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1 Introduction

The large and unprecedented economic fluctuations caused by the Covid-19 pandemic have

reemphasised the challenge for time series and prediction models to be flexible enough to ex-

tract heterogeneous signals and to rely on different sets of indicators over time, as well as to

accommodate time variation and extreme observations (Lenza and Primiceri, 2022; Carriero

et al., 2021; Antolin-Diaz et al., 2021). Timely survey indicators that were previously heavily

relied upon for nowcasting were less able to capture the magnitude of the economic decline and

the heterogeneous impact across economic sectors (Bank of England, 2020). Even as the world

has emerged from the pandemic, this remains relevant since economists increasingly monitor

heterogeneous types of new data sets, and need to incorporate large economic fluctuations into

their models such as the recent surge in inflation rates in many economies.

We propose a Bayesian mixed-frequency regression model that aims to address these chal-

lenges. The T-SV-t BMIDAS models gradual trend shifts and potentially extreme variance

shifts in the variable of interest via a time-varying trend, stochastic volatility and t-distributed

errors that can assume fat tails. If left unmodeled, such variation in the variable of inter-

est can blur nowcast or forecast signals. Information from higher-frequency indicators enters

via a multivariate mixed-data sampling (MIDAS) regression that links the variable of inter-

est to higher-frequency lags of each indicator via parametric functional constraints (Ghysels

et al., 2007, 2020). The high-frequency lag coefficients are regularised via a flexible three-tiered

group-wise shrinkage prior that jointly shrinks groups of lags of less informative indicators while

accounting for the correlation among lags. Finally, we propose a sparsification algorithm for

the posterior motivated by Bayesian decision theory which achieves ex-post variable selection

with the aim of intuitive signal communication.

For group-shrinkage, we employ the GIGG (Group Inverse-Gamma Gamma) global-local

prior, where two heavy-tailed processes shrink irrelevant signals towards zero while avoiding

excessive shrinkage of relevant signals globally and locally (Polson and Scott, 2010). Proposed

by Boss et al. (2021) for panel settings, the prior adds a group-wise shrinkage dimension that

simultaneously shrinks between and within groups of covariates. We adopt the prior for the

time-series context and set hyperparameters such that between-group shrinkage with high cor-

relation within group is preferred. This regularises variance inflation commonly observed in

over-parameterised multivariate MIDAS models (Carriero et al., 2015) and accounts for the

temporal lag correlation between higher-frequency observations of the same indicator (which

we define as “groups”).1

1 Intra-group collinearity is present in unrestricted MIDAS (Foroni et al., 2015), and is reinforced when
polynomial restrictions are imposed to achieve parsimony and a meaningful lag profile (Ferrara et al.,
2022). Generally, three-tiered group-shrinkage can be relevant in a broader range of econometric problems
where a group-structure exist, and the prior can accommodate different types of group structures.
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The prior shrinks in a continuous way without imposing exact zero coefficients, which makes

it more flexible. However, a drawback is that communication of the signals that the model

exploits is difficult without a clear-cut selection of indicators. To address this, we propose

a new sparsification algorithm motivated by Bayesian decision theory that is applied to the

posterior of the MIDAS coefficients. The algorithm selects ex-post those high-frequency lag

groups that best summarise the predictions of the model, in the spirit of Hahn and Carvalho

(2015) and Chakraborty et al. (2020), and sets the coefficients of others to exact zeros. Imposing

this via the prior directly is known to be sensitive to the hyperparameters (Barbieri and Berger,

2004; O’Hara and Sillanpää, 2009; Fava and Lopes, 2021) and to the correlation structure in the

data (Barbieri et al., 2021). By asking which subsets of data reproduce the posterior predictions

as closely as possible, the ex-post sparsification step allows to assign inclusion probabilities to

coefficient groups and hence to enhance the interpretability and tractability of predictions.

In an empirical application, we nowcast quarter-on-quarter GDP growth in the United

Kingdom using monthly macroeconomic indicators. We conduct nowcasts in a pseudo-real-

time setting over the sample period 1999 to 2021, also examining a pre-pandemic sample. We

find that the proposed model performs competitively against a range of alternatives for both

sample periods. During the pandemic quarters, the model detects the initial economic trough

earlier and nowcasts the economic recovery more precisely.

To understand the role of the main model features, we compare mean and density now-

cast performance to models that shut some or all of the time-varying components down, as

well as against a range of alternative priors on the MIDAS coefficients. We find that allow-

ing for a time-varying trend and SV with t-distributed errors, substantially improves nowcast

performance when combined with the group-shrinkage prior. Examining inclusion probability

patterns, we show that the GIGG prior identifies a small set of indicators with high inclusion

probability, while still reading signals from other indicators albeit with lower probability and

higher uncertainty. Over the data release cycle, the model reads signals from survey indicators

early on and then shifts towards signals from a few real activity indicators. Moreover, we find

that the combination of the time-varying components along with group-shrinkage helps exploit-

ing the high-frequency data effectively as they get released. During the Covid-19 pandemic,

the inclusion of t-distributed errors helps to channel the group-shrinkage towards relying more

heavily on indicators that capture sentiment and activity in the service sector, as well as indi-

cators on housing, both of which reflected disruptions from economic lockdowns. By contrast,

models with other priors profit less from including the time-varying components. The horseshoe

prior reads information in a dense and diffuse way across indicators and nowcast periods, and

the spike-and-slab prior select sub-sets of indicators but shifts less effectively between them.

The proposed model combines various features and nests existing models in the literature.

MIDAS regressions are popular since they are computationally less demanding than mixed-
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frequency state space representations (Bai et al., 2013), and are able to exploit heterogeneous

signals from indicators since they do not rely on their co-movement. Non-linear and non-

parametric MIDAS structures have been used to address non-linearities in the link between

indicators and target (Guérin and Marcellino, 2013; Ghysels et al., 2020). Instead, we focus

on modeling non-linear features in the target variable via a time-varying trend and stochastic

volatilities that account for extreme observations, since these have been found to improve pre-

dictive performance in a range of unobserved component models, VARs, and dynamic factor

models (Stock and Watson, 2009; Clark, 2011; D’Agostino et al., 2013; Berger et al., 2016; Car-

riero et al., 2016; Antolin-Diaz et al., 2017; Chiu et al., 2017). Our model is closest to Carriero

et al. (2015) who combine a MIDAS structure with stochastic volatility, but standard Min-

nesota type shrinkage. Antolin-Diaz et al. (2021) allow for a time-varying trend and stochastic

volatility, exploit higher-frequency indicators via a dynamic factor model, and model outliers

via an additive component in GDP growth. Instead, we adopt a Student’s t-distribution to the

shock structure, which can incorporate both smaller and more frequent variance shifts as well

as rare extreme outliers (Jacquier et al., 2004; Clark and Ravazzolo, 2015).

The GIGG prior can be seen as an extension of the popular horseshoe prior (Carvalho

et al., 2010) towards three-tiered group shrinkage. Other grouped shrinkage priors, such

as Laplace-type (Casella et al., 2010) or Cauchy regularisation (Xu et al., 2016), assume

non-exchangeability in a group, but apply a uniform level of shrinkage within group, with

no inference on the correlation via a covariate level scale. Mogliani and Simoni (2021) show

that by augmenting Laplace-type regularisation to be adaptive with spike-and-slab variable

may provide improvements over the the former priors in grouped MIDAS regressions. Xu and

Ghosh (2015), on the other hand, propose a group-sparse spike-and-slab prior which applies

selection both on the group and within-group level, akin to the sparse group-lasso of Simon and

Tibshirani (2012). Babii et al. (2022) study this estimator from a frequentist point of view in

the context of MIDAS models and find that it provides substantial improvements for predic-

tions. The GIGG prior can, due the flexibility of its three tiers, be thought of as a continuous

generalisation to these approaches that can flexibly adapt to any correlation structure and is

therefore suitable for any basis of the MIDAS weighting function.

Finally, the ex-post sparsification approach relates to the debate of shrinkage versus spar-

sity initiated in Giannone et al. (2021) who highlight the importance of separately modeling

shrinkage and sparsity. Our proposed methodology, too, separates shrinkage from the prior and

sparsity from group selection and is able to provide uncertainty quantification in selection via

inclusion probabilities over time. A key difference to Giannone et al. (2021) or group selection

methods presented in Mogliani and Simoni (2021) and Babii et al. (2022), is that we view the

proposed algorithm as a tool to understand and communicate the predictions of the model,

coherent with decision theory, rather than to detect sparsity as a function of the actual obser-
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vations of the target variable. At the same time, the GIGG prior can be tuned to incorporate

the knowledge that macroeconomic data is highly correlated which facilitates inference when

many small coefficients are likely, avoiding an “illusion of sparsity” (Giannone et al., 2021) that

might otherwise be present with selection priors.

The remainder of the paper is structured as follows. Section 2 presents the T-SV-t BMIDAS,

the GIGG prior and sparsification step. Section 3 outlines the data set and setup of the empirical

application. Section 4 discusses nowcast evaluation results and the role of the model features,

and section 5 discusses the results through the lens of variable inclusion probabilities. Section

6 concludes. Appendices A and B contain details on methodology and additional results.

2 T-SV-t BMIDAS, group-shrinkage and sparsification

2.1 BMIDAS with time-varying components

The proposed T-SV-t BMIDAS combines time-varying component features with a multivariate

MIDAS regression: (1) a time-varying trend component (2) stochastic volatility processes, and

(3) t-distributed errors in the the observation equation that allow for fat tails. Let yt be the

scalar valued target variable observed at discrete time points t = (1, · · · , T ) which is modelled

by unobserved states at frequency t and K covariates intermittently observed m ≥ 1 times,

xt−(j−1)/m,k for j = (1, · · · ,m) and k = (1, · · · , K). In this paper, t will refer to quarters and

m = 3 to months. Note that for ease of exposition, we choose m to be the same for all k, which

will be relaxed following section 3. The model takes the following state-space form:

yt = τt +
K∑
k=1

B(L1/m; θk)xk,t +
√
λte

1
2
(h0+whh̃t)ϵ̃yt ,

ϵ̃yt ∼ N(0, 1), λt ∼ IG(ν/2, ν/2)

(1)

τt = τt−1 + e
1
2
(g0+wg g̃t)ϵ̃τt , ϵ̃

τ
t ∼ N(0, 1) (2)

h̃t = h̃t−1 + ϵ̃ht , ϵ̃
h
t ∼ N(0, 1)

g̃t = g̃t−1 + ϵ̃gt , ϵ̃
g
t ∼ N(0, 1),

(3)

where (1) is the observation equation and (2)-(3) describe the evolution of states, latent trend

and stochastic volatilities, respectively.

