most important feature and one least important feature in terms of its effect

size. Starting from the left in the Figure 2 we note that Pay 0 (the repayment status in the last

month before default) is the most important variable for 34% of the models in the set. Other

times, for example, in 9% of the models, Sex was the most important variable. Looking at the

graph on the right side, we note that Pay 0 was the least important variable among 34% of the

models. Having such variability will suggests the presence of the Rashomon set of equally well

performing models with differing explanations. Such variability furthermore will make assessment

of actual relationships very challenging.

4.1.3 Understanding model behaviour through networks

To further understand and visualise model predictions and explanations we employ network anal-

ysis. Network analysis takes into account the overall complexity of model behaviour and then

charts it in a manner that non-machine learning experts can understand. Our analysis rests on

a few assumptions. First, we assume that model explanations are captured through SHAP val-

ues. Second, we assume that models are working without access to information from each other.

Finally we assume that pairwise correlation reflects the commonality in model explanations and

predictions.

Degree centrality (DC) generated from our network analysis can provide some evidence on how

strongly models are related in terms of their explanations and predictions. Ideally robust models

would showcase similar levels of centrality of explanations and predictions. In the presence of a

Rashomon set we would find a higher DC for predictions (models predicting similar outcomes)

but lower DC for explanations (models suggesting differing explanations). This is the behaviour

that is indeed revealed by our analysis. Figure 3 reveals that DC for predictions is significantly

higher than for explanations, and thus that there is a lot more variation of model explanations

being exhibited than there is variation of predictions. The reader should note that, where degree

centrality values have been provided (in Figure 3 and elsewhere), they have already been subject

to normalisation by dividing the raw degree centrality figure by the maximum possible degree in

15



Figure 1: Mean error bar for predicting credit default variables

(a) Mean error bar for credit default variables SHAP values (see section 4.1.2)

(b) Mean error bar for credit default variables under Logistic Regression (see section 4.1.2)

Y axis’s denotes the shapely values and the coefficient effect sizes. The x axis are the input variables in the models.
The vertical lines reflect the 95% confidence interval for the average effect sizes of the models the Rashoman set of
equally well performing models. We note that the confidence intervals for SHAP values are very wide compared to
coefficients reflecting inconsistency of explanations among deep netural network based models.

16



Figure 2: Graphs showing most and least important features (see section 4.1.2)

(a) (b)

a simple graph, n− 1, where n is the number of nodes in G.

17



Figure 3: Mean degree centrality for predictions (left) and explanations (right) (see section 4.1.3)

DEGREE CENTRALITY PREDICTIONS DEGREE CENTRALITY EXPLANATIONS
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
D

eg
re

e 
of

 C
en

tra
lit

y

4.1.4 Discussion:

When looking at the results for credit default using a multilayered DNN architecture, our results

from pairwise comparisons show low concentration on explanations and high similarities on pre-

dictions. This result exemplifies the Rashomon effect where models produce similar outcomes

but dissimilar inner explanations. When explanations are compared to traditional methods such

as logistic regression, we found explanations for DNN to be unstable whereas logistic regression

to be more stable. Subtle differences in model development can affect its feature importance,

which can affect how model developers will be able to explain the explanations. The model’s

feature importance changes even when the model has subtle arbitrary differences (for example

the seed initialisation). In Figures 1a and 1b, we can see that the model explanations for DNN

is variable compared to logistic regression. Similarly, the results generated using our network

analysis approach, as given in Figure 3 and showing a reduced Degree Centrality figure for ex-

planations as compared to the Degree Centrality figure for predictions, communicate the reduced

level of relationships between our DNN models when considering explanations as compared to

model predictions.

A reason for the variability among DL frameworks could be due to its reliance on random

processes 8. Another reason could be that a larger number of parameters which often implies that

a model is unable to admit a unique solution. Thus a training method could select a solution out

of many that are possible. This is less likely with low parameters model where the unique solution

typically exists as was the case in our analysis.

8Completely reproducible results are not guaranteed across PyTorch releases, individual commits, or different
platforms. See more here https://pytorch.org/docs/stable/notes/randomness.html

18



Professionals developing monitoring and supervisory technology could use our framework. The

graphs presented in Figure 10 in the appendix highlights how models higher agreement between

models for predictions as compared to agreement between the same models for explanations.

There could be various reasons for the divergence in explanations and predictions. First our

method of understanding DL explanations is based on SHAP values, which are an approximation

and thus subject to noise introduced by the approximation process (noting that approximation

errors can propagate within the DeepLift SHAP procedure). Second, it could be that changes in

hyperparameters also affect any randomisation processes inside the PyTorch Paszke et al. (2019)

framework, even in the presence of a fixed seed.

4.2 Experiment 2: Stock Market Dataset

The data used corresponds to the daily return for 75 stocks that are members of the FTSE 100

Index (UKX). The period of analysis comprises July 20, 2001 to March 15, 2019. In total, 331,500

observations were considered, with 4,420 observations for each stock. To measure the results in

periods of greater and lesser economic stability, the results were compared at two different times:

Before Crisis and During Crisis. The test period in BC is January 04, 2005 to December 29,

2006. And the test period DC is July 19, 2007 to December 21, 2008. The train period in DC is

the period before the test period. We follow similar simulation loops as stated in Section 3.More

dataset details are found in the appendix section under B.

4.2.1 Fragility and Hyperparameters

Akin to the previous section, we train multiple DL models with stock data but different hyper-

parameters. As before, our initial hypothesis is that these subtle changes would not affect the

model’s predictions and feature importance. Since all models optimise on the same values - using

the same loss function - all models should converge and become identical.

In a detour from the previous experiment on credit card data, we now create two sets of

simulations. In the first one, we train and test the data before the crisis; in the second, we train

the data before the crisis but test it during crisis. This enables us to observe relationships among

DNN models from a stable time period to a more turbulent time. We also utilise time series

specific DL frameworks, Long short-term memory (LSTM) and Gated recurrent units (GRU). As

stated previously, these architectures are better suited to capture temporal dependencies and are

widely used in finance.

As with Experiment 1, we create a dataset of the explanations and predictions of DL models.

We then calculate the similarity indices for features and predictions. Finally, we perform linear

regression, as per Experiment 1 and as per Section 3.1, across the different dummies for pairwise

19



hyperparameters’ changes as features, and the feature and prediction similarities indexes as tar-

gets. As seen in Table 2 and Table 3, we find a substantial and statistically significant effect of

hyperparameters on the pairwise feature similarity index but a small effect of hyperparameters on

the output similarity indexes. This implies that two model developers having different hyperpa-

rameters, even if they are arbitrary (for example the initial seed), could get different explanations

but very similar results. In other words, each model would show different reasoning for their

behaviour but still display very similar results overall. This shows the presence of a Rashomon

set of models, even in the presence of small or even arbitrary changes to the models, which could

display substantial differences in their explanations.

Table 2: Predictive and explanations similarities regression for stock market return before crisis.
Standard errors in parentheses. (see section 4.2.1) [Generalisation loss: 0.066]

LSTM GRU
Explanations Predictive Explanations Predictive

Intercept 59.6***(1.2) 86.1***(2.1) 52.0***(1.2) 85.0***(2.4)
Seed -6.4***(1.0) -3.9**(1.8) -8.0***(1.0) -1.2 (2.1)
Epochs 0.0 (0.0) -0.0***(0.0) 0.0 (0.0) -0.0***(0.0)
LR -3.1***(0.9) -17.3***(1.5) -3.9***(0.9) -20.5***(1.8)
Hidden -3.75***(0.9) -2.6 (1.6) -3.7***(0.9) -2.3 (1.8)
Adam -7.3***(0.4) -2.2***(0.8) -3.2***(0.4) -5.1***(0.9)
SGD -7.3***(0.4) -2.2***(0.8) -3.2***(0.4) -5.1***(0.9)
* p<.1, ** p<.05, ***p<.01

Table 3: Predictive and explanations similarities regression for stock market return during crisis.
Standard errors in parentheses. (see section 4.2.1) [Generalisation loss: 0.11]

LSTM GRU
Explanations Predictive Explanations Predictive

Intercept 52.9***(1.3) 88.9***(2.1) 55.3***(1.3) 88.8***(2.0)
Seed -6.4***(1.1) -2.5 (1.9) -7.4*** (1.1) -1.1 (1.7)
Epochs 0.0 (0.0) -0.0***(0.0) 0.0 (0.0) -0.0***(0.0)
LR -3.5***(0.9) -29.3***(1.6) -3.6***(1.0) -12.5***(1.5)
Hidden -3.7***(1.0) -1.0 (1.6) -3.2***(1.0) -1.0 (1.5)
Adam -6.8***(0.5) -2.2***(0.8) -3.6***(0.5) -3.6***(0.8)
SGD -6.8***(0.5) -2.2***(0.8) -3.6***(0.5) -3.6***(0.8)
* p<.1, ** p<.05, ***p<.01

Akin to table table 1, in the above tables we regress the index for pairwise similarities of explanations and predictions
on the dummy variable that reflect hyper-parameter changes. The similarity indexes are scaled from 0 to 100 where
100 reflects duplication among a pair of model. The intercept stipulates the average similarity when controlling
for changes to hyper-parameters among two models. We note that predictive similarity’s intercept is higher than
explanations similarity’s intercept indicating models are more likely to have similar predictions but more dissimilar
explanations. The coefficients on the dummy variable changes indicate that changes to hyper-parameter affects
two models predictions and explanations. Even arbitrary changes such as model seed can affect models diverging
in predictions and explanations.

