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1. Introduction

Policy rates at the effective lower bound - and in some cases even negative - over

sustained periods, substantially reduced the available headroom for central banks

to respond using conventional interest rate instruments. As a result, many central

banks resorted to other, non-traditional or unconventional policies to restore price

and financial stability (e.g. Swanson, 2021; Inoue and Rossi, 2019). These unconven-

tional policies include Large Scale Asset Purchases – the purchase of large quantities

of financial assets, typically Government or other highly-rated bonds, Forward Guid-

ance – announcements about the future path of short-term interest rates or liquidity

measures, and Swap Lines – readiness to increase the supply of domestic currency

to other central banks.

Little is known regarding the impact of such policies on the tail risks of exchange

rates. However, anecdotal evidence highlights their importance and considerable

impact on investors and financial markets.1

In this paper, we set out to address the following question: What is the impact

of central bank measures on the tail risk of exchange rate returns?

Our theoretical framework allows for a decomposition of FX tail risk into its

components which are then relatively straightforward to estimate; these tail risk

components are based on a factor model for asset returns and disentangle systematic

from idiosyncratic tail risks using VaR-type thresholds in an intuitive and mutually-

1For example, one of the largest one-day depreciation of the JPY in recent years ensued the Bank
of Japan’s announcement of an expansion of its asset purchase program which led to substantial
turbulence in the market (see “Currency-trading volumes jump” Wall Street Journal, January 27,
2015). Similarly, the de-pegging of the CHF from EUR by the Swiss National Bank in January
2015 gave rise to a tail event in the CHF/EUR exchange rate which in turn led to the bankruptcy of
several financial firms, with potential impact to financial stability. Yet another example is the sharp
depreciation of the ‘Fragile Five’ (Brazil, India, Indonesia, Turkey, and South Africa) currencies
in response to the U.S. Fed’s announcement on 22 May 2013 that it intended to start tapering
asset purchases at some future date. The capital outflows that ensued increased the large current
account deficits of these countries with serious repercussions for their economies (see “‘Fragile five’
countries face taper crunch” Financial Times, December 17, 2013).
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consistent way. We then regress these metrics of the tail risk components against a

number of policy measure indicators.

Our extensive empirical analysis suggests there is a cross-border transmission

channel of central bank (monetary and liquidity) measures, via the tail risk of the

FX market. This can have sizeable implications for portfolio allocations and capital

flows, risk management and financial stability.

Indeed, we find that unconventional (or non-traditional) policy measures have

an impact on the systematic component of tail risk of currencies. This transmission

is larger for measures such as Asset Purchase Programme and Swap Lines, particu-

larly since the Euro Area Debt Crisis. The effects are persistent for up to 1 month.

Moreover, the effects are stronger for countries that have forcefully engaged in uncon-

ventional monetary policy. Perhaps most importantly and rather intuitively, we find

that joint QE actions increase substantially the systematic component of FX tail risk,

and proportionally more to when only one central bank implements QE measures.

This evidence suggests a reinforcement of monetary policy effects and enhancement

of its international transmission channel. This distinction across instruments, time

and persistence is novel in the literature.

Though arguably short-lived (up to 1 month), the tail impact is particularly

pronounced for some instruments. This cross-border source of tail risk is largely

undiversifiable and present for all central banks, irrespective of whether they have

an explicit exchange rate target, even after controlling for the U.S. dollar dominance

and the effects of their own monetary policy stance. Moreover, there is significant

time and instrument variation. In addition, the impact is even larger if variation is

proxied by the short end of the yield curve. Lastly, our empirical evidence confirms

the central role played by the Fed’s monetary policy.

We examine the impact of policy announcements and actions undertaken by
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various central banks on realizations2, rather than perceptions, of exchange rate tail

risk that materialised over the period. This is an important conceptual difference,

as our approach focuses on the actual (or realized) effect of policy, including any

persistence.3

We take a longer or more “secular” view as we study the transmission effects of

monetary and liquidity actions over a period from January 2000 to July 2020 across

the bulk of advanced economies (nine in total), on their respective currencies against

USD. As far as we are aware, this is wider, deeper and covers a longer horizon than

any existing study. It is also global in scope, as we cover around 85% of all FX trades

in our study. We argue that changes in the medium and long-term implied yields

shape currency tail risk but only through its impact on the front end of the curve. An

additional argument we highlight is that after controlling for economic fundamentals,

it is unlikely that changes in currency tail risk shape medium or long-term implied

yields of sovereign bonds.4

The paper proceeds as follows. In Section 2, we review briefly the extensive

literature that straddles several areas of finance and economics. Section 3 presents the

central bank policy and currency data and then introduces the theoretical framework

employed to disentangle systemic from idiosyncratic tail risk as well as the properties

of the benchmark measure of currency tail risk. Section 4 presents the panel data

analysis, and Section 5 presents the GVAR analysis. Section 6 offers some concluding

2With “realized tail risk” or “realized VaR”, we mean the (α-) quantile of realized returns (see,
for example, the discussion of equation (16) in Bali, Demirtas, and Levy, 2009).

3Alternative approaches in the past literature are explored in the following section.
4One may argue that there is risk of reverse causality (e.g. Ferrari, Kearns, and Schrimpf, 2021)

such that the monetary policy reaction function systematically responds to financial imbalances
(e.g. Filardo, Hubert, and Rungcharoenkitkul, 2022). To control for this possibility, we follow
an instrumental variable approach in our empirical analysis. Our identifying assumption relies
on the short-term dynamics of the FX market implying that potential reverse causality should
operate through the short end of the implied yield curve. Following Rogers, Scotti, and Wright
(2014), Chari, Dilts Stedmann, and Lundblad (2022), and Smith, Valcarcel, et al. (2020), we use
daily changes of futures-implied yields on scheduled and unscheduled monetary policy decisions to
isolate monetary policy surprises. In Section 4, we discuss this issue in detail.
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remarks. The Online Appendix contains technical details and presents the results of

robustness analysis.

2. Relevant Literature

Our focus on (tail) risk is part of a large body of international finance literature

that stresses how time-varying risk is paramount for understanding exchange rates.

For example, the large biases in the foreign exchange forward premium (see Bilson,

1981; Fama, 1984) provide compelling evidence of variations in risk premia as an

explanation of the link between interest rates and exchange rates.5

The paper contributes to the literature in several important ways. First, we

construct a comprehensive dataset of the central bank monetary and liquidity mea-

sures implemented in nine major economies from January 2000 to July 2020 using

information from the relevant central banks. This dataset has been manually col-

lected as part of this paper and is novel, both in scope and the horizon covered,

and has a daily frequency. We focus on the actions that the central banks of the

G7 economies plus Switzerland, Denmark, Sweden, New Zealand and Australia have

taken in their monetary sphere. Using this original dataset, we examine the impact

of both non-traditional measures and conventional monetary policy measures on the

foreign exchange market. In the context of this paper, non-traditional measures

(NTM) refer to all central bank measures other than changes in the policy rate.

It is an umbrella term encompassing unconventional monetary policy measures and

liquidity measures (e.g. swap lines and changes in collateral requirements). This

5An increase in monetary policy uncertainty does not necessarily lead to a depreciation of a
currency although it may make the currency safer or more vulnerable relative to other currencies,
therefore affecting its risk (see, for example, G. Benigno, P. Benigno, and Nisticò, 2012). Since
investors are subject to risk constraints, the currency risk is simply transferred from borrowers’ to
lenders’ balance sheets. Currency and rollover risk on the borrower’s side transmute to duration
and currency risk on the lender’s side (see, for example, Carstens, 2019). Another reason why large
swings in exchange rates matter is because they influence long-term interest rates. In this way,
global financial conditions and domestic financial cycles reinforce each other (see also El Hamiani
Khatat, Buessings-Loercks, and Fleuriet, 2020; Carstens, 2019).
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is important when examining whether such policies and measures have similar or

different impact on the tail risk of currencies.

In addition, the paper contributes to the literature on the relationship between

monetary policy and exchange rate risk. The classical literature on portfolio theory

and risk management argues that the disentangling of systematic from idiosyncratic

risk is paramount for many applications as the latter can be diversified away and

hence, should not matter but the former cannot, so it should be treated with care.

To the extent that this argument holds for tail risk, if it is found that central bank

measures impact currency idiosyncratic tail risk, this impact may be overlooked.

However, if it is found that monetary policy instruments impact currency systematic

tail risk, this may be cause for concern. To this end, we carefully decompose the

behavior of currency returns in the tails into systematic and idiosyncratic components

in a novel and mutually-consistent way. We then investigate extensively the impact

of policy on the components of tail risk of major currency returns. As a measure of

tail risk we use the Value-at-Risk (VaR) which shows how much the investor is likely

to lose with a given probability over a given horizon.

There is already an established body of literature examining the overall impact of

monetary policy on exchange rates. These studies generally conclude that monetary

policy has a significant impact on exchange rate returns. Indeed, extensive evidence

suggests that a monetary policy easing (tightening) would result in depreciation

(appreciation) of the domestic currency relative to other currencies (see for example,

Clarida and Gali, 1994; Eichenbaum and Evans, 1995; Faust et al., 2003; Rosa, 2011;

and for more recent evidence, Rogers, Scotti, and Wright, 2014; Kearns and Manners,

2018; Rogers, Scotti, and Wright, 2018; and Inoue and Rossi, 2019).

Similar to conventional policy, unconventional tools have a profound impact on

exchange rates. Rogers, Scotti, andWright (2018) argue that exchange rates are more

sensitive to monetary policy during periods when the zero-lower bound binds relative
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to periods when it does not. Indeed, Stavrakeva and Tang (2015) find that the

impact of unconventional monetary policy on exchange rates is larger since the zero

lower bound became binding in the U.S. - see also Neely (2015); Wright (2012) and

Swanson (2021) for evidence on the impact of the Federal Reserve’s Large Scale Asset

Purchase program on the USD. Moreover, Glick and Leduc (2013) find that both

unconventional and conventional monetary policy have a similar impact on USD.