The trend component τt is modelled as a driftless random walk. This has long tradition

in inflation trend estimation (see e.g. Stock and Watson (2007); Harvey et al. (2007)), but

has recently also been introduced to nowcast models of GDP growth using dynamic factor

models (Antolin-Diaz et al., 2017, 2021). The rationale for a unit root process in the trend,
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compared to the assumption of discrete changes in mean via structural breaks as in Kim and

Nelson (1999) or McConnell and Perez-Quiros (2000) is to capture slow moving changes in

GDP growth that may not necessarily be captured by the higher frequency components. This

information typically relates to short run fluctuations of the business-cycle. 2 Nevertheless,

which type of fluctuation the trend captures is not unequivocal, as the degree of smoothness

of the latent trend depends on the priors employed and on the residual variation explained by

the other model components (1) and (3). In the empirical application, we therefore assess the

role of the trend by shutting down model components, and check the sensitivity of the trend to

model specifications and priors.

Conditionally on the trend, a MIDAS component,
∑K

k=1 B(L1/m; θk)xk,t, relates short-term

fluctuations from a possibly wide range of high-frequency indicators to yt. Define L1/m as the

back-shift operator such that L1/mxt,k = xt−1/m,k, and denote by θ a L-dimensional vector of

coefficients. Then B(L1/m, θk) defines a lag polynomial, which, as is common in the MIDAS

literature (e.g. Babii et al. (2022)), is parameterised by a weighting function, ω : R×RL → R:

B(L1/m, θk)xt,k =

qm∑
j=1

ω(
j − 1

qm
; θk)xt−(j−1)/qm,k. (4)

Here, q indicates how many quarterly lags enter the polynomial in addition to the contempo-

raneous m months. Many different weighting functions have been proposed in the literature

(Ghysels et al., 2007). In this paper, we consider ω to be a linear functional, ω(θk) =
∑L

l=1 θk,lωl,j

for l = (1, · · · , L) of which unrestricted weights (U-MIDAS, see Ghysels et al. (2007); Foroni

et al. (2015)), and restricted Almon lag polynomial weights (Almon, 1965; Ferrara et al., 2022)

are popular subsets thereof 34. While U-MIDAS treats each higher frequency lag polynomial

as an independent covariate, Almon polynomials force the curvature of regression coefficients

belonging to a given covariate k to adhere to a L-degree polynomial process. This has particular

appeal for macro time-series applications since economically relevant restrictions to the poly-

nomial’s end-points can be enforced, such as constraining the functional to peter out smoothly

to zero for distant lags (Smith and Giles, 1976). Denote these restrictions by r∀k. While the

restrictions may induce parsimony when L− r << qm, the implied linear transformations typi-

cally induce a highly collinear grouping structure that can cause mixing problems for shrinkage

2 A different non-stochastic approach to account for long-run growth features is presented in Giannone et al.
(2019), where iterative forecasts are enforced to return to a long-run cointegrating equilibrium.

3 Foroni and Marcellino (2014) show that linear MIDAS methods are competitive with non-linear MIDAS
weighting schemes such as the non-linear Almon and beta functions (Ghysels et al., 2004, 2007; Andreou
et al., 2010; Ghysels et al., 2020), while being compatible with off the shelf shrinkage methods. Linear
MIDAS have been employed in (Foroni et al., 2015; Angelini et al., 2011; Mogliani and Simoni, 2021).

4 We consider the “direct” representation of Almon weights, which allows representing the polynomial func-
tion via a linear combination of the data (Cooper, 1972). In general, however, any arbitrary function can
be used for ω which Babii et al. (2022) denote as the dictionary of functions.
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priors (Griffin and Brown, 2012). The importance of modelling this correlation will become

apparent when comparing priors that assume within lag group exchangeability to the GIGG

prior and its sparsification.

Finally, we allow for two types of residual variation: (1) stochastic volatilities, {h̃t, g̃t}, for
GDP growth, yt, and the latent trend, τt, that model persistence in error variance, and (2)

student-t errors in the yt equation, to model non-persistent shocks such as extreme events and

outliers that are otherwise unaccounted for by the other model components (Jacquier et al.,

2004; Clark and Ravazzolo, 2015). Since states {ht, gt} can be regarded as parameters, the state

components alone can quickly make the model high dimensional. To allow for stronger shrinkage

on the states via priors on wh and wg, which control state-smoothness, we use the non-centered

state space formulation after Frühwirth-Schnatter and Wagner (2010). This retains conditional

conjugacy with the priors discussed below.5 The introduction of t-errors may benefit density

nowcasts since fat-tails imply wider probability bands around extreme observations, but can

also be relevant for point nowcasts because t-distributed errors discount large contemporaneous

movements in yt and, therefore, limit the propagation of outliers to the posteriors of the model

components (Chiu et al., 2017). Differently from linear outlier treatments on the level of the

target variable (Stock and Watson, 2016; Antolin-Diaz et al., 2021), t-distributed errors reflect

a continuous range of time variation and can incorporate both smaller, more frequent variance

shifts and rare extreme outliers.

2.2 Priors

We now describe the prior hierarchy used for drawing inference on all unknowns in (1)-(3):

π(ζ) = π(θ)π(τ )π(h̃)π(g̃)π(ϕ)π(λ|ν)π(ν), (5)

where ζ collects all unknowns into one vector. The MIDAS coefficients θ are regularised by the

GIGG prior with group-shrinkage structure. Bold-faced letters refer to time-ordered vectors

(e.g., τ = (τ1, · · · , τT )′), and ϕ collects any remaining state parameters (τ0, h0, g0, wh, wg)
′.

{τ0, h0, g0} are the starting values for the latent states.

5 Since wg and wh appear in the observation and state equation, one can apply conjugate normal priors
which exert stronger shrinkage than the inverse-gamma priors conventionally applied in Bayesian state-
space models. This approach has been used in large time-varying parameter models (Huber et al., 2021;
Chan, 2017b; Koop and Onorante, 2019). The more commonly employed centered SV process ht can be
exactly recovered given that ht = h0 + whh̃t (likewise for gt).
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2.2.1 GIGG prior on MIDAS coefficients

Multivariate MIDAS regressions are highly parameterised, but the grouping and correlation

structure across coefficients can be exploited for efficient shrinkage. We do so in three ways:

shrinkage across all coefficients, group-wise shrinkage jointly for coefficients belonging an indica-

tor, and modelling of the correlation between coefficients within a group. The prior, therefore,

speaks to the fact that, first, not all of the k indicators are equally relevant for prediction,

addressed the group-wise shrinkage of lags belonging to a given indicator. Second, correlation

among parameters within the lag group is typically very high for consecutive high-frequency

lags, particularly when functional restrictions such as those implied by the Almon polynomial

are applied. Exchangeable priors that leave this unaddressed, are liable to random covariate

selection and bad mixing (Boss et al., 2021; Piironen et al., 2020). Third, group-structure and

correlation across lags can jointly matter for predictive performance since the relative impact

of the lag group on the target variable can be affected. The prior, “inverse-Gamma Gamma”

(GIGG) (Boss et al., 2021), is specified as

θk,j ∼ N(0, ϑ2γ2
kφ

2
k,j), ∀j ∈ {1, · · · , L− r}

ϑ ∼ C+(0, 1), γ2
k|ak ∼ G(ak, 1) , φ2

k,j ∼ IG(bk, 1),
(6)

where G(•, •), IG(•, •) and C+(•, •) refer to the Gamma, inverse-Gamma, and half Cauchy

distribution with positive support, respectively. ϑ controls the overall level of sparsity. γk acts

as a shrinkage factor on the joint impact of coefficients from group k, and φk,j controls how

correlated group members are within k. The magnitude and relative size of ak and bk determine

the amount of shrinkage and relative importance between group-shrinkage and within-group

correlation.

Depending on the choice of hyperparameters, prior (6) is related to several previous ap-

proaches employed in MIDAS settings. For a group-size of 1 and setting ak = bk = 0.5, it

reduces to the horseshoe prior of Carvalho et al. (2010) which Kohns and Bhattacharjee (2022)

apply to nowcasting US GDP growth with U-MIDAS sampled components. The GIGG can also

be viewed as a continuous generalisation to the group adaptive lasso with spike-and-slab group

selection which Mogliani and Simoni (2021) analyse empirically and theoretically for Almon MI-

DAS regressions. Instead of Laplacian slab distributions, however, the GIGG allows for fatter

tailed distributions and inference on the correlation of coefficients within a group. More broadly,

for any group-size larger than 1, the prior follows a correlated normal beta prime distribution

akin to a grouped formulation of the prior by Armagan et al. (2013), γ2
kφ

2
k,j ∼ β′(ak, bk) which

flexibly nests the group-horseshoe Xu et al. (2016).6 and may also be viewed as a continuous

6 Unlike Xu et al. (2016), the prior reduces to the exact horseshoe at group-size 1.

7



approximation to the group-sparse spike-and-slab prior of Xu and Ghosh (2015).

Figure 1: Bi-variate shrinkage coefficient plots for various hyper-parameter values. ak controls
group-level shrinkage while bk controls the degree of correlation within groups.

For the application to nowcasting, we leverage the model structure to inform on the hyper-

parameters of the GIGG prior. Generally, the lower ak, the stronger the group is penalised, while

the higher bk, the more within-group correlation is allowed for. But the relative magnitudes

matter as well. To visualise these relationships, Figure 1 shows the prior distribution on the

shrinkage coefficients κj ∈ [0, 1], implicitly defined by (ϑ, γk, φk,j), for different choices for ak

and bk and a group of 2. These are often analysed in the context of generalised linear models

(Piironen et al., 2017) since they inform on how much the prior shrinks toward a mean of 0

from the maximum likelihood estimate of the regression weights (see appendix A.1.1 for full

derivations the MIDAS component). High probability mass on 1 implies aggressive shrinkage

toward 0 and the degree of concentration of the joint probability distribution informs on the

degree of correlation in shrinkage.

Two general shrinkage profiles emerge from choosing ak = bk or ak ̸= bk. Setting ak = bk

induces a horseshoe type shape, which displays high correlation when set to ak = bk = 0.5

(upper left plot). The high degree of correlation favours to either jointly shrink the group

members to 0, or leave the coefficients relatively un-shrunk, akin to the group-horseshoe by

Xu et al. (2016). For smaller values such as 0.005 (upper right plot), on the other hand, we

observe the tendency for independent horseshoe type shrinkage, implying low correlation. A low
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magnitude of ak and bk can be appropriate when prior knowledge exists that only selected lags

are important. When a ̸= b, within-group correlation is high and the horseshoe shape collapses

towards very high or very little joint shrinkage for both coefficients. Choosing a >> b (lower left

sub-plot) favours little regularisation (high mass at South edge). Choosing a << b (lower left

sub-plot) induces aggressive joint shrinkage (high mass at North edge), and the overall impact

of both coefficients is pushed toward sparsity. Nonetheless, in both cases, small mass in the

edges retains the flexibility to escape the joint shrinkage tendencies.

