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1 Introduction

The identification and estimation of production functions are fundamental problems in
economics, as they are essential for studying productivity, returns to scale, elasticities
of substitution, and markups. Production functions describe how firms produce physical
goods from inputs, but the empirical estimation of these functions often relies on sales
revenue (output times prices) as a proxy for quantity because revenue is typically observed
while quantity is not.

In this paper, I demonstrate that under the standard assumptions in the literature,
the production function and Hicks-neutral productivity cannot be identified from such a
“revenue production function” when there is imperfect competition. This result applies
to a general class of “weakly separable” production functions, including all commonly
used parametric forms such as the Cobb-Douglas and CES production functions. Impor-
tantly, I show that the Markov assumption, which has traditionally been used to identify
production functions, does not provide identification for revenue production functions.
The assumptions involved only require cost minimization, not profit maximization, so
the result holds for a wide range of market structures. The implications of this result
are significant, as it means that none of the objects of interest mentioned above can be
identified from a revenue production function.

The basic idea behind the non-identification result is illustrated in Figure 1. The
unobserved output price can be decomposed as the product of marginal cost and the
markup. Both unobserved quantities are functions of the production and cost function,
which are equivalent by duality (Shephard, 1970). In particular, the fixed inputs to the
production affect these quantities through their effect on the level of production, while the
variable inputs affect them through their marginal effect on production. As a result, the
fixed part of the production function affects output (the level of production) and prices
in the same way, and there is no identifying variation in a firm’s revenue that allows one
to back out the fixed inputs’ effect on output.

The issue of unobserved output prices has long been recognized in the production func-
tion literature. Early papers such as Abbott (1992); Basu and Fernald (1997) and Klette
and Griliches (1996) demonstrated that value-added and revenue production functions
contain an additional term related to marginal cost or the markup. More recent pa-
pers that use datasets where output prices are observed have empirically confirmed these
findings by documenting biases in estimates based on revenue production functions, com-
pared to quantity production functions (De Loecker, Goldberg, Khandelwal, and Pavcnik,
2016; De Ridder, Grassi, and Morzenti, 2022; Mairesse and Jaumandreu, 2005; Ornaghi,
2008).2 Other papers have used ad-hoc approaches to address this bias without formally
analyzing or quantifying it (Collard-Wexler and De Loecker, 2015; Smeets and Warzyn-
ski, 2013; Atalay, 2014; Allcott, Collard-Wexler, and O’Connell, 2016).3 This article
aims to advance our understanding of this issue by formally analyzing how the revenue
proxy leads to non-identification of not only the production function but also productiv-
ity. Based on these derivations, I can make precise statements about which approaches
are effective in overcoming this non-identification. Bond, Hashemi, Kaplan, and Zoch
(2020) also consider the issue of identification, but they focus on the non-identification
of the markup in a monopolistic competition setting. In contrast, this article establishes

2De Loecker and Goldberg (2014) provide a summary of this literature and informally discuss the
potential issues at play.

3See De Loecker (2021) for further references.
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Figure 1: Illustration of Non-Identification Mechanism

the non-identification of the entire production function and productivity under general
conditions.

As mentioned, a number of papers have attempted to address or relax the issue of
unobserved output prices. These approaches can be divided into three main groups: 1)
using industry deflators, 2) controlling for the gap between input and output prices using
observables (De Loecker, Eeckhout, and Unger, 2020), and 3) imposing assumptions on
the underlying demand system to obtain an expression for the output price in terms of
observables (De Loecker, 2011; Levinsohn and Melitz, 2002; De Loecker et al., 2016).
My results suggest that, in the presence of cross-sectional output price variation (which
excludes perfect competition), only the third approach – imposing assumptions on the
underlying demand system – can overcome non-identification. However, part of the appeal
of production functions is that the same specification can be estimated across various
industries, which may not be desirable with demand systems that ideally need to be
tailored to specific industries.

This paper is relevant to several areas of literature. First, the literature on production
function estimation and identification (Olley and Pakes, 1996; Blundell and Bond, 2000;
Ackerberg, Caves, and Frazer, 2015; Levinsohn and Petrin, 2003; Demirer, 2020; Gandhi,
Navarro, and Rivers, 2020). While these methods may be appropriate when physical
output is observed or when perfect competition is assumed (resulting in homogeneous
prices), my results imply that none of these methods can correctly identify the production
function when only revenue is observed and there is imperfect competition.4

4In particular, Gandhi et al. (2020) establish the non-parametric identification of the production
function under a model of price-taking, profit-maximizing firms.
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Second, several strands of literature in industrial organization (De Loecker and Syver-
son, 2021), trade (Keller and Yeaple, 2009; Amiti and Konings, 2007; Bloom, Draca, and
Van Reenen, 2016; Brandt, Van Biesebroeck, Wang, and Zhang, 2017), and interna-
tional economics (Halpern, Koren, and Szeidl, 2015) have aimed to estimate productivity
(Syverson, 2011), returns to scale, and more recently, markups (De Loecker and Warzyn-
ski, 2012; De Loecker et al., 2020; Demirer, 2020), using production functions. Whenever
these studies use revenue to proxy for output to estimate these objects of interest without
making further restrictions on demand or competition, my results imply that they were
not identified.

