
Staff Working Paper No. 1,023
April 2023

Price formation in markets with 
trading delays

Staff Working Papers describe research in progress by the author(s) and are published to elicit comments 

and to further debate. Any views expressed are solely those of the author(s) and so cannot be taken to 

represent those of the Bank of England or to state Bank of England policy. This paper should therefore 

not be reported as representing the views of the Bank of England or members of the Monetary Policy 

Committee, Financial Policy Committee or Prudential Regulation Committee.

Gabor Pinter and Semih Üslü



Staff Working Paper No. 1,023

Price formation in markets with trading delays
Gabor Pinter(1) and Semih Üslü(2)

Abstract

We develop a parsimonious price formation model to study information aggregation and 
information acquisition in the presence of trading delays. If delays apply uniformly to 
uninformed and informed traders, the level of delays does not affect information aggregation. 
Traders’ information acquisition incentives are, however, weaker in a market with longer 
delays. Therefore, the equilibrium fraction of informed traders is lower if delays are longer, 
establishing an inverse relationship between trading delays and price informativeness. We 
also show that risk premia and price dispersion tend to be non-monotonic functions of the 
level of delays when information acquisition is endogenous. We document novel empirical 
evidence from the UK corporate bond market, which largely corroborates the implications of 
our theory.

Key words: Trading frictions, trading delays, price informativeness, information aggregation, 
information acquisition, liquidity.

JEL classification: D49, D53, D82, D83, G11, G12, G14.

(1)	 Bank of England. Email: gabor.pinter@bankofengland.co.uk
(2)	 Johns Hopkins Carey. Email: semihuslu@jhu.edu

The views expressed in this paper are those of the authors, and not necessarily those of the Bank of 
England or its committees. An earlier version of this article was circulated under the title ‘Informed trading 
in markets with trading delays’. We would like to thank, for helpful comments and suggestions Bruno Biais 
as well as Daniel Andrei, Simon Board, Will Cong, Adrien d’Avernas, Nicolae Gearleanu, Ben Lester, 
Wei Li, David McAdams, Tomasz Sadzik, Zhaogang Song, Aleh Tsyvinski, Laura Veldkamp, Guner Velioglu, 
Pierre‑Olivier Weill, and the participants at the UCLA Theory Proseminar.

The Bank’s working paper series can be found at www.bankofengland.co.uk/working-paper/staff-working-papers 

Bank of England, Threadneedle Street, London, EC2R 8AH  
Email: enquiries@bankofengland.co.uk

©2023 Bank of England  
ISSN 1749-9135 (on-line)



1 Introduction

Execution quality is important to traders in financial markets. A key dimension of execution

quality is the speed at which their orders are executed. This speed varies widely across markets.

Pagnotta and Philippon (2018) state that more than half of the US equity orders take five

seconds to ten minutes to fully execute. On the other hand, the same number was identified to

be 1-3 days in the corporate bond market (Duffie, Gârleanu, and Pedersen, 2007, Pagnotta and

Philippon, 2018, and Kargar, Lester, Plante, and Weill, 2022) and five days in the municipal

bond market (Hugonnier, Lester, and Weill, 2020). How do these trading delays, small or

drastic, affect price discovery? This is the main question we analyze in our paper.

We develop a competitive asset trading model that nests Grossman and Stiglitz (1980) as a

special case. By trading in a market without trading delays, traders in Grossman and Stiglitz

(1980) fully benefit from any private information they possess, while traders in our model trade

in a market with trading delays, in which private information progressively becomes public.

In two special cases, the trading environment of our model coincides with the Grossman and

Stiglitz (1980) environment: if private information is infinitely-lived (i.e., the noise of public

information revelation goes to infinity) or if trading delays disappear (i.e., if trading speed

goes to infinity). Hence, apart from these two special cases, trading delays and the lifespan

of private information are expected to affect all the equilibrium outcomes such as risk premia,

price dispersion, and measures of price informativeness.

To capture trading delays in a meaningful way, we set up a dynamic trading game. Two

types of traders, informed and uninformed, gain one-time access to a competitive market at i.i.d.

stochastic times. Importantly, we assume that trading delays apply uniformly to uninformed

and informed traders. Conditional on market access, a trader trades to obtain her optimal

position given all the information available to her at the time of her market access. Interestingly,

while the market price becomes a better forecast of the asset value as time passes because private

information progressively becomes public, we show that the measure of unique information the

market price contains, which we term revelatory price efficiency, is stationary and coincides

with what obtains in the equilibrium of Grossman and Stiglitz (1980) model. This leads to a

conditional irrelevance result: By taking as given the fraction of informed traders, revelatory

price efficiency (RPE) is independent of the level of trading delays.

When traders are allowed to make ex ante investment in private information by anticipating

the outcome of the dynamic trading game, however, the irrelevance breaks down. More specif-

ically, traders’ information acquisition incentives are weaker if trading delays are longer (or if
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private information is shorter-lived). Therefore, the equilibrium fraction of informed traders is

lower if trading delays are longer, establishing an inverse relationship between trading delays

and RPE. This inverse relationship between trading delays and price informativeness is the

first implication of our theoretical model that we test in the empirical part of the paper.

Second, our theory has novel implications for price dispersion, which refers to the second mo-

ment of transaction prices that arise during the trading session. In our baseline model without

endogenous information acquisition, we show that price dispersion is non-monotonic in trading

delays. The key determinant behind this result is how trading delays affect the distribution

of traders’ trading times. If trading delays are small, both type of traders, uninformed and

informed, can trade very early on. Like in the original Grossman and Stiglitz (1980) model,

the distribution of information that traders possess is close to bimodal. As trading delays get

more severe, traders access the market later and in more dispersed times, which means the

distribution of information that (uninformed) traders possess is more dispersed. This, in turn,

leads to larger price dispersion. As trading delays get even more severe, however, the market ac-

cess of this uninformed crowd of traders gets extremely delayed, making their valuations closer

together due to a high level of information revelation by then. This reduces price dispersion.

Overall, price dispersion turns out to be a hump-shaped function of trading delays.

Using parametric examples, we also confirm that this non-monotonicity is preserved when

information acquisition is endogenous. More specifically, we find that price dispersion and

average risk premium tend to reach their maximum when trading delays are just severe enough

to preclude all information acquisition in equilibrium. At this level of trading delays, delays

are severe enough to keep all traders uninformed, but also moderate enough to allow these

uninformed traders to trade before a meaningful revelation of public information. Thus, the

transaction prices resulting from these uninformed trades exhibit a large risk premia. Similarly,

prices exhibit high dispersion because of the high flow of uninformed orders getting executed.

Shorter trading delays would reduce the fraction of uninformed traders, and so, reduce the

sensitivity of the market price to the fluctuations in the public information process, thereby

reducing price dispersion. Longer trading delays would delay the market access of this entirely

uninformed crowd of traders, making their valuations closer together when they access the

market, and in turn, reducing price dispersion.

Third, we discuss how to view the stylized facts regarding price informativeness in the

existing empirical literature through the lens of our model. To offer theoretical insights into

the growth of “big data” financial technology over the last decade, we ask how RPE changes
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in response to traders’ easier access to better data technologies. We contrast two possible

scenarios: a decline in the information acquisition cost vs. an increase in the rate of information

depreciation due to the technology allowing traders to extract others’ information. Our model

predicts that while RPE increases in the former scenario, it decreases in the latter. Since both

effects are, in principle, present for any asset albeit with different strengths, our model implies

that RPE will increase for some assets and decrease for others. Bai, Philippon, and Savov

(2016) find a secular decline in stock price informativeness for the universe of all firms, while

they find a secular increase for the S&P500 firms. Our model rationalizes their findings if the

improvement in RPE from the decline in the information acquisition cost dominates (resp. is

dominated by) the decline in RPE from the increase in the rate of information depreciation

for the S&P500 firms (resp. the universe of all firms).1

In the last part of the paper, we provide novel empirical evidence for some of the theoretical

implications unique to our model. To this end, we use a transaction-level dataset which covers

close to the universe of all secondary market trades in the UK corporate bond market. With its

over-the-counter (OTC) structure, the corporate bond market is a textbook example of markets

with trading delays.2 We proxy (the inverse of) a bond’s trading delay with its trade frequency

measured in the data. We, then, utilize the cross-sectional variation in bonds’ trade frequency

to test two empirical hypotheses generated by our theoretical model: (i) ceteris paribus, price

efficiency is decreasing in trading delays and (ii) ceteris paribus, the dispersion of transaction

prices is non-monotonic in trading delays. Overall, our results from empirical tests are consistent

with the implications of the theoretical model. We interpret this as pointing to the importance

of taking trading delays into account when analyzing the informational inefficiency and liquidity

costs in asset trading.

Next, we briefly review the related literature and our paper’s contribution. Section 2 lays

out the main model environment, while Section 3 defines and characterizes a noisy rational

expectations equilibrium for this environment. Section 4 endogenizes the traders’ information

acquisition decisions and the informativeness of the market price. Section 5 analyzes the extent

to which our theoretical findings are consistent with the corporate bond trading patterns in

practice. Section 6 concludes.

1Bai, Philippon, and Savov (2016) find that the decline in market efficiency for the universe of all firms is
highest during the very last period (2010-2014) of their dataset, when the big data arguably plays the most
prominent role.

2Pintér and Üslü (2022) propose a structural estimation of a model of OTC asset markets by using the same
dataset. Their estimation implies that the median client faces a trading delay of around three quarters of a
trading day in the most liquid segment of the UK corporate bond market with 57 bonds.
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1.1 Related literature

The first strand of literature to which our paper contributes is the voluminous literature on

information acquisition with papers by Grossman and Stiglitz (1980), Verrecchia (1982), Admati

and Pfleiderer (1986), Veldkamp (2006a), Veldkamp (2006b), Cespa (2008), Lee (2013), and

Dugast and Foucault (2018), among others. See Veldkamp (2011) for a survey of this literature.

These papers abstract away from trading frictions and trading delays and focus on the details

of assets’ payoff and information structures. We keep the payoff and information structure

simple while allowing for rich dynamics in the equilibrium price process, and model explicitly

the trading delays that are characteristic of many real-world financial markets, especially the

illiquid ones like the markets for corporate and municipal bonds.

