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1 Introduction

This paper provides a method to test the relative performance of alternative models of

bidders’ behaviour in auctions. It uses data on bids but does not require data on bidders’

values. I analyse the Bank of England’s Indexed Long-Term Repo (ILTR) auctions, in which

the central bank provides liquidity insurance to financial institutions by lending a divisible

quantity of funds against collateral. In these auctions, a bid expresses the price a bidder

is willing to pay as a function of the quantity they demand. The payment rule is uniform-

pricing. A bidder’s bid for a marginal unit therefore may affect the price they pay for

inframarginal units. This creates an incentive to bid differently from the bidder’s true value

for each unit of the good.

My main finding is that bidding behaviour is nevertheless better explained by a model of

“truthful bidding” than by a conventional model in which bidders are both strategic and risk

neutral. In a truthful bidding model, bidders submit bid functions corresponding to their

true marginal valuation functions. Conversely, in a conventional strategic model, bidders

best respond to their beliefs about the economic environment and other bidders’ behaviour.

So the findings of this paper suggest that Milton Friedman (1960) may have been correct in

advocating the uniform-price auction to issue U.S. Treasuries based on the view that bidders

“need only know the maximum amount [they] are willing to pay for different quantities”

(Friedman, 1991). He argued that bidders do not need to strategise so the uniform-price

auction should reduce collusion and increase participation relative to the pay-as-bid auction.1

The difference between bidders’ true values and their bids, i.e. their “bid shading”, is difficult

to measure because their values are rarely observed. Studies of divisible-good auctions

therefore must assume a model of bidding when assessing the efficiency, revenue and other

outcomes of alternative auction designs (see, e.g., surveys by Gentry et al., 2018; Hortaçsu

and McAdams, 2018; Hortaçsu and Perrigne, 2021). The nature of bidding behaviour affects

these market outcomes so the choice of model is critical to the analysis.

Truthful bidding can be justified as rational in two ways: risk aversion and costs of calculating

the optimal strategy. First, when bidders are sufficiently risk averse, optimal strategies in

the conventional model approximate truthful bidding, and I show that optimal strategies in

the conventional model get closer to truthful bidding as risk aversion increases. (If bidding

1Uniform-price and pay-as-bid are the two payment rules most commonly used in practice. In pay-as-bid
auctions, a bidder pays their bid for each unit that they win. Their bid therefore also affects both their
probability of winning and the expected payment.
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truthfully, bidders submit bids that correspond to their marginal values regardless of their

degrees of risk aversion.) Second, truthful bidding is a best response when bidders face a

cost of calculating what otherwise would be the optimal strategy and this cost outweighs the

additional expected surplus generated by the strategy.

In this paper, I provide a test of competing models of bidding. It adapts Backus, Conlon

and Sinkinson’s (2021) test of firm conduct, which combines Rivers and Vuong’s (2002)

comparison of non-nested alternatives and Berry and Haile’s (2014) exclusion restrictions.

The procedure uses instrumental variables to evaluate the relative amount of bid shading

that the different models predict. The instruments are variables that affect a bidder’s bid

shading but not their true value for liquidity. Under a correctly specified model, bidders’

estimated values therefore will be uncorrelated with the amount of bid shading predicted

by the instruments. Conversely, they will covary with the predicted bid shading under a

misspecified model. Stronger covariance between the instruments and model-implied values

is therefore evidence of worse model fit.

The key assumption for the test to be valid is that bidders have independent private values.

Under this assumption, I use variables that measure the strength of competition, e.g. the

number of other bidders in the auction, as instruments. One advantage of the approach

is that, providing this assumption holds, the test remains valid even if both of the com-

peting models are misspecified. This is because the procedure tests the models’ relative

performance. For example, if bidders are strategic but have different information to what

is assumed in the conventional strategic model that I consider, the procedure will assess

whether truthful bidding or the conventional model is a better approximation. While I fo-

cus on uniform-price divisible-good auctions, the method can be applied more broadly to

auctions in which bidders’ marginal values can be point identified and estimated under the

candidate models of bidding behaviour, and valid instruments are available.