Ferrari, Kearns, and Schrimpf (2021) extend this finding to other major currencies

and conclude that both unconventional and conventional monetary policy have the

same impact on exchange rates.

The literature has also examined the impact of monetary policy instruments on

the risk of financial assets and the consensus seems to suggest that such instruments

have contributed to the reduction of risk. Some studies examine the relationship

between conventional monetary policy and VIX - a forward-looking measure of mar-

ket volatility extracted from stock options. Bekaert, Hoerova, and Lo Duca (2010)

decompose VIX into a measure of uncertainty and risk aversion and find evidence

that expansionary conventional monetary policy measured by the real Federal Funds

Rate tends to reduce investor risk aversion. In a similar vein, Gambacorta, Hofmann,

and Peersman (2012) find a significant decrease in VIX following implementation of

unconventional monetary policy by the Fed. Moreover, Bruno and Shin (2015) em-

pirically find that accommodative monetary policy drives down risk and leads to a

pick-up of cross-border bank credit.

Sannikov and Brunnermeier (2012) examine the impact of unconventional policies

on tail risk in a theoretical framework. They argue that such policies can be an

insurance against tail risk if adopted with a clear commitment device conditional on

future states of the economy. Hattori, Schrimpf, and Sushko (2016) present evidence

that unconventional monetary policy announcements and asset purchases by the Fed

substantially reduce perceptions of tail risks in the market. However, they focus on
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the stock market and it is not clear whether this finding extends to other markets.

In addition, rather than realizations of tail risk, they focus on perceptions extracted

from stock options. These are important considerations. Indeed, recent findings

by Ahrens et al. (2023) suggest that UMP does not decrease the tail risk in stock

and bond markets outside the cycles of FOMC press releases, directly contradicting

the findings of Hattori, Schrimpf, and Sushko (2016). Ahrens et al. (2023) examine

the impact of speeches by FOMC members on the realized tail risk. They find that

speeches increase realized tail risk and therefore, conclude that these communications

by central banks do not appear to reduce uncertainty and calm financial markets.

We note that we build our metrics using the markets realisations of the exchange

rate tail risk, as these provide more stability and robustness in the estimation of the

metrics.

Alternatively, one could focus on the market expectations by extracting forward-

looking measures from option prices with a maturity date at a specific point in the

future. While interesting in its own right, our focus here is not on predictions, or

their degree of accuracy in anticipation of monetary policy news. In this context, this

paper differs from Hattori, Schrimpf, and Sushko (2016) who focus on the impact

of UMP on the tail perceptions but is similar to Ahrens et al. (2023) who examine

the impact of central bank actions on realized tail risk of asset returns although it

departs from the latter with regard to central bank actions. Ahrens et al. (2023)

focus on central bank speeches on the realized tail risk of stocks and bonds at the

intra-day frequency whereas we focus on monetary policy on the realized tail risk of

currencies at the daily and lower frequency.

This paper contributes to the growing literature that studies the relationship

between central bank instruments and the tail risk of assets in a global context

(see also Ahrens et al., 2023). In contrast, the literature studying the impact of

monetary policy instruments on the tails of exchange rates is very limited (see, for
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example, Farhi and Gabaix, 2016). To the best of our knowledge, this paper is a first

attempt to examine this relationship in detail. In a different context, Eguren-Martin

and Sokol (2022) examine the relationship between the tails of a large number of

currencies and an index of Global Financial Conditions (GFC) and show that tight

GFC have an important impact on the tails of currencies.

Our contribution in this paper is empirical, but the analysis has a clear theoreti-

cal motivation derived from models centered on constrained intermediaries. Mueller,

Tahbaz-Salehi, and Vedolin (2017) building on the model of Gabaix and Maggiori

(2015), propose a model of exchange rate determination based on capital flows in

which constrained intermediaries with short investment horizons intermediate the

demand for, and supply of currencies. These intermediaries engage in currency trad-

ing but have a downward-sloping demand curve for risk taking due to their limited

risk bearing capacity ensuing from VaR constraints. Crucially, in addition to the fun-

damental risk of currencies, the intermediaries are also exposed to potential monetary

policy shocks. They show that, in the presence of frictions, shocks to intermediary’s

risk-bearing capacity affect the level as well as the volatility of exchange rates. The

intuition is that higher fundamental volatility tightens financial constraints. Tighter

constraints, in turn, lead to higher volatility, thus generating a self-reinforcing feed-

back loop. This framework motivates our focus on whether changes in monetary

policy, in addition to the first two, affect the higher moments of the distribution and

therefore, the tails of exchange rate returns.

3. Data and Tail Metrics

3.1. Monetary Policy Data

In this section, we discuss our dataset on conventional and non-traditional mea-

sures (NTM) of major central banks over the past two decades. Table 1 provides

more details on the data.
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[Table 1]

By non-traditional measures (NTM), we refer to those central bank interventions

which are used to promote or restore adequate financial intermediation and/or fa-

cilitate the monetary policy transmission under financial sector impairment and/or

near/at zero lower bound policy rates. These include monetary policy, liquidity or

collateral-related measures.

The aforementioned interventions can be of different nature, but they broadly

fall into one of the following categories: asset purchases, inter-bank swap lines, ex-

tension/modification of collateral eligibility, fund provisioning and forward guidance.

Our dataset is a unique and novel collection of conventional and non-traditional mea-

sures at daily frequency from some of the largest and most important central banks6.

This dataset was built by collecting individual daily central bank communications

for each of the categories above, as well as major speeches at Governor or Director

level either announcing one of the above policy interventions or signalling intentions

in relation to monetary policy or liquidity provision.

The ‘intensity’ of each NTM signal is determined as the daily change on the 1

month, 2 month, 2 year, 5 year or 10 year futures-implied yield of sovereign bonds

around the day of the announcement, and the three subsequent working days. For-

mally, StrengthNTM
τ
it = ∆ImpY ieldτit, whereNTM = {APP,Coll, FG, Fund, Swap},

and ImpY ield is the futures-implied yield of sovereign bond of country i, at day t,

with maturity τ ∈ {1m, 2m, 2y, 5y, 10y}. Finally, StrengthNTM
τ
it ̸= 0 at the day of

the decision, and the subsequent three working days.

In our monetary policy dataset, we differentiate between conventional and NTM

measures. In the first category, we include the changes to, or control of, the base rate

6We have collected data from the following central banks: Bank of England, ECB, Bank of
Canada, New Zeland’s Central Bank, Danmarks NationalBank, Sveriges Riskbank, Bank of Japan,
Swiss National Bank and Reserve Bank of Australia, from 2000 to 2020.
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applied to reserves (BASE RATE). In the second category, we split the actions into

one of the following five types: Asset purchases (APP), Swap lines (SWAP), extension

or modification of collateral eligibility (COLLATERAL), fund provisioning (FUND),

and forward guidance (FG). In turn, following Ehrmann et al. (2019), we split this

last type into further three sub-components, reflecting the emerging consensus on

styles in forward guidance. Those styles are: conditions on the state of the economy,

conditions on the calendar and qualitative statements.7

These tools and measures have their differences across jurisdictions, both in terms

of their aim and operational implementation. Our categorization, however, is an

attempt to reduce somewhat the dimensions of each by clustering them while simul-

taneously recognizing their differences. Note that these categories are not mutually

and dynamically exclusive. A central bank can take measures that fall within several

categories at the same time, including those across conventional and NTM territory.

To get a better sense for the historical record across the toolkit, the following

figures depict their individual implementation over time. Figure 1 shows the move-

ment in the base rate across time and currencies. The difference in rates across

jurisdictions has got smaller since the Global Financial Crisis.

[Figure 1]

Figure 2 illustrates the number of times a particular policy measure has been

implemented across time and currencies. The figure is a structured scatter plot so

the intensity in colour represents the frequency a measure has been implemented at

a particular point in time.

7Ferrari, Kearns, and Schrimpf (2021) also construct a monetary policy decisions dataset from
the websites of several central banks. Our approach brings three improvements. First, we target
a larger set of countries, in particular we also include Switzerland, Denmark, Sweden and New
Zealand. Second, we decompose the unconventional monetary policy category into five and add
two liquidity measures: asset purchases, swap lines, collateral, fund provisioning and three types of
forward guidance. Third, our time series is 10 years longer, starting 4 years earlier (2000 instead of
2004), and finishing 6 years later (2021 instead of 2015) compared to Ferrari, Kearns, and Schrimpf
(2021). On the other hand, their dataset in intra-day, while ours is daily.
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[Figure 2]

NTMs are generally distributed evenly across time, with no particular pattern

across countries. Yet for all economies, the number of interventions increased con-

siderably since 2008, with the majority of interventions clustered around 2008-2010

and 2020-2021.

Interestingly, the dynamic correlations shown in Figure 3 are generally higher

between conventional instruments. Due to the large number of NTM instruments,

the figure depicting their dynamic correlations is very large and hence, not shown

but it is available upon request.

[Figure 3]

3.2. Currency Data

The data, obtained from Reuters Eikon, covers the period from 2 January 2000

to 28 February 2021, yielding 5520 daily observations for each currency. From these

exchange rates, we calculate the returns of currency i at time t as:

si,t = ln

(
Xi,t

Xi,t−1

)
(1)

where Xi,t is the spot of exchange rate of currency i per unit of USD at time t.