The second strand of literature to which our paper contributes is the fast-growing literature

on trading delays with papers by Duffie, Gârleanu, and Pedersen (2005), Weill (2007), Gârleanu

(2009), Lagos and Rocheteau (2009), Afonso and Lagos (2015), Farboodi, Jarosch, and Shimer

(2015), Pagnotta and Philippon (2018), Üslü (2019), and Hugonnier, Lester, and Weill (2020),

among others. See Weill (2020) for a recent survey. These papers abstract away from private

information and focus exclusively on trading frictions and delays. We borrow the details of

trading delays from this literature. In particular, traders in our model gain access to a market

with Walrasian pricing mechanism at idiosyncratic random times as in Gârleanu (2009) and

Pagnotta and Philippon (2018). The same mechanism obtains in Lagos and Rocheteau (2009)

as well, when dealers’ bargaining power is set to be zero. Models in this literature typically

obtain that illiquidity premium and price dispersion are monotone increasing in trading delays.

The novelty of our model is to introduce private information about common asset value to

these papers’ trading environment with delays, and we show that illiquidity premium and price

dispersion can be non-monotonic functions of the delay.

The combination of trading delays and private information about common asset value is also

present in a relatively limited set of papers by Wolinsky (1990), Blouin and Serrano (2001),

Duffie, Malamud, and Manso (2014), Golosov, Lorenzoni, and Tsyvinski (2014), Dang and

Morath (2015), Lauermann and Wolinsky (2016), Lauermann, Merzyn, and Virág (2017), and

Lester, Shourideh, Venkateswaran, and Zetlin-Jones (2018). With the exception of Duffie, Mala-

mud, and Manso (2014) and Dang and Morath (2015), these papers do not study information

acquisition. What distinguishes our model from Duffie, Malamud, and Manso (2014) and Dang

and Morath (2015) is mainly the trading protocol (and implicitly the price setting mechanism).

While prices that aggregate information are privately negotiated prices in bilateral meetings in
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Duffie, Malamud, and Manso (2014) and Dang and Morath (2015), the Walrasian price in our

model acts as a public signal as in the extant literature on information acquisition following

Grossman and Stiglitz (1980).

Traders’ desire to take advantage of short-lived private information in our model is in com-

mon with the recent literature that analyzes high-frequency trading. Examples include Aı̈t-

Sahalia and Sağlam (2013), Budish, Cramton, and Shim (2015), Biais, Foucault, and Moinas

(2015), Foucault, Hombert, and Roşu (2016), and Li (2018). While our paper’s main focus is

on trading delays in illiquid markets, these papers model high-speed trading in liquid markets.

Accordingly, they end up using very different sets of modeling assumptions than our model’s

assumptions. Information aggregation or revelation by market prices is also analyzed together

with different types of frictions, e.g., with technological trading costs by Subrahmanyam (1988),

Dow and Rahi (2000), Vives (2017), and Dávila and Parlatore (2020), with sticky relationships

by Babus and Kondor (2018) and Li and Song (2018), and with long intermediation chains by

Glode and Opp (2016) and Glode, Opp, and Zhang (2019).

Our empirical analysis in Section 5 relates to two mains strands of the empirical literature.

First, we draw on previous studies on the determinants of various trade cost measures in OTC

markets including price dispersion. See Garbade and Silber (1976), Edwards, Harris, and

Piwowar (2007), Jankowitsch, Nashikkar, and Subrahmanyam (2011), Di Maggio, Kermani,

and Song (2017), O’Hara, Wang, and Zhou (2018), Li and Schürhoff (2019), Üslü and Velioğlu

(2019), Dick-Nielsen, Poulsen, and Rehman (2021), and Pintér and Üslü (2022), among others.

To our knowledge, we are the first to show that price dispersion is non-monotonic in trading

delays in the empirical literature as well as in the theoretical literature. Second, we draw

on previous studies on the determinants of price efficiency. See Hotchkiss and Ronen (2002),

Hendershott and Jones (2005), Hou and Moskowitz (2005), Bai, Philippon, and Savov (2016),

Lee, Naranjo, and Velioğlu (2018), and Indriawan, Pascual, and Shkilko (2022), among others.

To our knowledge, we are the first to analyze trading delays as a determinant of price efficiency

in the cross section of corporate bonds.

2 The model economy

We build a continuous-time model economy with an infinite time horizon: t ∈ [0,∞). We fix a

filtered probability space (Ω,F , {Ft} ,Pr), on which is defined a standard Brownian motion, B.

The economy is populated by a unit-mass continuum of traders, who have constant-absolute-

risk-aversion (CARA) preferences over horizon wealth W∞ with a common risk aversion coeffi-
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cient of γ > 0. Traders are infinitely patient (i.e., their discount rate is zero) and are endowed

with a technology that instantly produces cash at unit marginal cost in order to make side pay-

ments.3 We normalize the traders’ initial wealth to zero, W0 = 0, because their initial wealth

will not affect decision making, provided that they can produce cash at unit marginal cost.

A fraction α ∈ (0, 1) of the traders are informed and the remaining 1−α uninformed. There

is one risky asset with payoff realized at date t = ∞. The payoff of this asset, denoted by v,

consists of two parts,

v = θ + ε,

where θ is observable to informed traders but ε is not observable to anyone. Random variable

θ is characterized by a normal distribution with mean θ̂0 and variance 1/Sθ. Random variable

ε also follows a normal distribution with mean 0 and variance 1/Sε. These random variables,

θ and ε, are independent.

In addition to being informed or uninformed, traders are heterogeneous with respect to

their initial endowment of the asset. Immediately prior to time t = 0, half of traders are each

endowed with a1 shares of the risky asset, and the other half a2, where a1 and a2 are identically

and normally distributed with mean 0 and variance 4/SA. All these random variables, θ, ε, a1,

and a2, are pairwise independent.

We denote with N j
t (·) the cdf of traders’ asset positions at time t conditional on their

information type j ∈ J ≡ {inf, uninf}. Thus, at t = 0:∫
R

a dN j
0 (a) =

a1 + a2

2

for any j ∈ J .

At date 0, informed traders obtain a private signal which reveals the true value of θ. For

t > 0, there is a “flow” of public signals Zt, progressively reducing the informational edge of

informed traders:

dZt = θdt+ σdBt, (1)

3Postponing all payoffs and consumption to an infinitely far horizon and assuming that traders are infinitely
patient are modeling tricks to obtain simple formulas by eliminating the pure time cost of trading delays. These
are not essential for our analysis because we want to study the effect of trading delays on price discovery in a
model with common valuations. The fast-growing search literature, instead, studies the effect of the time cost of
delaying trade on welfare when traders have private valuations. Thus, assuming proper discounting is essential
for those models because in the limit as the discount rate approaches zero, the competitive outcomes typically
obtain in those models. See Duffie, Gârleanu, and Pedersen (2005), Weill (2020), and Pintér and Üslü (2022),
among others.
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where B is a standard Brownian motion and Z0 = θ̂0. The σ-algebra Ft is generated by

B. Depending on the realization of θ, a1, and a2, informed and uninformed traders will have

different beliefs about the asset payoff. We will discuss this when we define the equilibrium.

In the spirit of Gârleanu (2009), traders have infrequent access to a continuous competitive

market in which they can trade as price takers and without any friction. More specifically, we

assume that trader i ∈ [0, 1] gains a one-time access to the competitive market at date t = τ (i),

where τ (i) is an exponentially distributed random variable with mean 1/λ. That is, trader i

can rebalance her asset position only at the instant t = τ (i). We also assume the market access

times, τ (i)s, are i.i.d. across traders. Conditional on market access at date t, a trader with

endowment a and information type j buys q (a, j, t) units of the asset at the market-clearing

price Pt. Naturally, if q (a, j, t) < 0, it means the trader sells −q (a, j, t) units.

3 Equilibrium

In illiquid market models with homogeneous information sets, such as Gârleanu (2009), Lagos

and Rocheteau (2009), and Pagnotta and Philippon (2018), the market price has only the role

of clearing the market. Differently from these papers, in our model, traders have different infor-

mation sets about the common asset value, which gives the equilibrium price two simultaneous

roles, clearing the market and revealing information, as in Grossman and Stiglitz (1980).

3.1 Definition

Because the trading horizon is infinite, all traders eventually end up trading with probability

one. However, there is uncertainty as to when a trader will gain access to the market. A trader

of type j with endowment a who gains access to the market at time t buys

q(a, j, t) = arg max
q

E
[
−e−γ{v(a+q)−Ptq}

∣∣F j,a
t

]
(2)

shares of the risky asset, where the expectation operator, E, is over the random variable v, and

F j,a
t ⊃ Ft denotes the information a type-(j, a) trader gathered up to time t.

Because N j
t (·) is a conditional cdf, it satisfies∫

R

dN j
t (a) = 1 (3)

for all t ≥ 0 and j ∈ J . By the law of large numbers, this cdf evolves according to the following

8



Kolmogorov forward equation:

∂N j
t (a)

∂t
= −λe−λtN j

0 (a) + λ

∫
R

I{a′+q(a′,j,t)≤a}e−λtdN j
0 (a′) (4)

for all t ≥ 0 and (j, a) ∈ J ×R. The first and second terms on the RHS of Equation (4) represent

respectively the gross outflow from and gross inflow to the mass of j-type traders with an asset

holding less than or equal to a. Note that these outflows and inflows can only come from the

mass of traders who have not gained access to the market yet. The mass, e−λtN j
0 (a), of j-type

traders with an asset holding less than or equal to a who are yet to trade obtains by solving

d

dt
ft = −λft, f0 = N j

0 (a) .

These traders gain access to the market at the Poisson rate λ, which implies a rate of (gross)

outflow λe−λtN j
0 (a). The second term means any j-type trader can contribute to the (gross)

inflow to the mass N j
t (a), if she gains access to the market, which happens at rate λ, and if

her post-trade asset holding is less than or equal to a.

Finally, the market-clearing condition must ensure that the traders’ aggregated demand

nets out to zero, at each date t ≥ 0:

λ

∫
R

q(a, inf, t)α e−λtdN inf
0 (a) + λ

∫
R

q(a, uninf, t) (1− α) e−λtdNuninf
0 (a) = 0, (5)

where α ∈ (0, 1) is the fraction of informed traders.

We have specified all requirements to define the equilibrium. We only have to bring those

ingredients together. Formally, a rational expectations equilibrium (REE) is defined as follows.