For our empirical application, we adopt this latter case of aggressive group-correlated shrink-

age, setting a = 1/T, b = 0.5 for all coefficient groups. This choice reflects the view that a high

degree of correlation is present between MIDAS lag coefficients belonging to the same indicator,

particularly when coefficients are restricted via Almon polynomials. And a comparison across

different hyperparameter choices suggests an improved nowcasting performance with strong

prior correlation in shrinkage, particularly prior to the pandemic.

2.2.2 Priors for the latent states and other coefficients

For priors related to the states and starting conditions, we follow the previous literature. For

the latent states (τ , h̃, g̃) we consider a joint normal prior derived using methods proposed in

Chan and Jeliazkov (2009) and McCausland et al. (2011). This allows representing the entire

conditional state posterior as a tractable normal distribution. Latent states are prone to over-

fitting in over-parameterised models and the smoothness of the state processes are notoriously

difficult to identify from the data alone (Cogley et al., 2005; Antolin-Diaz et al., 2017). We

therefore put normal priors on the state standard deviations with small prior variance that exert

stronger shrinkage than commonly employed inverse-Gamma priors (Frühwirth-Schnatter and

Wagner, 2010), wi ∼ N(0, 0.012) for i ∈ {h, g}. This encourages the states to be slow moving.

We set weakly informative priors on the initial conditions {i0}i∈{h,g,τ} ∼ N(0, 10). Lastly, we

put a relatively uninformative uniform prior on the degrees of freedom of the t-distributed errors

in the observation equation, ν ∼ U [2, 50]. The lower bound is chosen to insure the existence of

the first two moments of the t-distribution (Chan and Grant, 2016).

2.3 Estimation Algorithm

Here, we briefly review the estimation algorithm, firstly defining the likelihood stacked likelihood

across all observation. Let 1T be a column of ones. Recall that h = h01T + whh̃ and g =

g01T + wgg̃ and define τ = (τ1, · · · , τT ). Then it follows that

(y|X, θ, τ , h̃, h0, wh,λ) ∼ N(Zθ + τ ,ΛhΛλ), (7)
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where Zθ are the vectorised MIDAS coefficients and Λh = diag(eh1 , · · · , ehT ) and Λλ =

diag(λ1, · · · , λT ).
7 The assumption of independence between MIDAS coefficients and state

space components allows to derive conditional posterior distributions via an efficient Metropolis-

within-Gibbs sampling algorithm. We sequentially simulate from the following algorithm:

1. Sample θ ∼ p(θ|y, •)

2. Sample hyper-parameters (ϑ, γ2
k, φ

2
k,j, νϑ) in one block

(a) ϑ2 ∼ p(ϑ2|y, •)
(b) γ2

k ∼ 1/p(γ−2
k |y, •) for for k = (1, · · · , K)

(c) φ2
k,j ∼ p(φ2

kj|y, •) for j = (1, · · · , L− r)

(d) νϑ ∼ p(νϑ|y, •)
3. Sample τ̃ ∼ p(τ̃ |y, •) and τ0 ∼ p(τ0|y, •)

4. Sample h̃ ∼ p(h̃|y, •), h0 ∼ p(h0|y, •) and wh ∼ p(wh|y, •)

5. Sample g̃ ∼ p(g̃|y, •), g0 ∼ p(h0|y, •) and wg ∼ p(wg|y, •)

6. Sample λt ∼ p(λt|y, •) for t = (1, · · · , T )

7. Sample ν ∼ p(ν|y, •) with a Metropolis step.

νϑ is an IG(•, •) distributed mixture variable that, when ϑ2|νϑ ∼ IG(1/2, 1/νϑ) and νϑ ∼
IG(1/2, 1), gives exact draws for (ϑ|y, •) (Makalic and Schmidt, 2015). We iterate sampling

steps 1.-7. 5000 times for burn-in and retain further 5000 samples for inference8. To speed

up the computations of the posteriors, we make use of the state sampling techniques of Chan

and Jeliazkov (2009) and McCausland et al. (2011) for the state variables. This allows drawing

steps 3.-5. in a non-recursive fashion, which increases sampling and computational efficiency

via sparse-matrix operations compared to Kalman filter based techniques (Carter and Kohn,

1994). We sample from the posteriors of (h̃, g̃) using the approximate sampler of Kim et al.

(1998). The conditional MIDAS coefficient posterior is normal and we use the algorithm of

Bhattacharya et al. (2016) to speed up computation and aid mixing when
∑K

k=1(L− r) >> T .

See appendix A.1 for details on the conditional posterior distributions and the Metropolis step.

2.4 Group-sparsification on the posterior

Continuous priors such as the GIGG may already achieve optimal empirical and prediction risk

properties (Chakraborty et al., 2020; Boss et al., 2021). However, when the policy maker aims

7 Define Xk = (xk,t− j−1
qm

)t∈{1,··· ,T},j∈{1,··· ,qm} as a T × qm matrix of high frequency lags ∀k and W =

(w′
1, · · · , w′

L−r) as a qm × L − r matrix of Almon restricted weights. Then, Zk = XkW and the stacked
matrix is Z = (Z1, · · · , ZT ) and the MIDAS functional coefficient vector is θ = (θ′1, · · · , θ′K)′.

8 To check convergence, we tested with 20000 iterations for burn-in and 20000 for inference, and results
remain similar.
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to understand and communicate nowcasts, the fact that with such priors, posteriors remain

non-zero can be a limitation since the impact on nowcasts remains opaque. In view of this, we

propose to ex-post sparsify the posterior of the regression weights based on decision theory, with

the aim of finding the smallest subset of indicators which achieve closest predictive performance

to the unsparsified model. Compared to priors that conduct selection, we view sparsity as

a decision tool that is separate from any regularisation that the prior imposes. Giannone

et al. (2021) highlight the importance of separating shrinkage from sparsity, particularly for

macroeconomic data, where high correlation among indicators can result in falsely detecting

sparsity (“illusion of sparsity”).

We derive a new analytical solution for ex-post sparsification for the general MIDAS pos-

terior which takes the temporal grouping structure of the MIDAS functional into account.

Specifically, we threshold the coefficients of lags pertaining of an indicator jointly to zero if

they have little effect on the predictions. And we use insights from the sparse group lasso liter-

ature (Simon and Tibshirani, 2012; Breheny and Huang, 2015) to formulate a computationally

efficient solution to the group selection problem which is robust to the intra-group correlation,

and applicable to any MIDAS specification using linear weights for (4).

Suppose we take the perspective of a decision maker who minimises a utility function over

the Euclidean distance between a linear model that penalises group-size akin to Zou (2006) and

the predictions from model (1)-(3).

L(Ỹ , α) =
1

2
||Zα− Ỹ ||22 +

K∑
k=1

ϕk||αk||2, (8)

where Ỹ refers to a realisation from the posterior predictive distribution p(Ỹ |y) =∫
p(Ỹ |y, θ, •)p(θ|y, •)dθ, and || • ||p refers to the ℓp-norm.9 α is an unknown MIDAS weight

vector which due to the group-wise penalty
∑K

k=1 ϕk||αk||2 may display sparsity via penalty

parameter ϕk for each indicator group. Similar to the logic of adaptive group-lasso (Wang and

Leng, 2008), the penalisation term induces non-differentiability at zero, which creates a soft-

thresholding effect between [−ϕk, ϕk], thereby forcing the coefficients on all group members to

zero. Unlike traditional selection approaches such as the spike-and-slab prior, sparsity is induced

using the prediction of Y as a target, rather than Y directly which has been previously shown

to benefit the stability of subset selection (Piironen and Vehtari, 2017; Piironen et al., 2020).

The Bayes optimal solution for α is obtained by integrating out the two sources of un-

certainty which characterise the uncertainty in Ỹ : posterior uncertainty from the predictive

distribution, as well as in the parameters θ (Lindley, 1968). Here, we show the analytical solu-

9 Note that for simplicity we define the predictive distribution over in-sample values of Z, but in principle
any data can be used for the analysis.
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tion for (8) and discuss the assumptions needed to derive it (for a full derivation, see appendix

A.2). The sparsified estimate α
∗(s)
k for each Gibbs-sampling step s = 1, · · · , S, is given by:

α
∗(s)
k =

(
||θ(s)k ||2 − ϕ

(s)
k

)
+

θ
(s)
k

||θ(s)k ||2
, ∀k ∈ {1, · · · , K}, (9)

where (x)+ = max(x, 0). (9) implies that when θ
(s)
k are close to 0, then α

∗(s)
k = 0, whereas, when

θ
(s)
k are sufficiently large, then α

∗(s)
k = (1− ϕ

(s)
k

||θ(s)k ||22
)θ

(s)
k , in which case the first term will be very

close to 1, thus imposing close to no further shrinkage. Two assumptions are needed to derive

(9). Firstly, it requires orthonormalisation of the data for each k such that T−1Z̃k
′Z̃k = IL−r.

This serves to simplify the make the solution robust to any correlation implied by ω within

(4). Further, as shown in Simon and Tibshirani (2012), not orthonormalising groups ignores

the cross-correlation of group members in k, in which case the algorithm implicitly prefers to

not threshold groups with large covariance, and ignores that Zk might have different scales.10

Secondly, we make use of work by Ray and Bhattacharya (2018) and Chakraborty et al. (2020)

who show that, when setting ϕ
(s)
k = 1

||θ(s)k ||2
, iterative solution methods such as the coordinate

descent (Friedman et al., 2010) converge after the first cycle.

We then quantify (9) the posterior “inclusion probability” that a given group of coefficients

was included in the model’s forecasts:

p(α
∗(s)
k ̸= 0|Ỹ ) ≈ 1

S

S∑
s=1

1
α
∗(s)
k ̸=0

∀k, (10)

and associated posterior variance: var(α
∗(s)
k ̸= 0|Ỹ ) ≈ 1

S

∑S
s=1(1α

∗(s)
k ̸=0

− 1αk ̸=0)
2. Thus, poste-

rior inclusion probabilities represent the relative frequency with which the group k was selected

in the sparsified estimate α∗(s) over all Gibbs draws. These reflect the uncertainty around the

inclusion of a variable and its relative impact, which would not be the case if we were to sparsify

only once on the posterior mean.11

Linking regularisation from priors and variable selection has long tradition in statistics

(Lindley, 1968). Hahn and Carvalho (2015) re-popularised this approach for high-dimensional

problems by introducing independent lasso-type penalties into the decision maker’s utility func-

tion. Ray and Bhattacharya (2018) and Chakraborty et al. (2020) propose computationally

efficient solutions for this decision task for individual covariate and group-selection, respec-

10 It can be further shown that orthonormalising the objective, establishes connection to best subset selection
and uniformly most powerful invariant testing (Simon and Tibshirani, 2012)

11 See Woody et al. (2021) and Chakraborty et al. (2020) for formal justification of the model selection
uncertainty and the asymptotic risk properties, respectively. Note, that unlike spike-and-slab priors, we
do not conduct direct inference on the inclusion probability of a variable, hence deriving its approximate
posterior intervals are not immediately available.
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tively. These have been adapted to time-varying parameter models and VARs (Huber et al.,

2021; Hauzenberger et al., 2021), where Huber et al. (2021) also sparsify over MCMC draws

and derive posterior inclusion probabilities. But to our knowledge, existing applications to MI-

DAS settings have assumed independent covariate selection (Kohns and Bhattacharjee, 2022).