Third, several other papers have focused on further developing production function
estimation methods when output is observed, which raises issues related to multi-product
production (De Loecker, 2011; De Loecker et al., 2016; Dhyne, Petrin, Smeets, and
Warzynski, 2020; Orr, 2022; De Loecker and Goldberg, 2014).5 My results emphasize
the importance of further developing these methods and the product-level production
data they use.

Fourth, a strand of the macroeconomic literature, building on Hall (1990), has also
dealt with the issue of unobserved output prices. Since the approaches in this literature
impose strong assumptions on the production function, they can typically identify the
production function (Basu and Fernald, 1997). Indeed, Lemmas 4 and 5 further below
directly imply that under a constant returns to scale assumption combined with an as-
sumption that the production function is of the Cobb-Douglas or Constant Elasticity of
Substitution (CES) form, the production function can actually be fully identified. This
combination of assumptions is prevalent in the macroeconomic production function lit-
erature but is rather restrictive in the context of the microeconomic literature, where
estimating returns to scale is often one of the explicit goals. However, my results imply
that, in the absence of such strong assumptions, the way this literature has tried to ad-
dress the problem (using the growth rate of value added) does not lead to identification.6

Notation. I refer to vectors in bold font, unknown variables in Greek letters, and ob-
served ones in Latin letters. Levels of observed variables are written in capitals, while
natural logarithms are written in lowercase.

2 Setting

I consider a general class of non-parametric production functions introduced by Shephard
(1953). The production function inputs are separated into dynamic inputs Xit and freely
variable inputs Vit. The vectors of associated input prices are denoted as PX

it and PV
it .

Hicks-neutral (total-factor) productivity is denoted as ωit, and the unobserved error term
capturing ex-post output shocks and/or measurement error in output is denoted as εit.
The information set of firm i at time t, Fit, includes ωit and is assumed to be mean
independent of ex-post output shocks. The ex-ante expected output shocks are denoted
as Eit := E[exp(εit)|Fit]. The production technology is denoted as Qt(Xit,Vit), the

5While I focus on the hitherto prevalent single-product case, my results generalize to multi-product
settings where production is non-joint.

6In that case, one can also not identify the “revenue productivity” term studied in another strand of
the macroeconomics literature (Foster, Haltiwanger, and Syverson, 2008; Hsieh and Klenow, 2009).
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planned (ex-ante) output as Q∗it = Qt(·) exp(ωit), and the observed (ex-post) output as
Q∗it := Qt(·) exp(ωit) exp(εit).

In the literature on production functions there are some fundamental assumptions that
are typically used to identify the production function. I will impose these assumptions
and show that when only revenue is observed, the production functions is not identifiable.
The assumptions are the following,

Assumption 1 (Properties of the Production and Cost Functions). The production pos-
sibilities set satisfies the standard properties in Assumption 6 in Appendix such that the
production function exists. Moreover, the production function satisfies,

(i) If h(Xit,Vit) > h(X′it,V
′
it) then F (Xit, h (Xit,Vit)) > F (Xit, h (X′it,V

′
it)) (strict

monotonicity in variable inputs).

(ii) The production function F (Xit, h (Xit,Vit)) is continuous and differentiable in vari-
able inputs Vit (duality).

(iii) The cost function C
(
Q∗it,Xit,P

V
it , ωit

)
is continuous and differentiable in planned

output Q∗it (existence of the marginal cost function).

Assumption 1 compiles standard existence and regularity assumptions. (i) slightly
strengthens the weak monotonicity necessary for the existence of the production function,
but is still weaker than strict monotonicity in all inputs, which is a standard assumption
(Chambers, 1988, p.9). The assumption guarantees that the inverse of F (·), given Xit,
exists. Assumptions 1 (ii) and (iii) are standard differentiability assumptions (Chambers,
1988; McFadden, 1978). The continuity in (ii), combined with the assumptions on the
production possibilities set, implies duality between the variable cost function and the
production function (Diewert, 2022, Thm. 2). Part (iii) implies that the marginal cost
function, ∂C(·)

∂Q∗
it

exists.
Then, I assume the following,

Assumption 2 (Weak homothetic separability).

(i) The production function of firm i at time t is of the form

Qit = Ft (Xit, ht (Xit,Vit)) exp(ωit) exp(εit), (2.1)

(ii) with ht (Xit, ·) homogeneous of arbitrary degree (homothetic) for all Xit.

Assumption 3 (Cost minimization). The firm minimizes its short-term cost of produc-
tion with respect to its freely variable non-separable inputs Vit, given variable input prices
PV
it and the productivity shocks ωit.