4.2.2 Comparing fragility of traditional methods with DL

In the previous subsection, we found a multiplicity of models that perform similarly but have

different inner explanations. As with Experiment 1, we now explore if dissimilarity in feature

importance exists with other commonly used techniques such as autoregressive models. In the

20



tables below we restrict our attention to models with the highest levels of performance based

on accuracy. DL explanations (see Figure 4a) behave similarly to what we saw in the previous

experiment. Often an explanation can even switch directions from being positive to negative. On

the other side, linear based regression (see Figure 4b) provides consistent global explanations that

do not change over their hyperparameters settings. Please note that, in this experiment, solutions

for the linear regression models were well defined given the low number of features when compared

to the number of data points, ensuring a unique solution.

Exploring the variability among deep learning models, we visualise the most and least impor-

tant variables from the set of equally performing models. If the set of DL models were robust

or not fragile then there must be one most important feature and one least important feature in

terms of its effect size. Firstly we note that there are several most/least important features in the

set of models. Moreover starting from the left graph in Figure 5 we note that one feature (BDEV

LN Equity) is presented as the most important feature 12% of the time but least important about

31% of the time. Having such variability suggests the presence of the Rashomon set of equally well

performing models with differing explanations. Such variability furthermore will make assessment

of actual relationships very challenging.

4.2.3 Understanding model behaviour through networks

To understand model behaviour, we employ network analysis and its measures of centrality. Our

analysis of model predictions and explanations rests on a few salient assumptions that were men-

tioned in Section 3.

As stated before, degree centrality generated from the network analysis gives evidence on how

strongly related models are in-terms of their explanations or predictions. Ideally robust models

would showcase similar levels of centrality of explanations and predictions. In the presence of a

Rashomon set we would find a higher DC for predictions (models predicting similar outcomes) but

lower DC for explanations (models suggesting differing explanations). Looking at Figure 6 we note

that DC for predictions is lower during the pre crisis period suggesting an interesting result that

even with similar explanations model outputs are differing. Looking at the during crisis period

we note that models are predicting more similarly but providing more dissimilar results. Again,

as per Subsection 4.1.3, is important to note that the degree centrality values are normalised by

dividing the raw degree centrality figure by the maximum possible degree in a simple graph, n−1,

where n is the number of nodes in G. This normalization was performed to facilitate comparison

between different networks, since degree centrality may not be directly comparable depending on

the size and structure of the network. Therefore, normalization is important to make comparison

between networks possible.

21



Figure 4: Mean error bar for predicting stock return variables

(a) Mean error bar for predicting stock return variables SHAP values (see section 4.2.2)

(b) Mean error bar for predicting stock return variables under Linear Regression (see section 4.2.2)

Y axis’s denotes the shapely values and the coefficient effect sizes. The x axis are the input variables in the models.
The vertical lines reflect the 95% confidence interval for the average effect sizes of the models the Rashoman set of
equally well performing models. We note that the confidence intervals for SHAP values are very wide compared to
coefficients reflecting inconsistency of explanations among deep netural network based models.

22



Figure 5: Graphs showing most and least important features (See section 4.2.2)

(a) (b)

Table 4: t-Test for difference of means with Degree of Centrality (DC) of model predictions. (see
section 4.2.3) Note: * reflects difference is significant at atleast p<.05

Models Before Crisis During Crisis

LSTM-Predictions DC* 0.2459 0.3588

GRU-Predictions DC* 0.2661 0.4072

LSTM+GRU-Predictions DC* 0.2425 0.5947

Table 4 shows results for t-test of means of different centrality metrics during the two time

periods. Essentially we see statistically significant increases in concentration in the crisis period.

Combining different architectures together we observe similar behaviours where in the pre-crisis

period heterogeneity in behaviour is transformed to more homogeneity during the crisis period.

Figure 12 in appendix depicts the network graphs of predictions from the DL models during

two time periods. This graph is a visual representation for degree of centrality which clearly shows

the formation of one cluster during a more turbulent time.

4.2.4 Discussion

Our results are similar to those of the first experiment. In addition, our temporal analysis implies

two things.

First, with respect to concentration risk, we can see more consistency of predictions among

DL models in turbulent periods. In particular, our network analysis approach reveals that the

prediction sets generated by different agents (models) become more concentrated during the crisis

period, as shown by the degree centrality measure increasing for both the LSTM and GRU models

during the crisis period (see Table 4 and Figure 6. Note that Figure 12 in the Appendix also

23



Figure 6: Mean degree centrality for predictions and explanations before and during crisis (see
section 4.2.3)

DEGREE CENTRALITY PREDICTIONS DEGREE CENTRALITY EXPLANATIONS
0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
eg

re
e 

of
 C

en
tra

lit
y

(a) Before Crisis

DEGREE CENTRALITY PREDICTIONS DEGREE CENTRALITY EXPLANATIONS
0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
eg

re
e 

of
 C

en
tra

lit
y

(b) During Crisis

24



communicates the same via a graph presentation).

Second, whilst robust model explanations are desirable during a crisis period to understand the

cause of the crisis, we see that, due to the Rashomon effect, we might find that the explanations

arrived at may be inconsistent and possibly contradictory. Considering the network analysis

approach, it can be seen how during a crisis period, even though explanations become more similar

(Figure 11 in the Appendix), they nevertheless still show more dissimilarity than predictions at

such time (Figure 12b in the Appendix).

We reiterate that our network analysis framework could be used by professionals developing

supervisory technology to enhance their methods and observe concentration at a macro scale.

The experimentation relies on SHAP to assess model reasonings. This method has its own

limitations. We find that the current state-of-the-art explanability method of SHAP values can be

affected by arbitrary hyperparameter changes. Since SHAP is an approximation for Shapley values

which again is an approximation for feature importance it’s possible that these approximations

are not robust to subtle hyperparameter changes. Better development of explanability metrics is

required to monitor and assess neural network behaviours.

5 Implications for Regulation and Financial Stability

In this study, we focused on understanding the robustness of DL models in terms of their predic-

tions or outputs and their explanations. We found that DL models with different hyper-parameter

settings can yield similar performance in terms of overall accuracy and individual predictions .

However, our results generally indicate non robustness or fragility when it comes to explanations.

These findings posses specific challenges to the application of these models in the finance sector

as they can have regulatory and financial stability implications. These implications are explored

in the following points:

5.1 Consumer Trust

Finance is an industry that relies on trust. Our results suggesting model fragility and multiple

explanations can have several implications downstream.

Lakkaraju and Bastani (2020) found that users that were shown multiple explanations, for the

same input-output pairs, for a given black-box model, largely did not trust the model. Results

from our experiments show the presence of models that work similarly but produce different expla-

nations. Thus having variability in model explanations might lead to lack of trust by consumers

(or consumer bodies) and decrease the use of automated tools thus forgoing efficiency gains that

come with automatic decision making. Under UK GDPR and EU GDPR there are rights to ”ex-

25



planation” provision through which individuals could ask for explanations of models (Information

Commissioner’s Office (2021) Kaminski (2019)). Users could find that contradictory explanations

lead to dwindling faith in financial institutions.

5.2 Moral Hazard

The Rashomon effect shown in our simulations creates moral hazard in the following way: knowing

that some explanations are more acceptable to end-users than others, developers may select the

model that provides the most acceptable explanation to end users.