And differently from the previous approaches, the group-sparse solution is robust to correlation

within group and therefore generalises to any linear MIDAS approach.

We note at this point, that our sparsification approach is no panacea for detecting true

sparsity of the data generating process. Which indicators are ultimately thresholded to zero,

depends on the prior applied for the model and its ability to apply aggressive shrinkage to

variables that are weakly related to the target, yt. To highlight the importance for group

shrinkage in MIDAS regression, we will apply our sparsification algorithm also to previously

used priors for macro settings which assume exchangeability within group such as the horseshoe

prior and spike-and-slab. While Giannone et al. (2021) conclude that the data are typically

non-informative about the which subset of predictors to include in the model, we show that

this is not necessary the case when imposing three-tiered group shrinkage and then sparsifying

ex-post, which in our application helps us communicating intuitive sub-sets of most relevant

predictors over time.

3 Empirical setup

For our application, we nowcast real quarter-on-quarter GDP growth in the United Kingdom

based on a set of monthly macroeconomic indicators following a stylised publication calendar.

In the following, we outline the data set, the stylised publication calendar we follow, and the

set-up of our nowcasting exercise and evaluation.

3.1 Data set

The set of monthly macroeconomic indicators has been compiled to reflect information on the

UK economy that policymakers actively monitor to gauge economic activity in real time, and is

comparable to data sets employed in previous studies (Antolin-Diaz et al., 2017; Anesti et al.,

2018). We include a range of real activity and survey indicators, including indices of production

and services, exports and imports, a range of labour market series, as well as timely business and

consumer surveys (CBI survey, PMIs, GFK). In order to capture lending conditions that can

affect economic conditions via financial conditions we also include mortgage lending approvals

and VISA credit card consumer spending. These series also tracked consumer spending during
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the pandemic, reflecting shut-downs of business and housing activity.12 We do not add asset

prices or other financial indicators which have been found to contribute little to nowcast updates

once information from monthly survey and real activity data is accounted for (Bańbura et al.,

2013; Anesti et al., 2018). Also, during the Covid-19 period financial markets were detached

from real activity in the UK—asset prices initially collapsed, then stabilised early on in the

pandemic in response to monetary policy interventions, and subsequently exhibited a boom

that was not in line with the weakness of the real economy. The series are transformed to be

approximately stationary prior to estimation.13

We consider the sample period from 1999Q1 to 2021Q3. The start of the sample is pinned

down by data availability since many of the monthly indicators are not available for earlier

years.14 To mimic incoming information over the data release cycle that a nowcaster would face

in reality, we produce nowcasts based on a pseudo real time data calendar, as outlined below.

However, for ease of analysis we use final vintages of the data, downloaded in December 2021.

Since our focus here lies in understanding the proposed model, we leave an account for real

time data releases and revisions for future research.15

3.2 Nowcast exercise

Macroeconomic data are published asynchronously at different points in time and with delays

ranging from various weeks (survey data) to up to various months (labour market data) after

the reference month. To simulate the information set available to the nowcaster over the data

release cycle, we follow a stylised pseudo real-time data release calendar (see Table 1).

As is common with MIDAS approaches, we start the nowcast exercise for each quarter anew.

We start predicting with all available information on the first of the month of the reference

quarter. Following the stylised release calendar in Table 1, we generate overall 20 nowcasts

that are being produced at each date in the quarter when new data series are typically released,

until the release of quarterly GDP six weeks after the end of the reference quarter.16 For

12 Alternatively, various studies have exploited new data sources at a daily or weekly frequency (Ng, 2021;
Baumeister et al., 2021; Woloszko, 2020; Huber et al., 2020; Kapetanios et al., 2022). Including such data
faces the challenge of very short time-series, and we therefore abstain from including them in our main
analysis. We have, however, explored the possibility of linking the monthly VISA consumer spending data
with experimental weekly debit and credit card data provided by the UK’s Office for National Statistics.
This analysis shows additional nowcast gains in the first weeks of the reference quarter, which however
dissipate once the monthly series becomes available. Result for this exercise are available upon request.

13 See Table B1 in the appendix for an overview of the data and their respective transformations.
14 Some of the series have missing values at the beginning of the sample period. We interpolate these based on

a principal component (PCA) model that accounts for missing information via the alternating least square
algorithm, and results also remained similar when employing the Expectation Maximization algorithm
(Bańbura and Modugno, 2014) instead.

15 See Anesti et al. (2018) for and analysis of UK data on the forecastability of different vintages and how to
incorporate that information for nowcast updates.

16 We refer to the first GDP publication, available about 40 days after the reference quarter. We abstain from
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Table 1: Stylised pseudo real-time data release calendar.

Nowcast Quarter Days to GDP Month Timing within month Release Publication Lag

1 135 1 1st of month PMIs m-1
2 125 1 End of 2nd week IoP, IoS, Ex, Im m-2
3 120 1 3rd week Labour market data m-2
4 115 1 3rd Friday of month Mortgage & Visa m-1
5 110 1 End of 3rd week CBIs & GfK m
6 Reference 105 2 1st of month PMIs m-1
7 quarter 97 2 Mid of 2nd week Quarterly GDP q-1
8 (nowcast) 95 2 End of 2nd week IoP, IoS, Ex, Im m-2
9 90 2 3rd week Labour market data m-2
10 85 2 3rd Friday of month Mortgage & Visa m-1
11 80 2 End of 3rd week CBIs & GfK m
12 75 3 1st of month PMIs m-1
13 65 3 End of 2nd week IoP, IoS, Ex, Im m-2
14 60 3 3rd week Labour market data m-2
15 55 3 3rd Friday of month Mortgage & Visa m-1
16 50 3 End of 3rd week CBIs & GfK m
17 45 1 1st of month PMIs m-1
18 Subsequent 35 1 End of 2nd week IoP, IoS, Ex, Im m-2
19 quarter 30 1 3rd week Labour market data m-2
20 (backcast) 25 1 3rd Friday of month Mortgage & Visa m-1

Notes: “Timing” refers to typical data release times as of December 2021, abstaining from changes in the publication calendar
over the sample period. “Release” refers to the data series updated at a given nowcast, see also Table B1 in the appendix for
a list of data series included. “Publication lag” represents the delay relative to the reference quarter (i.e. publication at any
point in the subsequent month considered to be one month lag, m-1).

each new data release over the data release cycle, we generate nowcasts from the predictive

distribution p(yt+1|Ων
T ), where v = 1, · · · , 20 refers to the nowcast periods and Ωv

T represents

the information set that expands with each data release. Since the MIDAS framework belongs

to the class of reduced-form mixed frequency models, each information set Ωv
T results in a

different model, depending on which data are observable over the data release cycle (Carriero

et al., 2015).To draw samples from the predictive distribution, we integrate over all parameter

uncertainties which is easily implemented via Monte Carlo integration (Cogley et al., 2005).

We start the nowcast exercise with an in-sample period of 1999Q1-2011Q1, and iteratively

expand it until the end of the forecast sample, Tend = 2021Q3. Since the Covid-19 pandemic

represents a historic shock to the macroeconomy, we separately evaluate nowcasts over a sample

that ends in 2019Q4 and one that cover the full sample period including the Covid-19 shock.

Point nowcasts are computed as the mean of the posterior predictive distribution and are

compared via root-mean-squared-forecast-error (RMSFE) calculated at each nowcast period as:

RMSFE =

√√√√ 1

Tend

Tend∑
t=1

(yT+t − ŷvT+t|Ωv
T+t−1

)2, (11)

accounting for a less accurate preliminary GDP estimate that was available 25 days after the reference
quarter prior to Sir Charles Bean’s 2018 review of UK economic statistics (Scruton et al., 2018).

15



where ŷvT+t|Ωv
T+t−1

is the mean of the posterior prediction for nowcast period v using information

until T + t − 1 and T is the initial in-sample length. Forecast density fit is measured by the

mean continuous rank probability score (CRPS):

CRPS =
1

Tend

Tend∑
t=1

1

2

∣∣∣yT+t − yvT+t|Ων
T+t−1

∣∣∣− 1

2

∣∣∣yv,AT+t|Ωv
T+t−1

− yv,BT+t|Ωv
T+t−1

∣∣∣ . (12)

with yv,A,B
T+j|Ωv

T+j−1
independently drawn from the posterior predictive density p(yvT+1|Ωv

T+j−1
|yT ).

The CRPS belongs to the class of strictly proper scoring rules (Gneiting and Raftery, 2007),

and can be thought of as the probabilistic generalisation of the mean-absolute-forecast-error.

The objective in terms of predictive precision is to minimise both evaluation metrics.

4 Model features and empirical nowcast performance

Next, we discuss these results further, in particular how the time-varying components and

the group-shrinkage prior, respectively and jointly, contribute to the nowcast performance. In

section 4.1, we compare the proposed T-SV-t-BMIDAS model with alternative models where we

shut down time-variation, and in section 4.2, and we consider alternative priors on the MIDAS

components for the model with and without time-varying components.

4.1 Role of time-varying unobserved components

Figure 2 looks at the role of the time-varying trend and stochastic volatilities with t-distributed

errors by comparing the T-SV-t BMIDAS model with trend and stochastic volatility with t-

distributed errors with the following alternatives, as well as an AR(2) benchmark (yellow line).

• T-SV : time-varying trend and stochastic volatility, normally distr. errors.

• T, Const Var : time-varying trend with constant variance.

• SV-t : no trend, stochastic volatility with t-distributed errors.

• SV : no trend, stochastic volatility, normally distributed errors.

• Const Var : no trend, constant variance.

Prior to the pandemic (left panels), there are substantial improvements in point and density

nowcast for most models against the AR(2), and in particular for the proposed T-SV-t model

compared to alternative models. Adding either a time-varying trend or stochastic volatility to

the model improves point and density forecasts significantly by about 20% relative to the AR(2)

benchmark, on average across nowcast periods, as shown in Table 2. Over the data release

cycle, improvements of these models are only significant late in the data release cycle, however.