I compare truthful bidding to Kastl’s (2011, 2012) conventional share auction model, which

modifies Wilson’s (1979) foundational model to reflect the fact that bid functions are step

functions and which is now widely used in empirical studies (e.g. Cassola, Hortaçsu and

Kastl, 2013; Hortaçsu, Kastl and Zhang, 2018; Allen, Kastl and Wittwer, 2022). This is

the most appropriate benchmark to analyse behaviour in the Bank of England’s liquidity

auctions in which bidders submit a vector of ordered price-quantity pairs which constitute

their stepped bid functions. In the auctions, bidders submit bid functions with very few

steps, which is difficult to explain without Kastl’s (2011) modification. Participants may

optimally bid above or below their marginal values for liquidity in Kastl’s (2011) model, so
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truthful bidding is an especially natural comparator.

I consider two explanations for why a model of truthful bidding outperforms this conventional

model of behaviour, which assumes bidders are both risk neutral and strategic: risk aversion

and costs of determining the optimal strategy.

Kastl’s (2011) conventional model of bidding assumes that bidders are risk neutral. However,

there are two reasons why risk aversion might be a more appropriate assumption in the Bank

of England’s liquidity auctions. First, in a principal agent framework, the manager tasked

with bidding on behalf of the auction participant may have a concave utility function either

because they are individually risk averse or because of the remuneration structure.2 Second,

the nature of the loans being allocated in the auctions suggests that financial institutions

themselves might be risk averse—the auctions were introduced to respond to “the new de-

mands for liquidity insurance that [the financial crisis] engendered” (Fisher, 2011a, p.15).

Unsurprisingly, when bidders are risk averse, optimal strategies in the conventional model

are closer to truthful bidding—if a bidder is sufficiently risk averse, they do not want to

gamble on losing at prices at which they would prefer to win (or winning at prices at which

they would prefer to lose) by submitting a bid that differs from their valuation. I build on

Kastl (2011) by deriving novel identifying conditions, which allow for constant absolute risk

aversion, in order to test the relative performance of the conventional model with varying

degrees of risk aversion. I also show the best response gets closer to truthful bidding as

risk aversion increases. The results show that truthful bidding can be rationalised within

the conventional model by a degree of risk aversion which is consistent with that found in

studies that are the most similar to my setting (Armantier and Sbäı, 2006; Boyarchenko,

Lucca and Veldkamp, 2021).

Second, truthful bidding may be explained by a cost of determining the optimal strategy,

i.e. a cost of “sophistication” (Hortaçsu and Puller, 2008), providing the cost exceeds the

expected gains from what otherwise would be the optimal strategy. This resembles the

finding that truthful bidding is an ε-equilibrium in Swinkels (2001) and Chakraborty and

Englebrecht-Wiggans (2006): the loss from bidding truthfully rather than optimally becomes

arbitrarily small as the number of bidders increases in multi-unit uniform-price auctions. I

estimate a lower bound on the size of these costs by the difference between the surplus

from what would be an approximate best response and the surplus from truthful bidding,

assuming observed bids correspond to bidders’ values. I find that the average lower bound is

2For example, this may result if the remuneration structure rewards not just higher expected profit for
the participant but also winning at any price that the participant is willing to pay.
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around 5% of bidder surplus, implying that, if bidders’ actual strategies are to bid truthfully,

they obtain up to 95% of the surplus that would have been generated by an approximate

best response. In comparison, in Hortaçsu and Puller (2008), bidders’ actual strategies only

generate between 0% and 80% (excluding loss-making bidders) of the surplus generated by

the optimal response.

This paper primarily contributes to the literature on testing equilibrium behaviour in divisible-

good auctions. Wolak (2007) and McAdams (2008) use violations of over-identifying moment

conditions, which rule out profitable unilateral deviations in bidders’ strategies.3 By con-

trast, I exploit exclusion restrictions to compare the goodness-of-fit of alternative models of

behaviour. I therefore do not require over-identifying moments, but do require valid instru-

ments. In this respect, the methods are complementary, allowing greater flexibility to the

data available. By assessing relative rather than absolute model fit, my approach is also

robust to model misspecification. It has been used to test firm conduct in product markets

(Backus, Conlon and Sinkinson, 2021; Duarte, Magnolfi and Roncoroni, 2021; Starc and