Research by (Lakkaraju and Bastani, 2020) demonstrates that “fairwashing” succeeds in im-

proving perceptions. The authors use a black-box model that predicts whether to release de-

fendants on bail. They discover from surveys that their experimental subjects considered model

predictions positively when models were fair-washed i.e. when their explanation depended less on

sensitive features such as race and gender. Our results from Experiment 1 depicted that 34% of

the models in the set of equally performing models displayed Pay 0 as the most important feature.

Nevertheless in the same set about 12% Sex was also the most important feature.

Moral hazard incentives have long been shown to change people’s behaviour, for example by

redirecting investments towards riskier projects (Boyd and De Nicolo, 2005). Researchers argue

that moral hazard “played a central role in the events leading up to the [great financial] crisis” of

2007-08 (Dowd, 2009). Current regulation by The Prudential Regulation Authority’s (Prudential

Regulatory Authory, 2022) approach to banking supervision (2018) highlights how prudential

regulation is aimed at addressing “moral hazard” challenges and allow firms to fail smoothly.

A framework that is not robust produces outcomes that may not reflect true reality, i.e.,

may not follow the logic of financial mathematics. If financial institutions are aware that there

are equally well-performing models with different explanations they are less likely to accept the

presented model as the ground truth, thereby remaining vigilant. Current policy issued by the

PRA on algorithmic trading (Prudential Regulatory Authority, 2018) or discussion papers by the

Bank of England (Bank of England, 2022) does not yet explicitly consider moral hazard. This

research highlights the importance of moral hazard in terms of model development for financial

institutions.

5.3 Inability to debug evolution of concentration risk

Most computing software has flaws (“bugs”) or develop flaws over time. Thus it’s likely that

automated systems will similarly exhibit bugs. However, due to model fragility, model developers

might themselves find it challenging to pinpoint problems from tools that rely on DL frameworks.

A framework that does not provide consistent reasoning of its actions will be very hard to debug

26



as we will not have full confidence that our efforts to rectify any flaws will in fact lead to desired

changes.

Concentration risk is one of the main possible causes of major losses in a credit institution. The

events during the 2008-2009 financial crisis have several examples of concentrations risks within

institutions (CEBS, 2010). One of the key findings from our simulations is that models even with

different architectures are likely to behave in the same way but provide a different explanation to

their inner explanations. This result might lead developers of models to becoming over-confident

and believing that their models are able to capture a unique relationship in the data. However as

the network in Figure 12 shows, in the macro sense, we encounter a system in which most agents

behave very similarly to each other and thus are concentrating towards similar outcomes. This

concentration could be due to spurious herding where most autonomous agents react similarly.

As Table 4 shows, measures of concentration become significantly stronger in times of distress.

This could prove dangerous for the financial system which is increasingly becoming automated and

relying more and more on complex machine learning models such as neural nets. Developers of

AI should also invest more time in understanding how their models would work during turbulent

times and have fail-safes to disengage the models under certain untested conditions. This could

be especially crucial in mitigating flash crash events.

6 Conclusion and recommendations

This paper looks for evidence of fragility among DL based models and its implications on financial

stability. We assess if there is agreement among models’ explanations as well as their predictions.

We find that models display high degrees of commonality when it comes to their predictions but less

in their feature importance sets. Using the state-of-the-art SHAP values for feature importance,

we find a curious result where model creators would get similar predictions but the explanations

for arriving at the predictions would be very different. The results suggests the presence of a

Rashomon effect. For areas where high degree of consistency and explainability is required it

might be more prudent to use simpler explainable models.

The presence of a high degree of prediction commonality does not imply that these models

are duplicates of each other. From our regressions we conclude that even with subtle changes to

model architecture, we can get variation in model explanations. One would assume that repeated

iteration over the dataset would lead to a point where all different architectures’ predictions and

explanations become duplicated. Inductive biases9 can significantly shift DL models’ behaviours

9In machine learning, the term inductive bias refers to a set of (explicit or implicit) assumptions made by a
learning algorithm in order to perform induction, that is, to generalize a finite set of observation (training data)
into a general model of the domain. See more here: https://link.springer.com/referenceworkentry/10.1007/978-1-
4419-9863-7927

27



and reasoning.

Our results have several implications for regulation and financial stability. Due to the Rashomon

effect and getting different explanations we could see consumer trust being affected. The pres-

ence of different explanations presents a morally hazardous scenario where model developers could

choose DL models with explainations that might be appealing to their risk and governance mech-

anisms. If the governance mechanisms are unaware of DL model fragility they might underweight

the risk of adverse outcomes under different scenarios.

For instance, when we look at different time periods we find further interesting insights. Using

network analysis we are able to map out how different models would perform before and during

the financial crisis of 2007-2008. The figures and analysis show that during crisis the models

start becoming more similar in predictions. This brings up more challenges for the monitoring of

active DL models in the financial markets. Developers of DL models should invest more time in

understanding how their models would work during turbulent times and include fail-safes to stop

the models under certain untested conditions.

Finally, our results highlight that a model with variable explanations could be hard to debug,

as there is no certainty that efforts to rectify flaws will in fact lead to desired changes.

Reflecting on our results and implications, we suggest the following recommendations for model

developers:

1. Conduct fragility testing on explanations and predictions: Model developers before deploy-

ing a deep learning model must conduct simulations similar to ours to understand their models

robustness in-terms of explanations and predictions.A risk mitigating approach would be to cre-

ate a wide array of competing models with a view to adopting only those models that display

acceptably low amounts of variability.

2. Use simpler models for high stakes decision making: Under the current state of knowledge,

certain models will exhibit randomness in their processes. In this case, organisations should

strongly reconsider the usage of models that are too opaque. If the Rashomon Effect holds true

then it is possible that there exists an interpretable model that performs as well as opaque models

(Rudin, 2019).

3. Enhance transparency by sharing models and code: Often solving constrained problems is

generally harder than solving unconstrained problems. With complete and clean data it is easier

to use a black box machine learning method than to troubleshoot and solve computationally

hard problems. In such a case, we must ensure that these models are as transparent as possible.

Academics argue that transparency would create a positive feedback loop with any deficiencies

being able to be corrected (by members of the public, agencies or consultants) creating a system

which is predictable, robust and less prone to unethical manipulation (Chang et al., 2012). Reverse-

28



engineered credit rating models contributed to the Great Financial Crisis of 2007-2008 (Morgenson

and Story, 2010). Thus transparency, in our case, could lead to models that ensure improvements

in one’s financial factors resulting in an improvement in one’s creditworthiness.

4. Creating fail-safes: Research by (Lin et al., 2019) highlights that “wider adoption of fi-

nancial artificial intelligence can amplify certain systemic risks for the financial system relating

to size, speed, and linkage”. We also noted that it’s hard to monitor and prepare for DL model

misbehaviour in different scenarios. Thus it is crucial that model developers provide fail-safes and

human in the loop settings to ensure safety.

Reflecting on our results and implications we suggest the following recommendations for reg-

ulators to consider while engaging financial institutions:

1. Fragility of models: Regulators could enquire if financial institutions have included fragility

of the deep learning models in the internal governance and risk management processes. Fur-

thermore, regulators could enquire about the trade-offs of different machine learning frameworks,

variability due to hyperparameter changes and impact during times of untested conditions.

2. Performance trade-off of opaque vs. transparent models: Regulators could enquire whether

the financial institution in question had tried to utilise rule-based methods or simpler, more stable

models in their development of tools.

3. Supervising Automation using Automation: More broadly, regulators could think about

regulating deep learning based tools and also create tools and technologies that supervise these

technologies. No single private financial institution can monitor the system. Regulators stand at

a unique point where they can gather all the data and look for vulnerabilities. In our paper we

provide an approach using network analysis to monitor autonomous agents and find vulnerabilities.

Something like this can be expanded for future work.

Regardless of the interesting results and implications of this paper, we note several weaknesses.

The research presented in this paper considered a single credit dataset and a single stock mar-

ket dataset, whilst considering a single model-agnostic explanation methodology (SHAP). With

respect to future work, understanding whether alternative model-agnostic explanation methodolo-

gies yield comparable results would be valuable. Finally, extending the research herein to actual

models already being utilised in the financial industry would offer strong insights with regards to

these issues.

Existing financial sector model governance and monitoring regimes, built in an earlier era

of data analytic technology, are likely to fall short in addressing the new risks posed by deep

learning. Sufficiently mitigating and understanding such risks will require additional research and

discussion. We hope that the risks we have identified and frameworks we have developed might

help contribute to furthering the dialogue with respect to model safety in the time of AI.

29



References

E. Algaba, V. Fragnelli, and J. Sánchez-Soriano. Handbook of the Shapley value. CRC Press, 2019.

Bank of England. The impact of covid on machine learning and data science in uk banking, 2020.