Combining both the time-varying trend and SV-t in the proposed model leads to a stronger
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Table 2: Nowcast Evaluation Results

Evaluation pre-pandemic Evaluation incl. pandemic period
Nowcast Periods Average 6 13 18 Average 6 13 18

RMSFE RMSFE
AR(2) benchmark (abs. RMSFE) 0.42 0.42 0.42 0.42 11.45 11.4 11.47 11.48
T-SV-t BMIDAS, 0.66*** 0.68** 0.60* 0.51** 0.21*** 0.27 0.11 0.10
GIGG w/ Spars. (rel. RMSFE)

Alternatives to T-SV-t (all BMIDAS, GIGG w/ Spars)
T-SV 0.75*** 0.81* 0.72 0.44** 0.21*** 0.27 0.17 0.08
T, Constant variance 0.76*** 0.84 0.68 0.47** 0.21*** 0.28 0.16 0.07
No T, SV-t 0.78*** 0.90 0.70 0.46** 0.21*** 0.31 0.10 0.08
No T, SV 0.81*** 0.91 0.77 0.46** 0.22*** 0.31 0.15 0.08
No T, Const. var. 1.03*** 1.01 1.00* 0.67 0.22*** 0.27 0.19 0.09

Alternatives priors on MIDAS coefficients (all with T-SV-t)
GIGG w/out Spars. 0.69*** 0.71* 0.62 0.49* 0.21*** 0.32 0.10 0.09
Horseshoe (HS) 0.81*** 0.87 0.73 0.74 0.28*** 0.28 0.23 0.24
Spike and Slab (SS) 0.76*** 0.74** 0.72* 0.78 0.32*** 0.38 0.25 0.25

Alternatives to BMIDAS (all with T-SV-t, GIGG w/ Spars)
U-BMIDAS 0.71*** 0.74** 0.65** 0.60** 0.24*** 0.29 0.18 0.18
MF-DFM 0.67*** 0.75 0.67** 0.63** 0.32*** 0.33 0.32 0.34
Combination univar. MIDAS 0.68*** 0.68** 0.67** 0.67** 0.36*** 0.37 0.34 0.33

CRPS CRPS
AR(2) benchmark (abs. CRPS) 0.23 0.23 0.22 0.22 2.76 2.83 2.72 2.73
T-SV-t BMIDAS, 0.73*** 0.76 0.68* 0.60* 0.26*** 0.36 0.16 0.13
GIGG w/ Spars. (rel. CRPS)

Alternatives to T-SV-t (all BMIDAS, GIGG w/ Spars)
T-SV 0.75*** 0.78 0.74* 0.48* 0.24*** 0.31 0.19 0.11
T, Const. var. 0.84*** 0.89 0.78* 0.63* 0.25*** 0.32 0.19 0.12
No T, SV-t 0.82*** 0.91 0.76* 0.53* 0.25*** 0.36 0.15 0.11
No T, SV 0.83*** 0.91 0.78* 0.50* 0.27*** 0.37 0.18 0.11
No T, Const. var. 1.44*** 1.31 1.60* 0.82* 0.31*** 0.34 0.29 0.15

Alternatives priors on MIDAS coefficients (all with T-SV-t)
GIGG w/out Spars. 0.77*** 0.79 0.73* 0.61* 0.26*** 0.36 0.16 0.13
Horseshoe (HS) 0.75*** 0.79 0.67* 0.70 0.32*** 0.31 0.26 0.26
Spike and Slab (SS) 0.75*** 0.74 0.67* 0.73* 0.37*** 0.43 0.28 0.27

Alternatives to BMIDAS (all with T-SV-t, GIGG w/ Spars)
U-BMIDAS 0.79*** 0.79 0.76* 0.75* 0.28*** 0.33 0.22 0.20
MF-DFM 0.63*** 0.60** 0.64** 0.60** 0.36*** 0.36 0.36 0.36
Combination univar. MIDAS 0.68*** 0.66** 0.68* 0.66** 0.41*** 0.43 0.39 0.37

Notes: The table shows the average RMSFE and CRPS values for the AR model in the first row of each panel across all
20 nowcast periods (“Average”), and for selected nowcast periods (6,13,18). RMSFE and CRPS values for the other models
are in relative terms to the AR model and stars indicate significance as per the Diebold-Mariano test Diebold et al. (1998)
(∗ = 10% significance,**=5% significance,***=1% significance). T stands for time-varying trend, SV-t stands for stochastic
volatility with t-distributed errors.

improvement by 35% on average, and also stabilises performance over the data release cycle,

with significant improvements throughout. By contrast, the model without trend and with

constant volatility shows a volatile performance across nowcast periods and does not improve

against the benchmark. This underlines that incorporating at least one, and preferably both of

the proposed time-varying components is important to exploit high-frequency information with

BMIDAS models, in line with existing evidence based on other models for the United States
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Figure 2: Nowcast performance against alternatives to T-SV-t component.
Notes: Absolute root mean square forecast errors (RMSFE) and continuous rank probability scores
(CRPS) over nowcast periods (days ahead of GDP release). Left y-axis: baseline T-SV-t (black solid), T-SV
(purple, square marker), T-Const Var (blue, plus), SV-t (dashed black, circle), SV (dashed purple, square),
Const Var (dashed blue, plus). Right y-axis: AR(2) (yellow). All models use priors as outlined in section 2.2.

(Antolin-Diaz et al., 2017; Carriero et al., 2015).

When including the Covid-19 pandemic (right panels), nowcast errors are higher for all

models, particularly early on in the data release cycle, and differences across model variants

are relatively smaller. Nowcast performance of all models clearly improves with the release of

“hard” indicators for the first months of the reference quarter (nowcast period 13, i.e. 65 days

prior to GDP), but more so for models that feature stochastic volatility and t-distributed errors.

Interestingly, adding the time-varying trend makes less of a difference in the full evaluation

sample, and the full model loses out somewhat shortly before GDP release. The simple model

without trend and with constant variance fares comparatively well early on in the data release

cycle, but then loses out against the other models, particularly in terms of density nowcasts,

its relative performance improves compared to pre-pandemic. Overall, this suggests that the

most important time-varying feature when including the pandemic is the account for outliers,

since it helps the model to identify the Covid-19 pandemic related downturn as temporary. On

the other hand, the time-varying trend is less helpful during the pandemic, as models might

over-fit the large shock into the trend if outliers are not accounted for.
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To understand these results further, we look at the posterior trend and volatility estimates

from the T-SV-t BMIDAS with GIGG prior. Figure 3 shows the posterior estimates of the

cyclical and trend components (shown separately for pre-pandemic period and Covid-19 period

for readability), and the stochastic volatility components of GDP growth and trend (lower

panels). The trend-cycle decomposition is intuitive. The cyclical component captures high

frequency movements in GDP growth and tracks actual GDP growth (black dashed-dotted

lines) well, including over the Covid-19 pandemic, where the cyclical component captures the

bulk of the 20% drop in GDP growth and most of the recovery. On the other hand, the

trend captures low frequency changes in UK GDP growth, with a gradual slowdown in trend

growth since the early 2000s and a temporary trend decrease during the Great Financial Crisis.

Throughout the pandemic, the trend remains largely unchanged. Further, the t-distributed

volatility estimate of the observation equation shows a sharp and strong increase during the

pandemic, by far exceeding the increase observed during the GFC. Hence, the model interprets

the extreme movements in GDP growth as transitory in nature and related to a sharp rise in

variance in GDP growth rather than in the long-run trend.
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Figure 3: Posterior estimates for trend, cyclical component and stochastic volatilities.
Notes: Full sample, final nowcast period, from T-SV-t BMIDAS, with GIGG prior. Orange: posterior
means for trend in GDP growth. Blue: posterior medians of the cyclical component (upper panel) and
stochastic volatilities (lower panel). Black dashed line: UK GDP growth. Shaded areas: 95% credible intervals.

Separately identifying slow-moving trends from cyclical fluctuations in semi-structural mod-

els is generally challenging and can be sensitive to model choice, sample period and specification.

The T-SV-t-BMIDAS is not free from this caveat, and therefore the economic interpretation
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that we can assign to the trend and cycle estimates can only be suggestive. This said, these

flexible model features, in particularly stochastic volatility with t-distributed errors, appear to

help achieving a more meaningful and stable trend-cycle identification across nowcast periods.

Figure 4 shows the posterior trend and cyclical component from the baseline model compared

to the alternative models, over the estimation period until 2019Q4 based on the information

set at the first nowcast period, and the 18th nowcast period. The trend and cycle posterior

estimates from the Trend-SV-t model remain similar across both nowcast periods, and reflect a

slow-moving trend and a cyclical component that captures fluctuations around a positive mean.

By contrast, the model with SV but without t-distributed errors identifies a smooth cycle but

volatile trend at the early nowcast period, which then shifts around at nowcast period 18. The

model with constant variance identifies almost constant trends for both nowcast periods, but

with huge uncertainty around them. For nowcast period 18, this model suggest a strongly neg-

ative almost fixed trend or intercept in GDP growth and cyclical fluctuations around strongly

positive growth. These differences in the trend-cycle identification might explain the relatively

weaker nowcast performance of these alternative models, and they suggest the model with SV

and t-distributed errors can be preferable also in tranquil times prior to the pandemic.17

4.2 Role of group-shrinkage prior with ex-post sparsification

Next, we look at the role of using the GIGG prior and the sparsification step for regularising

the MIDAS regression, by comparing the nowcast results to similar models using alternative

priors proposed in the literature. The alternative priors on MIDAS coefficients are

• GIGG prior without sparsification step.

• Horseshoe prior (HS): model 1-3 with the horseshoe prior, thus another flexible shrinkage

prior, but without group-shrinkage. We derive inclusion probabilities on a group-level

using our group-sparsification algorithm from section 2.4.

• Spike-and-slab prior (SSVS): This prior follows George and McCulloch (1993) with a

uniform prior on lag-level inclusion probability. Selection of the prior is at the lag-level.

We derive inclusion probabilities on a group-level using our group-sparsification algorithm.

• Adaptive group-lasso with spike and slab prior (GAL), for Almon lag transformed data.

This prior follows Mogliani and Simoni (2021). It is a group-wise spike-and-slab prior,

where the slab distribution follows a multivariate Laplace distribution. Hyper-parameters

that govern group-inclusion probability are found via an EM algorithm.

17 The fat-tailedness of error distributions in the stochastic volatility process proves to be an inherent model
feature, as suggested by the posterior distribution of the degrees of freedom parameter showing large mass
around small values, see Figure B1 in the appendix. Section B.4 of the appendix also show the trend-
cycle identification against alternative priors for the time-varying components and MIDAS coefficients,
suggesting a relatively more robust identification for the proposed model.
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Figure 4: Posterior trend and cycle estimates across specifications.
Notes: Posterior means of trend estimated up until 2019Q4 from the T-SV-t BMIDAS model (black),
the T-SV (blue), and T-Const.Var (purple). Estimation at the 1st and 18th nowcast periods. All models
estimated with GIGG prior on the MIDAS coefficients.

First, we compare these prior specifications across models including the time-varying trend

with stochastic volatility and t-distributed errors. Figure 5 shows the point and density nowcast

evaluation, and Figure 6 visualises the nowcasts over time for the first and 13th nowcast periods.

Exerting group-level shrinkage and taking into account the high-frequency correlation structure

via the GIGG prior has preferable performance compared to the horseshoe prior and SSVS prior.