Assumption 2 was introduced by Shephard (1953) and has recently been used by
Demirer (2020) in the context of non-parametric identification of quantity production
functions. While it is not a standard assumption, it encompasses a large class of produc-
tion functions, including all commonly used parametric ones.7 In particular, Assumption
2 (i) formulates a non-parametric production function and does not restrict the produc-
tion function in the absence of further restrictions on h(·).8 Assumption 2 (ii) implies that

7See Demirer (2020) for parametric examples.
8The only purpose of the exponential functions is to facilitate taking logs later on, and to align with

the notation in the literature.
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ratio of the non-separable inputs’ marginal product depends only on the inputs through
their ratio. This assumption only restricts my model insofar as Assumption 3 requires
that the inputs with respect to which the firm minimizes its short-term cost are homo-
thetic in h(·).9 This does not mean that the entire production function has to satisfy
homotheticity. Moreover, if only one input enters the firm’s short-term cost, then (ii)
can always be satisfied by rewriting the production function appropriately. For exam-
ple, consider a standard three-input setup, with capital Kit, labor Lit, and material (or
intermediate) inputs Mit. If labor Lit is subject to some adjustment cost and therefore
dynamically chosen, we have Vit = Mit, and homotheticity of h(·) can always be satisfied
by defining h(·) as the identity function. When both labor and material inputs are freely
variable, however, the restriction on h(·) becomes meaningful.

Assumption 3 is a commonly used assumption in the literature and allows for most
forms of imperfect competition. It is therefore much weaker than the common assumption
of perfect competition. Though the latter assumption implies that the unobserved prices
are common across firms and can hence be absorbed by industry price deflators, it is very
strong and rarely realistic in practice.

The following two assumptions are ubiquitous in the literature and have been instru-
mental to establishing identification of quantity production functions. Even though they
are rather strong and as such should aid identification, I will show that they still fail to
identify the production function in the context of revenue production functions.

Assumption 4 (Scalar Unobservable). Demand for (one of) the firm’s inputs vit is given
by,

vit = st(xit, ωit).

This is simply a general way to write the scalar unobservable assumption used in most
of the production function literature. Olley and Pakes (1996) first used this assumption
for investment, not input demand. Levinsohn and Melitz (2002) later proposed an alter-
native version for labor demand, and Ackerberg et al. (2015) for material inputs. The
assumption plays a crucial role in the identification arguments of these papers, by allow-
ing one to substitute out for unobserved ωit in the production function, predict target
output Q∗it, and form moments on the ex-post shock to productivity by leveraging the
following assumption,

Assumption 5 (Markov). Hicks-neutral productivity follows a first-order Markov pro-
cess,

P(ωit | Fit−1) = P(ωit | ωit−1). (2.2)

Together with the mean independence of ex-post output shocks, this assumption im-
plies that one can write firms’ Hicks-neutral productivity process as ωit = g(ωit−1) + ξit,
where E[ξit|Fit−1] = 0.

9Also, note that these restrictions allow for any additional type of functional dependence between
the separable inputs XS

it.
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3 Non-Identification of Revenue Production Functions

3.1 Main Result

We are now equipped to prove the main result.10 First, we prove an auxiliary Lemma,
which establishes a variant of the intuitive fact that both component functions F (·), h(·)
of the production function need to be identified for the production function to be. Denote
a firm’s target revenue R∗it := Pit ·Q∗it where Pit indicates firm-level output prices. Also,
write S∗Vit :=

PVit Vit
R∗
it

to indicate the revenue share of the input Vit ∈ Vit. Then we have,

Lemma 1. Let h : W → Y1, F : X × Y1 → Z,Q∗ : (w, y2) ∈ W × Y2 → F (y2, h(w)), with
W := (X, V ) for some F ∈ F , h ∈ H, Q∗ ∈ Q where F ,H,Q are spaces of composite
and composing functions for which Assumptions 1 and 2 are satisfied. Then, for a given
h ∈ H and a corresponding q ∈ Q, f ∈ F such that q = f(x, h(w)) for all w ∈ W,x ∈ X;
if h is given but f not, then q can in general not be uniquely determined.

Proof. Suppose not. Then for any h̃ ∈ H, ∃f̃ ∈ F such that, ∀Q∗ ∈ Q, Q∗ = f̃(y2, h̃(x)),
∀w ∈ W,x ∈ X. Since F is defined as the set of component functions which, composed
with some function in H, give a function in Q, this means that F must be a singleton set
of functions {f̃}. In general, it is clear that the set of functions F that satisfy Assumption
2 and Proposition 1 is not a singleton.

For example, consider any two functions F1, F2, where Qi(y2, w) = Fi(y2, h(v)) =
αi · y2 + h(v), i = 1, 2, α1 6= α2, α1, α2 > 0, and where h(·) is differentiable and satisfies
homothetic separability. Then these functions satisfy Proposition 1: (i) take y′2 > y2, w,
then we have Qi(y

′
2, w) − Qi(y2, w) = αi(y

′
2 − y2) > 0; (ii) h(v) is normalized to be

homogeneous of degree one and hence concave and αi · y2 is concave, hence Fi is concave
and thus quasi-concave; (iii) is satisfied by the fact that Fi is the sum of a linear function
and a homogeneous function; (iv) is satisfied as for any v ∈ V , we can always find a y2
such that Qi = y and the set is closed, and a y′2 large enough such that the set is non-
empty. They also satisfy Assumption 1: (i) by homotheticity of h(·); (ii) by assumption;
and (iii) can easily be shown by deriving the cost function from cost minimization. But,
for a given h(v), the set of functions Fi of this form is infinitely large. Contradiction.