For each currency i, in addition to the exchange rate against the USD, we obtain

the base rate, fixed rate on Overnight-Index Swaps (OIS) with 1-month maturity as

well as the 1-month forward rate. We calculate the OIS (IR) return of currency i at

time t as:

fi,t = ln

(
1 +OISi,t

1 +OISi,t−1

)
(2)

We then calculate excess returns of currency i at time t as:
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Ri,t = si,t − fi,t−1 (3)

To decompose tail risk, we account for systematic risk with a factor asset pricing

model. The consensus on factor models in foreign exchange literature points to a

relatively simple model. The benchmark we employ is a three-factor model where the

factors are the first three principal components estimated from a large basket of 20

USD-denominated currencies. As an alternative to this model, we use the two-factor

model of Lustig, Roussanov, and Verdelhan (2011).

To estimate the principal components that proxy the systematic factors, we use

the exchange rates of the 20 largest and most liquid currencies against USD. These

currencies are: GBP, EUR, CAD, NZD, DKK, SEK, JPY, CHF, AUD, MXN, ARS,

IDR, RUB, ZAR, INR, TRY, BRL, CNY, KRW, SAR. We note that the above

currencies are used to create the necessary metrics for our analysis, but are not all

part of our database describing the actions of central banks.

On the other hand, to examine the impact of central bank measures on the tails

of currency returns, we use the following nine major currencies: EUR, GBP, JPY,

CAD, AUD, NZD, CHF, SEK and DKK against USD.8

3.3. Theoretical Framework of Currency Tail Risk

Any monetary policy uncertainty can have an impact on exchange rates due

to their close connection. Moreover, the size and the intensity of activity in these

markets along with the concentration of the market participants and their ability to

8The 20 currencies we use to estimate the principal components that proxy the systematic
factors represent around 97% of the global foreign exchange turnover for the last 20 years. On the
other hand, the nine currencies on which we base our analysis of the central bank policy impact
on FX tail risk represent around 85% of global foreign exchange turnover over the same period
(see BIS, 2016; BIS, 2019). We use the larger dataset to extract principal components to ensure
maximum information on common drivers of FX market are captured. The analysis based on three
principal components estimated from the smaller dataset of the largest nine currencies would lead
to even stronger results although the turnover statistics suggest these principal components would
leave out considerable common variation in the currency market.
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operate with high levels of leverage imply that small changes in monetary policy can

lead to large adjustments in exchange rates. If these potentially large adjustments

in exchange rates materialise, they would affect their tail risk. In this paper, we

examine whether this conjecture holds.

In particular, we examine a large number of currencies, policy actions and time

effects. This allows us to examine long-run relationships and patterns in a system-

atic manner. Moreover, because we study a basket of currencies, we can study the

multilateral (direct and indirect) linkages across currencies. Thus we are able to

examine the direct impact of e.g. U.K. monetary policy on JPY, as well as indirectly

through USD (or any of the other currencies). We also focus on the effects on the

tail of the currency returns as opposed to their mean. Thus, our aim is to investi-

gate whether there is any evidence of a cross-border channel that, in addition to FX

return volatility, works also through the FX return tail risk.

Our tail risk measures are based on a factor model for asset returns. We pin them

down next before empirically examining the transmission of shocks from central bank

actions.

The Evolution of Currency Returns

Suppose that currency excess returns are priced according to a n-factor model

and excess returns of currency i are equal to

Ri =
n∑

j=1

βijFj + ϵi (4)

where βij is the sensitivity of currency i to the excess return of factor Fj and ϵi

is an idiosyncratic shock.

The aggregate systematic factor of currency i is Rs(i) =
∑n

j=1 βijFj and is de-

noted rs(i) (Rs(i)) when it is smaller (larger) than a given threshold which happens

with probability f (1 − f). Further, with probability pi (1 − pi) the independent
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idiosyncratic shock to currency i’s excess returns is “small” (“large”) and is denoted

ϵi (Ei). When the idiosyncratic term is ϵi, currency i’s excess returns do not diverge

significantly from the prediction of the model. However, when the idiosyncratic term

is Ei, this divergence can be significant and, in some cases, can overturn the impact

of the aggregate systematic factor. With probability qi (1 − qi), Ei can be large

negative (moderate as well as large positive) and is denoted E−
i (E+

i ). Therefore,

currency i exceeds its own VaR when the idiosyncratic shock is small and the ag-

gregate systematic factor has exceeded its VaR or independently of the aggregate

systematic factor due to a large negative idiosyncratic shock. Figure 4 brings all this

together and shows the paths to possible outcomes.

[Figure 4]

The final nodes in the tree in Figure 4 correspond to the four possible outcomes:

no VaR exceedance has occurred, depicted in T{∅}; the aggregate systematic factor has

exceeded its VaR but not currency i, depicted in T{s(i)}; currency i has exceeded its

VaR but not the aggregate systematic factor, depicted in T{i}; and finally, both have

exceeded their respective VaRs, depicted in T{i,s(i)}. These outcomes are depicted in

Figure 5.

[Figure 5]

Definition of the Components of Currency Tail Risk

Classical finance argues that the disentangling of systematic from idiosyncratic

risk is paramount as the latter can be diversified away but the former cannot which

has important implications for, amongst others, portfolio allocation and risk man-

agement (see, for example, Statman, 1987). This reasoning can be directly applied to

tail risk. Intuition suggests that a monetary policy action taken by a central bank in

isolation, may contribute only to the risk of its domestic currency which would count
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as idiosyncratic risk since it would not affect the fundamentals of other currencies.

If so, this would matter little to investors, institutions and economies with exposure

to this currency because idiosyncratic risk can be diversified away. However, because

these actions are often taken simultaneously – whether coordinated or otherwise –

by several central banks, it may be that this would lead to common variation across

currencies and hence, may impact the systematic risk of currencies.9 If so, this would

be a serious matter because systematic risk cannot be diversified away so it would

increase the overall risk exposure of investors, institutions and economies relying on

the FX market for investments and trade. To test these hypotheses, the decompo-

sition of the currency tail risk into its idiosyncratic and systematic components is

essential.

We now formally derive formulae for the systematic and the idiosyncratic compo-

nents of currency tail risk. Assigning the following respective probabilities x0, xs(i),

xi and xi,s(i) to outcomes T{∅}, T{s(i)}, T{i} and T{i,s(i)} then the following system of

linear equations obtains from Figure 4:



Pr(T{i,s(i)}) = xi,s(i) = f · pi + f · (1− pi) · qi

Pr(T{s(i)}) = xs(i) = f · (1− pi) · (1− qi)

Pr(T{i}) = xi = (1− f) · (1− pi) · qi

Pr(T{∅}) = x0 = (1− f) · pi + (1− f) · (1− pi) · (1− qi)

In the following, we set the thresholds for the aggregate systematic factor and

currency i equal to V aR
αs(i)

s(i) and V aRαi
i at the respective significance levels αs(i) and

αi. This implies xs(i) = αs(i) − xi,s(i) and xi = αi − xi,s(i). Then, the following unique

solution for pi obtains since the probabilities of the four outcomes add up to one:

9See, for example, Avdjiev et al. (2020) who find that the main driver of variation in exposure
to U.S. monetary policy was the degree of convergence among advanced economy monetary policies
which had a crucial impact on global liquidity.
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pi =
xi,s(i) − αs(i)αi

αs(i) − α2
s(i)

. (5)

Note that pi is well-defined only if α2
s(i) ≤ x

i,s(i)
≤ αs(i) and is bounded between

0 and 1. When pi = 1, currency i exceeds its VaR whenever the aggregate system-

atic factor does, while pi = 0 implies that VaR exceedances by currency i and the

systematic factor are independent. Probability pi captures, therefore, the systematic

part of the tail risk of currency i. The remainder, 1 − pi, can be interpreted as the

idiosyncratic part of tail risk of currency i. These observations can be summarised

formally:

Systematic Component :

STCi(αi, αs(i)) ≡ pi =
xi,s(i) − αs(i)αi

αs(i) − α2
s(i)

(6)

Idiosyncratic Component :

ITCi(αi, αs(i)) ≡ 1− pi =
(αs(i) + αs(i)αi)− (xi,s(i) + α2

s(i))

αs(i) − α2
s(i)

(7)

Clearly, these components sum up to one. This, in turn, allows for their inter-

pretation as shares of the total tail risk of currency i measured by its VaR.

Under the factor model of Arzac and Bawa (1977), omitting the risk free rate,

βAB
i = V aRα

i /V aRα
s(i), which implies αs(i) = αi = α. Then, the systematic compo-

nent becomes:

pi =
xi,s(i)−α2

α− α2
(8)

The Remark below shows that this special case of pi converges to the classic
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lower tail-dependence coefficient of Sibuya (1960) as α → 0. This coefficient is

usually denoted λL and is paramount in the EVT literature (see, for example, Joe,

1997).
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Remark:

If αi = αs(i) = α, then

lim
α→0

pi = lim
α→0

xi,s(i)/α− α

1− α
= lim

α→0

xi,s(i)

α
= λL, (9)

where,

λL = lim
α→0

Pr
{
Xi ≤ F−1

i (α)|Xs(i) ≤ F−1
s(i)(α)

}
. (10)

In the next section, we use (6) and (7) to construct measures of systematic tail

risk and idiosyncratic tail risk and then, in the empirical section we study their

relation to conventional and non-traditional measures.