URL https://www.bankofengland.co.uk/quarterly-bulletin/2020/2020-q4/the-impac

t-of-covid-on-machine-learning-and-data-science-in-uk-banking.

Bank of England. Artifcial intelligence public-private forum, 2022. URL https://www.bankofen

gland.co.uk/-/media/boe/files/fintech/ai-public-private-forum-final-report.pd

f?la=en.

S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang. Complex networks: Structure

and dynamics. Physics Reports, 424(4):175–308, 2006. ISSN 0370-1573. doi: https://doi.org/

10.1016/j.physrep.2005.10.009. URL https://www.sciencedirect.com/science/article/pi

i/S037015730500462X.

J. H. Boyd and G. De Nicolo. The theory of bank risk taking and competition revisited. The

Journal of finance, 60(3):1329–1343, 2005.

L. Breiman. Statistical modeling: The two cultures (with comments and a rejoinder by the author).

Statistical science, 16(3):199–231, 2001.

M. Buckmann and A. Joseph. An interpretable machine learning workflow with an application to

economic forecasting. 2022.

CEBS. Cebs guidelines on the management of concentration risk under the supervisory review

process. European Banking Authority, 2010.

Centre for Data Ethics and Innovation. Review into bias in algortihmic decision-making. Inde-

pendent Report, 2020.

A. Chang, C. Rudin, M. Cavaretta, R. Thomas, and G. Chou. How to reverse-engineer quality

rankings. Machine learning, 88(3):369–398, 2012.

K. T. Chi, J. Liu, and F. C. Lau. A network perspective of the stock market. Journal of Empirical

Finance, 17(4):659–667, 2010.

W. A. Chishti and S. M. Awan. Deep neural network a step by step approach to classify credit

card default customer. In 2019 International Conference on Innovative Computing (ICIC),

pages 1–8, 2019. doi: 10.1109/ICIC48496.2019.8966723.

30



K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio.

Learning phrase representations using rnn encoder-decoder for statistical machine translation,

2014. URL https://arxiv.org/abs/1406.1078.

F. Chollet. Deep learning with Python. Simon and Schuster, 2021.

C. Davenport. Media bias, perspective, and state repression: The Black Panther Party. Cambridge

University Press, 2009.

J. Dong and C. Rudin. Variable importance clouds: A way to explore variable importance for the

set of good models. arXiv preprint arXiv:1901.03209, 2019.

K. Dowd. Moral hazard and the financial crisis. Cato J., 29:141, 2009.

European Banking Authority. Eba discussion paper on machine learning for irb models, 2021.

Federal Reserve. Supervisory guidance for assessing risk management at supervised institutions

with total consolidated assets less than $100 billion, 2021. URL https://www.federalreser

ve.gov/supervisionreg/srletters/sr1611.htm.

Financial Conduct Authority. Implementation of investment firms prudential regime, 2021. URL

https://www.fca.org.uk/publication/policy/ps21-9.pdf.

G. Gensler and L. Bailey. Deep learning and financial stability. 32, November. 2020. URL

https://ssrn.com/abstract=3723132.

I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

A. Graves. Supervised sequence labelling. In Supervised sequence labelling with recurrent neural

networks, pages 5–13. Springer, 2012.

A. G. Haldane. Rethinking the financial network. Springer, 2013.

Information Commissioner’s Office. Guide to the general data protection regulation (gdpr), 2021.

URL https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-t

he-general-data-protection-regulation-gdpr/individual-rights/rights-related-t

o-automated-decision-making-including-profiling/.

S. Jadhav, H. He, and K. Jenkins. Information gain directed genetic algorithm wrapper feature

selection for credit rating. Applied Soft Computing, 69:541–553, 2018. ISSN 1568-4946. doi:

https://doi.org/10.1016/j.asoc.2018.04.033. URL https://www.sciencedirect.com/scienc

e/article/pii/S1568494618302242.

A. Joseph. Parametric inference with universal function approximators. 2019.

31



M. E. Kaminski. The right to explanation, explained. Berkeley Tech. LJ, 34:189, 2019.

H. Lakkaraju and O. Bastani. ” how do i fool you?” manipulating user trust via misleading black

box explanations. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society,

pages 79–85, 2020.

Z. Q. Lin, M. J. Shafiee, S. Bochkarev, M. S. Jules, X. Y. Wang, and A. Wong. Do explana-

tions reflect decisions? a machine-centric strategy to quantify the performance of explainability

algorithms. arXiv preprint arXiv:1910.07387, 2019.

Z. C. Lipton. The mythos of model interpretability, 2017. URL https://arxiv.org/abs/1606

.03490.

Z. C. Lipton. The mythos of model interpretability: In machine learning, the concept of inter-

pretability is both important and slippery. Queue, 16(3):31–57, 2018.

S. Lundberg and S.-I. Lee. A unified approach to interpreting model predictions, 2017. URL

https://arxiv.org/abs/1705.07874.

R. N. Mantegna. Hierarchical structure in financial markets. The European Physical Journal

B-Condensed Matter and Complex Systems, 11(1):193–197, 1999.

C. Molnar. Interpretable Machine Learning. 2021. URL https://christophm.github.io/inter

pretable-ml-book/.

G. Morgenson and L. Story. Rating agency data aided wall street in deals. New York Times,

(April 24), 2010.

A. Nguyen, J. Yosinski, and J. Clune. Deep neural networks are easily fooled: High confidence

predictions for unrecognizable images, 2015.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,

L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,

B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance

deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and

R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages 8024–8035.

Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/9015-pytorch-an-i

mperative-style-high-performance-deep-learning-library.pdf.

C. J. Philippe Bracke, Anupam Datta and S. Sen. Machine learning explainability in finance: an

application to default risk analysis. 2019. URL https://www.bankofengland.co.uk/-/medi

a/boe/files/working-paper/2019/machine-learning-explainability-in-finance-an-a

pplication-to-default-risk-analysis.pdf.

32



Prudential Regulatory Authority. Supervisory statement ss5/18 algorithmic trading. 2018. URL

https://www.bankofengland.co.uk/-/media/boe/files/prudential-regulation/superv

isory-statement/2018/ss518.

Prudential Regulatory Authority. Operational resilience: Impact tolerances for important business

services. 2022. URL https://www.bankofengland.co.uk/-/media/boe/files/prudential

-regulation/supervisory-statement/2021/ss121-march-22.pdf?la=en&hash=ED32FF860

8D88C585FD47B82F0C5FF0A3751E4EE.

Prudential Regulatory Authory. The prudential regulation authority’s approach to banking su-

pervision, 2022. URL https://www.bankofengland.co.uk/-/media/boe/files/prudential

-regulation/approach/banking-approach-2018.pdf.

M. T. Ribeiro, S. Singh, and C. Guestrin. Model-agnostic interpretability of machine learning,

2016. URL https://arxiv.org/abs/1606.05386.

C. Rudin. Stop explaining black box machine learning models for high stakes decisions and use

interpretable models instead. Nature Machine Intelligence, 1(5):206–215, 2019.

H. Sak, A. Senior, and F. Beaufays. Long short-term memory based recurrent neural network

architectures for large vocabulary speech recognition. arXiv preprint arXiv:1402.1128, 2014.

URL https://arxiv.org/abs/1402.1128.

S. Seabold and J. Perktold. statsmodels: Econometric and statistical modeling with python. In

9th Python in Science Conference, 2010.

A. D. Selbst, D. Boyd, S. A. Friedler, S. Venkatasubramanian, and J. Vertesi. Fairness and ab-

straction in sociotechnical systems. In Proceedings of the conference on fairness, accountability,

and transparency, pages 59–68, 2019.

L. S. Shapley. 17. A Value for n-Person Games:, pages 307–318. Princeton University Press, 1953a.

doi: doi:10.1515/9781400881970-018. URL https://doi.org/10.1515/9781400881970-018.

L. S. Shapley. Stochastic games. Proceedings of the National Academy of Sciences, 39(10):1095–

1100, 1953b. ISSN 0027-8424. doi: 10.1073/pnas.39.10.1095. URL https://www.pnas.org/c

ontent/39/10/1095.

A. Shrikumar, P. Greenside, A. Shcherbina, and A. Kundaje. Not just a black box: Learning

important features through propagating activation differences. arXiv preprint arXiv:1605.01713,

2016.

33



A. Shrikumar, P. Greenside, and A. Kundaje. Learning important features through propagat-

ing activation differences. In International conference on machine learning, pages 3145–3153.