�

This Lemma allows us to prove the main result,

Theorem 1 (Non-Identification of the Production Function). Let Assumptions 1, 2, 3, 4,
and 5 hold. Furthermore, assume that production inputs (Xit,Vit), input prices PX

it ,P
V
it ,

and revenue Rit are observed, but output prices Pit and quantities Qit are not. Then the
revenue production function can be written in terms of observables as,

Rit = G(Xit,Vit,P
V
it ,S

∗V
it )E−1it exp(εit), (3.1)

and identification of G(·) is insufficient for identification of the production function.

Proof. The cost function for the class of production functions satisfying weak homothetic
separability can be obtained from the general cost minimization problem, where the firm
minimizes short-run costs given its level of planned output Q∗it

10I will drop the time subscripts on all functions from here on to ease notation, though they are
allowed to be time-varying in general. In practice, one often estimates separate functions for rolling time
windows.
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min
Vit

PV
it ·Vit

s.t. E[F (Xit, h (Xit,Vit)) exp(ωit) exp(εit)|Fit] > Q∗it,
(3.2)

Since Fit includes inputs and productivity shocks, we can rewrite the constraint as,

F (Xit, h (Xit,Vit)) exp(ωit) > Q̃∗it, (3.3)

with Q̃∗it :=
Q∗
it

Eit
:=

Q∗
it

E[exp(εit)|Fit] . Then, we can write the general cost function as (Cham-
bers, 1988; Demirer, 2020),

C
(
Q̃∗it,Xit,PV

it , ωit

)
= min

Vit

{
PV
it ·Vit : Q̃∗it 6 F (Xit, h (Xit,Vit)) exp(ωit)

}
= min

Vit

{
PV
it ·Vit : F−1

(
Xit,

Q̃∗it
exp(ωit)

)
6 h (Xit,Vit)

}

= min
Vit

PV
it ·Vit : 1 6 h

Xit,
Vit

F−1
(
Xit,

Q̃∗
it

exp(ωit)

)


= min
Vit

{
F−1

(
Xit,

Q̃∗it
exp(ωit)

)
(PV

it ·Vit) : 1 6 h (Xit,Vit)

}

= F−1

(
Xit,

Q̃∗it
exp(ωit)

)
min
Vit

{
PV
it ·Vit : 1 6 h (Xit,Vit)

}
:= F−1

(
Xit,

Q̃∗it
exp(ωit)

)
C2

(
Xit,P

V
it

)
(3.4)

where line 2 follows from Assumption 1 (strict monotonicity), line 3 and 4 follow from the
assumption that h(·) is homothetic (since we can always redefine F (·) and h(·) to make
h(·) homogeneous of degree one), and the last line defines a new function C2(·).11 To
obtain the marginal cost, take the derivative of C(·) in Eq. (3.4) with respect to target
output, which exists by Assumption 1,

λit =
∂C
(
Q̃∗it,Xit,PV

it , ωit

)
∂Q∗it

=
∂F−1

∂x2

(
Xit,

Q̃∗it
exp(ωit)

)
(exp(ωit)Eit)−1C2

(
Xit,P

V
it

)
=
∂F−1

∂x2
(Xit, F (Xit, h (Xit,Vit))) (exp(ωit)Eit)−1C2

(
Xit,P

V
it

)
=

C2

(
Xit,P

V
it

)
∂F
∂x2

(Xit, h (Xit,Vit)) exp(ωit)Eit
(3.5)

where ∂F (·)
∂xi

denotes the derivative of F (·) with respect to its ith argument, line 3 imposes
that the constraint of the cost minimization problem is binding at the optimum such that

11The subscript is chosen to be consistent with notation in Demirer (2020, Thm. 2.1).
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Q∗it = F (·)exp(ωit) and line 4 uses the inverse function theorem for the R → R function
obtained when Xit is held fixed, for all values of Xit.

Finally, rewrite the output elasticity with respect to any of the (log) variable inputs
vit ∈ vit,

∂f (Xit, h (Xit,Vit))

∂vit
=
∂F (Xit, h (Xit,Vit))

∂x2

1

F (Xit, h (Xit,Vit))

∂h (Xit,Vit)

∂vit
, (3.6)

where f(·) indicates the log production function.
Under imperfect competition, price equals markup, denoted as µit, times marginal

cost. Eq. (3.5) gives an expression for marginal cost. The markup can be written as
the ratio of variable output elasticity to revenue share: µit = ∂f(Xit,h(Xit,Vit))

∂vit
(S∗Vit )−1

(De Loecker and Warzynski, 2012; Klette, 1999). We can plug this into the RHS of the
production function in Eq. (2.1) and multiply the LHS by Pit to get,

Rit = F (Xit, h (Xit,Vit)) exp(ωit)λit
∂f (Xit, h (Xit,Vit))

∂vit
(S∗Vit )−1 exp(εit)

=
F (Xit, h (Xit,Vit)) exp(ωit)C2

(
Xit,P

V
it

) ∂F (Xit,h(Xit,Vit))
∂x2

∂h(Xit,Vit)
∂vit

∂F (Xit,h(Xit,Vit))
∂x2

exp(ωit)EitS∗Vit F (Xit, h (Xit,Vit))
exp(εit)