Definition 1. A rational expectations equilibrium is a list composed of (i) a trade size function

q(a, j, t), (ii) a market-clearing price Pt, (iii) a perceived price function P̃t({Zs}s∈[0,t] , θ, a1, a2),

and (iv) a set of distributions for traders’ asset positions N j
t (a) such that

• Given (ii) and (iii), (i) solves (2);

• Given (i), (iv) satisfies (3) and (4);

• Given (i), (ii) clears the market through (5);

• Expectations are correct: P̃t({Zs}s∈[0,t] , θ, a1, a2) = Pt.
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3.2 Characterization

Let µj,at = E
[
v | F j,a

t

]
and Sjt =

(
V
[
v | F j,a1

t

])−1
=
(
V
[
v | F j,a2

t

])−1
, where V denotes the

variance operator.4 Assuming that v is conditionally normally distributed,5 (2) can be re-

written as

q(a, j, t) = arg max
q

e
−γ

{
−Ptq+(a+q)µj,at −

γ
2

(a+q)2

S
j
t

}
.

Using the FOC and SOC of this unconstrained optimization problem, we obtain the following

lemma.

Lemma 1. Fix a market price Pt and a collection
{
F j,at

}
(j,a)∈J×{a1,a2}

for the traders’ infor-

mation sets. Assume that v is normally distributed conditional on any of the given information

sets. Then, a type-j trader with endowment a ∈ {a1, a2} who gains access to the market at time

t chooses her optimal trade quantity as

q (a, j, t) =

(
µj,at − Pt

)
Sjt

γ
− a, (6)

where µj,at ≡ E
[
v | F j,at

]
and Sjt ≡

(
V
[
v | F j,a1t

])−1
=
(
V
[
v | F j,a2t

])−1
.

Next, we endogenize the traders’ information sets and the market price to complete the

characterization of the general equilibrium of the trading game. For uninformed traders, there

are two sources of public information to gauge the value of the risky asset: The market price

Pt and the public signal process Zt. First, we derive the mean and variance of θ conditional on

observing the public signal process Zs up to time s = t. This mean and variance will be later

used in determining the posterior mean and variance of the asset payoff v when an uninformed

trader gains access to the market.

An application of Kalman-Bucy filter to (1) implies that

E [θ | Ft] = θ +
z√

Sθ + t/σ2
(7)

and

(V [θ | Ft])−1 = Sθ + t/σ2, (8)

4V
[
v | F j,a1

t

]
= V

[
v | F j,a2

t

]
follows because a1 and a2 are i.i.d. random variables. This will become clearer

shortly when we endogenize the traders’ information sets and derive these posterior variances in closed form.
5This assumption is verified ex post. The verification follows because (i) all signals are Gaussian and (ii)

the market price, which is the endogenous public signal in the model, is a linear function of Gaussian random
variables as is typically assumed in the literature.
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where z is a random variable with the standard normal distribution.6 As time passes, observing

the public signal process Zt for longer makes the conditional mean (7) closer to the informed

traders’ signal θ, and so, the conditional precision (8) is an increasing function of time, t.

The second source of public signal for uninformed traders is the market price, Pt. As is

standard in the literature, we restrict our attention to linear pricing functions:

P̃t

(
{Zs}s∈[0,t] , θ, a1, a2

)
= β1 (t) θ̂t + β2 (t) θ + β3 (t) (a1 + a2) , (9)

where for k ∈ {1, 2, 3}, βk : [0,∞) → R is a function of time for which traders have perfect

foresight and θ̂t ≡ E [θ | Ft] is the posterior mean of the information learned by observing

{Zs}s∈[0,t]. Naturally, β1 and β2 are positive-valued, while β3 is negative-valued. The only

component of the price which is informative about the asset’s fundamental value v and not

common knowledge among traders is θ. Thus, for an uninformed trader, price is a noisy signal

about θ. However, an informed trader already knows θ, and so, observing the market-clearing

price, Pt = P̃t

(
{Zs}s∈[0,t] , θ, a1, a2

)
, reveals a2 (resp. a1) to her if her endowment is a1 (resp.

a2). Therefore, by replacing {Zs}s∈[0,t] with its sufficient statistic θ̂t inside the linear pricing

function (9), the information sets of an informed trader and of an uninformed trader are

F inf,a1
t = F inf,a2

t = {θ, a1, a2} ∪ Ft

and

Funinf,a
t = {a} ∪

{
P̃t

(
θ̂t, θ, a, a−

)
= Pt

}
∪ Ft,

respectively. Then, for an informed trader, the relevant expectations and precisions are as

follows:

µinf,a1
t = µinf,a2

t = E [v | θ] = θ,

Sinf
t = (V [v | θ])−1 = Sε.

For uninformed traders, we use (7), (8), and the Bayesian updating formula for normal variable

to determine µuninf,a
t and Suninf

t . The signal from the price is Pt−β1(t)θ̂t−β3(t)a
β2(t)

∼ N (θ, 1
Φ(t)2SA

),

where Φ (t) ≡ β2(t)
2β3(t)

. Then,

1

Suninf
t

=
1

Sθ + t/σ2 + Φ (t)2 SA
+

1

Sε

6See Øksendal (2003, p. 104) for a similar derivation.
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and

µuninf,a
t =

(Sθ + t/σ2) θ̂t + Φ (t)2 SA
Pt−β1(t)θ̂t−β3(t)a

β2(t)

Sθ + t/σ2 + Φ (t)2 SA
.

Substituting these posterior means and precisions into (6), we obtain the individual demand of

any trader given the market price Pt. Substituting these individual demands into (5),

λ

∫
R


(
µinf,a
t − Pt

)
Sinf
t

γ
− a

 α e−λtdN inf
0 (a)

+ λ

∫
R


(
µuninf,a
t − Pt

)
Suninf
t

γ
− a

 (1− α) e−λtdNuninf
0 (a) = 0.

After cancellations, rearranging, and letting µinf
t = µinf,a1

t = µinf,a2
t ,

α

(
µinf
t − Pt

)
Sinf
t

γ
+ (1− α)

(
µ
uninf,a1
t +µ

uninf,a2
t

2
− Pt

)
Suninf
t

γ
=
a1 + a2

2
, (10)

which implies that effective market clearing is independent of the level of trading delays. Two

features of our model gives rise to this result. First, the individual demand (6) is independent

of λ thanks to the lack of re-trade considerations. Indeed, a trader’s optimal post-trade position

is determined based only on the final payoff derived from the asset position because she gains

access to the market at exactly one point in time. Second, although only a subset of the traders

have access to the market at any point in time, the composition of those who trade stays the

same because trading delays apply uniformly to all traders: The sum of the masses of informed

and uninformed traders who gain market access, αe−λt + (1− α) e−λt = e−λt, becomes smaller

and smaller over time but their composition stays the same and this gives rise to an effective

market-clearing condition independent of λ.

The last step is to substitute the posterior means and precisions in (10). The resulting

expression is linear in θ̂t, θ, a1, and a2. Each shows up in only one place and is additive.

Everything else is just constant coefficients. This confirms the guess of a linear pricing rule.

The functions, β1 (t), β2 (t), and β3 (t), can be solved for by matching coefficients, which takes

us to the following proposition.

Proposition 1. Given a share of informed traders α, the unique linear price process that clears

the market is

P̃t

(
θ̂t, θ, a1, a2

)
= (1− β (t)) θ̂t + β (t)

(
θ +

a1 + a2

2Φ

)
, (11)
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where

Φ = −αSε
γ

and

β (t) =
α (Sθ + t/σ2 + Sε) + Φ2SA
Sθ + t/σ2 + αSε + Φ2SA

. (12)

We use the results of Proposition 1 to calculate forecasting price efficiency (FPE) and

revelatory price efficiency (RPE) in the spirit of Bond, Edmans, and Goldstein (2012) and Bai,

Philippon, and Savov (2016), where

FPEt ≡ (V [θ |Pt])−1

and

RPEt ≡
(
V
[
θ | {Zs}s∈[0,t] , a, Pt

])−1

−
(
V
[
θ | {Zs}s∈[0,t] , a

])−1

.

FPE measures how well the market price reflects the forecastable part, θ, of the asset value

v = θ + ε. However, uninformed traders do not rely only on the market price when making

their own forecasts. They use any other public information they possess and the information

contained in their asset endowment realization. Thus, there is a need for a measure that reflects

the unique information from the market price that is not captured by other information sources.

RPE is such a measure. While FPE is only a forecasting concept, RPE measures the precision

gain from observing the market price.

Corollary 2. The forecasting price efficiency (FPE) and the revelatory price efficiency (RPE)

are, respectively,

FPEt = Sθ +
1

(1−β(t))2

Sθ+t/σ2 + 2 (β (t))2 γ2

α2S2
εSA

and

RPE =
α2S2

εSA
γ2

,

where β (t) is given by (12). Thus, given a share of informed traders, trading delays (1/λ) and

how long-lived the private information is (σ) are irrelevant to RPE.
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Corollary 2 shows that while FPE is a function of time, RPE is constant over time. That

FPE is time varying is intuitive because the private information of the informed traders be-

comes progressively public as everyone observes the stochastic process Z and then the “repre-

sentative” trader (i.e. the fictitious trader who shows up in the market-clearing condition (10)

and has the same marginal valuation as the trading price) has a more precise information about

θ. That RPE is constant is a less obvious result. One way to understand this RPE result

above is that for uninformed traders, price is observationally equivalent to a signal of the form

θ + a−
2Φ

with the precision(
V
[
θ +

a−
2Φ
| θ
])−1

=
α2S2

εSA
γ2

.

Because the unique information from observing the price after eliminating its parts relating to

θ̂t and a is independent of t, its precision that we show is equal to RPE is independent of t as

well.

Perhaps an even more surprising implication of Corollary 2 is that, given a share of informed

traders, trading delays (1/λ) and how long-lived the private information is (σ) are irrelevant

to the precision of the price signal. Similar to the case where the effective market clearing

(10) is independent of λ and σ that we explain above, this again arises because the frictions

apply uniformly to all traders. Thus, at any date, a subset of traders that is representative

of the entire pool of traders gain market access, which leaves RPE unaffected by the friction

parameters σ and λ. It is important to note, however, this irrelevance result is a conditional

irrelevance result because the fraction of informed traders is taken exogenously. In Section 4,

we endogenize the fraction of informed traders by studying the traders’ endogenous information

acquisition decision. We show that because trading delays lead to a possibility of not being able

to benefit from private information, traders have a reduced incentive to become informed when

there are trading delays. This insight encapsulates the main difference between our model and

Grossman and Stiglitz (1980).