PMLR, 2017.

Steenis, Huw van. The future of finance report, 2019. URL https://www.bankofengland.co.u

k/-/media/boe/files/report/2019/future-of-finance-report.pdf?la=en&hash=59CEF

AEF01C71AA551E7182262E933A699E952FC.

R. M. Stein. The relationship between default prediction and lending profits: Integrating roc

analysis and loan pricing. Journal of Banking & Finance, 29(5):1213–1236, 2005.

M. Sundararajan and A. Najmi. The many shapley values for model explanation. In International

conference on machine learning, pages 9269–9278. PMLR, 2020a.

M. Sundararajan and A. Najmi. The many shapley values for model explanation, 2020b.

I.-C. Yeh and C.-h. Lien. The comparisons of data mining techniques for the predictive accuracy of

probability of default of credit card clients. Expert Systems with Applications, 36(2):2473–2480,

2009.

34



A Appendix

A.1 Deep Learning

Deep learning relies on neural networks conceptually inspired by the structure of the brain. Figure

7 is a simple example of a neural network. Each node is depicted by a circle, each edge connecting

nodes is represented by a blue line, and each layer labelled. Data is fed from the first layer called

the input layer. Each node contains a function that operates over a vector of weights (which form

a subset of the model parameters) and comprises a non-linear transformation. As the network

gets dense (with many hidden layers) the parameter calculation becomes complex. The parameter

space of deep learning is exponentially larger than that of previous data analytics. For instance

linear regression model parameters scale in number linearly with the number of variables included

in the model. In neural networks, as the network grows in width (number of nodes in each layer)

and depth (number of layers), the number of parameters grows exponentially.

Deep learning algorithms attempt to model high-level abstractions in data by using multiple

processing layers. During the model training process, a model’s mapping function is attempting

to learn how these abstractions can be captured across several compositional operations f(x) =

f1f2f3 . . . fn(x). Various deep learning architectures such as deep neural networks, convolutional

neural networks, deep belief networks and recurrent neural networks have been applied to fields

like computer vision, automatic speech recognition, natural language processing, audio recognition

and bioinformatics where they have been shown to produce state-of-the-art results on various tasks

(Goodfellow et al., 2016; Chollet, 2021).

Figure 7: Neural network representation of a (L + 1)-layer perceptron with n input units and k
output units. The lth hidden layer contains m(l) hidden units.

x0

x1

...

xn

y
(1)
0

y
(1)
1

...

y
(1)

m(1)

. . .

. . .

. . . y
(L)
0

y
(L)
1

...

y
(L)

m(L)

y
(L+1)
1

y
(L+1)
2

...

y
(L+1)
k

input layer

1st hidden layer Lth hidden layer
output layer

In spite of the automated nature of neural networks, there is still much human involvement

in the modelling process. Creators are able to set ”hyperparameters” which alters the number

35



of layers, the number of nodes in each layer, the nodes’ activation functions, data normalization

techniques, regularization techniques, and other customisations. These hyperparameters are ad-

justed based on the problem class and computational resource trade-offs. Setting hyperparameters

creates inductive bias, priming models before seeing data. Moreover, this ability of neural net-

works to extract latent features from datasets is both a source of incredible predictive power and a

potential source of weakness (Nguyen et al., 2015). These latent features are often unobservable,

and even when they can be extracted they may not be meaningful to humans.

We use certain architectures of neural networks. Formally, we express their distinctions by the

mathematical steps used to produce an output:

1. Feed-forward neural network Goodfellow et al. (2016)

y = σ(Wn(. . . σ(W2(σ(W1x)) . . .)) (17)

where x and y are the input and output respectively, n is the number of network layers, Wi

is the weight matrix for layer i , and σ is the non-linear activation function.

2. Long Short-term Memory (LTSM) is a special kind of recurrent neural network (RNN).

RNNs are useful for time series data with each neuron able to “remember” information

pertaining to the predictions of earlier neurons. The fundamental issue in a simple RNN

is the vanishing gradient problem, an incapability to capture the long-term dependencies

in a series, whereby the recurrent connections struggle to “remember” the neuron output

information for those neurons much earlier in the network Graves (2012). This problem is

solved using a LSTM network that considers long-term dependencies in a time series.

As described by Sak et al. (2014), for each element in the input sequence, each layer computes

the equations

it = σ(Wiixt + bii +Whiht−1 + bhi)

ft = σ(Wifxt + bif +Whfht−1 + bhf )

gt = tanh(Wigxt + big +Whght−1 + bhg)

ot = σ(Wioxt + bio +Whoht−1 + bho)

ct = ft ⊙ c(t−1) + it ⊙ gt

ht = ot ⊙ tanh(ct)

ŷt = Wyht + by

(18)

with it, ft, gt, ot denoting the input, forget, cell and output gates, respectively; ct and ht

the cell activation vector and the cell output activation vector respectively; ŷt the output; σ

36



the sigmoid function, tanh the hyperbolic tangent function, and ⊙ the Hadamard product.

The input, forget, and output gates are responsible for the transfer of information across the

architecture, whilst the cell ct accumulates the information processed across these gates. As

their names imply, the input gate decides how much the time t input and previous hidden

state still matters for the current moment; the forget gate acts as a ”reset”, zeroing the

accumulated information stored in the cell; the output gate modulates what part of the

current cell state makes it to the final hidden state.

Figure 8: Memory block for an LSTM model with one cell.

σ σ Tanh σ

× +

× ×

Tanh

ct−1

Cell

ht−1

Hidden

xtInput

ct

ht

ht

3. Proposed by Cho et al. (2014), the GRU model has only two gates: a reset gate and an

update gate. Just like an LSTM model, a GRU seeks to solve the vanishing gradient problem.

This occurs through two vectors (gates) that decide which information will be taken to the

output and which will not. In this way, the structure of the model allows the adaptive

capturing of the dependence of a considerable volume of data without the model’s previous

information being discarded. For each element of the input sequence, each layer will compute

the equations Paszke et al. (2019)

rt = σ(Wirxt + bir +Whrh(t−1) + bhr)

zt = σ(Wizxt + biz +Whzh(t−1) + bhz)

nt = tanh
(
Winxt + bin + (Whn(rt ⊙ h(t−1)) + bhn)

)
ht = (1− zt)⊙ nt + zt ⊙ h(t−1)

(19)

where ht is the hidden state vector at time t, xt is the input at time t, h(t−1) is the hidden

state layer at time t − 1 or the initial hidden state at time 0, and rt, zt, nt are the reset,

update, and new gates. σ is the activation function (sigmoid) and ⊙ is the Hadamard

product. In a multilayer GRU, the input x
(l)
t of the l-th layer (l ≥ 2) is the hidden state

37



h
(l−1)
t of the previous layer times the dropout δ

(l−1)
t where δ

(l−1)
t is a Bernoulli random

variable where the user sets the probability of 0 being returned.

Figure 9: Memory block for a GRU model with one cell.

σ σ Tanh

×

×

× +

1-

ht−1

Hidden

xtInput

ht

38



A.2 Network Analysis

Figure 10: Graphs showing degree of centrality - Credit Explanations and Predictions

node size = degree centrality

(a) Explanations

node size = degree centrality

(b) Predictions

The degree centrality for a node is the fraction of nodes it is connected to. The degree centrality values are
normalized by dividing by the maximum possible degree in a simple graph n-1 where n is the number of nodes
in G. Color-filled circles represent the nodes community structure, and the black lines connecting them represent
the edges. Node size reflects a degree centrality. By default, the layout of the nodes and edges is automatically
determined by the Fruchterman-Reingold force-directed algorithm. It can be observed that graphs (a) and (b)
exhibit a denser behavior and indicate that the agents are highly interconnected.

39



Figure 11: Graphs showing degree of centrality - Stock Market Explanations

node size = degree centrality

(a) Before Crisis

node size = degree centrality

(b) During Crisis

The degree centrality for a node is the fraction of nodes it is connected to. The degree centrality values are
normalized by dividing by the maximum possible degree in a simple graph n-1 where n is the number of nodes
in G. Color-filled circles represent the nodes community structure, and the black lines connecting them represent
the edges. Node size reflects a degree centrality. By default, the layout of the nodes and edges is automatically
determined by the Fruchterman-Reingold force-directed algorithm. It can be observed that graphs (a) and (b)
exhibit a denser behavior and indicate that the agents are highly interconnected.