= C2

(
Xit,P

V
it

) ∂h (Xit,Vit)

∂vit
(S∗Vit Eit)−1 exp(εit) (3.7)

which gives M equations for Rit, one for each flexible input V .
Thus, we obtain an expression for the revenue production function in terms of observ-

ables. To establish that the production function Q(·) cannot be identified from this equa-
tion, assume without loss of generality that ∂h(·)

∂vit
and C2(·) can be identified from the last

line of Eq. (3.7).12 Then h(·) is identified up to a constant. Now, since h(·) is a component
of the composite function Q(·), it is intuitive that identification of h(·) alone is not suffi-
cient for identification of Q(·). For the sake of completeness, this was proved in Lemma
1. Moreover, since the cost function was shown to equal F−1

(
Xit,

Q̃∗
it

exp(ωit)

)
·C2

(
Xit,P

V
it

)
in Eq. (3.4), the proof of Lemma 1 also immediately implies that identification of C2(·) is
not sufficient for identification of the cost function.13 But by Shephard’s Duality Theorem
(Diewert, 2022, Thm. 2), the cost function is dual to the production function.14 As a
result, identification of C2(·) is also not sufficient for identification of Q(·). Furthermore,
it is clear that no composition of C2(·) and h(·) can identify Q(·) either, since obtaining
Q(·) from a composition of either function requires that the composing functions equal
either F (·) or F−1(·), which by the preceding arguments clearly do not coincide with
C2(·) or h(·), respectively.

Finally, note that combining the M versions of Eq. (3.7) gives,

Rit = C2

(
Xit,P

V
it

)( 1

M

∑
V ∈V

∂h (Xit,Vit)

∂ log Vit
(S∗Vit )−1

)
E−1it · exp(εit)

12This is without loss of generality as this is the best-case identification of the functions involved.
13This follows because it is shown in Lemma 1 that the class of functions F , F that satisfy the stated

assumptions is not a singleton set, and hence the class of inverse functions F−1 is neither.
14That is, the cost function is necessary and sufficient for the production function, under the main-

tained assumption of cost minimization and firms being input price-takers. This can also be seen imme-
diately from Eq. (3.4)
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:= G(Xit,Vit,P
V
it ,S

∗V
it ) · E−1it · exp(εit). (3.8)

By the preceding arguments about C1(·), h(·), clearly, identification of G(·) is in general
also not sufficient to identify Q(·). Moreover, G(·) takes all observable production-side
input variables (prices, inputs, and revenue shares) as its arguments. Hence, there is no
alternative way of rewriting G(·) as some function H(Xit,Vit,P

V
it ,S

∗V
it ) using production-

side model equations such that identification of H(·) would be sufficient for identification
of Q(·), as any such H(·) would have to be a composite function of G(·).

Finally, we need to argue that Assumption 5 cannot deliver identification of Q(·)
either. This is intuitive, since the Markov assumption was introduced in the literature to
handle the unobserved productivity term ωit in the quantity production function – but
this term drops out in the revenue production function. Indeed, the way the preceding
literature has used this assumption for identification is by rewriting ωit as a function of
model parameters and “observables”,

ωit = q∗it−1 − q(Xit−1,Vit−1) (3.9)

where (log) target output q∗it = q(Xit,Vit) +ωit would be identified (and thus “observed”)
by substituting out ωit in the (quantity) production function using the scalar unobservable
Assumption 4 and projecting out the ex-post output shock,

qit = q∗(Xit,Vit) + εit. (3.10)

Then, identification would obtain from forming moments on the ex-post shock to ωit, ξit
(Ackerberg et al., 2015; Gandhi et al., 2020),

E
[
ξit|Fit−1

]
= E

[
(q∗it − q(Xit,Vit))− g

(
q∗it−1 − q(Xit−1,Vit−1)

)
|Fit−1

]
= 0 (3.11)

Since a firm’s output, Qit is, however, not observed, the target output function Q∗(·)
cannot be identified through the usual conditional moment condition for Eq. (3.10),
E[εit|Fit−1] = 0. Even if one could identify target revenue

R∗it = Pit ·Q∗it = G(Xit,Vit,P
V
it ,S

∗V
it ) · E−1it

from the revenue production function,15 one could still not identify Q∗it from this as Pit is,
of course, unobserved by assumption. Moreover, since we have shown that Q(·) cannot
be identified from the revenue production function, and since Q∗it = Q(·) exp(ωit), we
conclude that Q∗it cannot be identified from the revenue production function. Hence, Eq.
(3.11) depends on an unobservable, q∗it, and cannot deliver identification of q(·) either. �

We immediately obtain the following three corollaries.

Corollary 1 (Non-Identification From Markov). The Markov assumption 5 does not lead
to identification of the production function when output quantities are unobserved.

This corollary is embedded in the main theorem, but is worth emphasizing as the
Markov assumption has been the main identifying assumption in the production function
literature thus far.

15This could, for example, be done by imposing a full independence assumption to make E[Eit|Fit] a
constant as in Gandhi et al. (2020, p.2979).
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Corollary 2 (Non-Identification From First-Order Conditions). The cost minimization
first-order conditions can be rewritten in terms of observables as,

P V
it = C2

(
Xit,P

V
it

) ∂h(Xit,Vit)

∂Vit
· E−1it ∀ V ∈ V, (3.12)

and hence contain no additional information relative to the revenue production function.