As a preview for the results in Section 4, consider the left panel of Figure 1 that depicts two

sample paths for the equilibrium price under different assumptions for the expected lifespan

of the private information. Over time, the informational edge of informed traders reduces as

uninformed traders observe Zs for longer. If the degree, σ, of noise in this public signal process

is lower, the equilibrium price quickly approaches the informed traders’ signal, which, in turn,

reduces the profitability of informed trading. In the Figure, the blue path for the equilibrium

price (σ = 0.5) approaches the informed traders’ signal, θ, a lot quicker than the red path
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(σ = 2) approaches. This means that given a level, 1/λ > 0, of trading delays, traders are more

likely to acquire costly private signals if they anticipate a sample path like the red path rather

than the blue one. Moreover, given σ, a trader is more likely to acquire costly private signals

if trading delays are less severe because less severe trading delays mean, in expectation, an

informed trader can trade when the difference between the equilibrium price and the informed

trader’s signal is larger.
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Figure 1: Sample path of equilibrium price on the left panel, and the price efficiency
measures on the right panel. Parameter choices: α = 0.3, γ = 2, Sθ = Sε = 1, and SA = 10.

Realized values for random variables: θ = 100 and a1 = a2 = 0.

3.3 Equilibrium price dynamics

Because different traders who gain access to the market at different points in time face different

market-clearing prices, they end up trading at different prices. This leads to economic questions:

How does the average transaction price compare to the informed traders’ signal, θ? How variable

are the transaction prices across traders who trade at different points in time? The following

Proposition offers answers to these questions.

Proposition 3. Assume Sθ = 0. Let δ = αSε

(
1 + αSASε

γ2

)
and let EC [P ] and VC [P ] denote,

respectively, the average and the variance of the transaction prices conditional on θ, a1, and a2.
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Then, the deviation of the average transaction price from the informed traders’ signal per unit

of supply is

EC [P ]− θ
(a1 + a2) /2

= − γ

Sε

{
1 +

1− α
α

λσ2δeλσ
2δΓ
(
0, λσ2δ

)}
(13)

and the variance of transaction prices is

VC [P ] = (1− α)2 λσ2
{
−1 + eλσ

2δ
(
1 + λσ2δ

)
Γ
(
0, λσ2δ

)}
+ o (a1 + a2) , (14)

where Γ (0, y) ≡
∫∞
y
x−1e−xdx is the upper incomplete gamma function.

Let us refer to the deviation of the average transaction price from the informed traders’

signal per unit of supply as average price discount, in short. Proposition 3 provides us with

closed form formulas for the average price discount and a first-order approximation of the price

variance. One can use these formulas to understand how various factors influence average price

discount and price variance. For example, the following Corollary establishes results for trading

delays.

Corollary 4. Assume γ, Sε, SA, σ > 0. Average price discount is monotone decreasing in

λ > 0 for all α ∈ (0, 1). Price variance is increasing in λ ' 0 and decreasing in λ ' ∞ for all

α ∈ [0, 1).

Figure 2 illustrates the results in Corollary 4 for a particular set of parameters. When λ = 0,

trading delays are infinite and none of the traders can trade until t = ∞ at which point the

public signal process reveals the informed traders’ signal θ. This means that everyone trades at

the same price, and so, price variance is zero. Also, when λ = 0, price discount is the smallest in

terms of its absolute value, 2 (because γ/Sε = 2). As λ gets larger, trading delays decline and

traders gain access to the market earlier than t =∞. Because informed traders know θ, trading

early does not change their willingness to pay. However, uninformed traders’ willingness to pay

is smaller because they trade when the public signal is less informative about θ. As a result,

average price discount increases in its absolute value as trading delays get smaller.

The right panel of Figure 2 shows that price variance is hump-shaped in λ. As λ starts

increasing from 0, traders start trading at random times earlier than t =∞, and this increases

price variance at first. But once λ reaches some high value, further increase in λ starts depressing

price variance because then traders starts trading at times very close to t = 0 and this makes

their willingness to pay closer together because they trade before a meaningful precision has
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been obtained from the public signal process. Consistent with Corollary 4, this implies that

the maximum level of price variance obtains for some intermediate value of λ.

To our knowledge, the non-monotonic relationship between trading delays and price variance

is a novel result in the literature. The existing models of equilibrium price variance utilizing

random trading times find that mitigating trading delays lead to a monotone decline in price

variance. See, for example, Afonso and Lagos (2015), Hugonnier, Lester, and Weill (2015),

Üslü and Velioğlu (2019), and Wong and Zhang (2022). These models feature symmetric

information, and the reason behind price variance is traders’ bilateral negotiation. As trading

delays mitigate, traders’ outside options become closer to each other, in turn making transaction

prices closer together. In our model, instead, trade is multilateral with price taking traders,

but information is asymmetric. Because the dispersion level of information that traders possess

at their respective time of trading is maximized at an intermediate level of trading delays, a

non-monotonic relationship between trading delays and price variance arises.

0 50 100 150 200 250 300
−4

−3.8

−3.6

−3.4

−3.2

−3

−2.8

−2.6

−2.4

−2.2

−2

λ

average price discount

0 50 100 150 200 250 300
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

λ

price variance

Figure 2: Average price discount as given by (13) and the price variance when a1 = a2 = 0
as given by (14), plotted as functions of λ. Parameter choices: α = 0.3, γ = 2, σ = 0.05,

Sθ = 0, Sε = 1, and SA = 10.

Again, in this analysis, the exogeneity of α is key to obtain the patterns discussed above.

However, as trading delays change, naturally traders’ incentive to acquire information changes,

and so, the equilibrium α would change, potentially changing the patterns above. Indeed, in

Section 4, we show that once α is endogenized, the pattern regarding average price discount

changes altogether becoming non-monotone. The pattern regarding price variance stays qual-
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itatively the same but the magnitude of the association, i.e., the slopes, changes at different

regions, becoming stronger on certain regions and weaker on others.

3.3.1 A discussion of the variance of the equilibrium transaction prices: price
dispersion or price volatility?

Because of our assumption that all traders have access to the market exactly once during the

trading session, in their strict interpretation, price dispersion and price volatility are the same

in our model. Thus, how the variance of the equilibrium transaction prices maps to price

dispersion and price volatility will depend on how one maps our model’s trading session to

trading in practice. Our leading mapping is as follows.

We consider the asset payoff as the sum of a learnable (θ) and an unlearnable news (ε).

The learnable news is apparent to informed investors at the beginning of the trading session

(t = 0). The unlearnable news will be apparent the everyone at the end of the trading session

(t =∞). No news arrive at the market during the trading session. Thus, our model’s (infinite)

time horizon maps in practice to a (finite) trading session during which no news about the

asset’s fundamentals arrive at the market. In the empirical literature, the variance (or standard

deviation) of prices observed during a trading session without any news arrival is named price

dispersion. See, Jankowitsch, Nashikkar, and Subrahmanyam (2011), Jankowitsch, Nagler, and

Subrahmanyam (2014), and Pintér and Üslü (2022), among others.

Differently from the search-based models of price dispersion, the “representative” trader

has different information at different points during the trading session in our model. Thus, our

model generates price dispersion even in the absence of bilateral negotiations. Then, a natural

question is how the representative trader’s information state evolves in the absence of news.

This question relates to how the diffusion process (1) for Zt is interpreted. In the spirit of

Amador and Weill (2012), we interpret the process (1) as progressively revealing the news at

t = 0 to broader sets of traders over time rather being additional arrival of “new” information.

4 Information acquisition

So far, we have studied the equilibrium of the trading game by taking as given the fraction

of informed traders. In this section, we study the traders’ endogenous information acquisition

decisions. Assume that a trader becomes an informed trader if she pays a cost of C at time

t = 0− before her initial endowment realizes. She becomes an uninformed trader otherwise.
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Using Lemma 1, a trader decides to be informed if

−eγCE
[
e−

1
2(µinft −P̃t(θ̂t,θ,a1,a2))

2
Sinf
t

]
≥ −E

[
e−

1
2(µuninf,at −P̃t(θ̂t,θ,a,a−))

2
Suninf
t

]
, (15)

where the expectation is taken over the random variables θ, a1, a2, θ̂t, and t. The following

Lemma derives an interpretable version of this optimality condition.

Lemma 2. Emphasizing its dependence on α through Φ and β (t), let

ω (α, t) =

√√√√ Sθ + t/σ2

Sθ + t/σ2 + Sε +
(

1 + Sθ+t/σ2

Φ2SA

)
(β (t))2 Sε

(16)

denote a measure of expected benefit of accessing the market at time t as an uninformed trader

when the fraction of informed traders is α. Then, a trader finds it weakly optimal to be informed

if

eγC ≤

∞∫
0

√
1 + γ2Sε

γ2Sθ+γ2t/σ2+α2S2
εSA

ω (α, t)λe−λtdt

∞∫
0

ω (α, t)λe−λtdt

, (17)

and strictly optimal if the inequality is strict.

This optimality condition (17) reveals how traders will make their information acquisition

decisions. The LHS is the utility cost of acquiring information, while the RHS is its utility

benefit. Due to the exponential utility assumption, the latter (RHS) is the ratio of the ex-

pected (gross) utility of trading as an informed trader to the expected utility of trading as

an uninformed trader.7 If the LHS of (17) is strictly larger than its RHS, no one will acquire

information and the equilibrium fraction of informed traders will be zero, α = 0. If the LHS is

strictly smaller, however, everyone will acquire information and, then, α = 1. As in Grossman

and Stiglitz (1980), the only possibility to obtain an equilibrium with the co-existence of in-

formed and uninformed traders is that the LHS and the RHS are equal to each other and every

trader has a mixed strategy, that is, they choose to be informed with probability α ∈ (0, 1)

such that

eγC =

∞∫
0

√
1 + γ2Sε

γ2Sθ+γ2t/σ2+α2S2
εSA

ω (α, t)λe−λtdt

∞∫
0

ω (α, t)λe−λtdt

. (18)

7Proving Lemma 2 amounts to moving the expectation on the LHS of (15) to the RHS and multiplying both
sides with −1, which yields the optimality condition (17).