40



Figure 12: Graphs showing degree of centrality - Stock Market Predictions

node size = degree centrality

(a) Before Crisis

node size = degree centrality

(b) During Crisis

The degree centrality for a node is the fraction of nodes it is connected to. The degree centrality values are
normalized by dividing by the maximum possible degree in a simple graph n-1 where n is the number of nodes in G.
Color-filled circles represent the nodes community structure, and the black lines connecting them represent the edges.
Node size reflects a degree centrality. By default, the layout of the nodes and edges is automatically determined
by the Fruchterman-Reingold force-directed algorithm. In the above graph we aimed to assess the behaviours of
model predictions in turbulent times highlighting that model behaviours had become more concentrated in the
crisis period. However as seen in the previous subsection we found that model explanations remained inconsistent.

41



A.3 Explainable AI

A black-box, in the machine learning context, describes models for which the relationship between

inputs and predictions can’t be readily understood, even if the structure and the parameters of

the model can be observed. In general terms, an explainable or interpretable algorithm is one

where the reasons for a decision can be questioned and explained in a way that makes sense

to humans. Understanding a model’s behaviour is important in explaining predictions made to

support a decision making process, debugging unexpected behaviour for a model (contributing to

improve the model accuracy), refining modelling and data mining processes, verifying that model

behaviour is reasonable, and presenting the model’s predictions to stakeholders.

Deep learning based artificial neural network models have high accuracy but a poor capacity

for explainability. This characteristic makes deep learning models a challenge for institutions

who need transparency, robustness, and regulatory compliance from the tools used to support

decision-making.

Explainability methods have two main scopes: (i) local methods for individual prediction,

and (ii) global methods for overall models. These methods can be intrinsic (by definition model-

specific) or post hoc (usually model agnostic).

• Local: this scope focuses on understanding the algorithm’s behaviour over only a small

part of the feature space (that is, only over a narrow range of values for the inputs to the

algorithm). The typical users of local explanations are individuals being targeted by an

algorithm, as well as members of the judiciary and regulators trying to make a case about

potential discrimination.

• Global: this scope focuses on understanding the algorithm’s behaviour over a large part,

and possibly all, of the feature space. The typical users are researchers and designers of

algorithms, since they tend to be more interested in the general insights and knowledge

discovery that the model produces rather than specific individual cases.

• Model-specific: a model is designed and developed in such a way that it is fully transparent

and explainable by design. That is, an additional explainability technique is not required to

be overlaid on the model in order to be able to fully explain its working and predictions.

• Model-agnostic: a mathematical technique is applied to the predictions of any algorithm

including very complex and opaque models, in order to provide an interpretation of the

decision drivers for those models. According to Molnar (2021), model-agnostic means that

these methods can be applied to any machine learning model and are applied after the model

has been trained. In this way, the independence of the model makes model-agnostic methods

flexible and powerful.

42



Table 5: Models local (specific and agnostic) and global (specific and agnostic).

Model-specific Model-agnostic

Local
(1) Linear Model
(2) Decision Tree

(3) Rule-based System

(4) LIME
(5) Counterfactual Explanations

Global
(1) Linear Model
(2) Decision Tree

(3) Rule-based System

(1) Feature Importance
(2) Partial Dependence

(3) SHAP

Table 5 provides interpretability model examples across the four quadrants implied above. In

this study, the focus is directed to the SHAP (SHapley Additive exPlanations) model (Lundberg

and Lee (2017)). It is a game theoretic approach proposed to explain the output of machine

learning models. The method connects optimal credit allocation with local explanations using

Shapley values.

Shapley values Shapley (1953b) originated from a sub field of game theory called “cooperative

game theory”, which aims to allocate payouts to players depending on their contribution to the

total. In our context, each feature is a player that participates in the game; the prediction is the

payout and the Shapley values communicate how the feature contribution (payout) can be diffused

across features.

Shapley value is a concept constructed on a solid axiomatic and theoretical foundation Algaba

et al. (2019). In Shapley (1953a), are defined four axioms. First, the efficiency axiom says that

the sum of payoffs for all players must be equal to the total worth of the coalition. Second, the

null player axiom says if a player’s contribution is equal to 0, their payoff is equal to 0. Third,

the symmetry axiom says if two players have symmetric contributions, they receive equal payoffs.

And, finally, the additivity axiom says the selected payoff vector for the sum of two players must

be the sum of the payoff vector for each player.

If we consider a sample with n features x1, . . . , xn, z ∈ {0, 1}n where the i-th component of

z, zi, is set to zero to represent the absence of feature i and to one to represent the presence of

feature i, and a prediction model v(z) → R, then we can define the Shapley value of the i-th

feature10 as the weighted average of the marginal prediction value of including feature i across all

possible absence/presence combinations of the remaining features:

ϕi(v) =
∑

F⊆{z1,...,zn}\{zi}

|F |! (n− |F | − 1)!

n!
(v (F ∪ {zi})− v(F )) (20)

where F is the collection of possible absence/presence combinations.

Ribeiro et al. (2016) defends the use of the model-agnostic approach to explaining the predic-

tions of a machine learning model. The article’s considerations follow a line in which the use of

10See the contributions proposed by Sundararajan and Najmi (2020b), Molnar (2021), Lundberg and Lee (2017).

43



the model-agnostic approach (applied after training the models) increases the agents’ confidence

regarding the use of black-box models.

Lipton (2017) brings a critical view to the concept of interpretability, since different ideas for the

same concept are identified in the literature. Considering a set of publications, the text proposes

that critical literature is absent in the machine learning community. Thus, the formulation of

the problem ends up being a methodological flaw in the works, generating problems that are not

reasonably solved through algorithms.

A.3.1 DeepLift SHAP Global Approximation

DeepLIFT (Shrikumar et al. (2017)) uses backpropagation to compute the impact that each of

the input terms to the model has on the model’s output value. It does this by considering, at

each part of a deep learning network, how the difference between the output value for that part

of the network and a reference output value for that part of the network can be explained by the

difference between the input value for that part of the network and a reference input value for

that part of the network (where such reference input value generates the reference output value).

Explicitly, using the nomenclature of DeepLift Shrikumar et al. (2017), if we consider the

output value, t, of a specific neuron to be of interest, and we let x1, x2, . . . , xn represent inputs

(where such inputs can either be the predictions of neurons immediately preceding our neuron of

interest in the network, or the predictions of neurons earlier in the network, or even the inputs

to the overall network) that are sufficient to compute the output value of that neuron of interest,

then DeepLIFT gives
n∑

i=1

C∆xi∆t = ∆t (21)

where, with t0 representing the reference output value for the neuron, ∆t = t − t0 is the

difference of the output from the reference, and C∆xi∆t is the contribution score assigned to ∆xi.

For each input xi, C∆xi∆t can be considered that part of ∆t which can be “blamed” on the

difference of xi from it’s reference value (part of the reference input value above), x0
i (and thus,

for completeness, ∆xi = xi−x0
i ). Note that t

0 is the output value of the neuron, and x0 the input

value to the neuron, which is observed when a reference input is passed to the first layer of the

network. That reference input is set by the user relying on domain-specific knowledge. As will be

seen below however, DeepLift SHAP by default restricts this by setting the reference input to the

first layer of the network to be comprised of the average feature values from the relevant dataset.

We can then proceed by defining a “multiplier”, m∆xi∆t, as

m∆xi∆t =
C∆xi∆t

∆xi
(22)

44



which gives us finite differences, quantities which are similar to the partial derivative ∂t
∂xi

(which

are finite differences as ∆xi → 0). DeepLIFT then is able to combine these multipliers, using a

“chain rule for multipliers” Shrikumar et al. (2017) to compute the multipliers for the network’s

overall predictions with respect to the network’s inputs and thus compute the “blame” to assign

to each input for the network’s overall output value.

Lundberg and Lee (2017) connect the Shapley values discussed above with DeepLIFT. To do

so, they first present SHAP (Shapley Additive Explanations), a methodology that extends the

use of Shapley values to prediction models that demand the presence of all features (that is, on

any forward pass through the prediction model, no features can be omitted as can be the case

when calculating Shapley values). The concept of feature absence is replaced by the concept of

reference value - i.e. feature importance considers the change in the prediction model output as

compared to that feature taking a reference value. The existence of a unique solution, given by

SHAP values, for six additive feature importance methods analyzed is shown. Lin et al. (2019)

cite SHAP as a state-of-the-art explainability technique.