Proof. Impose equality on the constraint in Eq. (3.2) by the strict monotonicity assump-
tion of the production function with respect to Vit, take the first derivative, and plug in
the expression for λit from Eq. (3.5). This gives Eq. (3.12), which is equivalent to the
revenue production function. �

Thus, the first-order conditions depend on the same functions as the revenue produc-
tion function does. As a result, neither can they be used to identify F (·). This is, of
course, not surprising as we used these first-order conditions to derive the result in The-
orem 1. Yet, it is also worth emphasizing, given that many papers have used first-order
conditions for the estimation of production functions (Gandhi et al., 2020, VI.B).

Corollary 3 (Non-Identification of Productivity). Hicks-neutral productivity cannot be
identified from a revenue production function.

Again, this corollary follows directly from the main theorem, but is worth emphasizing
given the fact that production function estimation has been widely used for the estimation
of productivity (De Loecker and Syverson, 2021). The intuition behind this corollary is
that marginal cost – and, hence, output price – depends inversely and one-to-one on
Hicks-neutral productivity, since the latter linearly scales the production function. That
is, an increase in Hicks-neutral by construction increases output one-to-one. As a result,
it also decreases marginal cost one-to-one, and these two effects cancel out in the revenue
production function.

Discussion

Having established the main result, I now discuss two open questions: what does non-
identification mean in this context, and how could it be resolved?

There is a simple intuition behind Theorem 1. Under the assumption of variable
cost minimization, and the assumption of price-setting implicit in the markup formula
(markup equals price times marginal cost), the dynamic inputs Xit will only affect a
firm’s price through the level of the production function, while the variable inputs Vit

also affect the price through the gradient of the production function. The idea here is that
small changes in variable inputs should affect a firm’s price because both variable inputs
and price can be adjusted instantaneously under the given assumptions.16 Changes in
the dynamic inputs, however, only affect overall, not marginal production capacity, and
hence only affect prices in that way as well. As a result, if we re-express output prices in
terms of production-side variables, the part of the production function associated with
the dynamic inputs, which is assumed to be separable, exactly cancels out, because the
effect of these dynamic inputs on output feeds through one-to-one to output prices.

A remarkable result driving this mechanism is that we can express output prices, which
are clearly driven by the demand side as well, in terms of production-side observables

16This follows by the assumption that markup equals price over marginal cost, which rules out dynamic
pricing, as was also noted in De Loecker and Warzynski (2012, p.2443).
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only. This is the insight that motivated the so-called “production approach” to markup
estimation, which relies on the fact that the markup can be expressed as the ratio of
output elasticity to revenue shares (De Loecker, 2011; Klette, 1999). The intuition behind
this fact rests on a simple cost-benefit condition. The output elasticity tells us the percent
increase in output – and thus, for fixed prices, revenue – for a percent increase in material
inputs. The revenue share, on the other hand, tells us what percent of revenue is spent on
input costs for each percent increase in input (since ∂s∗Vit

∂mit
= S∗Vit ). As long as the output

elasticity is larger than the revenue share, the firm is making a profit. In fact, the gap
between both is exactly equal to the markup.

The literature has proposed several solutions to the lack of data on output prices.
First, as is well-known, the use of industry deflators cannot resolve the issue when there
is cross-sectional output price variation, so this approach only supports a highly restric-
tive set of models of imperfect competition (De Loecker, 2021) or perfect competition.
Indeed, it only supports models of competition which imply homogenous prices, in which
case industry-level price deflators equal firm-level prices up to some constant. Second,
the introduction of input prices on the right-hand side of the revenue production function
can also not alleviate the issue (De Loecker and Goldberg, 2014; De Loecker et al., 2020;
De Loecker, 2021). This follows by the same logic as Corollary 2, as Eq. (3.12) gives an
expression for input prices that depends only on the components of the revenue produc-
tion function. This shows that input prices cannot introduce any additional identifying
information into the revenue production function. This leaves, third, the imposition of
assumptions on the underlying demand system.17 When a parametric demand system is
specified, this approach can provide an explicit expression for output prices that does not
directly depend on the production function (De Loecker, 2011; Gandhi et al., 2020). In
some cases, non-parametric restrictions on the demand system may alternatively require
an exact set of additional demand-side variables to be included in the model (De Loecker
et al., 2016).18 In general, insofar as Theorem 1 establishes non-identification under a
general non-parametric revenue production function that depends on all production-side
observables, it is clear that identification can only be established by introducing additional
non-production (demand-side) variables.19 This requires restrictions on the underlying
demand system. As discussed in the introduction, however, the appeal of production
function estimation lies precisely in the fact that the same estimator can be applied uni-
formly across industries. Since demand estimation typically requires industry-specific
modeling assumptions, it is not clear that this is a satisfactory solution. Finally, the
growth rate of revenue (Basu and Fernald, 1997) provides no further information about
the production function. This follows directly from the fact that the level of revenue does
not identify the production function in a single period, so neither will it do so across
periods.