19



When σ = ∞ or λ = ∞, we are at the Grossman and Stiglitz (1980) case and ω does not

affect the indifference condition (18). As a result, the RHS in this special case is obviously

strictly decreasing in α, which guarantees a unique equilibrium α:

eγC =

√
1 +

γ2Sε
γ2Sθ + α2S2

εSA
. (19)

Intuitively, if information is not short-lived or if there are no trading delays, the utility benefit

of acquiring information is not affected by the time of trading. If information is not short-

lived, the economy, and hence, the resulting market price is stationary as the “representative”

trader has the same information at any point in time. If there are no trading delays, everyone

trades immediately at t = 0 at the same price before any information dispersion arises amongst

uninformed traders. Thus, in both cases, the integrals in the numerator and the denominator

of (18) are “degenerate” and so ωs cancel each other out, which leads to (19). However, in our

model with short-lived information and trading delays, σ < ∞ and λ < ∞, and so, traders

face a non-degenerate distribution of trading times over an infinite horizon, when making their

information acquisition decisions at t = 0.

Proposition 5. Suppose γ2 < SθSεSA
Sθ+Sε

. Then, there exists a unique equilibrium fraction α? ∈
[0, 1] of informed traders. It satisfies the following comparative statics:

∂α?

∂σ
≥ 0,

∂α?

∂λ
≥ 0, and

∂α?

∂C
≤ 0.

These inequalities are strict for α? ∈ (0, 1).

Proposition 5 states that, if traders’ risk aversion is not too high, there exists a unique

equilibrium fraction of informed traders.8 As C increases, naturally, a lower fraction of traders

become informed as in Grossman and Stiglitz (1980). The novel comparative statics implied by

our model are with respect to how long-lived the informational advantage is (σ) and liquidity

(λ). Intuitively, if the informational advantage is shorter-lived, a lower fraction traders choose

to be informed because of their worry that their private information may become effectively

public before they are able to benefit from it, because trading is not instantaneous in this illiquid

market. Relatedly, keeping the expected lifespan of the information constant, if market liquidity

improves, the Proposition implies that a larger fraction of traders will become informed.

8This condition on risk aversion is a sufficient condition for unique α? because it guarantees that the net
benefit of becoming informed is monotone for all α ∈ [0, 1]. Numerical examples suggest that even if this
condition is severely violated (e.g., for γ a hundred times larger than the stated upper bound), the net benefit of
becoming informed is monotone for a large spectrum of αs apart from very small α ' 0, which means that the
Proposition holds for a larger spectrum of parameters than implied by the sufficient condition in its statement.
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Figure 3: Benefit of becoming informed as measured by the RHS of Equation (18) for
varying levels of λ on the left panel and for varying levels of σ on the right panel. Parameter

choices: γ = 2, Sθ = Sε = 1, and SA = 10.

Figure 3 offers a graphical portrayal of Proposition 5. Given the effective cost eγC of ac-

quiring information, one can use the benefit functions depicted in Figure 3 to determine the

equilibrium fraction α? of informed traders for varying levels of λ and σ. For example, if

eγC = 1.3 and λ = ∞, the left panel implies a large α? ≈ 0.47, which coincides with the frac-

tion of informed traders that would obtain in the Grossman and Stiglitz (1980) environment.

If λ is reduced to 60 by keeping eγC = 1.3, now a smaller fraction of traders become informed,

α? ≈ 0.4 < 0.47. If λ is further reduced to 20 or below, none of the traders become informed,

α? = 0. Similarly, by inspecting the right panel of Figure 3, one sees that the Grossman and

Stiglitz (1980) result obtains when σ =∞ in this case, and the equilibrium fraction of informed

traders decreases as σ decreases, consistent with Proposition 5.

4.1 Market efficiency

Corollary 2 of Section 3.2 offers intuitive comparative statics about the market efficiency (RPE).

The market is informationally more efficient if the fraction of informed traders (α) is higher,

the variability of payoff after purchasing information is lower (i.e., Sε is higher), uncertainty
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regarding the asset endowment of other traders is lower (i.e., SA is higher), and traders are less

risk averse. We argued in Section 3.2 that it was striking that trading delays and the short-lived

nature of the private information do not matter for the price informativeness. Now, the new

results with endogenous information acquisition imply that the market efficiency is affected by

trading delays and the short-lived nature of the private information through the equilibrium

level of informed trading, α?.

Bai, Philippon, and Savov (2016) find that RPE increased for Standard & Poor’s (S&P)

500 firms between 1960 to 2014. They further analyze the factors behind this increase and find

that (i) it is not caused by changes in return predictability because the predictable component

of returns is quite stable, and (ii) it is likely caused by information production. Through the

lens of our model, the findings of Bai, Philippon, and Savov (2016) indicate that what is behind

the increase in RPE is an increase in α?, and not an increase in Sε. Our model offers theoretical

insights into these findings because α? is endogenous in our model. An important determinant

of α? in our model is λ as shown by Proposition 5. It can be argued that λ increased during

1960-2014 because “[t]rading costs have fallen, and liquidity has increased by the orders of

magnitude” (Bai, Philippon, and Savov, 2016, p. 625). Accordingly, our model implies that α?

increased during the same period (keeping everything else constant).

In addition to the time-series evidence highlighted above, Bai, Philippon, and Savov (2016)

have indirect cross-sectional evidence for the positive relationship between λ and informational

efficiency implied by our model. They show that FPE is higher for high-turnover firms com-

pared to low-turnover firms. Because FPE is a measure that subsumes RPE, FPE tends to

increase as α? increases as well. Thus, this can be considered an indirect evidence for higher λ

being the reason behind higher RPE.9 In Section 5 of our paper, we, instead, provide direct

cross-sectional evidence for this channel of our model by using transaction-level data from the

UK corporate bond market. We use two proxies for RPE that are commonly employed in the

market microstructure literature. We show that bonds with larger average number of daily

transactions, which is the direct counterpart of λ in our model, exhibit higher informational

efficiency implied by both proxies.10

9Bai, Philippon, and Savov (2016) do not use turnover in their formal analysis of RPE. Instead, they conduct
their formal analysis of turnover by looking at FPE, and make an indirect inference for RPE: “These results
show that higher liquidity is associated with higher price informativeness. As liquidity has risen significantly
over time, this finding supports the view that rising liquidity has contributed to the observed rise in price
informativeness and an increase in RPE” (p. 644).

10The two proxies are the return autocorrelation measure of Hendershott and Jones (2005) and the price delay
measure of Hou and Moskowitz (2005), which are both inversely related with RPE. See Section 5.2 for more
information.
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While trading technologies and liquidity have improved substantially, which reduced trading

delays during 1960-2014, these are not the only big changes happening in the financial sector.

Indeed, the last decade has witnessed a substantial growth of “big data” financial technology.

Thus, it is natural to ask how the market efficiency changes in response to traders’ easier

access to useful information. We contrast two possible scenarios: a decline in the information

acquisition cost, C, representing traders’ access to better datasets and more sophisticated data

analysis technologies, or a decline in the noise of information revelation, σ, representing the

shorter-lived nature of private information due to the technology allowing traders to extract

others’ information, which is a common concern about big data financial technologies as stated

by Farboodi and Veldkamp (2019).

Proposition 5 and Corollary 2 indicate that while market efficiency improves in response

to a decline in the information acquisition cost, it worsens in response to private information

becoming shorter-lived. Hence, the impact of the growth of financial technology on market

efficiency is ambiguous because both effects are, in principle, present for any asset albeit with

different strengths. Bai, Philippon, and Savov (2016) present evidence consistent with this

ambiguity: stock market efficiency exhibits a secular decline for the universe of all firms, while

it exhibits a secular increase for the S&P500 firms. Our model rationalizes their findings if the

improvement in market efficiency from the decline in C is dominated by (resp. dominates) the

decline in market efficiency from the decline in σ for the universe of all firms (resp. the S&P500

firms). Table C.2 of Bai, Philippon, and Savov (2016, p. 653) shows that the magnitude of the

decline in market efficiency for the universe of all firms is highest for the 3-year horizon during

the 2010-2014 period of their dataset, when the big data arguably plays the most prominent

role in their dataset.

4.2 Equilibrium price dynamics with information acquisition

In Section 3.3, we studied how the average price discount and the price variance depend on

trading delays by taking as given the fraction of informed traders. However, the theoretical and

empirical discussions above indicate that the level of trading delays is a first-order determinant

of equilibrium information acquisition incentives, and so, as trading delays vary, the equilibrium

fraction of informed traders vary as well, at least in the medium or long run. Thus, an important

question is whether the patterns in Figure 2 are qualitatively robust to endogenous information

acquisition. To this end, we reproduce below the results of Figure 2 with equilibrium information

acquisition, presented along with the fixed exogenous α = 0.3 as earlier.
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Figure 4: Average price discount as given by (13) and the price variance when a1 = a2 = 0
as given by (14), plotted as functions of λ. Parameter choices: C = 0.054, γ = 2, σ = 0.05,

Sθ = 0, Sε = 1, and SA = 10.

For the same parametrization in Figure 2, Figure 4 reveals that the effect of trading delay on

price dynamics is very different when trading delays are severe enough to prohibit all information

acquisition (λ < 50, α? = 0) and when trading delays are moderate so that there are some

informed traders (λ > 50, α? > 0, and α? is increasing in λ). Similar to Figure 2, when trading

delays are very severe, a mitigation of delays increases average price discount in its absolute

value but this time the effect is even stronger. This is because, in Figure 4, the entire population

of traders is uninformed. While only a fraction 0.7 of traders start trading early with worse

precision in Figure 2, now the entire population (fraction one) of traders start trading with

worse precision, and so, the price discount deepens very quickly. The worst discount is reached

around λ = 50, when trading delays are severe enough to still prohibit information acquisition,

but moderate enough to allow uninformed traders to trade early on average when their signal

precision is weak. The right panel of Figure 4 also shows that the price variance reaches its

maximum around the same level because this large population of uninformed traders gain access

to the market at dispersed times.

Once λ exceeds a certain threshold both the average price discount and the price variance

change direction very quickly. As λ increases further from this threshold, the average price

discount gets smaller and smaller because informed traders with higher information precision
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start trading. This also increases the informativeness of the equilibrium price process, which

increases the precision of uninformed trading as well. Similarly, price variance exhibits a sharp

decline because traders’ valuations become closer together thanks to the information that in-

formed traders bring to the market.