Prior to the pandemic, the model with GIGG prior has lower point nowcast errors throughout

and almost always better density fit. The GIGG prior nowcasts are somewhat less volatile

and show smaller uncertainty bands compared to the alternative priors. When including the

pandemic quarters, it is strongest for the first nowcast periods and again starting from 75

days ahead of GDP publication (nowcast period 13 when “hard” indicators are released). All

models initially miss the large unprecedented trough. However, in the first nowcast period, the

proposed model with GIGG prior is the only model to indicate the large rebound in activity for

Q3-2020. And once real activity indicators for the first reference month are released in nowcast

period 13, the model with GIGG prior captures the downward adjustment for Q2-2020 most

closely, but it also reflects the highly uncertain environment via the largest uncertainty bands.

Nowcast uncertainty then decreases substantially after Q3-2020 for later nowcast periods, albeit

it remains a bit larger than for the other models. Hence, with more “hard” macroeconomic

information, the model indicates a return toward reduced uncertainty.
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Figure 5: Nowcast performance across alternative priors, T-SV-t-BMIDAS.
Notes: Absolute RMSFE and CRPS for T-SV-t-BMIDAS models with GIGG prior and ex-post sparsi-
fication (black solid, circle marker), GIGG without sparsification (black dashed), Horseshoe prior HS (blue,
square), Spike-and-slab prior SS (purple, plus). Right y-axis: AR(2) (yellow). All with time-varying trend, SV,
t-distributed errors. Models with the GAL prior are only run without time-varying coefficients since the full
model with that prior becomes computationally heavy.

Finally, is it the addition of time-varying coefficients or the reliance on group-shrinkage that

makes most of the difference for nowcast performance? Or does the group-shrinkage prior work

particularly well when combined with the time-varying coefficients? Figure 7 shows results

for specifications without trend and constant variance and for alternative priors on the MIDAS

coefficients. Here, we also add a specification using the GAL prior, as proposed by Mogliani and

Simoni (2021). We see that without time-varying components, the GIGG prior performs rather

similarly to the horseshoe and GAL priors, and for density forecasts and when including the

pandemic it loses some of its gains seen from Figure 5. The SSVS prior has a weaker and volatile

performance without time-variation included, particularly prior to the pandemic. Including the

pandemic, the models without time-varying components both with the GIGG prior or the GAL

prior achieve some improvement around nowcast period 13 when “hard” data are released, but

much less so than the model with time-varying components and GIGG. At nowcast period 18,

the models with GIGG prior with and without time-variation perform equally well.

22



Q3-
11

Q1-
13

Q3-
14

Q1-
16

Q3-
17

Q1-
19

-1

0

1

2
1st Nowcast Period

Q3-
11

Q1-
13

Q3-
14

Q1-
16

Q3-
17

Q1-
19

-1

0

1

2
13th Nowcast Period

Q1-
20

Q2-
20

Q3-
20

Q4-
20

Q1-
21

Q2-
21

Q3-
21

-20

-10

0

10

20

30

Q1-
20

Q2-
20

Q3-
20

Q4-
20

Q1-
21

Q2-
21

Q3-
21

-30

-20

-10

0

10

20
BMIDAS-GIGG
BMIDAS-HS

BMIDAS-SSVS
GDP Realisations

Figure 6: Posterior mean and density nowcasts, for alternatives priors on MIDAS component.
Notes: Nowcasts over period 2011Q1 to 2019Q4 (x-axis) for the 1st and 13th nowcast periods, and
over the pandemic quarters (lower panel). Models are as in Figure 5. Shaded areas show 95% credible intervals.
Black dashed lines show quarterly GDP growth realisations.

135 115 95 75 55 35

0.2

0.4

0.6

0.8
RMSFE Pre-Pandemic

135 115 95 75 55 35
0

1

2

3

4

5
RMSFE Including Pandemic

135 115 95 75 55 35
0.1

0.2

0.3

0.4

0.5
CRPS Pre-Pandemic

135 115 95 75 55 35

0.5

1

1.5

CRPS Including Pandemic

T-SV-t GIGG
GIGG, Const. Var

HS, Const. Var
SSVS, Const. Var

GAL, Const. Var

Days Until GDP Release

Figure 7: Alternative priors for BMIDAS without trend and constant variance.
Notes: RMSFE and CRPS for baseline T-SV-t BMIDAS with GIGG (solid black line, circle marker),
and for BMIDAS models without trend and constant volatility and with different priors on MIDAS coefficients:
GIGG (yellow), horseshoe( blue, square marker), SSVS (purple, plus marker), GAL (dashed black).

23



Overall, the results suggests that the combination of time-varying components and group-

shrinkage prior improves nowcast performance over both evaluation periods. As we illustrate

in the next section, the GIGG prior shrinks the information set towards a sparse selection of

indicators, while still drawing on other indicators to a much lesser extent. And in a model with

time-varying coefficients the prior is also able to shift among the most meaningful indicators

over the data release cycle and over time, rather then relying on constant signals.

5 Interpreting signals from groups of indicators over time

The sparsification algorithm (9) on the posterior achieves variable selection that allows us to

single out which indicators have the largest impact on the predictions of the model over time

and over the data release cycle. Figure 9 presents heatmaps for inclusion probabilities for

groups of high-frequency lags belonging to each indicator (x-axis) and nowcast period (y-axis),

for the pre-pandemic evaluation sample (panel a) and the full evaluation sample (panel b).18

The upper sub-plots in both panels show the T-SV-t BMIDAS with GIGG prior, and the lower

sub-plots results from the same model but using the horseshoe prior without group-shrinkage,

and the spike-and-slab SSVS prior.

The model with GIGG prior mainly relies on sparse set of indicators at a time, as indicated

by only a few red-shaded areas. However, the inclusion probabilities of all other indicators are

non-zero as well, as indicated by the yellow colours of different intensity. Thus, information is

exploited in line with the idea of “illusion of sparsity” (Giannone et al., 2021), where a broad set

of indicators are potentially useful for forecasts, but many signals will be small. Interestingly,

the model shifts between groups of indicators over the data release cycle (i.e. moving down the

y-axis). Early on, the model exploits a few survey indicators. For the pre-pandemic evaluation

sample, these are manufacturing and construction PMIs for very early nowcasts, and then

GfK consumer confidence once its observations for the first month of the reference quarter are

released. This agrees with earlier findings that survey indicators provide the main early signals

for quarterly GDP (Bańbura et al., 2013; Anesti et al., 2017). Later on, labour market data

also plays a role when released in period 9.

For nowcast period 13, once “hard” economic information get published, we had seen a

clear improvement in nowcast performance of the proposed model in Figure 5. The inclusion

probabilities reveal that from this period on, the model relies almost exclusively on the index

of services, an important indicator for the service-oriented UK economy. Instead, the model

with horseshoe prior shows dense and a quite diffuse inclusion pattern across indicators and

over nowcast periods, and for both evaluation samples. It draws on signals from surveys, real,

18 Inclusion probabilities are stable over time apart from a pandemic-induced shift, so we focus on averages over
sub-samples. See Table B2 in the appendix for the exact inclusion probabilities and standard deviations.
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Figure 8: Inclusion probabilities across prior choices, BMIDAS models with trend and SV-t.
Notes: Darker colour indicates higher cumulative posterior inclusion probability for groups of monthly
lags of each indicator (x-axis) over nowcast periods (y-axis), from T-SV-t BMIDAS model. Panel a) shows
average incl. prob. for evaluation until 2019Q4, panel b) until 2021Q3. Sub-plots show the GIGG prior and
horseshoe prior HS, respectively.
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labour and personal finance indicators, but switches between these indicators over the data

release cycle, such as no clear pattern emerges. The SSVS prior, on the other hand, reads little

information in early stage of the data release cycle, and only reads intense but broad based

signal close to actual GDP release. It therefore seems less able to exploit timely information

early on. Overall, by switching from one set of indicators to another, the proposed model

with GIGG prior seems to exploit the incoming information more efficiently compared to other

models that rely on a more “dense” reading of information.

With the pandemic included in the evaluation, the higher volatility leads to more intense

colours as more signals are being processed, independently of the prior. For the model with

GIGG prior, the clear pattern remains of exploiting different signals over the data release cycle,

while still incorporating all other indicators to a much lesser extent. Survey indicators remain

most important for early nowcast periods, these are now rather the service and construction

PMIs, less so manufacturing. Over nowcast periods 5 to 12, signals from mortgage lending are

relevant too, and the index of services turns important, even before its observations for the

current quarter get released. Instead, little focus is put on the GFK and labour market data.

Thus, the model is able to capture that during the pandemic the economic lockdowns affected

mainly the service sector and initially the housing and construction sectors, whereas consumer

confidence and manufacturing were less affected and labour market data were distorted by the

furlough scheme. In nowcast period 13, there is again a shift towards a strong focus on the

index of services, and the inclusion probabilities of most other indicators drop. However, now

the model also continues relying on vacancies and mortgage lending, and in nowcast period 18

additional signals stem from the index of production, and again from the service PMI. The

horseshoe prior now also relies less on labour market series compared to the pre-pandemic

period, and somewhat more on mortgages and VISA consumer spending, but it does not switch

away from manufacturing PMIs and other survey indicators. Given that the Covid-19 shock

affected specific sectors more than others, a dense solution can represent a disadvantage, as

suggested by the weaker nowcast performance of the model with horseshoe prior.

Finally, what is the role of time-varying components for the observed inclusion patterns?

Figure 9 shows a similar comparison of inclusion probabilities for the models without time-

varying trend and with constant variance, with the GIGG prior being compared against the

horseshoe and the GAL priors. Overall, the inclusion patterns remain similar. Two notable

differences for the model with GIGG prior stand out compared to the case without time-varying

components. First, in the model with constant coefficients the GIGG prior is more selective: it

selects sub-groups of indicators and the inclusion probabilities of other indicators are close to

zero, particularly prior to the pandemic. Thus, while the aggressive group shrinkage helps the

model rely on a sub-set of most informative indicators more than on others, the account for the

time-varying trend nudges the model to still read weaker signals from all other indicators as well,
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b) Including the Pandemic (2011Q1-2021Q2)
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Figure 9: Inclusion probabilities, BMIDAS models without trend and constant variance.
Notes: Darker colour indicates higher cumulative posterior inclusion probability for groups of monthly
lags of each indicator (x-axis) over nowcast periods (y-axis), from BMIDAS models with constant variance and
no trend. Panel a) shows average incl. prob. for evaluation until 2019Q4, panel b) until 2021Q3. Sub-plots
show, respectively, the GIGG prior, horseshoe prior, and group adaptive lasso with spike and slab (GAL) prior
as in Mogliani and Simoni (2021).
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in line with the “illusion of sparsity” argument. Second, the constant coefficients model does

not show a pronounced shift in nowcast period 13 towards a sparser specification; while some

probabilities change, the intensity of most colours remains the same. Thus, the time-varying

components likely help the model to shift towards signals from “hard” data once these become

available. This is not the case for priors without group-shrinkage such as the horseshoe, with

or without time-varying components. Overall, this illustrates how efficient group-shrinkage,

together with the inclusion of time-varying coefficients, can help select the most meaningful

indicators over time and the data release cycle and jointly improve nowcast performance.