Measures of Systematic and Idiosyncratic Tail Risks

Arzac and Bawa (1977) derive an asset pricing theory in a safety-first framework

and show that the beta of asset i, assuming the risk free rate is zero, is the slope given

by the ratio of the VaR of asset i over the VaR of the systematic factor. Adapting

slightly the notation, we obtain a measure of tail risk for currency i:

βAB
i =

V aRα
i

V aRα
s(i)

(11)

We interpret the RHS of (11) as a (normalized) risk measure and decompose it

using the systematic and idiosyncratic components in (6) and (7):

V aRα
i

V aRα
s(i)

= STRi + ITRi (12)

where

STRi = STCi
V aRα

i

V aRα
s(i)

= pi
V aRα

i

V aRα
s(i)

,

ITRi = ITCi
V aRα

i

V aRα
s(i)

= (1− pi)
V aRα

i

V aRα
s(i)

.
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When pi = 1, currency i is totally tail dependent on the aggregate systematic

factor and STRi =
V aRα

i

V aRα
s(i)

. This is intuitive because when the systematic factor

return decreases by V aRα
s(i) then currency i return, in direct response, decreases by

V aRα
i . However, if pi = 0 then currency i is tail-independent of the systematic

factor and STRi = 0. This is also intuitive as under independence, currency i

returns are not sensitive to moves in the aggregate systematic factor. Therefore, these

measures capture the systematic and idiosyncratic tail risks and can be employed as

independent variables in empirical exercises that seek to uncover their relationship

with central bank policy.

Estimation

To estimate our currency tail risk measures, we proceed as follows. First, for

each currency i, we obtain the currency excess return Ri as the difference between

the currency spot return and the risk free rate. As an alternative, in the robustness

analysis, we use the difference between today’s currency forward rate and currency

spot rate at the forward expiry date. Then, we create a set of reference currency fac-

tors representing the overall systematic risk of the currency market. In our analysis,

these factors are obtained with two methods. In the first, we apply Principal Com-

ponent Analysis (PCA) to the currency excess returns of a wide set of representative

currencies detailed below. Then, we regress our currency excess returns on the first

three PCA factors10:

Ri,t = βi,1PC1,t + βi,2PC2,t + βi,3PC3,t + ϵi,t (13)

The aggregate systematic factor of currency i is then defined asRs(i),t =
∑3

j=1 βi,jPCj,t.

10These factors can be interpreted as follows: the first factor proxies a USD index factor capturing
the analogue of the market return; the second factor can be seen as a carry factor proxying the
excess total return for going long on high-yield currencies and short on low-yield currencies. The
third factor can be interpreted as a momentum factor, proxying the risk emanating from a portfolio
that goes long on recently well-performing currencies and short on those that perform poorly.
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In the second method, we construct the two currency risk factors, RX and HML,

of Lustig, Roussanov, and Verdelhan (2011) and use these as pricing risk factors for

our currencies as follows:

Ri,t = βi,RXRXt + βi,HMLHMLt + ϵi,t (14)

In this case, the aggregate systematic factor of currency i is defined as Rs(i),t =

βi,RXRXt + βi,HMLHMLt.
11

Then, for each currency, we calculate the quantiles at a given confidence level for

the currency excess returns as well as their corresponding aggregate systematic risk

factor. This allows us to partition the currency outcome space into four quadrants,

which we label “joint tails”. These are respectively T{i}, T{s(i)}, T{i,s(i)} as well as

the empty joint tail T{∅} illustrated in Figure 5 (see also Figure 6 in the Online

Appendix).

From these, we estimate the systematic tail risk and idiosyncratic tail risk of

currency i given in (12) as the product of the systematic and idiosyncratic shares of

tail risk in (6) and (7) with the ratio of VaRs.

These measures can be estimated on a rolling window, yielding a set of time

series of the above metrics for each currency. We choose a rolling window of 250

days although qualitatively similar results were obtained from experimenting with

other window sizes. More specifically, the tail risk attributable to a policy tool is

estimated as the difference over one day, of the tail risks estimated over the windows

11Both methods used to define the aggregate systematic factor seemingly lead to a contradiction:
the aggregate systematic factor is dependent on the currency. This is only partially true. While the
systematic risk factors are the same for all currencies, the aggregate systematic factor Rs(i) includes
currency-specific information through the betas. While this is unusual in the empirical asset pricing
literature, adding up the systematic risk factors scaled by betas is to simplify the analysis and does
not alter it - Rs(i) captures the total impact of systematic tail risk to currency i originating in
undiversifiable sources. The alternative approach of treating each systematic risk factor separately
is possible but would complicate the analysis considerably since the systematic and idiosyncratic
tail risks would be factor-specific and for an n-factor model there would be 2n systematic and
idiosyncratic tail risk components (see Chabi-Yo, Huggenberger, and Weigert, 2022).
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t-249...t+1 and t-250...t. We experiment also with differences calculated over 3, 10

and 15 days, but they didn’t lead to material differences. Once we obtain the time

series of currency tail risk measures, we can examine their relation with our data on

central bank toolbox.

Implementation

We estimate the currency systematic risk factors by means of PCA on the ex-

cess returns of the 20 currencies. To preserve space, the results with the Lustig,

Roussanov, and Verdelhan (2011) systematic risk factors are not presented but are

available upon request. The PCA allows for identification of the main common fac-

tors of variation of the currencies which in turn allows for the partition of the return

outcome space and hence, the estimation of the systematic and idiosyncratic tail risk

measures.

Having estimated the currency systematic risk factors, we turn the focus to G9

currencies to model tail risk. Some of the G9 economies did not face the constraints

of the zero lower bound for interest rates and as a result did not resort to uncon-

ventional monetary policy. We use this heterogeneity to enhance the identification.

Furthermore, the relatively large panel dimensions of our data allow us to explore

the effects in the panel domain. For the latter, we control for simultaneity in actions

and transmission while accounting for the different currency weights based on their

global economic importance.

Then, with the systematic risk factors proxied by the first three principal com-

ponents, we regress the currency excess returns on the systematic risk factors. The

results of this regression are shown in Table 2. Note the significance of the systematic

risk factors proxied by the principal components.

[Table 2]

Next, with the components and their loadings, we obtain the aggregate systematic 
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factor Rs(i) for currency i. This, in turn allows for the separate estimation of the

systematic and the idiosyncratic tail risks for each currency. Panel A of Table 3

shows the 2.5, 5 and 10% quantiles of the empirical distribution for each currency.

Panel B shows the 2.5, 5 and 10% quantiles of the empirical distribution for the

aggregate systematic risk factor Rs(i). Consistent with intuition, the quantiles of

a currency excess return are, in absolute value, larger than those of the aggregate

systematic risk factor due to idiosyncratic tail risk.

[Table 3]

Figure 6 shows that the quantiles for both currencies and the aggregate sys-

tematic risk factors fluctuate widely over time. Even though they appear strongly

correlated, there are instances of divergence in tail risk between a currency and the

aggregate systematic risk factor. It is during these instances that the idiosyncratic,

i.e. diversifiable tail risk becomes particularly important.

[Figure 6]

Having constructed the aggregate systematic risk factor and partitioned the out-

come space for each currency, we then estimate the systematic component pi of

currency i with equation (6) at nominal level α where α = 2.5, 5 or 10%. Under

independence, the probabilities presented in Panel A of Table 4 should be close to

α2. However, at α = 5% these probabilities are more than 10 times larger in almost

all cases. The strength of the tail dependence between a currency and the aggregate

systematic risk factor is illustrated more clearly in Panel B where the tail dependence

coefficient is above 50% in the majority of cases.

[Table 4]

With the systematic component estimated for each currency, it is straightforward

to obtain that currency’s systematic and idiosyncratic tail risk measures shown in
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Figure 7. It is clear that the systematic tail risk generally accounts for the largest

proportion of tail risk.

[Figure 7]

Estimating these measures in a rolling window of 250 observations with an exponentially-

weighted moving average, we obtain time-varying measures of tail risk shown in

Figure 8.

[Figure 8]

The tail risk measures are persistent and vary widely over time. The systematic

tail risk is generally the largest component of tail risk although there are instances

when its prominence is more subdued. Idiosyncratic tail risk on the other hand is

smaller although there are instances where it dominates the systematic component,

for example, in the case of JPY. This supports recent findings in the literature on the

distinctive dynamics of JPY which appear to have a looser relation to the systematic

asset pricing factors (see Harris, Shen, and Yilmaz, 2022). Next section outlines the

estimation strategy for causal inference.

4. Panel Data Analysis

4.1. Extraction of Monetary Policy Surprises

High frequency identification is a common approach to isolate monetary policy

surprises. Depending on the research question and data availability, windows around

announcements vary from a few minutes up to a day. The latter option, e.g. using

daily frequency, is better suited under the prior that surprises take some time to

fully impact prices. Rogers, Scotti, and Wright (2014), following Gürkaynak (2005),

Gürkaynak, Sack, and Swanson (2005) Gürkaynak, Sack, and Swanson (2007), mea-

sure monetary policy surprises from the U.S. with daily changes of futures-implied
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yields around scheduled and unscheduled FOMC announcements. More recently,

Chari, Dilts Stedmann, and Lundblad (2022), Dilts Stedman (2019) Smith, Valcar-

cel, et al. (2020) use the same approach to assess the impact of UMP or balance

sheet unwinds. Our approach falls in line with this stream of work.12

We use future-implied yields from representative points of the yield curve, specifi-

cally for maturities of 1 month, 2 months, 2 years, 5 years and 10 years and proxy the

intensity of Conventional Monetary Policies (CMP) or NTM decisions as the daily

change of future-implied yields, given a particular maturity, at the decision day and

the following three working days.

In the final dataset of NTM surprises, for each country we have individual, daily

time-series for each possible action, e.g. CMP, UMP components and other liquidity

measures, with non-zeros in days where decisions occur and the three subsequent

days. The reason behind this choice is that we should allow a few days for the

market to react and fully incorporate all relevant information.