The importance of these non-identification results is twofold. First, most parametric
production functions satisfy weak homothetic separability, which implies that previous
studies that estimated productivity, returns to scale, or markups using revenue as a

17Some approaches (Kirov and Traina, 2021; De Loecker et al., 2016) have also tried to control for
the markup through observables. Since these make implicit assumptions on the structure of underlying
demand, I consider them to fall under this group of solutions.

18In particular, this paper leverages the insight of Berry (1994) that in a simple logit demand model,
quality is an invertible function of output prices and market shares. If one imposes that model and one
has a good proxy for quality, it is sufficient to control for market shares and the proxy to control for Pit.

19This, of course, does not guarantee identification – it will need to be established in the context of
the particular assumptions imposed.
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proxy for output without imposing further structure are likely unidentified. To be clear,
this does not mean that the methods used in these papers cannot deliver identification
when output is observed. Also, the non-identification argument in this paper is general
and as such is silent about the potential validity of any ad-hoc assumptions previously
imposed in these papers to address the issue. Second, since the preceding results apply
to a general class of production functions and market structures, and demonstrate not
just the misspecification but the non-identification of revenue production functions, they
underscore the importance of developing suitable estimators and datasets that address
these issues (Dhyne et al., 2020). Finally, in the absence of explicit consideration of
this non-identification, these results suggest that practitioners should avoid estimating
production functions and productivity with revenue data. Below, I further illustrate the
results in light of the two most commonly used parametric functional forms.

3.2 What Can Be Identified In Leading Parametric Cases?

Next, I demonstrate Theorem 1 for two leading parametric production functions, the
Cobb-Douglas and CES production function. Since this requires a parametrization, I let
Xit = Kit,Vit = (Lit,Mit), but the non-identification does not depend on these particular
choices, as long as there is at least one dynamic input.

3.2.1 Cobb-Douglas

For the Cobb-Douglas production function,

Qit = KβK
it LβLit M

βM
it exp(ωit)exp(εit), (3.13)

the (log) revenue production function can be written as,

rit = θ0 +
βL

βL + βM
(lit + pLit) +

βM
βL + βM

(mit + pMit )− s∗Vit − log Eit + εit; (3.14)

where θ0 = − log(βL + βM) + βM−βL
βL+βM

(log βL − log βM) + log βV for some V ∈ (L,M).20

The equation illustrates Theorem 1, as the coefficient on capital, which determines the
non-separable part of the production function, is not identified. Moreover, identification

of the separable part, h(Lit,Mit) = L
βL

βL+βM
it M

βM
βL+βM
it , only allows us to identify the ratio

of short-run output elasticities. Corollary 3 is also illustrated since ωit does not show up
in these expressions. We obtain the following,

Corollary 4 (Non-Identification of the Revenue Cobb-Douglas). The revenue Cobb-
Douglas production function (3.14) only identifies the ratio of variable output elasticities,
βL, βM . Neither the dynamic output elasticity βK nor productivity ωit are identified.

3.2.2 CES Production Function

Write the CES production function as,

Qit = ((1− βL − βM)Kσ
it + βLL

σ
it + βMM

σ
it)

v
σ exp(ωit) exp(εit), (3.15)

20See Appendix C for the full derivations.
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where βL, βM are the share parameters, v is the return to scale parameter, and σ is the
elasticity of substitution parameter. The (log) revenue equivalent is,

rit = log βV +σvit +
1− σ
σ

log (βLL
σ
it + βMM

σ
it) +

σ − 1

σ
logB− s∗Vit − log Eit + εit, (3.16)

where the unit cost function B := (PL
it )

σ
σ−1β

− 1
σ−1

L + (PM
it )

σ
σ−1β

− 1
σ−1

M . Again, following
Theorem 1, we can see that the non-separable part of the production function is not
identified, as the returns to scale v do not show up in this expression. Similarly, ωit
again drops out, in line with Corollary 3. The below proposition establishes what can be
identified from a (potentially nested) revenue CES production function,

Corollary 5 (Non-Identification of the Revenue CES). The revenue CES production
function (Eq. (3.16)) can at most identify the elasticity of substitution σ and the ratio of
short-run distribution parameters βL

βM
. Neither the returns to scale v, the output elastici-

ties, nor Hicks-neutral productivity ωit are identified.
Proof. See Appendix A.

4 Conclusion

This paper has shown that neither the production function nor Hicks-neutral produc-
tivity can be identified when using revenue as a proxy for output. This holds true for a
general class of production functions and under standard assumptions. There is no way to
rewrite the revenue production function in terms of observable production-side variables
to break this non-identification. The only approach that can obtain identification in this
scenario is to impose restrictions on the underlying demand system, which could introduce
demand-side observables into the revenue production function. The non-identification was
demonstrated parametrically for the Cobb-Douglas and CES production functions. This
work formalizes and generalizes previous findings that revenue production functions are
misspecified and generate biased estimates.

The implications for practitioners are significant. In the absence of observed output
prices, perfect competition, or further restrictions on demand, practitioners should avoid
estimating production functions using revenue as a proxy for output. Most objects of
interest such as productivity, returns to scale, and markups cannot be identified. How-
ever, markups may still be estimated without production functions using the production
approach to markup estimation, subject to additional restrictions (De Loecker, 2021).