6 Conclusion

We have proposed a new Bayesian MIDAS framework, the T-SV-t-BMIDAS model combined

with a flexible group-shrinkage prior that accounts for the correlation within groups of indi-

cators, in the MIDAS case within groups of high-frequency lags. Group-shrinkage and spar-

sification are achieved in separation. The former serves to regularise the MIDAS coefficients,

whereas the latter achieves interpretability and communication of results via a sparsification

step on the posterior motivated by Bayesian decision theory.

In an application of the model to nowcasting UK GDP growth, our model is able to capture

sharp changes in GDP growth as seen during the Covid-19 pandemic in a relatively timely

manner, and works well also in more tranquil times, particularly at a later stage of the data

release cycle when “hard” economic indicators are released. The aggressive group-shrinkage

helps selecting the most relevant indicators and works particularly well when combined with

time-varying components. When accounting for a time-varying trend in GDP growth, the prior

achieves group-sparsity by selecting the most relevant indicators, but it also reads a wider

range of much smaller signals from all other indicators, in line with the “illusion of sparsity”

argument. Allowing for t-distributed errors proves particularly relevant once the Covid-19

pandemic is included. It helps the prior to shift between groups of indicators over time and

over the data release cycle, which can important in presence of a large heterogeneous shock.

The proposed model is flexible, combining features and nesting various models as special

cases. The derived inclusion probabilities make results more interpretable and easier to commu-

nicate over time and over the data release cycle. All this makes an attractive tool not only for

nowcasting GDP growth, but also for or a wider range of forecasting applications. The group-

shrinkage prior has potential to efficiently regularise information towards a group-sparse set of

signals for a range of other data sets where groupings might be present, such as across sectors

or countries. We leave the exploration of such alternative applications for future research.
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A Model Descriptions

A.1 Posteriors

Here we list the conditional posteriors derived using standard method from the literature (ref-

erenced where needed). These allow implimenting the Gibbs sampler in [reference to Gibbs

sampler]

Posterior for θ

Consider the likelihood in 7 and define the stacked prior for the MIDAS coefficients as p(θ|ϑ, γ2, φ2) =

N(0, ϑΓφ2), where Γ = diag(γ2
1 , · · · , γ2

1 , · · · , γ2
K , · · · , γ2

K) and

φ2 = diag(φ2
1,1, · · · , φ2

1,L−r, · · · , φ2
K,1, · · · , φ2

K,L−r). Denote the prior covariance and the covari-

ance of the target for simplicity as Λ∗ and Λλ,h = ΛλΛh respectively. Then, the posterior by

standard manipulations is:

θ|y, • ∼ N(θ,Λ
−1

∗ )

Λ∗ = (Z ′Λ−1
λ,hZ+Λ−1

∗ ), θ = Λ
−1

∗ (Z ′Λ−1
λ,hỹ),

(13)

Posteriors of Hyper-parameters

The derivations of the conditional posteriors for ϑ, γ2
k, φkj for k = 1, · · · , K and j = 1, · · · , L−r

immediately follow from the presentation in Boss et al. (2021). Following Boss et al. (2021),

we employ a mixture representation of the β′ prior via an inverse-gamma distributed auxiliary

variable νp. The conditional posteriors ϑ, γ2
k, φ

2
kj, νp are thus proportional to:

(ϑ|y, •) ∼ IG(

∑K
k=1(L− r) + 1

2
, θ′Λ−1

p θ/2 +
1

νp
) (14)

(γ−2
k |y, •) ∼ GIG(

L− r

2
− ak,

1

ϑ2

L−r∑
j=1

θ2kj
φ2
kj

) (15)

(φkj|y, •) ∼ IG(bk +
1

2
, 1 +

θ2kj
2ϑ2γ2

k

) (16)

(νp|y, •) ∼ IG(1,
1

ϑ
), (17)

where GIG refers to the generalised inverse Gaussian distribution (Hörmann and Leydold, 2014)

which we generate from using the efficient algorithm of (Devroye, 2014).
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Posterior of τ

To derive the joint posterior of τ , we make use of the methods proposed by Chan and Jeliazkov

(2009); McCausland et al. (2011) as they enable sampling of all states (τ1, · · · , τT ) simultane-

ously. Define y∗ = y − Zθ and Λg = diag(eg1 , · · · , egT ). Let H be the first difference matrix,

then:

τ |y, τ0, • ∼ N(τ̂ , K−1
τ ), (18)

where Kτ = H ′Λ−1
g H + Λ−1

h Λ
−1/2
λ , τ̂ = K−1

τ (HΛ−1
g Hτ01T + Λ−1

h Λ
−1/2
λ y∗).

And,

τ0|y, • ∼ N(τ̂0, K
−1
τ0

), (19)

Kτ0 =
1

b0,τ
+ 1

eg1
, τ̂0 = K−1

τ0
(a0,τ
b0,τ

+ τ1
eg1

).

Posteriors of h and g

To derive the posteriors of h, we use the commonly employed approximate discrete mixture

sampler of Kim et al. (1998). Since these manipulations are standard, we refer to Kim et al.

(1998) for the conditional posterior of the states.

Posterior of λ and ν

λt ∼ G−1(
ν + 1

2
,
1

2

(yt − τt − θ′Zt)
2

exp(ht)
) (20)

p(ν|•) ∝ p(λp(ν))

∝
T∏
t=1

(ν/2)
ν
2

Γ(ν/2)
λ
−( ν

2
+1)

t e
− ν

2λt

=
(ν/2)

T
2

Γ(ν/2)T
(

T∏
t=1

)−( ν
2
+1)e

ν
2

∑T
t=1 λ

−1
t .

(21)

To sample from this distribution, we make use of an independent Metrolpolis-Hastings within

Gibbs sampling step. The proposal distribution is defined as a normal with mean equal to

the mode of 21 and covariance equal to the negative Hessian evaluated at the mode. To find

the mode, we use the Newton-Raphson method. The Hessian is analytically available (Chan,

2017a).
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A.1.1 Further Insight into the GIGG Posterior

In order to highlight the effect of of different choices on ak and bk, we write the posterior of the

MIDAS coefficients in terms of its shrinkage coefficient representation:

θ = Λ∗((Z
′Λ−1

λ,hZ)−1 + Λ)θ̂k,j

θk,j ≈ (1− κk,j)θ̂k,j,∀j = 1, · · · , L− r
(22)

where ỹ = y−τ and θ̂k,j = (Zk,j
′Λ−1

λ,hZk,j)
−1)Zk,j

′Λ−1
λ,hỹ can be viewed as a conditional maximum

likelihood estimate for θk,j. We suppress the indication of monthly frequency (m) for conve-

nience here. Note that for this representation, we have assumed that the maximum likelihood

estimate for group k exists and that the L− r lags within Zk have been orthogonalised. Since

the group-size is likely to be much smaller than the sample size, and given that we will group-

orthogonalise the the data anyway (see section 2.4), these only represent very mild assumptions.

Under these assumptions, it is easy to verify that the shrinkage coefficient κk,j|• =
1

1+s̃2k,jϑ
2γ2

kφ
2
k,j

is bounded between 0 and 1 and thus dictates how far away the prior shrinks the coefficients

from the maximum likelihood solution. It is easy to see that ϑ2γ2
kφ

2
k,j → ∞, θk,j → θ̂k,j.

The distribution π(κk,j) which is implicitly defined via the priors on γ2
k and φ2

k,j determine

the a-priori shrinkage behaviour we can expect. By assuming γ2
kφ

2
k,j ∼ β′(ak, bk), the joint

distribution for κk can be factored as:

π(κk|•) =
Γ(ak + (L− r)bk)

Γ(ak)Γ(bk)k+1

pk∏
j=1

s̃bkk,j

(
1 +

pk∑
j=1

s̃k,j
κk,j

(1− κk,j)

)−(ak+(1+pk)bk)

×

( pk∏
j=1

κbk−1
k,j (1− κk,j)

−(bk+1)

)
,

(23)

where s̃k,j = sk,j
∑T

t=1
1
λt
e−ht and sk,j is the jth lag’s variance. This joint distribution factors

into a dependent part, influenced by ak, and an independent part, determined by bk.

A.2 Group-Selection Algorithm

This section gives further details on the derivation of group-variable selection algorithm in 8.

For convenience, we replicate the objective function here again:

L(Ỹ , α) =
1

2
||Zα− Ỹ ||22 +

K∑
k=1

ϕk||αk||2, (24)

For simplicity, assume that the predictions Ỹ can be decomposed as Ỹ = Zθ+ ϵ̃y, ϵ̃ ∼ N(0,Σ).

Intuitively, objective function 8 pushes those αk to zero which have little influence on the
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predictions of our model, Ỹ .

We take the expectation with respect to 1) the expected risk and 2) θ|y to account for all

sources of uncertainty of the modelB1:

L(Ỹ , α) = EỸ |•[Ỹ , α|•]

=
K∑
k=1

ϕk||αk||2 +
1

2
||Zα−Zθ||22 +

1

2
tr(Σ)

(25)

Then, taking the expectation with respect to θ|y:

L(θ, α) = Eθ|y[L(Ỹ , α)]

=
1

2
||Zα−Zθ||22 +

1

2
tr(Z ′ZΣθ) +

K∑
k=1

ϕk||αk||2,
(26)

where Σθ = cov(θ) and θ = E(θ). Dropping all constant terms, the objective function reduces

to:

L(θ, α) = 1

2
||Zα−Zθ||+

K∑
k=1

ϕk||αk||2. (27)

Notice, that we follow Chakraborty et al. (2020); Huber et al. (2021) by solving 26 on a Gibbs

iteration bases (instead over the average of the posterior). Traditional solution methods such

as the coordinate descent (Friedman et al., 2010) iteratively solve the sub-gradients L times for

each group k until convergence:

αl
k = (||r(l−1)

k ||22 − ϕk)+
r
(l−1)
k

||r(l−1)
k ||22

, l = 1, · · · , L, (28)

where rk is the partial residual based on the previous iteration, r(l) = Z ′
k(y − Z−kα

(l−1)
−k )

and −k refers to all but the kth group. Orthonormalising Zk via its SVD decomposition (which

can conveniently be adapted as in (Breheny and Huang, 2015) when L−r >> T ), and stopping

the coordinate descent after one iteration as per Ray and Bhattacharya (2018); Chakraborty

et al. (2020) such that ||rk|| = ||θk||22 results immediately in 9.