In all specifications, the dependent variable is the change in country i ’s currency

tail risk, or any of its components. To preserve space, we present the results for

the total and the systematic component of tail risk. The systematic component of

tail risk attributable to a policy event at time t is estimated as the difference of

systematic tail risk estimated over two windows: t-249,...,t+1 and t-250,...,t from

the returns for each currency. The window size of 250 observations is simply to

allow for a sufficient number of observations to fall into the tails and is in line with

previous studies of tail risk in asset returns (see, e.g., Bali, Demirtas, and Levy, 2009

and the references therein). An implication assumption is that other than monetary

12Another reason for not using shorter windows is that it would be difficult to decide on the
optimal window size in a large cross-section of central banks and monetary policy measures. The
“probability of arrival” of a policy surprise regarding measure j from central bank i at time t is
non-negligible. Therefore, one would need to employ a moving event window across the entire
sample, which would produce erratic estimates, as well as biases, as some currencies and measures
may require larger windows relative to others. Therefore, using a daily window is a convenient
choice that sidesteps these issues.
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policy news on event window (day t), other news has a negligible impact on currency

returns and their systematic tail risk component. The covariates of interest are CMP,

APP, FG, SWAP, COLLATERAL and FUND. We also include the same covariates

from the U.S.

4.2. Benchmark and Identification

The panel contains data from the central banks of G7 + Switzerland, Denmark,

Sweden, New Zealand and Australia. We use information from the Fed and USD as

a common control for the remaining countries. The sample covers the period from

January 2000 until February 2021, at daily frequency.

We implement two model specifications. In the first one, in addition to other

explanatory variables detailed below, we include CMP and NTM undertaken by the

central banks of country i at time t. In the second, we decompose the NTM variable

into asset purchases (APP), forward guidance (FG), swaps (SWAP), funding (FUND)

and collateral (COLLATERAL).

yi,t = α + β1CMP τ
i,t + β2NTM τ

i,t + β3Hi,t + β4Xt + γiδt + ηi + ϵi,t

yi,t = α + β1CMP τ
i,t +

∑
C∈NTM

β2CC
τ
i,t + β3Hi,t + β4Xt + γiδt + ηi + ϵi,t

where NTM = {APP,Coll, FG, Fund, Swap}. The dependent variable yi,t is

the change in the tail risk, or any of its two components, of country i ’s currency

at time t. CMP τ
i,t is the impact of conventional monetary policy decisions, and

is calculated as the daily change of the futures-implied yield of a sovereign bond

with maturity τ ∈ {1m, 2m, 2y, 5y, 10y} of country i at day t. We follow a similar

approach for every NTM. In both specifications, Hi,t contains dummy variables for

the zero lower bound, for any of the three types of forward guidance and for the

implementation of quantitative easing. Xt is a vector of controls from the U.S. Fed
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including CMP and NTM. γiδt is an interaction term of time and country fixed effect

and ηi is a country fixed effect. In particular, we use the triple interaction of month,

year and country fixed effects to control for unobserved time-varying confounding

effects for each country.13 These fixed effects incorporate time-varying country-level

determinants that are difficult to include otherwise given our analysis uses daily (or

weekly) frequency. Finally, as the panel has a small N but a large T, we correct for

cross-sectional and inter-temporal dependence with Driscoll-Kraay standard errors.

The main econometric challenge is a potential endogeneity across the FX market

and in particular the joint occurrence of currency tail events and monetary policy

decisions. Recently, Ferrari, Kearns, and Schrimpf (2021) find evidence of a mon-

etary policy transmission channel through the exchange rate and Filardo, Hubert,

and Rungcharoenkitkul (2022) argue that monetary policy reaction function could

systematically respond to financial imbalances that threaten financial stability.

We follow an instrumental variable approach to correct for this confounding effect.

We want to assess the causal impact of NTM surprises, measured by daily changes in

the future-implied yield curve on changes of FX returns tail risk. The short-term dy-

namics of the FX market suggest that the reverse causality, referred to above, should

mainly operate through the short end of the implied yield curve. The identifying

assumption we use is that medium and long-term implied yield changes do shape

currency tail risk but only through its impact on the front end of the curve.After

controlling for economic fundamentals, it is unlikely that changes in currency tail

risk shape implied yields of sovereign bonds of 10 years or more.

Therefore, our instrument is the daily change of the implied yield of future con-

tracts for 10 year treasuries. For example, for each currency we instrument the change

in monetary policy, typically captured by the change in the 1 month implied yield,

13In unreported analysis, we replace the monthly with weekly fixed effects and the results remain
qualitatively similar.
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with the change in the 10 year implied yield due to CMP, APP, COLLATERAL, FG,

FUND and SWAP. Additionally, we use instruments in levels and squares to capture

nonlinearities in the data.14 To simplify the exposition, we do not present the full

table which is available upon request. We report a summary of the first stage results

in Table 5 highlighting the fact that in the vast majority of cases, instruments are

strong and informative.

[Table 5]

4.3. Results

4.3.1. Full sample period

Tables 6 - 8 report the results of the analysis addressing the potential endogeneity

concerns at the daily frequency. Each column reports estimates at different points on

the implied yield curve. For example, the first two columns use information from the

five year bonds, and the last two from two months bonds. 15 In the Online Appendix,

in Tables 1 - 10 we present the results for maturities 5-year, 2-year, 2-month, and

1-month.

We include additional control variables for QE, including the zero lower bound

(ZLB) and the type of implemented forward guidance. To conduct this analysis, we

follow Ehrmann et al. (2019) and Beck, Duca, and Stracca (2019). We split forward

guidance into one that conditions on the state of the economy (FGsg), another that

conditions on the calendar day (FGtg) and a third that conditions on qualitative

statements (FGog).

14As an alternative, we also use lagged values of the instruments and the interaction of the
instruments with monthly dummy variables. In all cases, the performance of the instruments is
supported by the Angrist-Pischke weak IV test.

15Since there are no European bonds, usually one relies on German or French bonds as a proxy.
However, for the front end of the curve, e.g. 1 month and 2 months, we employ the yields of Italian
bonds instead. The rationale for this choice is the higher sensitivity of Italian bond yields to ECB
monetary policy decisions relative to those of either the German or French bonds. We examine
the robustness of our findings with yields extracted from Spanish bonds and find no qualitative
differences.
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Table 6 reports the results of the regressions estimated over the entire sample.

The first four columns show the results for the systematic component of the tail risk,

and the other four columns show the results for the total tail risk. On the former,

we observe that while the CMP has no detectable impact on the systematic tail risk

component of currencies, the NTM increases the systematic component of currency

tail risk. Breaking down NTM into its various components, APP and SWAP have

a considerable impact and although with opposite signs, APP appears to have a

stronger significance.16 We further observe that the dummies for ZLB and FGog are

statistically significant and, again, have opposite signs. Finally, replacing ZLB with

CMP and FGog with FG, we do not observe any qualitative differences in the results.

The last four columns of Table 6 show the impacts on the total tail risk. In line

with the previous results, the impact of APP and swaps are statistically significant,

but now their impact has the opposite sign vis-a-vis the systematic component case.

This implies that the impact on the idiosyncratic tail risk component has the opposite

sign, and outweigh the impact on the systematic tail risk component. The only

qualitative difference is that FGog is no longer the relevant type of forward guidance

but is replaced by FGsg - the type of forward guidance that explicitly conditions an

intervention on the state of the economy.

[Tables 5 - 6]

4.3.2. Sub-sample estimates

Table 7 presents the same analysis on tail risk, but with the sample split into

pre- and post-Global Financial Crisis. As intuition suggests, before the crisis neither

16Unreported correlation analysis also highlight the relationship between these variables and
currency tail risk or its components. At most maturities, the systematic component of tail risk cor-
relates strongly with APP and SWAP. Two other instruments, COLLATERAL and CMP, correlate
with the systematic component of tail risk, but only at the 2-month yield. Moreover, only APP
has a statistically significant positive correlation with the systematic component. The remaining
statistically significant coefficients are all negative.
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NTM nor any of its components are significant. Indeed, only the dummy variables

for ZLB and FGog are statistically significant. Instead, after the crisis, APP and

SWAP become statistically significant. Finally, in the latter sub-sample only the

FGog element of forward guidance is significant.

Subsequently, we decompose the post-GFC sample further to narrow the dynamic

effects. In particular, we examine whether there are any substantial differences be-

tween the 2009-2012, 2012-2018 and 2019-2021 samples and present the results in

Table 8.17 Note however, that this analysis does not include the dummy variables for

QE, ZLB and FG because of the small panel which made an adjustment of standard

errors unfeasible. Again, we find that APP and SWAP are statistically significant

after 2012 (and up until 2019) which corresponds to the end of the Eurozone crisis.

[Tables 7 - 8]

We conduct the same analysis at a weekly frequency and present the results in

Tables 5 to 7 in the Online Appendix. We do not find statistically significant results

for CMP, NTM or any of its components.18 Moreover, the results remain unchanged

if we further break down the sample based on the Global Financial Crisis.19 However,

the dummy variables for ZLB, QE and FG are statistically significant, in line with

the evidence at the daily frequency presented previously.

17These periods were specifically chosen as they represent: 1) the immediate GFC-monetary
response including QE1 and QE2; 2) the Euro Area sovereign debt crisis, negative rates and ECB
QE period; and finally 3) the U.S. repo market and COVID stresses. While one could obviously
choose other cut-off dates, our analysis suggests that the ones currently employed capture the
various monetary stances and regimes while also allowing the sub-samples to be large enough to
permit identification.

18Correlations at the weekly frequency are different vis-a-vis their counterparts at daily frequency.
In particular, the correlation between FG and the systematic tail risk becomes significant, while
that of APP turns insignificant. See Tables 11 and 12 in the Online Appendix.