One can decompose the average price discount (13) as the negative of the sum of a payoff

risk premium (γ/Sε) and a liquidity risk premium, because the former is independent of λ and

the latter depends on λ. Then, a broader message of the example in Figure 4 is that illiquidity

premium and price dispersion can be non-monotonic functions of λ in a model with endogenous

information acquisition. To our knowledge, this is a novel result and in sharp contrast with

the existing illiquid market models with exogenous information, which predict that illiquidity

premium11 and price dispersion12 are monotone increasing in trading delays. In Section 5, we

provide novel empirical evidence for the non-monotonic relationship between trading delays and

price dispersion by using transaction-level data from the UK corporate bond market. We leave

the empirical analysis of illiquidity premium for future work because disentangling payoff risk

premium and illiquidity premium requires a structural approach, which goes beyond the scope

of the reduced-form empirical analysis we provide in Section 5.13

5 Novel empirical evidence

The theory developed in previous sections yields two testable predictions, summarized as fol-

lows.

Prediction 1 (Informational efficiency). Informational efficiency is negatively related to trading

delays, as implied by Proposition 5 and Corollary 2.

Prediction 2 (Price dispersion). Price dispersion is non-monotonic in trading delays, i.e.,

price dispersion is lowest for the very thinly and the very actively traded assets, as implied by

Corollary 4.

5.1 Data and measurement

To test these two predictions, we use a transaction-level data from the UK corporate bond

market, sourced by the UK Financial Conduct Authority. The dataset contains information on

11See, for example, Duffie, Gârleanu, and Pedersen (2005), Duffie, Gârleanu, and Pedersen (2007), and He
and Milbradt (2014).

12See, for example, Afonso and Lagos (2015), Hugonnier, Lester, and Weill (2015), and Üslü and Velioğlu
(2019).

13Among others, see d’Avernas (2017) and Chen, Cui, He, and Milbradt (2018) for such structural work.
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the identities of counterparties, the transaction time, the transaction price and quantity, the

International Securities Identification Number, and buyer-seller flags.14 Our sample covers the

period between August 2011 and December 2017. We include all available transactions (e.g.,

including client-dealer as well as interdealer trades). We follow Czech and Pinter (2020) in

matching our transaction-level data with information on time-to-maturity as well as bond rat-

ings from Thomson Reuters Eikon, covering the three major rating agencies Moody’s, Standard

& Poor’s (S&P), and Fitch.15 For each bond, we take the modal value of the rating during the

lifetime of the given bond in our sample.

To measure trading delays at the bond-day level, we use the trade-level data to compute

the number of daily transactions in the given bond. For each bond, we compute the average

number of daily transactions across the trading days in order to measure trading frequency (the

inverse of trading delays) at the bond-level. Moreover, we compute measures of price dispersion

in the spirit of Jankowitsch, Nashikkar, and Subrahmanyam (2011). Specifically, we compute

for each transaction k in bond i the following measure:

σk = (log (pk)− log (mi,t))
2 , (20)

where pk is the transaction price corresponding to trade k, and mi,t is the average daily trans-

action in bond i on day t. We then compute price dispersion, Σi, as the square root of the

average values of σk in each bond i, expressed in basis points. We construct dispersion both at

the bond- and the bond-day levels.

In Table 1, we present summary statistics for the variables used in the regression analyses

below. Panel A shows the results at the bond-level. Across the 2,776 bonds, average trading

frequency amounts to about 4-5 daily number of transactions. The mean and median of price

dispersion are around 16-17 bps and 19-20 bps, respectively, with weighted and unweighted

measures yielding similar values. The mean of year-to-maturity (9.4 years) is above the median

(5.6 years), which is due to some corporate bonds in the sample having very long (more than

50 years) maturity. The median bond has a credit rating of BBB-.

14All transaction prices are clean prices (so they do not include accrued interest). For further details on the Zen
dataset, see the Transaction Reporting User Pack: https://www.fca.org.uk/publication/finalised-guidance/fg15-
03.pdf. Recent applications of the dataset can be found in Czech and Roberts-Sklar (2019), Czech, Huang, Lou,
and Wang (2021), and Pintér and Üslü (2022) among others.

15Our default option is to use ratings from Moody’s due to the firm’s vast market coverage, and to use S&P
ratings if ratings from Moody’s are unavailable for a certain bond. Fitch ratings as a third option if necessary.
Credit ratings in our dataset take 24 numerical values (1=AAA, 2=AA+, 3=AA, 4=AA-, 5=A+, 6=A, 7=A-,
8=BBB+, 9=BBB, 10=BBB-, 11=BB+, 12=BB, 13=BB-, 14=B+, 15=B, 16=B-, 17=C, 18=C+, 19=CC,
20=CC+, 21=CC-, 22=CCC, 23=CCC+, 24=DDD).
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Panel B of Table 1 presents the results at the bond-day level. Trading frequencies continue to

average around 4-5 daily number of observations (though they have a larger standard deviation

compared to the bond-level, i.e. 7.9 vs 3.9 transactions). The mean (12 bps) and median (16

bps) of price dispersion are smaller than at the bond-level, which is driven by the fact that

bonds with low price dispersion tend to trade on more days than bonds with higher dispersion.

Similarly, the median credit rating is 8 (corresponding to BBB+ rating) at the bond-day level,

which is higher than the median (BBB-) at the bond-level. This is due to investment-grade

bonds being traded on more trading days than high-yield bonds.

Table 1: Summary Statistics

(1) (2) (3) (4) (5) (6)

mean p25 p50 p75 sd N

Panel A: Bond Level

Trading Frequency 4.90 3.28 4.05 5.30 3.90 2,776

Price Dispersion (W) 20.65 6.88 16.97 29.04 18.84 2,776

Price Dispersion (U) 19.01 7.13 16.32 27.14 16.42 2,776

Maturity 9.38 2.82 5.56 12.61 10.23 2,776

Credit Rating 12.48 6.00 10.00 23.00 8.24 2,776

Panel B: Bond-Day Level

Trading Frequency 5.22 2.00 4.00 6.00 7.89 625,925

Price Dispersion (W) 12.18 0.00 3.35 16.18 19.94 625,925

Price Dispersion (U) 12.11 0.00 3.47 16.46 19.41 625,925

Maturity 9.40 3.45 6.35 12.22 10.98 625,925

Credit Rating 9.74 6.00 8.00 11.00 6.66 625,925

Notes: This table reports summary statistics at the bond-level and the day-bond level. Trading frequency is measured as the number
of daily transactions in the given bond. Price dispersion is the square root of either the trade-size weighted (W) or unweighted
(U) mean of squared price deviations (see formula (20)) in basis points. Maturity is measured by years-to-maturity. Credit ratings
take 24 numerical values (1=AAA, 2=AA+, 3=AA, 4=AA-, 5=A+, 6=A, 7=A-, 8=BBB+, 9=BBB, 10=BBB-, 11=BB+, 12=BB,
13=BB-, 14=B+, 15=B, 16=B-, 17=C, 18=C+, 19=CC, 20=CC+, 21=CC-, 22=CCC, 23=CCC+, 24=DDD).

5.2 Testing Prediction 1

To test the theoretical prediction regarding informational efficiency, we follow Indriawan, Pas-

cual, and Shkilko (2022) in measuring price efficiency with two standard metrics: return au-

tocorrelation as in Hendershott and Jones (2005), and price delay as in Hou and Moskowitz

(2005). Both measures build on the notion that time-variation in expected returns is negligible

at high frequency, so returns should be unpredictable over a short time horizon if markets are

informationally efficient. Deviations from return unpredictability could therefore be used as a

proxy for informational inefficiency.

To compute the first measure, we estimate the following time-series regression separately

27



for each bond i:

ri,t = αi + βiri,t−1 + εi,t, (21)

where αi is a constant and ri,t is the daily return of bond i on day t, with returns computed as

the log difference of average daily transaction prices. We then take the absolute values of the

estimated βi coefficients, defined as Bi ≡ |βi|. Larger values of Bi suggests greater inefficiency

in bond i.

As a preliminary step for the construction of the second measure, we estimate the following

time-series regression separately for each bond i:

ri,t = ai +
3∑

n=1

2∑
k=0

bi,k,nfn,t−k +
2∑

k=0

γi,krm,t−k + νi,t (22)

where ai is a constant, fn,t−k is the daily change in the first three principal components of

the UK yield curve, n ∈ {1, 2, 3}, corresponding to the level, slope, and curvature of the yield

curve.16 The term rm,t−k is the daily log return on the FTSE stock index. The inclusion

of both bond market and stock market returns is motivated by the previous literature (e.g.,

Hotchkiss and Ronen (2002)) on the relevance of both markets in affecting short horizon return

dynamics. We then compute the R2 statistics from regression (22) as well as from a variant of

regression (22) which does not include the lagged values of the regressors. We refer to these as

unconstrained, R2
u, and constrained, R2

c , statistics. For bond i, the price delay is then defined

as Di ≡ 1− R2
c/R

2
u, which takes values between zero and one. A larger value suggests greater

inefficiency in bond i.

Given our two measures of price efficiency, we then run the following cross-sectional regres-

sion:

Yi = c+ δλi + controls+ ui, (23)

where Yi = {Bi, Di} is either our measure of absolute autocorrelations or our measure of price

delay; c is a constant; and λi denotes trading frequency measured by the log of average daily

number of transactions in bond i.17 As controls in (23), we include a bond rating dummy which

takes value one if the bond has an investment grade (BBB- or higher) and zero otherwise. In

16We use data on zero-coupon bond yields (with maturity of 1-25 years), as constructed by the Bank of
England. The data can be downloaded from the Bank of England’s website.