DeepLift SHAP, referred to as ”Deep SHAP” Lundberg and Lee (2017), combines SHAP values

calculated for smaller parts of a network in order to generate SHAP values for an entire network

using the same backpropagation methodology as exhibited by DeepLIFT using the “chain rule

for multipliers”. The use of DeepLIFT in this way relies on the multipliers of Equation 22 being

re-defined in terms of SHAP values:

m∆xi∆t =
ϕi(f

∗)

∆xi
(23)

where f∗ is the function between the input x and the output value of the neuron of interest,

ϕi() is the Shapley value of the i-th feature (as per Equation 20) and where x0
i is set to equal

E[xi] for all i (i.e. the reference input to the neuron is equal to the expected input to the neuron,

that is the mean average input when considering all data sample, an input that would yield the

neuron output that would be predicted in the absence of knowing any of the input values). By

combining importance values computed for smaller parts of the network, which can be more easily

solved efficiently, DeepLift SHAP is able to offer a fast approximation of SHAP values for an entire

network.

A.4 Methodology

Credit Default:

Seeds = [10,20,30,40]

Epochs = [60, 100]

Learning Rate = [1E-3,1E-4, 1E-5]

45



Hidden Dimensions = [4,10, 20]

Optimisers = [’SGD’, ’ADAM’]

Stock Market:

Models = [’LSTM’, ’GRU’]

Seeds = [10,20,30,40]

Epochs = [60]

Learning Rate = [1E-3,1E-4, 1E-5]

Hidden Dimensions = [4,10, 20]

Optimisers = [’SGD’, ’ADAM’]

A.5 Methodology generating an illustrative dataset

Table 6: Illustrative example of a dataset post model simulations

Pairwise
Comparison

Feature
1

Feature
2

Feature
n

Hyperparameter
1

Hyperparameter
2

Prediction
1

Prediction
2

Model 1 0.1 0.2 0.6 3 10 1 1
Model 2 0.2 0.3 0.4 1 20 0 1
Model 3 0.1 0.2 0.6 6 10 1 1

Table 7: Capturing Absolute deviation

Pairwise
Comparison

Feature
1

Feature
2

Feature
n

Hyperparameter
1

Hyperparameter
2

Prediction
1

Prediction
2

|Model1−Model2| 0.1 0.1 0.2 2 10 1 0
|Model2−Model3| 0.1 0.1 0.2 5 10 1 0
|Model3−Model1| 0 0 0 3 0 0 0

Table 8: Capturing Mean Absolute deviation with model hyperparameter dummies

Model Pair
Pairwise

Explanation Mean
Deviation

Pairwise
Prediction Mean

Deviation

Hyperparameter 1
Dummy

Hyperparameter 2
Dummy

|Model1−Model2| 0.13 0.5 1 1
|Model2−Model3| 0.13 0.5 1 1
|Model3−Model1| 0 0 1 0

Table 9: Re-scaling Mean absolute deviation of explanations and predictions into 0 to 100 index

Model Pair
Pairwise

Explanation Mean
Deviation

Pairwise
Prediction Mean

Deviation

Hyperparameter 1
Dummy

Hyperparameter 2
Dummy

|Model1−Model2| 0 0 1 0
|Model2−Model3| 0 0 0 0
|Model3−Model1| 100 100 0 0

46



Model Pair
Similarity Index:

Explanation
Hyperparameter 1

Dummy
Hyperparameter 2

Dummy
Similarity Index:

Predictions

|Model1−Model2| 0 1 1 0

|Model2−Model3| 0 1 1 0

|Model3−Model1| 100 1 0 100

B Summary of Datasets

Table 10: Summary for Credit default data set

Variable count mean std min 25% 50% 75% max

LIMIT BAL 30000.0 167484.322667 129747.661567 10000.0 50000.00 140000.0 240000.00 1000000.0

SEX 30000.0 1.603733 0.489129 1.0 1.00 2.0 2.00 2.0

EDUCATION 30000.0 1.853133 0.790349 0.0 1.00 2.0 2.00 6.0

MARRIAGE 30000.0 1.551867 0.521970 0.0 1.00 2.0 2.00 3.0

AGE 30000.0 35.485500 9.217904 21.0 28.00 34.0 41.00 79.0

PAY 0 30000.0 -0.016700 1.123802 -2.0 -1.00 0.0 0.00 8.0

PAY 2 30000.0 -0.133767 1.197186 -2.0 -1.00 0.0 0.00 8.0

PAY 3 30000.0 -0.166200 1.196868 -2.0 -1.00 0.0 0.00 8.0

PAY 4 30000.0 -0.220667 1.169139 -2.0 -1.00 0.0 0.00 8.0

PAY 5 30000.0 -0.266200 1.133187 -2.0 -1.00 0.0 0.00 8.0

PAY 6 30000.0 -0.291100 1.149988 -2.0 -1.00 0.0 0.00 8.0

BILL AMT1 30000.0 51223.330900 73635.860576 -165580.0 3558.75 22381.5 67091.00 964511.0

BILL AMT2 30000.0 49179.075167 71173.768783 -69777.0 2984.75 21200.0 64006.25 983931.0

BILL AMT3 30000.0 47013.154800 69349.387427 -157264.0 2666.25 20088.5 60164.75 1664089.0

BILL AMT4 30000.0 43262.948967 64332.856134 -170000.0 2326.75 19052.0 54506.00 891586.0

BILL AMT5 30000.0 40311.400967 60797.155770 -81334.0 1763.00 18104.5 50190.50 927171.0

BILL AMT6 30000.0 38871.760400 59554.107537 -339603.0 1256.00 17071.0 49198.25 961664.0

PAY AMT1 30000.0 5663.580500 16563.280354 0.0 1000.00 2100.0 5006.00 873552.0

PAY AMT2 30000.0 5921.163500 23040.870402 0.0 833.00 2009.0 5000.00 1684259.0

PAY AMT3 30000.0 5225.681500 17606.961470 0.0 390.00 1800.0 4505.00 896040.0

PAY AMT4 30000.0 4826.076867 15666.159744 0.0 296.00 1500.0 4013.25 621000.0

PAY AMT5 30000.0 4799.387633 15278.305679 0.0 252.50 1500.0 4031.50 426529.0

PAY AMT6 30000.0 5215.502567 17777.465775 0.0 117.75 1500.0 4000.00 528666.0

default payment next month 30000.0 0.221200 0.415062 0.0 0.00 0.0 0.00 1.0

Table 11: Summary for Stock return data set

Stock Name count mean std min 25% 50% 75% max

AAL LN Equity 4420.0 0.000084 0.028530 -0.224831 -0.014312 0.000309 0.015013 0.205232

ABF LN Equity 4420.0 0.000298 0.014191 -0.166260 -0.006737 0.000338 0.007476 0.085155

AHT LN Equity 4420.0 0.000608 0.040553 -1.131693 -0.013630 -0.000046 0.014970 0.642104

ANTO LN Equity 4420.0 0.000468 0.026647 -0.192403 -0.012487 -0.000047 0.014026 0.200597

AV LN Equity 4420.0 -0.000252 0.024953 -0.406043 -0.010365 -0.000084 0.010193 0.223780

AZN LN Equity 4420.0 0.000065 0.016184 -0.167426 -0.007823 -0.000011 0.008123 0.134303

BA LN Equity 4420.0 -0.000001 0.018680 -0.230862 -0.008983 0.000305 0.009358 0.117658

BARC LN Equity 4420.0 -0.000302 0.028975 -0.285682 -0.011851 -0.000288 0.011239 0.549466

BATS LN Equity 4420.0 0.000323 0.014209 -0.112377 -0.007208 0.000275 0.008101 0.120149

BDEV LN Equity 4420.0 0.000152 0.030080 -0.343632 -0.013116 0.000524 0.013477 0.325307

BHP LN Equity 4420.0 0.000333 0.023698 -0.162613 -0.012352 0.000239 0.013526 0.205986

BKG LN Equity 4420.0 0.000317 0.021875 -0.491136 -0.009480 -0.000010 0.010537 0.252326

BLND LN Equity 4420.0 0.000029 0.018203 -0.217447 -0.008577 0.000421 0.008841 0.112024

BNZL LN Equity 4420.0 0.000322 0.013832 -0.105301 -0.006628 0.000147 0.007503 0.079156

BP LN Equity 4420.0 -0.000072 0.016719 -0.140390 -0.008522 -0.000056 0.008392 0.105637

BTA LN Equity 4420.0 -0.000169 0.019756 -0.233167 -0.009599 -0.000125 0.009590 0.118651

47



Table 11 continued from previous page

Stock Name count mean std min 25% 50% 75% max

CCL LN Equity 4420.0 0.000219 0.020317 -0.179856 -0.008854 0.000130 0.009687 0.154048