19If we instead cast the weekly data in a structural time-series model, we will capture the cross-
correlated autoregressive components better, hence why our results are significant in our GVAR.
See more details in Section 5.
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4.3.3. Detailed discussion of the results

The panel results above provide evidence that central bank measures have an

impact on the tail risk of currencies. This effect is particularly pronounced for

APP which increases in the systematic part of tail risk. However, while this effect

is detected at all maturities, it is only statistically significant at daily frequency,

suggesting that the impact dissipates relatively quickly. Moreover, the effect is most

significant during the post-Great Financial Crisis sub-sample. SWAP, on the other

hand, reduces systematic tail risk, especially in the post-Eurozone crisis sample. In

the case of APP, investors receive cheap funding and invest them where the yield is

higher. Because the yields on sovereign and high-grade corporate bonds is around

zero, there is no alternative but to invest in riskier securities to satisfy the yield

demands. In an international context, this would give investors an incentive to

engage in large-scale carry trade and invest in currencies promising higher returns,

depreciating their own currency. This, in turn, increases the systematic component of

tail risk. For SWAP, on the other hand, the measure is designed to satisfy a surge in

external demand, usually from a central bank, for its domestic currency. Because the

supply is provided as an exchange (or swap) for the sell-off of domestic currency, the

measure is designed to reduce potential (liquidity) stress in the domestic currency

so is explicitly designed to reduce the tail probability mass, which the empirical

evidence seems to support.

In addition, there is some evidence to suggest that COLLATERAL reduces the

systematic tail risk, even if the effect is only detected at the short end (2m) of the

yield curve. Although we find some evidence that FG is able to reduce systematic

tail risk at the lower (weekly) frequency, it is only the qualitative statements of FG,

FGog, that are statistically significant at higher frequency for both the pre- and

post-GFC sub-samples. This suggests that only the qualitative forward guidance is

effective for the FX market. Finally, we find that QE and ZLB are significant across
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all regimes and throughout the entire sample period.

To corroborate these findings, we ran a number of robustness exercises based on

simpler frameworks. These include country-level rolling-window linear regressions of

tail risk on NTM measures, similar to the analysis above but segmented using pre-

defined regimes (GFC, Second QE and EU sovereign debt crisis, 2013-19, Covid) as

well as measuring the impact of central bank announcements on rates, with a 3-week

decay factor. The effects found in those models are quantitatively smaller and have

wider confidence bands but point in the same direction as the benchmark exercise.

The results from these robustness are available upon request.

5. GVAR Analysis

In this section, we discuss the analysis conducted using a Bayesian Global Vector

Auto-Regressive (BGVAR) model. For a detailed technical discussion of the model

see Section 2 of the Online Appendix. To the best of our knowledge, this is the first

study to apply a general equilibrium-type of estimation to a large basket of high-

frequency currency returns data and an array of central bank policy measures.20

This method complements the panel data analysis in three ways. First, the panel

data does not include cross-sectional general equilibrium effects. Aside from the

impact of the U.S. on every country, the panel data analysis does not account for the

feedback loops between the other currencies, for instance between the UK and Japan,

or Japan and Euro Area. Second, using this framework we are able to depict the

dynamic evolution of the transmission of monetary policy, in particular how long it

lasts, when peaks occur and whether there is any cross-country heterogeneity. Third,

we are able to isolate the global from the domestic effects.

20The GVAR model is estimated with the BGVAR package in R. See this link for details. The
literature examining the impact of UMP announcements has so far analysed a small group of
advanced economies so the computational issues are considerably more limited.
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5.1. Set-up

For this analysis, we use information on NTMs from the central banks of Canada,

Switzerland, Japan, U.K., Euro Area, New Zealand and the U.S.21 The sample covers

the period from January 2000 to February 2021 and the frequency is daily. We use the

weighting matrix of Feldkircher and Huber (2016) whose estimates are based on the

annual bilateral trade flows including services, averaged over the period 2000-2012

which largely overlaps with our sample.

For each currency, the matrix of endogenous variables includes three variables:

the tail risk or its systematic component, CMP and NTM (or alternatively APP).

As in panel analysis, we proxy for the monetary policy impact through the daily

change of the implied yield extracted from futures contracts of treasury bonds with

maturity 1 month, 2 months, 2 years, 5 years and 10 years

In order to keep the BGVAR analysis consistent with the panel analysis, we

treat the U.S. Fed’s (CMP and NTM) policy actions as well as their components

as exogenous variables in relation to other currencies. We model the U.S. data

independently as in Mohaddes and Raissi (2019). In particular, we assume the Fed

determines its CMP and NTM (or one of their components) using two inputs, a

weighted average of the tail risk of currencies and a weighted average of NTM (or

their components). Under this particular modelling specification, it is assumed the

U.S. Fed, knowing its impact on monetary policies and currencies of other countries’,

determines its policy first. This assumption largely reflects the dominant role played

by the U.S. in the global economy.

A few technical remarks are necessary. First, in order to improve the conver-

gence we smooth the daily systematic tail risk measure with a moving average filter

estimated over a 10-day window. The results are robust to using windows of 5 or

21We have omitted Sweden, Denmark and Australia for model dimensionality reasons. Moreover,
Danish and Swedish Krona follow closely the dynamics of Euro, so we do not expect it to be
structurally different from the Euro Area.
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15 days. Second, particularly important for the systematic component, the BGVAR

is estimated in first differences. Third, the model estimation uses stochastic search

variable selection with 5 lags, 20,000 posterior draws and the same number of burn-

ins (see George, Sun, and Ni, 2008). The estimation takes between 30 to 40 minutes

depending on computer processing capacity.

5.2. Identification

To identify the shocks, we impose three sign restrictions. First, using inference

from our panel analysis, for each country we impose a five-days increase in the

systematic component following a policy event. Increasing this window to ten days

does not result in a material change in our inference. Second, for each country

we impose a one-day zero impact on CMP. This assumption reflects the fact that

before the Global Financial Crisis, there was effectively no response of policy rates

to NTM while afterwards, they were bound by the ZLB. Third, using insights from

the literature, we assume that NTM or APP from EUR, UK and Japan decreases

the systematic component of tail risk of the other two countries. For example, an

NTM announcement by the ECB will reduce the systematic component for the U.K.

and Japan (see, for example, Sosvilla-Rivero and Fernandez, 2016; Inoue and Rossi,

2019; Tran and Pham, 2020). However, we make no assumption about the impact of

UK, Eurozone or Japan over Switzerland, Canada and New Zealand. The agnostic

approach we take with respect to the latter does not condition our results since the

impulse response functions (IRFs) tend to be qualitatively very similar to the model

where we impose the sign restriction on the remaining countries. Yet, doing the

latter often delays or prevents the estimation convergence of the IRFs and can also

lead to overidentification.

For the global shock, we only assume a one-day positive effect for all countries.

In addition, unless otherwise stated, the shock pertains to the domestic monetary

policy. The response function depicted is also in the same currency. For instance,
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in Figure 9, we report the transmission of one standard deviation increase in the

Bank of England’s unconventional policy on the GBP tail risk. We also model

the 95% confidence bands of IRFs.22 Next, to identify the particular channels, we

orthogonalise the transmission of domestic shocks by estimating different pairs of

shocks, and then incrementally add one shock at a time. This approach provides

insights into the marginal contribution of specific domestic shocks on the global

system. Lastly, we additionally estimate the model with global (NTM, APP and

CMP) shocks. A global shock is identified as one originating from the U.S. (since

the U.S. is exogenous to the system) but impacts all countries simultaneously. We

first discuss the results for NTM shocks, both domestic and global, and then proceed

to discuss the APP shock results.

5.3. Non-Traditional Measure Results

Figures 9-13 show the IRFs for the country-specific systematic tail risk following

a local, but simultaneously-introduced NTM shock. The horizontal axis depicts the

number of business days, and the vertical axis depicts the change in the systematic

component of tail risk. Since the magnitudes on the vertical axis are based on a

compounded (or indexed) measure, the easiest way to interpret the changes in the

y-axis is as movements in an index.

We find that the systematic tail component increases consistently across all cur-

rencies. The response peaks at around one week and fades out between three to four

weeks after the shock. This further confirms our panel analysis results that NTM

has a relatively short-term effect. It seems the effect is strongest for CAD and JPY

while weakest for CHF. Yet, for CAD, the confidence intervals are also the widest,

which points to considerable uncertainty regarding the true value. Considering the

22The exception is the analysis on APP that we present in Figures 7-23 in the Online Appendix
where the shock is in one single APP measure but the transmission is restricted to be positive in
the other jurisdictions/currencies.
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(central) Bank of Canada has employed a limited number of unconventional policy

measures, the wide interval is perhaps not that surprising.

[Figures 9-13]

To better understand the cross-border spill-overs of domestic shocks, a good proxy

for currency ties, we run a number of counterfactual exercises whereby we sequentially

introduce shocks. We begin with different combinations of two shocks and gradually

add one more and observe the impact on the IRFs. The difference in IRFs captures

the international transmission of that particular policy instrument.

The graphs in Figures 14 to 21, moving from (top) left to right (and then down)

represent those of Canada (CA), Switzerland (CH), Euro Area (EU), UK (GB),

Japan (JP) and New Zealand (NZ). Figure 14 depicts the transmission of a domestic

NTM shock in the Euro Area and Japan. Figure 15 presents the same for UK and

Japan, and then sequentially so until Figure 20 where all shocks are simultaneously

introduced. This analysis concludes with a global shock reported in Figure 21.

In the two-shock scenario in Figures 14 to 16, the only jurisdictions that seem to

significantly respond to movements in the domestic NTM are the Euro Area, UK,

Japan and New Zealand. That includes both the case when we impose a shock on

their domestic currency, as well as when we do not. Obviously when the shock is in

the domestic currency, the magnitude of that IRF is between 10 and 20 times higher.