17We also experiment with alternative ways of measuring trading delays. Section B of the Appendix re-
estimates regression (23) after we replace the regressor with the natural logarithm of trading volume—defined
as the nominal value of transactions—at the bond-day level. As we can see, all the results are qualitatively the
same as our baseline.
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addition, we sort bonds into four equal sized buckets in terms of years-to-maturity and include

in the regression dummy variables corresponding to each bucket.18

Table 2: Informational Efficiency and Trading Delays

(1) (2) (3) (4) (5) (6)

Return Autocorrelation Price Delay

All Bonds Less Liquid More Liquid All Bonds Less Liquid More Liquid

Panel A: No Controls

λ -0.175*** -0.186*** -0.149*** -0.128*** -0.080** -0.058*

(0.02) (0.03) (0.03) (0.02) (0.03) (0.03)

Constant 0.516*** 0.538*** 0.465*** 0.630*** 0.602*** 0.471***

(0.03) (0.05) (0.05) (0.03) (0.05) (0.06)

N 1080 541 539 1419 711 708

R2 0.073 0.059 0.058 0.024 0.008 0.003

Panel B: With Controls

λ -0.148*** -0.152*** -0.124*** -0.125*** -0.066** -0.076**

(0.02) (0.03) (0.02) (0.02) (0.03) (0.03)

Inv. Grade -0.006 0.024 -0.037** -0.146*** -0.135*** -0.132***

(0.01) (0.02) (0.02) (0.01) (0.02) (0.02)

Maturity=Q2 -0.087*** -0.054** -0.119*** -0.058*** -0.070*** -0.051**

(0.02) (0.03) (0.02) (0.02) (0.02) (0.02)

Maturity=Q3 -0.105*** -0.074*** -0.142*** -0.100*** -0.120*** -0.093***

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Maturity=Q4 -0.156*** -0.147*** -0.169*** -0.143*** -0.165*** -0.138***

(0.01) (0.02) (0.02) (0.02) (0.02) (0.02)

Constant 0.563*** 0.542*** 0.556*** 0.802*** 0.759*** 0.668***

(0.03) (0.05) (0.05) (0.03) (0.05) (0.06)

N 1080 541 539 1419 711 708

R2 0.174 0.126 0.246 0.176 0.166 0.144

Notes: this table presents results from cross-sectional regressions whereby measures of price efficiency are regressed on trading
frequency of corporate bonds. Panel A presents the results without controls, and Panel B presents the results with controls.
Columns 1-3 show the results where the absolute value of return autocorrelation (computed by (21)) is used as the left-hand side
variables. Columns 4-6 show the results where price delay (computed by (22)) is used as the regressand. Trading frequency (the
regressor) is measured as the natural logarithm of the average daily number of transactions in bond i. For a bond to be included in
the time-series regressions ((21) or (22)), it has to have at least 20 daily observations. Less (more) liquid bonds are defined as those
that have approximately less (more) than the median number of daily transactions. The sample covers the period from August
2011 to December 2017. The trade-level dataset covers about 3.8 million transactions, including both client-dealer and inter-dealer
trades. T-statistics in parentheses are based on robust standard errors. Asterisks denote significance levels (* p<0.1, ** p<0.05,
*** p<0.01).

Results from regression (23) are presented in Table 2. Panel A shows the results for the

regression without control variables. We find strong supporting evidence for the first prediction

of the theoretical model: corporates bonds feature lower informational efficiency when they

are traded less frequently. Specifically, columns 1-3 of the Table shows that one log point

increase in the average number of daily transactions in a bond decreases the absolute value of

18The four maturity buckets correspond to 0-3, 4-6, 6-11, and 11+ years to maturity.
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autocorrelation by about 0.15-1.19 points. The effect is larger among less liquid bonds, i.e.,

those bonds that are on average traded less frequently. Columns 4-6 of Table 2 shows that a

one log point increase in trading frequency decreases price delays by about 0.06-0.13 points,

with the effect being statistically and economically more significant among less liquid bonds.

Panel B of Table 2 presents the results when we control for credit rating as well as maturity.

We find that bonds with better rating and higher time-to-maturity tend to be more infor-

mationally efficient. Importantly, while the inclusion of these controls somewhat diminishes

the estimated effect of trading frequency, the coefficients continue to be statistically signifi-

cant, (with some increase in the statistical significance of trading frequency in the price delay

regressions).

5.3 Testing Prediction 2

To test for the theoretical prediction regarding non-monotonic relationship between price dis-

persion and trading delays, we compute average price dispersion and trading delays at the

day-bond level. Then, we estimate the following panel regression:

Di,t = αi + µt + ιλi,t + κλ2
i,t + ui,t, (24)

where αi and µt are bond- and day-level fixed effects, respectively, c is a constant, and λi

denotes trading frequency measured by the log of average daily number of transactions in bond

i, as used above.19 The panel specification thereby allows us to control for time-invariant bond

characteristics as well as for the average effect of macroeconomic shocks that may confound the

dispersion – trading delay relationship. Moreover, we compute average price dispersion in two

ways: unweighted average and trade-size-weighted average price dispersion.

Positive estimates of ι and negative estimates of κ would be consistent with a hump-shaped

non-monotonic relation, predicted by our theoretical model. Table 3 presents the results from

the panel regressions using about 0.63 million bond-day observations. We find strong support

for this second empirical prediction of our theoretical model. In all the regression specifications,

the linear effect of trading frequency is estimated to be positive, whereas the quadratic effect

is negative. This implies a positive relationship between trading frequency and dispersion;

however the relationship changes beyond a certain level of trading frequency.

19Section B of the Appendix re-estimates regression (24) after we replace the regressor with the natural
logarithm of trading volume—defined as the nominal value of transactions—at the bond-day level. As we can
see, all the results are qualitatively the same as our baseline.
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Table 3: Price Dispersion and Trading Delays

(1) (2) (3)

Panel A: Weighted Dispersion

λ 16.550*** 15.568*** 15.854***

(0.57) (0.42) (0.42)

λ2 -2.154*** -2.123*** -2.255***

(0.18) (0.11) (0.11)

N 625927 625665 625662

R2 0.102 0.240 0.275

Panel B: Unweighted Dispersion

λ 17.044*** 15.836*** 16.139***

(0.61) (0.43) (0.43)

λ2 -2.281*** -2.204*** -2.339***

(0.19) (0.11) (0.12)

N 625927 625665 625662

R2 0.107 0.254 0.291

Bond FE No Yes Yes

Day FE No No Yes

Notes: this table presents results from panel regressions whereby measures of price dispersions are regressed on trading frequency
of corporate bonds. The regressor is included in a linear and a quadratic way. The sample covers the period from August 2011 to
December 2017. The trade-level dataset covers about 3.8 million transactions, including both client-dealer and inter-dealer trades.
T-statistics in parentheses are based on robust standard errors, where we also apply two-way clustering at the bond- and day-level.
Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).

To provide a visual illustration of the non-monotonic relationship, we use the most conser-

vative specification (with bond and day fixed effects) to construct a scatter plot as follows. We

purge our bond and day fixed effects from unweighted price dispersion and trading frequency,

and use the obtained 625,662 residuals to draw a scatter plot as shown by Figure 5. The Figure

shows a visibly non-monotonic relation: bond-day observations with intermediate trading de-

lays tend to have higher dispersion compared to bond-day observations with very high or very

low delays.

6 Conclusion

We present an asset market model that aims at bridging the gap between the information ac-

quisition literature and the trading delays literature and provide empirical evidence for its novel

implications. Our model establishes an inverse relationship between trading delays and price

informativeness in equilibrium. Consistent with this implication of our model, we show that

the prices of corporate bonds that are easier (resp. more difficult) to trade are informationally

more (resp. less) efficient in the UK market. Our model also establishes that equilibrium price
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Figure 5: Illustrating the Hump-shaped Relationship between Price Dispersion and Trading
Delays

Notes: the scatter plot is constructed using the 625,662 residuals corresponding to column 4 of Panel B in Table 3. That is, to
obtain the residuals, we estimate Σi,t = αi + µt + νi,t and λi,t = αi + µt + ui,t. The red line is a fitted quadratic regression line.

dispersion is non-monotonic in trading delays. We, again, empirically confirm this relationship

in the cross section of bonds traded in the UK corporate bond market.

Another novel implication of our model is that equilibrium illiquidity premium is non-

monotonic in trading delays. Thus, one avenue for future research that our model leads to is

to investigate the empirical relationship between illiquidity premium and trading delays. This

would require a structural approach because of the necessity of decomposing risk premia into

a payoff risk premium and an illiquidity risk premium.

Theoretical introspection leads to further avenues for future research. Because our model

focuses on studying market-wide trading delays, it makes the assumption that uninformed

and informed traders are subject to the same level of trading delays. One potential extension

is to allow for heterogeneity in trading delays across traders. With endogenous information

acquisition, this would allow one to study how different traders sort into different information

types in equilibrium. Second, because trading delays are an important determinant of traders’

information acquisition incentives and implicitly of their trading activity, it is natural to think

that, at least in the long run, market makers would adjust their trade execution speed as a
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strategic response to traders’ optimal information acquisition and trading activity. In order to

analyze this (long-run) relationship, one could study the market makers’ endogenous investment

in execution speed.
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A Proofs

A.1 Proof of Corollary 2

Using (7), (8), (11), and the posterior variance formula for normally distributed random vari-

ables (Equation (2.4) of Veldkamp (2011, p. 12)),

V [θ |Pt] =
(1− β (t))2

Sθ + t/σ2
+

2

SA

(
β (t)

Φ

)2

,

V
[
θ | {Zs}s∈[0,t] , a

]
=
(
Sθ + t/σ2

)−1
,

and

V
[
θ | {Zs}s∈[0,t] , a, Pt

]
=
(
Sθ + t/σ2 + Φ2SA

)−1
.

Then, using the definitions

FPEt ≡ (V [θ |Pt])−1

and

RPEt ≡
(
V
[
θ | {Zs}s∈[0,t] , a, Pt

])−1

−
(
V
[
θ | {Zs}s∈[0,t] , a

])−1

.

and using the fact that Φ = −αSε
γ

, the formulas of the Corollary follow.

A.2 Proof of Proposition 3

EC [P ] ≡ E
[
P̃t

(
θ̂t, θ, a1, a2

)
| θ, a1, a2

]
= E

[
E
[
P̃t

(
θ̂t, θ, a1, a2

)
| t, θ, a1, a2

]
| θ, a1, a2

]
= E

[
E
[
(1− β (t)) θ̂t + β (t)
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2Φ

)
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]
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2Φ

)
| θ, a1, a2

]
= E

[
(1− β (t)) θ + β (t)

(
θ +

a1 + a2

2Φ

)
| θ, a1, a2

]
= θ +

a1 + a2

2Φ
E [β (t)] = θ +

a1 + a2

2Φ

∞∫
0

α (t/σ2 + Sε) + Φ2SA
t/σ2 + αSε + Φ2SA

λe−λtdt
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which implies (13) because Φ = −αSε
γ

and

∞∫
0

δ

x+ δ
λσ2e−λσ

2xdx = λσ2δeλσ
2δΓ
(
0, λσ2δ

)
.

The first line above follows from the law of iterated expectations, the second line from (11),

the third and fourth lines from (7), the fifth line because t is exponentially distributed with

parameter λ, the sixth line by rearranging, and the last line using δ = αSε + Φ2SA and with

the change of variable x = t/σ2.