CNA LN Equity 4420.0 -0.000198 0.016661 -0.168393 -0.008722 -0.000045 0.008311 0.139243

CPG LN Equity 4420.0 0.000174 0.017633 -0.290106 -0.007881 -0.000010 0.008745 0.096856

CRDA LN Equity 4420.0 0.000591 0.017378 -0.114549 -0.007919 -0.000044 0.009166 0.122865

CRH LN Equity 4420.0 0.000111 0.021354 -0.179270 -0.010543 -0.000201 0.011213 0.126814

DCC LN Equity 4420.0 0.000436 0.015952 -0.102399 -0.007303 -0.000053 0.008091 0.120855

DGE LN Equity 4420.0 0.000256 0.012833 -0.097975 -0.006525 -0.000010 0.007091 0.094664

EZJ LN Equity 4420.0 0.000180 0.026557 -0.288585 -0.012337 -0.000009 0.012999 0.209509

FERG LN Equity 4420.0 0.000118 0.022621 -0.352734 -0.009665 -0.000063 0.010384 0.142959

GSK LN Equity 4420.0 -0.000132 0.013958 -0.090988 -0.007611 -0.000046 0.007312 0.101538

HLMA LN Equity 4420.0 0.000462 0.016058 -0.082873 -0.007757 -0.000046 0.008802 0.107025

HSBA LN Equity 4420.0 -0.000088 0.016346 -0.208042 -0.007341 -0.000137 0.007215 0.144103

HSX LN Equity 4420.0 0.000372 0.017769 -0.323090 -0.007081 -0.000052 0.008329 0.173459

IAG LN Equity 4420.0 0.000039 0.026927 -0.255406 -0.013841 0.000313 0.014271 0.156759

III LN Equity 4420.0 -0.000028 0.021793 -0.179388 -0.009676 0.000350 0.010025 0.191812

IMB LN Equity 4420.0 0.000269 0.014148 -0.098653 -0.007262 0.000147 0.007857 0.096686

INF LN Equity 4420.0 0.000232 0.021464 -0.287788 -0.008670 -0.000053 0.008824 0.193880

JMAT LN Equity 4420.0 0.000160 0.018826 -0.115693 -0.009476 0.000388 0.009766 0.141028

KGF LN Equity 4420.0 -0.000126 0.019619 -0.116559 -0.009880 -0.000125 0.009751 0.097670

LAND LN Equity 4420.0 -0.000079 0.016938 -0.168990 -0.007813 0.000078 0.008371 0.120777

LGEN LN Equity 4420.0 0.000080 0.023982 -0.340810 -0.009473 -0.000021 0.009953 0.242952

LLOY LN Equity 4420.0 -0.000432 0.029147 -0.414679 -0.010332 -0.000394 0.010083 0.407919

LSE LN Equity 4420.0 0.000494 0.021747 -0.180680 -0.008614 -0.000043 0.009636 0.266531

MKS LN Equity 4420.0 -0.000049 0.018866 -0.281523 -0.009249 -0.000026 0.009440 0.171889

MRW LN Equity 4420.0 -0.000053 0.016211 -0.155395 -0.008004 -0.000044 0.007843 0.136821

NG LN Equity 4420.0 0.000028 0.013388 -0.138431 -0.006237 0.000482 0.006906 0.153062

NXT LN Equity 4420.0 0.000317 0.018670 -0.163604 -0.007923 0.000260 0.008859 0.122724

PPB LN Equity 4420.0 0.000638 0.017960 -0.246481 -0.007456 -0.000054 0.008719 0.179776

PRU LN Equity 4420.0 0.000097 0.025441 -0.223194 -0.011182 -0.000012 0.011122 0.210594

PSN LN Equity 4420.0 0.000378 0.025167 -0.322299 -0.011414 0.000408 0.012450 0.162678

PSON LN Equity 4420.0 -0.000112 0.018408 -0.343717 -0.008776 -0.000011 0.008863 0.160515

RB LN Equity 4420.0 0.000348 0.013821 -0.105945 -0.007189 -0.000025 0.007884 0.099657

RBS LN Equity 4420.0 -0.000694 0.033826 -1.095780 -0.011905 -0.000427 0.011235 0.305000

RDSB LN Equity 4420.0 -0.000022 0.016421 -0.098338 -0.008340 0.000224 0.008519 0.132053

REL LN Equity 4420.0 0.000132 0.015394 -0.165405 -0.007427 -0.000013 0.007936 0.106524

RIO LN Equity 4420.0 0.000260 0.026115 -0.457920 -0.011941 0.000497 0.013163 0.196582

RR LN Equity 4420.0 0.000241 0.021282 -0.217738 -0.010134 -0.000011 0.010154 0.142284

RSA LN Equity 4420.0 -0.000338 0.022152 -0.242665 -0.009024 -0.000083 0.008750 0.169166

RTO LN Equity 4420.0 0.000017 0.019632 -0.361017 -0.007943 -0.000050 0.008471 0.160697

SBRY LN Equity 4420.0 -0.000214 0.017658 -0.232387 -0.008419 -0.000016 0.008224 0.135567

SDR LN Equity 4420.0 0.000204 0.022668 -0.290444 -0.009969 0.000492 0.010576 0.280113

SGE LN Equity 4420.0 0.000186 0.019644 -0.129508 -0.008996 0.000502 0.009524 0.132378

48



Table 11 continued from previous page

Stock Name count mean std min 25% 50% 75% max

SGRO LN Equity 4420.0 -0.000065 0.019526 -0.274610 -0.007954 -0.000012 0.008398 0.167944

SMDS LN Equity 4420.0 0.000239 0.022222 -0.153866 -0.010082 -0.000064 0.010241 0.178172

SMIN LN Equity 4420.0 -0.000023 0.017175 -0.398869 -0.008161 -0.000009 0.008888 0.109360

SMT LN Equity 4420.0 0.000371 0.014624 -0.119761 -0.006466 0.000709 0.007970 0.100606

SN LN Equity 4420.0 0.000254 0.016167 -0.139109 -0.008015 -0.000034 0.008118 0.104608

SPX LN Equity 4420.0 0.000542 0.015078 -0.113103 -0.006893 -0.000046 0.007833 0.100892

SSE LN Equity 4420.0 0.000060 0.013311 -0.129945 -0.006437 -0.000009 0.007029 0.134520

STAN LN Equity 4420.0 -0.000084 0.023143 -0.179487 -0.010964 -0.000198 0.010404 0.262235

STJ LN Equity 4420.0 0.000144 0.023521 -0.232908 -0.010434 -0.000044 0.010737 0.239275

SVT LN Equity 4420.0 0.000105 0.013878 -0.160706 -0.006978 -0.000011 0.007372 0.151524

TSCO LN Equity 4420.0 -0.000081 0.016495 -0.174221 -0.008448 -0.000112 0.008324 0.139513

TW LN Equity 4420.0 -0.000008 0.034488 -0.539120 -0.012651 0.000262 0.013128 0.548230

ULVR LN Equity 4420.0 0.000199 0.013996 -0.116927 -0.006890 0.000358 0.007367 0.125956

UU LN Equity 4420.0 -0.000031 0.013803 -0.283347 -0.006836 -0.000010 0.007221 0.107908

VOD LN Equity 4420.0 -0.000143 0.018368 -0.213956 -0.009088 -0.000086 0.008832 0.119414

WPP LN Equity 4420.0 -0.000020 0.019303 -0.148020 -0.009622 -0.000042 0.009841 0.098015

WTB LN Equity 4420.0 0.000296 0.017305 -0.163896 -0.007711 -0.000010 0.008612 0.165766

Figure 13: UKX stock returns and histogram from July 20, 2001 to March 15, 2019.

2002 2004 2006 2008 2010 2012 2014 2016 2018 2020
Days

1.00

0.75

0.50

0.25

0.00

0.25

0.50

St
oc

k 
Re

tu
rn

Stock Return - UKX

6 4 2 0 2 4 6
0

50

100

150

200

250

300

Co
un

t

Histogram of All Stocks Return Sum

Figure 14: Target stock from July 20, 2001 to March 15, 2019.

2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

0.15

0.10

0.05

0.00

0.05

0.10

0.15

WTB LN Equity

49


	Abstract
	1 Introduction
	2 Background and Review of Literature
	3 Identifying fragility and its implications in DL models
	4 Experiments
	5 Implications for Regulation and Financial Stability
	6 Conclusion and recommendations
	References
	A Appendix
	B Summary of Datasets