Future research may focus on establishing partial identification of the production
function when output prices are unobserved (Flynn, Gandhi, and Traina, 2019), or on
further developing production function theory for when they are observed (Dhyne et al.,
2020; De Loecker et al., 2016).
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A Proofs

A.1 Proof of Corollary 5

Slightly rewriting Eq. (3.16) with e.g. V = M , we get,

rit = σmit +
1− σ
σ

log

(
βL
βM

(
Lit
Mit

)σ
+Mσ

it

)
+
σ − 1

σ
logB − s∗Mit − log Eit + εit, (A.1)

where B̄ = (PL
it )

σ
σ−1

(
βL
βM

) 1
σ−1

+ (PM
it )

σ
σ−1 . It is immediate that one can at most identify

σ and the ratio βL
βM

from these revenue production functions. Non-identification of v and
ωit is immediate. Non-identification of the output elasticities follows from the fact that
these depend on (1− βL − βM) as well (see Appendix C), which cannot be identified. �

B Properties of the Production Function

For ease of reference, I restate the standard assumptions that the production function
F (·) and the production possibilities set need to satisfy. Denote x the n-dimensional
vector of inputs and y the scalar output. When comparing two vectors x, y, let x ≥ y
indicate that all elements of x are at least as great as the corresponding elements of y,
and at least one element of x is strictly greater than the corresponding elements of y.
The production possibilities set T is,

T := {(x, y) : F (x) ≥ y, x ≥ 0} , (B.1)

and it is assumed to satisfy (Chambers, 1988, p.252),

Assumption 6 (Properties of T).

(i) T is nonempty

(ii) T is a closed set

(iii) T is a convex set

(iv) if (x, y) ∈ T, x1 ≥ x, then (x1, y) ∈ T (free disposability of x)

(v) if (x, y) ∈ T, y1 ≤ y then (x, y1) ∈ T (free disposability of y)

(vi) for every finite x, T is bounded from above

(vii) (x, 0) ∈ T , but if y ≥ 0, (0n, y) /∈ T (weak essentiality),

where 0n is the n-dimensional zero vector.
Based on these assumptions, the production function that is the solution to,

F (x) = max {y : (x, y) ∈ T} , (B.2)

exists and has the following properties (Shephard, 1970; Chambers, 1988),

Proposition 1 (Properties of F).
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(i) If x′ ≥ x then F (x′) ≥ F (x) (monotonicity)

(ii) V (y) := {x : F (x) ≥ y} is a convex set (quasi-concavity)

(iii) F (0n) = 0 (weak essentiality)

(iv) The set V (y) is closed and non-empty for all y > 0.

Moreover, Proposition 1 (iv) implies that the cost function exists (McFadden, 1978). If,
in addition, we assume that that F (x) is finite, non-negative and real-valued for all non-
negative and finite x, then the cost function possesses standard properties (Chambers,
1988, p.52).

C Derivation of Parametric Revenue Production Func-
tions

C.1 Cobb-Douglas Revenue Production Function

The Cobb-Douglas cost function withKit as dynamic input and Lit,Mit as variable inputs
is,

CCD

(
Kit,P

V
it ,

Q̃∗it
exp(ωit)

)
=

1

ν

(
Q̃∗it

exp(ωit)

) 1−ν
ν

K
−βK

ν
it (PM

it )
βM
ν B, (C.1)

where the unit cost function is B = (PL
it )

βL
ν · (PM

it )
βM
ν ·

((
βM
βL

)βL
ν

+
(
βL
βM

)βM
ν

)
. Hence,

the marginal cost is,

λCD
it =

1

βL + βM
F (Kit, h(Kit, Lit,Mit))

1
βL+βM

−1
K

βK
ν

it c(PV
it )E−1it . (C.2)

The output elasticities with respect to the variable inputs are βL and βM . Plugging these
into the RHS of the production function, we get Eq. (3.14).

C.2 CES Revenue Production Function

Similarly, the CES cost function is,

CCES

(
Kit,P

V
it ,

Q̃∗it
exp(ωit)

)
=

( Q̃∗

exp(ωit)

)σ
v

− βKKσ
it

 1
σ

B
σ−1
σ , (C.3)

where B := (P̃L
it )

σ
σ−1β

− 1
σ−1

L + (PM
it )

σ
σ−1β

− 1
σ−1

M . Hence, the marginal cost is,

λCES
it =

1

σ

((
Q∗it

exp(ωit)

)σ
v

− βKKσ
it

) 1
σ
−1

exp(ωit)
−1B

−1
σ

(
(PL

it )
σ
σ−1β

−1
σ−1

L + (PM
it )

σ
σ−1β

−1
σ−1

M

)
E−1it

=
1

v
(βLL

σ
it + βMM

σ
it)

1
σ
−1 F (Kit, Lit,Mit)

σ
v
−1B

σ−1
σ exp(ωit)

−1E−1it , (C.4)
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The output elasticity with respect to variable input Vit ∈ Vit is,

∂f(·)
∂vit

= vF (Kit, Lit,Mit)
−σ
v βV V

σ
it . (C.5)

Combining these and rewriting gives Eq. (3.16).
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