Following similar steps,
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A.3 Proof of Corollary 4

Define B = λσ2δ and A = BeBΓ (0, B). Then,

∂A

∂B
(B) = eBΓ (0, B) +BeBΓ (0, B) +BeB

∂Γ

∂B
(0, B) = (1 +B) eBΓ (0, B)− 1
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where APD = EC [P ]−θ
(a1+a2)/2

and the inequality follows because the term inside the curly bracket is

positive for λ > 0.

Rewrite (14):
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Then, one can verify that
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which implies the Corollary because B = λσ2δ.
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A.4 Proof of Lemma 2

Using the fact that θ is normally distributed, one can show that

E
[
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1
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=

√
Sθ + t/σ2 + Φ2SA
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E
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2
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.20

Then, applying the law of iterated expectations,

E
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2
Sinf
t | t

]
=
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E
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2
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]
.

Substituting into (15) and further applying the law of iterated expectations, (15) becomes

eγCE
[
E
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1
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2
Sinf
t | t
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≤ E

[√
Sθ + t/σ2 + Sε + Φ2SA
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E
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2
Sinf
t | t

]]
,

where the outer expectation is taken over t.

Because the sum of normally distributed random variables is normally distributed as well,

P̃t

(
θ̂t, θ, a1, a2

)
is normally distributed conditional on t. Using the fact that P̃t

(
θ̂t, θ, a1, a2

)
is

conditionally normally distributed and using the law of iterated expectations,

E
[
e−

1
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2
Sinf
t | t
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√√√√ Sθ + t/σ2

Sθ + t/σ2 + Sε +
(

1 + Sθ+t/σ2

Φ2SA

)
(β (t))2 Sε

.

Since t is exponentially distributed with parameter λ, the inequality stated in the Lemma

obtains.

A.5 Proof of Proposition 5

Let

H =

∞∫
0

√
1 + γ2Sε

γ2Sθ+γ2t/σ2+α2S2
εSA

ω (α, t)λe−λtdt

∞∫
0

ω (α, t)λe−λtdt

− eγC .

20See Veldkamp (2011, p. 90) for a similar derivation.
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To prove that there exists a unique equilibrium α?, it suffices to show that H is a strictly

decreasing function of α. To begin with, we calculate the first derivative of H with respect to

α, applying Lebesgue dominated convergence theorem21 whenever necessary:

∂H

∂α
= −1

2

∞∫
0

(
1 + γ2Sε

γ2Sθ+γ2t/σ2+α2S2
εSA

)−1/2
2αγ2S3

εSA
(γ2Sθ+γ2t/σ2+α2S2

εSA)2
ω (α, t)λe−λtdt

∞∫
0

ω (α, t)λe−λtdt

+
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0
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εSA
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εSA
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∞∫
0

ωα (α, t)λe−λtdt(∞∫
0

ω (α, t)λe−λtdt

)2

≤ −1

2

∞∫
0

(
1 + γ2Sε

γ2Sθ+γ2t/σ2+α2S2
εSA

)−1/2
2αγ2S3

εSA
(γ2Sθ+γ2t/σ2+α2S2

εSA)2
ω (α, t)λe−λtdt

∞∫
0

ω (α, t)λe−λtdt

+

√
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γ2Sθ+α2S2
εSA

∞∫
0
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0
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−
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0
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0
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,

where ωα (·, ·) refers to the first derivative of ω (·, ·) with respect to its first argument. Thus, to

establish ∂H
∂α

< 0, it suffices to show that ωα (·, t) < 0 for all t ≥ 0.

Using (16) and Proposition 1,

ωα (α, t) =
(ω (α, t))3 (β (t))2

(Sθ + t/σ2)α3SεSA

(
γ2
(
Sθ + t/σ2

)
− α

[
γ2
(
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)
+ α2S2

εSA
] d log β (t)

dα

)
and

d log β (t)

dα
=
γ2 (Sθ + t/σ2 + Sε) + 2αS2

εSA
αγ2 (Sθ + t/σ2 + Sε) + α2S2

εSA
− γ2Sε + 2αS2

εSA
γ2 (Sθ + t/σ2 + αSε) + α2S2

εSA

=
γ2 (Sθ + t/σ2) (αγ2 (Sθ + t/σ2 + Sε) + (2− α)α2S2

εSA)

α (αγ2 (Sθ + t/σ2 + Sε) + α2S2
εSA) (γ2 (Sθ + t/σ2 + αSε) + α2S2

εSA)
.

21See, for a reference, Hutson, Pym, and Cloud (2005, p. 55).
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In turn, it suffices to show that

ωα (α, t) =
(ω (α, t))3 (β(t))2 γ2

α2SA

× γ4 (Sθ + t/σ2 + Sε) + γ2SεSA (αSε − (1− α) (Sθ + t/σ2))− (1− α)α2S3
εS

2
A

(γ2 (Sθ + t/σ2 + Sε) + αS2
εSA) (γ2 (Sθ + t/σ2 + αSε) + α2S2

εSA)
< 0.

Because we want that this inequality is satisfied for all α ∈ (0, 1), via continuity, a necessary

condition emerges when α = 0:

SεSA (Sθ + t/σ2)

Sθ + t/σ2 + Sε
> γ2,

which is implied by the condition stated in the Proposition as the LHS is increasing in t,

establishing the uniqueness of the equilibrium α?:

α? =


0 if αs ≤ 0

αs if αs ∈ (0, 1)

1 if αs ≥ 1

where αs solves H = 0.

To obtain the comparative statics in the Proposition, we make use of the implicit function

theorem:

∂α

∂σ
= −
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∂σ
∂H
∂α

,
∂α

∂λ
= −

∂H
∂λ
∂H
∂α

, and
∂α

∂C
= −

∂H
∂C
∂H
∂α

.

We have already established that ∂H
∂α

< 0. To complete the comparative statics, we calculate the

remaining derivatives, applying Lebesgue dominated convergence theorem whenever necessary:
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where the inequality follows because dω(α,t)
dσ

< 0, which is immediately obvious from the following

re-written version of ω (α, t):

ω (α, t) =

√√√√ 1

1 + Sε
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SεSA
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[∞∫
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dt(∞∫
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)2 > 0

because
√

1 + γ2Sε
γ2Sθ+γ2t/σ2+α2S2

εSA
is decreasing in t, and

∂H

∂C
= −γeγC < 0,

which gives us the comparative statics stated in the Proposition.
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B Additional tables

Table 4: Informational Efficiency and Trade Volume

(1) (2) (3) (4) (5) (6)

Return Autocorrelation Price Delay

All Bonds Less Liquid More Liquid All Bonds Less Liquid More Liquid

Panel A: No Controls

λ -0.035*** -0.046*** -0.034*** -0.048*** -0.035*** -0.073***

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Constant 0.757*** 0.948*** 0.724*** 1.154*** 1.025*** 1.471***

(0.08) (0.16) (0.10) (0.09) (0.15) (0.12)

N 1080 541 539 1419 711 708

R2 0.037 0.035 0.061 0.040 0.016 0.125

Panel B: With Controls

λ -0.033*** -0.046*** -0.033*** -0.032*** -0.024** -0.059***

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Inv. Grade 0.012 0.041** -0.005 -0.131*** -0.124*** -0.097***

(0.01) (0.02) (0.02) (0.01) (0.02) (0.02)

Maturity=Q2 -0.111*** -0.078*** -0.138*** -0.082*** -0.082*** -0.074***

(0.02) (0.03) (0.02) (0.02) (0.02) (0.02)

Maturity=Q3 -0.129*** -0.104*** -0.160*** -0.122*** -0.137*** -0.104***

(0.01) (0.02) (0.02) (0.02) (0.02) (0.02)

Maturity=Q4 -0.163*** -0.165*** -0.169*** -0.146*** -0.174*** -0.124***

(0.01) (0.02) (0.02) (0.02) (0.02) (0.02)

Constant 0.826*** 1.024*** 0.828*** 1.098*** 1.027*** 1.409***

(0.08) (0.15) (0.09) (0.10) (0.15) (0.12)

N 1080 541 539 1419 711 708

R2 0.156 0.125 0.258 0.170 0.167 0.211

Notes: this table presents results from cross-sectional regressions whereby measures of price efficiency are regressed on trade volume
of corporate bonds. Panel A presents the results without controls, and Panel B presents the results with controls. Columns 1-3
show the results where the absolute value of return autocorrelation (computed by (21)) is used as the left-hand side variables.
Columns 4-6 show the results where price delay (computed by (22)) is used as the regressand. Trade volume (the regressor) is
measured as the natural logarithm of the daily sum of nominal value of transactions in bond i. For a bond to be included in the
time-series regressions ((21) or (22)), it has to have at least 20 daily observations. Less (more) liquid bonds are defined as those
that have approximately less (more) than the median number of daily transactions. The sample covers the period from August
2011 to December 2017. The trade-level dataset covers about 3.8 million transactions, including both client-dealer and inter-dealer
trades. T-statistics in parentheses are based on robust standard errors. Asterisks denote significance levels (* p<0.1, ** p<0.05,
*** p<0.01).
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Table 5: Price Dispersion and Trade Volume

(1) (2) (3)

Panel A: Weighted Dispersion

λ 0.688*** 1.992*** 1.986***

(0.10) (0.07) (0.07)

λ2 -0.000*** -0.000*** -0.000***

(0.00) (0.00) (0.00)

N 625927 625665 625662

R2 0.004 0.192 0.231

Panel B: Unweighted Dispersion

λ 0.652*** 2.022*** 2.018***

(0.10) (0.06) (0.06)

λ2 -0.000*** -0.000*** -0.000***

(0.00) (0.00) (0.00)

N 625927 625665 625662

R2 0.004 0.206 0.246

Bond FE No Yes Yes

Day FE No No Yes

Notes: this table presents results from panel regressions whereby measures of price dispersions are regressed on trade volume of
corporate bonds. Trade volume (the regressor) is measured as the natural logarithm of the daily sum of nominal value of transactions
in bond i. The regressor is included in a linear and a quadratic way. The sample covers the period from August 2011 to December
2017. The trade-level dataset covers about 3.8 million transactions, including both client-dealer and inter-dealer trades. T-statistics
in parentheses are based on robust standard errors, where we also apply two-way clustering at the bond- and day-level. Asterisks
denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).
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