Wollmann, 2022) and labour markets (Roussille and Scuderi, 2022). To my knowledge, it

has not yet been adapted to an auction setting.4

Other studies estimate marginal values using data outside the model and compare these

directly to the observed bids. For example, Wolfram (1999) and Borenstein, Bushnell and

Wolak (2002) cannot reject strategic bidding in British and Californian electricity markets,

whereas Hortaçsu and Puller (2008) and Hortaçsu et al. (2019) find strategic heterogeneity

in Texas. In these later studies, larger bidders submit bids close to those predicted by profit

maximisation, yet smaller bidders persistently deviate from equilibrium bidding. Similar

to my paper, Hortaçsu and Puller (2008) show that this can be rationalised by a cost of

sophistication that only larger bidders are willing to incur.5 In contrast to these studies, my

testing procedure does not require data on marginal values, which are often unavailable.

3Wolak (2007) fails to reject profit maximisation by participants of Australian electricity markets, while
Chapman, McAdams and Paarsch (2006) apply McAdams’ (2008) method to the Bank of Canada’s auctions
of cash reserves and find that bids were “close to” best response (i.e. an ε-equilibrium).

4Roussille and Scuderi (2022) model their labour market setting as an auction, in which firms submit
wage offers, or “bids”, for job candidates on an online job board. The structure of their data and their choice
of instruments are similar to mine: individual firms’ wage offers (i.e. bids) are observed and the number of
candidates relative to the number of competitors (i.e. auction supply relative to demand), which measures
firms’ expectations about competing bids, is used as the instrument.

5Hortaçsu et al. (2019) demonstrate that a cognitive hierarchy model provides a good fit in the Texan
electricity market, with strategic sophistication increasing in firm size. The parameters of the cognitive
hierarchy model are unidentified given only bidding data, so I cannot assess it with my approach. Truthful
bidding is of course a special case in which Level-0 behaviour is defined by truthful bidding and adopted by
all bidders.
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My paper also contributes to the literature on risk aversion in financial markets. Armantier

and Sbäı (2006) estimate the degree of risk aversion of bidders in French Treasury auctions

and Boyarchenko, Lucca and Veldkamp (2021) calibrate the risk aversion parameter for

bidders in US Treasury auctions. Applying the findings of these studies to the Bank of

England’s liquidity auctions would suggest that truthful bidding is approximately optimal

in our context. In contrast, Allen and Wittwer (2023) estimate a much smaller degree of

risk aversion when focusing exclusively on primary dealers in Canadian Treasury auctions.6

Using data from Indian Treasury bill auctions, Gupta and Lamba (2023) use risk aversion to

explain the combination of increased participation and higher uncertainty during the 2013

“taper tantrum”. They build on Kastl’s (2011) model by assuming bidders have constant

relative risk aversion (CRRA), and identify values by assuming both that bidders’ marginal

valuation functions are step functions and that at most one bidder submits a bid equal to

each possible auction price (i.e. bidders do not tie on the margin). I instead permit bidders

to have constant absolute risk aversion (CARA) and allow for ties on the margin, which

are highly probable in my context and in others in which the set of possible bid prices is

discrete.7

The paper proceeds as follows. Section 2 provides background for the Bank of England’s

liquidity auctions and introduces the data. In Section 3, I describe the alternative models

of behaviour and their implications for the amount that bids differ from bidders’ values.

The identification of bidders’ values, the estimation method and the testing procedure are

described in Section 4. Section 5 gives the results of the pairwise comparisons of models and

shows how truthful bidding can be explained. Section 6 concludes.

6Outside of financial markets, Häfner’s (2023) analysis of meat quota auctions is the only study, to my
knowledge, of risk aversion in multi-unit auctions.