Nevertheless, in all cases, the entire 95% empirical distribution of the IRF is above

or below 0. Moreover, the impact is persistent, both in the positive and negative

parts. Following the positive domestic NTM shock, the response remains positive for

about 4-5 weeks, and the peak is at around 1 - 3 weeks. The infimum of this interval

represents the jurisdictions where a domestic shock has been applied, meanwhile the

supremum is for jurisdictions that have imported the effects. Also, the reversal is

weaker and occurs later for the jurisdictions that import the shock. This indicates a

delay or friction in the cross-border transmission of NTM shocks.
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Adding more shocks does not change the dynamics. The responses of these four

jurisdictions remain significant and persistent. Only when we introduce shocks in

the other economies, do we also find significant transmission in those. In terms of

magnitude, the largest responses for the Euro Area, UK, Japan and Switzerland

are for the case with simultaneous domestic NTM shocks in all those economies.

The IRFs in this case are larger or equal to those of a scenario when all (seven)

jurisdictions are shocked. In terms of marginal spill-overs of domestic NTM to total

transmission, Switzerland appears to have the largest contribution. In contrast, a

New Zealand NTM shock appears to reduce the overall transmission by greatest

amount.

[Figures 14 to 20]

Turning now to the global NTM shock in Figure 21, the overall response functions

are substantially smaller. Yet the IRFs are significant and persistent for 1 week or

longer. The largest and most persistent response is on the Swiss franc, that remains

above 0 for almost 4 weeks. This implies that the Swiss franc is the most exposed

to U.S. monetary policy, followed by Japan and Canada.

[Figure 21]

5.4. Robustness Analysis

To better disentangle the transmission of each domestic QE shock for the three

economies where the effects were the largest, UK, the Euro Area and Japan, we ran

independent simulations introducing only one shock and comparing the transmission

to joint-shock scenarios. In Figures 7-23 of the Online Appendix, we report the cor-

responding IRFs. Overall, the responses to an orthogonal shock are smaller than to

joint shocks, with the Euro Area as the exception. The cross-border transmission to

other economies seems, however, to be somewhat delayed in the one shock scenario.
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Taken together, this means that joint QE actions increase substantially the system-

atic component of FX tail risk, and proportionally more relative to when only one

central bank implements QE measures. This evidence suggests a reinforcement of

monetary policy effects and enhancement of its international transmission channel.

6. Conclusion

We examine the relationship between central bank policy toolbox and the tail

risk of exchange rates. We find that NTM (or unconventional) policy tools have

an impact on the tail risk - particularly the systematic component - of currencies.

Ahrens et al. (2023) find that speeches by members of FOMC of the U.S. Fed seem

to increase the tail risk of stocks and bonds. Our findings complement and expand

on their findings by documenting that a similar finding holds for other central bank

actions and currency markets. This transmission is larger for measures such as APP

and SWAP, and in particular since the Euro Area Debt Crisis. Moreover, the effects

are stronger for countries that have more forcefully engaged in non-traditional pol-

icy measures, shedding new light on the unintended consequences of non-traditional

measures on financial markets. The effects last for up to 1 month, and are propor-

tionally higher for joint QE actions. Our empirical analysis confirms the existence

of a financial cross-border transmission channel of central bank policy, via the tails

of the FX market returns. Future research should aim to formalize such link to bet-

ter understand the structural aspects of the transmission and any implications for

financial stability.
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Table 1: Description of Main Variables

These are the variables we use in the econometric analysis. The impact of CMP,
APP, Coll, FG, Fund and Swap is measured as ∆ImpY ieldτit, where ImpY ield is
the futures-implied yield of country i, at day t, of sovereign bond with maturity
τ ∈ {1m, 2m, 2y, 5y, 10y}. Finally, the impact will be different from zero at the day
of the decision, and the next three working days.
Variable Description

Tail Risk Full tail risk, systematic tail risk or idyosincratic tail risk component following the procedure described in the paper
CMP Impact of Central Bank announcement about the reference rate*
APP Impact of Central Bank announcement about asset purchase programs*
Coll Impact of Central Bank announcement about assets eligible as collateral*
FG Impact of Central Bank forward guidance announcement*
Fund Impact of Central Bank announcement about funding facilities*
Swap Impact of Central Bank announcement about swap lines with other central banks*
ZLB Dummy variable for periods when the reference rate reached the zero lower bound
FGsg, og, tg Dummy variables following Ehrmann et al., 2019; Beck, Duca, and Stracca, 2019
QE Dummy variable for periods of QE/QT

Figure 1: Conventional Monetary Policy Measures over Time

This figure shows the movement in the base interest rate controlled by the respective main central
banks over the sample period from January 2000 to February 2021. These base rates pertain to the
following currencies: GBP, EUR, CAD, NZD, DKK, SEK, JPY, AUD and USD.
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Figure 2: Non-Traditional Measures over Time

This figure shows the number of times a particular measure has been implemented over the sample
period from January 2000 to February 2021. The currencies are: GBP, EUR, CAD, NZD, DKK,
SEK, JPY, AUD and USD. The figure is a structured scatter plot where the intensity of colour
represents the frequency the respective central bank has intervened with monetary policy measures
implemented during that particular period.
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Figure 3: Dynamic Correlations of Conventional Monetary Policy Measures Across Countries

This figure shows the the dynamic correlations of measures in the conventional monetary policy
space over the sample period from January 2000 to February 2021. The currencies are: GBP, EUR,
CAD, NZD, DKK, SEK, JPY, AUD and USD.
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Figure 4: The Evolution of Currency Returns

This figure shows the evolution of the currency returns determined by aggregate systematic factor
and an idiosyncratic term. Aggregate systematic factor can be smaller rs(i) or larger Rs(i) than a
given threshold with probability f or (1−f) respectively. The idiosyncratic term can be “small” (ϵi)
or “large” (Ei) with probability pi and (1−pi) respectively. When the idiosyncratic term is large, it
can be negative E−

i with probability Pr(E
−
i ) = qi or positive E

+
i with probability Pr(E

+
i ) = 1− qi.

The term below each branch is the probabilities of the term above that branch and the terms in
the final nodes are the tails of the joint distribution (see also Figure 5)

.
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Figure 5: The Partition of Outcome Space of Aggregate Systematic Factor and Currency Returns

Partition of the outcome space into tails where the dash lines depict the thresholds, in this case
quantiles Qs(i)

α = Fs(i)
−1(αs(i)) and Qi = F−1

i (αi). The four tails are the final nodes in the event
tree in Figure 4: in T∅ no quantile exceedance has occurred (the white area), in Ts(i) the aggregate
systematic factor has exceeded its quantile but not the currency (the light grey area), in Ti the
currency has exceeded its quantile but not the the aggregate systematic factor (the green area) and
finally in Ti,s(i) both have exceeded their quantiles (the dark grey area).
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Table 3: Quantiles of the Empirical Distribution

Panel A of this table shows the 2.5, 5 and 10% quantiles of the empirical distri-
bution of the currency excess returns. Panel B shows the 2.5, 5 and 10% quantiles
of the empirical distribution of the aggregate systematic risk factor of each currency.
The 5% quantile in bold is used as a benchmark.

Panel A: Quantiles of the currency excess returns

GBP EUR CAD NZD DKK SEK JPY CHF AUD
0.025 -0.011 -0.012 -0.011 -0.015 -0.013 -0.015 -0.012 -0.012 -0.015
0.05 -0.009 -0.01 -0.009 -0.012 -0.01 -0.012 -0.009 -0.01 -0.011
0.1 -0.007 -0.007 -0.006 -0.009 -0.007 -0.009 -0.007 -0.007 -0.008

Panel B: Quantiles of the aggregate systematic factor for each country

GBP EUR CAD NZD DKK SEK JPY CHF AUD
0.025 -0.008 -0.012 -0.008 -0.012 -0.012 -0.013 -0.007 -0.011 -0.012
0.05 -0.007 -0.009 -0.006 -0.009 -0.009 -0.01 -0.005 -0.009 -0.01
0.1 -0.005 -0.007 -0.004 -0.007 -0.007 -0.008 -0.004 -0.007 -0.007

Figure 6: The Evolution of the Tail Risk of Currencies and Their Systematic Risk Factors over
Time

This figure shows the evolution of the quantiles at nominal probability level α = 5% of currencies
and their aggregate systematic risk factors.
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Table 4: Joint Probability of a Tail Event and the Tail Dependence Coefficient

Panel A of this table shows the joint probability of a currency and its aggregate
systematic risk factor exceeding their respective 2.5, 5 and 10% quantiles of the
empirical distribution. Panel B shows the tail dependence coefficient of a currency
on its aggregate systematic risk factor estimated at the 2.5, 5 and 10% quantiles of
the empirical distribution. The 5% quantile in bold is used as a benchmark.

Panel A: Joint probability of a currency and its
aggregate systematic risk factor exceeding a quantile

GBP EUR CAD NZD DKK SEK JPY CHF AUD
0.025 0.012 0.019 0.012 0.015 0.019 0.015 0.007 0.016 0.014
0.05 0.024 0.037 0.025 0.027 0.037 0.031 0.015 0.035 0.027
0.1 0.055 0.079 0.055 0.056 0.077 0.068 0.039 0.071 0.059

Panel B: The tail dependence coefficient of a currency
on its aggregate systematic risk factor

GBP EUR CAD NZD DKK SEK JPY CHF AUD
0.025 0.449 0.755 0.485 0.602 0.741 0.58 0.274 0.617 0.558
0.05 0.449 0.734 0.475 0.524 0.73 0.599 0.262 0.674 0.524
0.1 0.496 0.771 0.496 0.506 0.743 0.642 0.32 0.674 0.547
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Figure 7: Decomposition of Currency Tail Risk into the Tail Risk Measures

This figure shows the decomposition of currency tail risk into the systematic tail risk, idiosyncratic
tail risk and tail risk cushioning measures.