B1 Since α is independent of Σ, the integration of posterior uncertainty of Σ results in a constant and thus
does not further influence the optimisation problem
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B Additional results

B.1 Data

Table B1: Macroeconomic indicators

Name Acronym Frequency Transformation Source

CBI: Volume of exp. Trades CBI-ES m 0 FAME
CBI: Volume of rep. Sales CBI-S m 0 FAME
CBI: Volume of exp. Output CBI-EO m 0 FAME
PMI: Manufacturing PMI-M m 0 FAME
PMI: Services PMI-S m 0 FAME
PMI: Construction PMI-C m 0 FAME
GfK Cons. Confidence GfK m 0 FAME
Index of Production IoP m 3 FAME
Index of Services IoS m 3 FAME
Exports Exp m 3 FAME
Imports Imp m 3 FAME
Unemployment Rate UR m 0 FAME
Employment Emp m 3 FAME
Job Vacancies Vacancies m 3 FAME
Hours Worked Hours m 3 FAME
Mortgage Approvals Mortgage m 3 FAME
VISA consumer spending VISA m 3 FAME
Real quarterly GDP growth (qoq) GDP q 3 FAME

Notes: The table shows the data used for the empirical application along with respective sampling frequencies (m = monthly, q
= quarterly), tranformation applied (0 = no transformation, 1 = logs , 2 = first difference, 3 = growth rates) and data source.
All data are downloaded from the UK data provider FAME. Please see the FAME website for further details on the data.
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B.2 In-Sample Description

Posterior of 
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Figure B1: Posterior Degrees of Freedom of the t-distribution, based on the entire in-sample
and last nowcast period.

Figure B1 has large mass over small posterior degrees of freedom for the t-distribution assumed

for the errors of the observation equation of model [reference of equation 1]. The smaller the de-

grees of freedom, the more leptokurtic the tails of the observation equation’s error distribution.

Figure B1 shows strong identification of fat-tails.
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B.3 Alternative hyperparameters on GIGG prior
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Figure B2: RSMFE and CRPS pre-pandemic and including pandemic for the Trend-SV-t-GIGG
model with different hyper-parameter combinations. 1/T is adjusted to the in-sample length
at each quarter the nowcasts are conducted. The GIGG prior implemented in the empirical
application has ak = 1/T, bk = 0.5.
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B.4 Trend-Cycle Decomposition and prior choice
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Figure B3: Posterior trend and cycle estimates, with high prior state variances.
Notes: State prior variances set to 1, prior on MIDAS coefficiens as in baseline. Posterior means of
trend up until 2019Q4 from the T-SV-t BMIDAS model (black), the T-SV (blue), and T-Const.Var (purple).
Estimation at the 1st and 18th nowcast periods. Black dashed line: realisation of UK GDP growth. Shaded
areas represent 95% credible intervals.
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Figure B4: Posterior trend and cycle estimates, with low prior state variances.
Notes: State prior variances at 0.0001. MIDAS coeff. prior as in baseline. See notes Figure B3.
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Figure B5: Posterior trend estimates using the horseshoe prior on MIDAS coefficients.
Notes: State prior variances as in baseline. Also see notes of Figure B3.
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B.5 Alternatives to multivariate BMIDAS

Figure B6 illustrates the role of the BMIDAS component for nowcast performance against al-

ternative ways of exploiting the information from high-frequency macroeconomic indicators,

by comparing the T-SV-t BMIDAS with the following specifications (all models with a time-

varying trend and stochastic volatility with t-distributed errors, with priors as in 2.2.2):

• U-BMIDAS : as baseline, but without Almon lag polynomial restrictions.
• Combined univariate MIDAS : MIDAS regressions for each of the K indicators, with a

Normal prior, combined according to discounted RMSFE and CRPS (Stock and Watson,

2004), discount factor δ = 0.95 (Carriero et al., 2019).
• MF-DFM : A mixed-frequency dynamic factor model that summarises co-movement across

the K macroeconomic indicators contemporaneously and at up to two lags via a dynamic

factor, akin to Antolin-Diaz et al. (2021).
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Figure B6: Nowcast performance against alternatives to BMIDAS specifications.
Notes: Absolute RMSFE and CRPS over nowcast periods (days before GDP release) for baseline BMI-
DAS (black solid, circle marker), U-BMIDAS (dashed black), Combined univariate MIDAS (purple, square),
MF-DFM (blue, plus). Right y-axis: AR(2) (yellow). All with time-varying trend, SV, t-distributed errors.

Prior to the pandemic, point nowcast performance is quite similar across models. For den-

sity forecasts, the alternative DFM and combined univariate MIDAS outperform the BMIDAS

specifications during the first half of the data release cycle somewhat. This is reflected in some-

what larger and more volatile uncertainty bands arounnd the nowcasts of the BMIDAS model,

as depicted in Figure B7. At the same time, the point and density nowcast performance of the

BMIDAS model is continuously improving as new data get released. It matches or outperforms
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the alternatives, but only once the “hard” economic data for the second month of the reference

quarter are released, 35 days prior to GDP. The U-BMIDAS does not show the same extent of

improvement, such that regularising the coefficients via Almon lag coefficients, in addition to

the Bayesian shrinkage, appears to help exploiting incoming information. When including the

pandemic into the evaluation period, both BMIDAS models clearly outperform the DFM and

the combined univariate MIDAS. This reflects that these models capture the recovery after the

pandemic early on, whereas alternative models almost entirely miss it. At nowcast period 13,

65 days prior to GDP release when “hard” economic data for the first month of the reference

quarter are released, both BIDAS models, but in particular the proposed Almon polynomial

restricted model strongly improve in point and density nowcast performance. At this stage,

these models also update their nowcast on the trough, capturing it almost fully. The DFM’s

performance even slightly worsens at this stage, while the combined univariate MIDAS improves

only gradually and slightly as new information comes in.
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Figure B7: Posterior mean and density nowcasts, for alternative MIDAS specifications.
Notes: Posterior mean of nowcasts for 2011Q1 to 2019Q4, 1st and 13th nowcast periods, and over the
pandemic quarters (lower panel). Models are the same as in Figure B6. Shaded areas show 95% credible
intervals. Black dashed lines show quarterly GDP growth realisations.

44



B.6 U-BMIDAS vs BMIDAS with Almon lag restrictions
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Figure B8: Nowcast performance against alternative priors on U-MIDAS regressions.
Notes: RMSFE and CRPS for baseline BMIDAS (yellow), and U-MIDAS with alternative priors. All
models with time-varying trend and stochastic volatility with t-distributed errors.
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B.7 Inclusion Probabilities

Table B2: Posterior Inclusion Probabilities

Evaluation pre-pandemic Evaluation incl. pandemic period
Nowcast Periods Average 6 13 18 Average 6 13 18

GIGG prior
PMI-M 0.32 0.28 0.21 0.19 0.32 0.46 0.15 0.13

(0.20) (0.20) (0.17) (0.15) (0.19) (0.24) (0.12) (0.12)
PMI-S 0.25 0.30 0.22 0.19 0.53 0.65 0.19 0.61

(0.19) (0.21) (0.16) (0.15) (0.18) (0.20) (0.16) (0.24)
IoP 0.10 0.06 0.10 0.27 0.36 0.32 0.29 0.62

(0.09) (0.06) (0.09) (0.19) (0.21) (0.20) (0.20) (0.22)
IoS 0.44 0.24 0.81 0.93 0.73 0.48 0.97 0.99

(0.13) (0.18) (0.15) (0.06) (0.12) (0.25) (0.03) (0.01)
UE 0.28 0.31 0.24 0.12 0.29 0.36 0.18 0.14

(0.19) (0.21) (0.19) (0.11) (0.20) (0.24) (0.15) (0.12)
Vacancies 0.14 0.12 0.13 0.12 0.30 0.29 0.18 0.27

(0.11) (0.10) (0.11) (0.10) (0.20) (0.20) (0.15) (0.19)
Mortgage 0.09 0.10 0.08 0.05 0.42 0.51 0.35 0.28

(0.08) (0.09) (0.07) (0.05) (0.19) (0.19) (0.19) (0.18)
HS prior
PMI-M 0.49 0.41 0.55 0.72 0.64 0.74 0.48 0.75

(0.21) (0.24) (0.24) (0.20) (0.19) (0.16) (0.25) (0.16)
PMI-S 0.22 0.16 0.02 0.33 0.45 0.64 0.02 0.54

(0.15) (0.15) (0.02) (0.22) (0.15) (0.17) (0.02) (0.22)
IoP 0.09 0.21 0.02 0.05 0.32 0.53 0.07 0.29

(0.07) (0.17) (0.02) (0.05) (0.17) (0.23) (0.06) (0.20)
IoS 0.10 0.01 0.26 0.04 0.47 0.05 0.83 0.80

(0.07) (0.01) (0.18) (0.04) (0.09) (0.05) (0.04) (0.05)
UE 0.03 0.00 0.02 0.03 0.03 0.00 0.02 0.06

(0.03) (0.00) (0.02) (0.04) (0.03) (0.00) (0.01) (0.05)
Vacancies 0.15 0.04 0.29 0.27 0.30 0.15 0.29 0.60

(0.11) (0.04) (0.20) (0.19) (0.13) (0.13) (0.20) (0.19)
Mortgage 0.21 0.11 0.32 0.32 0.51 0.54 0.60 0.77

(0.14) (0.10) (0.22) (0.22) (0.15) (0.21) (0.20) (0.13)
SSVS prior
PMI-M 0.32 0.04 0.32 0.91 0.28 0.05 0.19 0.87

(0.08) (0.03) (0.21) (0.08) (0.07) (0.02) (0.15) (0.11)
PMI-S 0.14 0.03 0.00 0.46 0.23 0.48 0.00 0.49

(0.14) (0.07) (0.02) (0.00) (0.25) (0.09) (0.07) (0.00)
IoP 0.01 0.00 0.00 0.01 0.02 0.03 0.00 0.05

(0.01) (0.01) (0.00) (0.02) (0.02) (0.02) (0.00) (0.04)
IoS 0.01 0.01 0.02 0.00 0.42 0.02 0.82 0.70

(0.01) (0.01) (0.03) (0.00) (0.06) (0.08) (0.01) (0.08)
UE 0.07 0.04 0.00 0.00 0.02 0.05 0.00 0.00

(0.02) (0.05) (0.00) (0.00) (0.01) (0.06) (0.01) (0.00)
Vacancies 0.08 0.01 0.02 0.31 0.11 0.03 0.01 0.41

(0.06) (0.02) (0.02) (0.21) (0.07) (0.03) (0.01) (0.23)
Mortgages 0.18 0.00 0.14 0.60 0.35 0.28 0.34 0.86

(0.09) (0.00) (0.12) (0.24) (0.11) (0.16) (0.20) (0.12)

Notes: Mean posterior inclusion probability. Standard deviation estimates are in parentheses. All models
with time-varying trend, stochastic volatility, and t-distributed errors.
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