7CARA implies that a bidder’s risk aversion does not vary with their net surplus from the auction
(defined by the area between their marginal valuation function and the auction price, up to the quantity
they are allocated), whereas Gupta and Lamba’s (2023) CRRA specification implies that the bidder’s risk
aversion is decreasing in their net surplus from the auction. CARA seems more appropriate in my context
for at least two reasons. First, the financial institution’s net surplus from the auction is trivial relative to
its total assets so CARA seems to be a more suitable approximation if the financial institution itself is risk
averse. Second, if the manager tasked with bidding on behalf of the participant is individually risk averse,
it is not clear why their risk aversion would be lower when the stakes were higher. Moreover, if the manager
has a concave utility function because of the remuneration structure, CRRA would imply that the manager
is rewarded more for winning in the auction when the participant’s net surplus from the auction is smaller.
It is unclear whether this would be an appropriate assumption.
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2 Institutional setting and data

2.1 Indexed Long-Term Repo auction

My empirical setting is the Bank of England’s (BoE) Indexed Long-Term Repo (ILTR)

auction. This was introduced in 2010 to efficiently respond to “the new demands for liquidity

insurance that [the financial crisis] engendered” (Fisher, 2011a, p.15) by lending funds to

financial institutions against multiple types of collateral. It allocates the largest amount of

funds among the range of BoE facilities that provide liquidity insurance. I study the period

June 2010 – January 2014, in which the operations were held monthly.8

Loans of central bank reserves are issued at a spread over the BoE base rate (Bank Rate)

for a 3- or 6-month term, and separate operations are run for different terms. The lending

is collaterised. Within each operation, bidders may borrow the reserves against one of

two types of collateral: “Level A”, including highly liquid gilts, sterling Treasury bills and

certain sovereign and central bank debt, and “Level B”, including high quality, but less

liquid, sovereign debt and certain asset-backed securities.9 The ILTR operations therefore

provide a “liquidity upgrade” to participants, allowing them to swap collateral for more

liquid reserves. I refer to funds borrowed against each type of collateral by goods A and B

respectively, and the spreads over Bank Rate at which the loans are allocated by the prices

of goods A and B.

Each operation is a Product-Mix Auction (PMA), originally developed in Klemperer (2008)

and further described in Klemperer (2010, 2018). It is a sealed-bid uniform-price auction in

which goods are jointly allocated, as explained below. For each good, all winning bidders

pay the auction price for that good.

Bidders Participants of the BoE’s Sterling Monetary Framework (SMF) with access to the

BoE’s Open Market Operations (OMO) were eligible to register to participate in the ILTR

auctions, including banks and building societies.10 Nixon (2014) shows that the number of

8The auction design, supply curves representing the BoE’s preferences between collateral sets, and el-
igibility for entry have evolved over time. These auctions are currently held weekly, with rules that have
been modified since the sample period. Further details can be found at https://www.bankofengland.co.
uk/markets/bank-of-england-market-operations-guide/our-tools.

9The classification of collateral sets reflected the relative liquidity of the assets (Fisher, 2011b), and the
BoE imposed haircuts on the assets with the aim that differences between the collateral sets reflect only
these liquidity premia, not credit risk premia. The haircuts applied to assets varied depending on, e.g. credit
rating, interest rate, and maturity (Bank of England, 2010a). The classification was adjusted over the period
(see Bank of England, 2011). The current classification can be found at https://www.bankofengland.co.
uk/-/media/boe/files/markets/eligible-collateral/summary-table-of-collateral.pdf.

10Since 2014, after the sample period, broker-dealers and central counterparties are eligible to register for
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institutions with OMO access was fairly stable from October 2009, before the ILTRs were

introduced, to January 2014, ranging from 48 to 52. There was no formal obligation for

registered bidders to participate in the auctions.

Bids Bidders can submit any number of sealed bids. A bid specifies the good (i.e. the

type of collateral used), the quantity demanded, and the price (i.e. spread) the bidder is

willing to pay. For example, a bid may specify demand of £50 million at a spread of 2 basis

points (bps) for good A.11 The minimum bid price is 0bps, with increments of 1bp. The

minimum bid size is £5 million, with increments of £1 million, and the minimum unit of

allocation is £100,000. A bidder may bid for a maximum of £1.5 billion and £0.75 billion of

loans for 3-month and 6-month terms, respectively (Bank of England, 2010a).

Supply Prior to the auction, the BoE commits to the following supply preferences:

1. The maximum supply made available across goods A and B is publicly announced

prior to the auction.

2. The BoE commits to a privately known “relative supply” curve. It is measured by the

difference between the prices of goods B and A and is an increasing function of the

quantity allocated of good B. This is “pinned down by [the BoE’s] preferences” to

provide liquidity insurance at prices which incentivise prudent liquidity management

(Fisher, 2011a, p.12).