Figure 8: Currency Tail Risk Measures over Time

This figure shows the decomposition of currency tail risk into the systematic tail risk and idiosyn-
cratic tail risk measures.
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Table 6: Full sample

The table reports the estimated parameters of the short panel correcting for endogenous regressor, and their

corresponding standard errors in square brackets. The dependent variable, in the first four columns, is the systematic

component of the tail risk calculated with the last year of observations, and the entire tail risk in the last four columns.

Variables of interest are the daily changes of implied yields from future contracts at monetary policy announcements

dates. We also include three days posterior to the announcements. We use as IV the daily change of implied

yields of future contracts of 10 year treasury bonds. Dummy variables for QE implementations, different type of

forward guidance and effective lower bound are included. Additional controls are daily changes of implied yields

from future contracts at conventional and unconventional monetary policy announcements dates from the United

States. Country, month and year fixed effects are included, as well as their triple interaction. We are using weekly

data from January 1, 2000 to July 30, 2020. Standard errors are Driscoll-Kraay adjusted with 2 lags. The symbols

*,**,*** denote significance at the 10%, 5% and 1% level, respectively.

Systematic Component Tail Risk
5Y 2m(r) 5Y 2m(r)

NTM 0.010 0.015** -0.021** -0.024**
[0.007] [0.006] [0.010] [0.011]

CMP -0.010 -0.008 -0.011 -0.009 0.006 0.002 0.003 0.002
[0.009] [0.009] [0.012] [0.012] [0.022] [0.022] [0.028] [0.029]

APP 0.028*** 0.029*** -0.059*** -0.055***
[0.009] [0.008] [0.022] [0.021]

Collateral -0.041 -0.000 -0.018 0.022
[0.074] [0.062] [0.079] [0.109]

Forward G. 0.006 0.007 0.008 0.006
[0.007] [0.008] [0.011] [0.010]

Fund -0.000 0.002 -0.014 -0.036
[0.013] [0.017] [0.025] [0.037]

Swap -0.068* -0.186* 0.043 0.091
[0.041] [0.111] [0.027] [0.074]

ZLB -0.011** -0.011** -0.012** -0.012** 0.010*** 0.010*** 0.010*** 0.010***
[0.005] [0.005] [0.005] [0.005] [0.003] [0.003] [0.003] [0.003]

FGsg -0.003 -0.003 -0.003 -0.003 0.014** 0.014** 0.014** 0.014**
[0.005] [0.005] [0.005] [0.005] [0.006] [0.006] [0.006] [0.006]

FGog 0.025*** 0.025*** 0.025*** 0.025*** -0.002 -0.002 -0.002 -0.002
[0.007] [0.007] [0.007] [0.007] [0.005] [0.005] [0.005] [0.005]

FGtg -0.003 -0.003 -0.003 -0.003 0.007 0.007 0.007 0.007
[0.002] [0.002] [0.002] [0.002] [0.006] [0.006] [0.006] [0.006]

QE -0.019 -0.019 -0.019 -0.019 0.066 0.065 0.066 0.065
[0.023] [0.023] [0.023] [0.023] [0.097] [0.097] [0.097] [0.097]

Observations 30,720 30,720 30,720 30,720 30,720 30,720 30,720 30,720
R-squared 0.002 0.003 0.001 0.001 0.001 0.002 0.000 0.001
Country FE YES YES YES YES YES YES YES YES
Month FE YES YES YES YES YES YES YES YES
Year FE YES YES YES YES YES YES YES YES
C M Y FE YES YES YES YES YES YES YES YES
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Table 7: Before and After GFC

The table reports the estimated parameters of the short panel correcting for endogenous regressor, and their

corresponding standard errors in square brackets. The dependent variable is the weekly average systematic component

of the tail risk calculated with the last year of observations. Variables of interest are the sum of daily changes of

implied yields from future contracts at monetary policy announcements dates. We also include three days posterior

to the announcements. We use as IV the sum of daily change of implied yields of future contracts of 10 year treasury

bonds. Dummy variables for QE implementations, different type of forward guidance and effective lower bound are

included. Additional controls are the sum of daily changes of implied yields from future contracts at conventional

and unconventional monetary policy announcements dates from the United States. Country, month and year fixed

effects are included, as well as their triple interaction. We are using weekly data from January 1, 2000 to July 30,

2020. Standard errors are Driscoll-Kraay adjusted with 2 lags. The symbols *,**,*** denote significance at the 10%,

5% and 1% level, respectively.

Before GFC After GFC
5y 2m(r) 5y 2m(r)

NTM 0.008 -0.005 0.011 0.014**
[0.009] [0.017] [0.008] [0.007]

CMP 0.009 0.009 0.017 0.018 -0.024* -0.02 -0.025* -0.024
[0.013] [0.013] [0.019] [0.019] [0.014] [0.014] [0.015] [0.015]

APP -0.019 0.032 0.029*** 0.031***
[0.046] [0.079] [0.009] [0.009]

Collateral 0.042 0.025 -0.081 0.041
[0.044] [0.072] [0.109] [0.084]

Forward G. 0.01 0.015 0.002 0.001
[0.011] [0.022] [0.009] [0.009]

Fund 0.002 0.02 0.003 0.005
[0.024] [0.058] [0.017] [0.020]

Swap -0.013 -0.313 -0.085* -0.142*
[0.075] [0.218] [0.051] [0.076]

ZLB -0.037*** -0.037*** -0.036*** -0.036*** 0 0 0 0
[0.007] [0.007] [0.007] [0.007] [0.005] [0.005] [0.005] [0.005]

FGsg -0.003 -0.004 -0.003 -0.003
[0.005] [0.005] [0.005] [0.005]

FGog 0.044*** 0.044*** 0.044*** 0.044*** 0.015** 0.014** 0.015** 0.015**
[0.010] [0.010] [0.010] [0.010] [0.006] [0.007] [0.006] [0.006]

FGtg -0.002 -0.002 -0.002 -0.002
[0.002] [0.002] [0.002] [0.002]

QE -0.008 -0.008 -0.008 -0.008 -0.028 -0.027 -0.028 -0.027
[0.013] [0.013] [0.013] [0.013] [0.040] [0.039] [0.039] [0.039]

Obs 13,758 13,758 13,758 13,758 16,956 16,956 16,956 16,956
R-squared 0.006 0.006 0.005 -0.009 0 0.002 0 -0.001
U.S. Controls YES YES YES YES YES YES YES YES
C M Y FE YES YES YES YES YES YES YES YES
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Table 8: Subperiods GFC

The table reports the estimated parameters of the short panel correcting for endogenous regressor, and their

corresponding standard errors in square brackets. The dependent variable is the weekly average systematic component

of the tail risk calculated with the last year of observations. Variables of interest are the sum of daily changes of

implied yields from future contracts at monetary policy announcements dates. We also include three days posterior

to the announcements. We use as IV the sum of daily change of implied yields of future contracts of 10 year treasury

bonds. Dummy variables for QE implementations, different type of forward guidance and effective lower bound are

included. Additional controls are the sum of daily changes of implied yields from future contracts at conventional

and unconventional monetary policy announcements dates from the United States. Country, month and year fixed

effects are included, as well as their triple interaction. We are using weekly data from January 1, 2000 to July 30,

2020. Standard errors are Driscoll-Kraay adjusted with 2 lags. The symbols *,**,*** denote significance at the 10%,

5% and 1% level, respectively.

Oct 09 - Jun 12 Jul 12 - Dec 18 After Jan 19

5y 2m(r) 5y 2m(r) 5y 2m(r)
CMP -0.004 -0.007 -0.02 -0.03 -0.035 -0.04

[0.021] [0.025] [0.020] [0.023] [0.030] [0.035]
APP 0.028 0.034 0.034*** 0.035*** -0.01 -0.025

[0.040] [0.043] [0.010] [0.013] [0.026] [0.036]
COLL -0.057 -0.078 -0.111 0.159 0.062 0.273

[0.068] [0.083] [0.160] [0.169] [0.121] [0.168]
FG -0.035 -0.04 0.007 0 0.018 0.021

[0.021] [0.027] [0.012] [0.010] [0.021] [0.025]
Fund 0.006 0 0.071 0.12 0.012 0.01

[0.021] [0.028] [0.061] [0.123] [0.037] [0.039]
Swap -0.052 -0.064 -0.287** -0.399** 0.01 0.023

[0.068] [0.086] [0.125] [0.178] [0.024] [0.056]

Obs 4,302 4,302 10,176 10,176 2,484 2,484
U.S. Controls YES YES YES YES YES YES
C M Y FE YES YES YES YES YES YES
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Impulse Response Functions in the GVAR model

Non-Traditional Measures (NTM) shocks

Figure 9: NTM: U.K. domes-
tic shock

Figure 10: NTM: Euro Area
domestic shock

Figure 11: NTM: Japan do-
mestic shock

Figure 12: NTM: Switzerland
domestic shock

Figure 13: NTM: Canada do-
mestic shock

The solid line is the median response, the dark (light) grey shaded area are the 68% (95%) confidence
intervals.
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Forecast Error Variance Decomposition (FEVD)

Domestic Non-Traditional Measures (NTM) shocks

Figure 22: FEVD: UK domes-
tic NTM shock

Share of UK tail risk varia-
tion explained by the domes-
tic NTM shock.

Figure 23: FEVD: Euro Area
domestic NTM shock

Share of Euro Area tail risk
variation explained by the do-
mestic NTM shock.

Figure 24: FEVD: Japan do-
mestic NTM shock

Share of Japan tail risk varia-
tion explained by the domes-
tic NTM shock.

Figure 25: FEVD: Switzer-
land domestic NTM shock

Share of Swiss tail risk varia-
tion explained by the domes-
tic NTM shock.

Figure 26: FEVD: Canada
domestic NTM shock

Share of Canadian tail risk
variation explained by the do-
mestic NTM shock.
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