Market clearing The PMA uses the information from the submitted bids and auction-

eer’s supply curves to find the competitive equilibrium, assuming bids correspond to bidders’

marginal values and the supply curves represent the prices the BoE is willing to accept. The

quantity allocated of each good therefore depends on the submitted bids and BoE’s supply

preferences, and so is uncertain from the perspective of bidders (see Appendix A for an

illustration).

For each good, the auction price is the maximum of the highest losing bid for that good

and the minimum price the BoE is willing to accept, as expressed by the supply curves.12

the SMF (de Roure and McLaren, 2021).
11In the sample period, bidders were also permitted to submit “paired bids”, which specify the quantity

demanded and a price for each of goods A and B. For each bid, the bidder may be allocated the loan against
either good A or good B. They are allocated the good which maximises their surplus, given the clearing
prices and assuming bids reflect bidders’ true preferences. For example, a paired bid may specify demand of
£50 million at a spread of 2bps for good A or 25bps for good B. If the clearing prices are 1bps and 22bps
respectively, the bidder is allocated £50 million of good B. In practice, bidders rarely made use of paired
bids so I drop them from the sample.

12For good B, the minimum price the BoE is willing to accept is the sum of the auction price for good A
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Bids strictly above the auction price are fully allocated and bids on the margin are rationed

pro-rata for each good. Winning bidders pay the auction prices.

Information Certain information about the auction results is made public: the total

quantity of bids for each good, total amounts allocated, clearing spreads and rationing coef-

ficients. None of the number of bidders, the number of individual bids, and the range of bid

prices are revealed.

2.2 Data

I use a unique proprietary dataset that consists of all bids submitted in the BoE’s ILTR

auctions, held monthly in June 2010 – January 2014, and the relative supply curves used

by the BoE to determine the allocation across goods. To my knowledge, this data has only

once been analysed.13

Supply The maximum supply, publicly announced prior to the auction, was £5 billion

for the 3-month term auction and £2.5 billion for the 6-month term auctions. The minimum

auction prices of goods A and B were 0bps and 5bps, except for the prices in the 6-month

auctions from May 2011, in which the minimum for good B was 15bps. The relative supply

curves were flat at the minimum spreads up to some fixed quantities of good B and beyond

this were increasing; I cannot disclose their precise functional forms.

Bids The bidding data is de-identified. Across auctions, unique participants are indexed

from 1 to P . For each participant, I observe the full set of bids that the individual submits

on goods A and B, if any, in each of the 44 auctions. Each bid consists of the type of

collateral the bidder will provide (the good), the spread in basis points over Bank Rate they

are willing to pay (the bid price) and the quantity of liquidity they demand in £million. For

each good, a bidder’s bids imply a (price, quantity)-schedule, i.e. an individual bid function,

which is a step function.

Aggregate demand The total quantity of funds demanded in the auctions decreased

substantially in the second half of the sample period (see Figure 1) so I limit the analysis

to the first 24 months of auctions (from June 2010 to May 2012).14 Aggregate demand

and the relative supply curve evaluated at the quantity allocated of good B. For good A, it is the difference
between the auction price for good B and the relative supply curve evaluated at the quantity allocated of
good B.
In practice, the precise price determination rules change slightly over the period for the rare cases where

competitive equilibrium does not determine the prices uniquely (see Giese and Grace (2023) for details).
13de Roure and McLaren (2021) study the risk profile of participants in the ILTR auctions.
14Winters (2012) provides three explanations for this. First, an increase in the availability of funding from
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Figure 1: Aggregate quantity demanded as a share of the maximum supply, June 2010–
January 2014.

also varies over the period, which the estimation procedure described in Section 4.2 aims to

account for.

Summary statistics Table 1 provides summary statistics of the data. The auction price

of good A is typically close to its reserve of 0bps (the weighted average price paid is 1.14bps

in the 3-month term auctions and 0.59bps in the 6-month term auctions), reflecting the high

liquidity of assets in the Level A collateral set. In contrast, the assets in the Level B set are

more heterogeneous and typically have limited secondary markets. This is reflected in much

higher weighted average prices paid for good B of 21.67bps and 43.43bps in the 3-month and

6-month term auctions, respectively, and much greater variance in the auction prices than

good A.

the BoE’s quantitative easing programme and cheaper funding in the market than from the BoE reduced
demand for good A. Second, a reduction in participants’ holdings of assets in the Level B collateral set
reduced demand for good B. And finally, funding allocated in the ILTR auctions was of relatively short
maturity, so was not well-suited to meet participants’ regulatory liquidity requirements. Increased availability
of funds from the euro area and from alternative facilities in the BoE also likely played a role. For example,
the Funding for Lending Scheme was introduced by the BoE in July 2012, allowing borrowing of up to four
years. Another source is the BoE’s Extended Collateral Term Repo (ECTR) operation, consisting of monthly
auctions for 6-month term liquidity, although this was only activated once in June 2012.
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Table 1: Summary statistics for ILTR auctions in June 2010 – May 2012

3-month term 6-month term

Number of auctions 16 8

Both goods

Mean Std. Dev. Mean Std. Dev.

Maximum supply (£billion) 5 0 2.5 0
Total quantity of funds demanded (£billion) 4.57 2.67 2.69 1.93
Number of bidders 8.13 3.07 7.63 3.85
Total quantity of funds allocated (£billion) 3.55 1.86 1.65 0.99

Good A

Mean Std. Dev. Mean Std. Dev.

Quantity of funds demanded (% of allocation of good A) 125.72 22.68 171.98 66.62
Bid price (weighted, basis points) 2.51 2.85 3.06 4.31
Number of bids submitted per bidder (unweighted) 1.52 0.84 1.49 0.86
Number of bids submitted per bidder (weighted) 1.79 0.94 1.86 1.04
Quantity demanded by bidder (% of maximum supply) 13.65 11.87 13.93 12.30

Quantity of funds allocated (% of total allocated) 83.72 12.00 70.65 20.19
Price paid (weighted, basis points) 1.14 1.71 0.59 0.79

Good B

Mean Std. Dev. Mean Std. Dev.

Quantity of funds demanded (% of allocation of good B) 151.26 58.15 202.74 91.49
Bid price (weighted, basis points) 23.61 9.96 38.96 16.15
Number of bids submitted per bidder (unweighted) 1.64 1.31 2.30 1.71
Number of bids submitted per bidder (weighted) 2.90 2.11 2.95 2.28
Quantity demanded by bidder (% of maximum supply) 4.30 6.41 9.69 9.87

Quantity of funds allocated (% of total allocated) 16.28 12.00 29.35 20.19
Price paid (weighted, basis points) 21.67 6.52 43.43 1.37

Weightings: Quantities of funds demanded and quantities of funds allocated per good are weighted by the

aggregate quantities demanded in auctions; prices paid for each good are weighted by the aggregate quantities

allocated of the good in auctions; bid prices are weighted by the quantities demanded at those prices by

bidders; and the number of bids submitted per bidder is weighted by the total quantities demanded by

bidders.
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Table 2: Summary statistics by bidder size in the ILTR auctions in June 2010 – May 2012

Good A

3-month term 6-month term

Small bidders Large bidders Small bidders Large bidders

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
Bid price (basis points) 3.22 2.13 2.51 2.85 5.33 5.20 3.03 4.29
Number of bids submitted per bidder 1.09 0.29 1.67 0.91 1.25 0.45 1.58 0.96

Good B

3-month term 6-month term

Small bidders Large bidders Small bidders Large bidders

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
Bid price (basis points) 24.42 13.93 23.47 9.10 41.36 23.49 38.88 15.85
Number of bids submitted per bidder 1.28 0.72 2.14 1.74 1.89 1.17 2.50 1.92

Definitions: Small bidders are defined as those who demand less than 2.5% of the maximum supply in all

auctions in the sample period; Large bidders are defined as those in the remaining set; bid prices are weighted

by the quantities demanded at those prices by bidders, and numbers of submitted bids are unweighted.

2.3 Bidding behaviour by bidder size

Bidders differ in the amount that they demand, and therefore in their ability to affect the

auction price. In conventional models of bidding in uniform-price auctions, larger bidders

have incentives which correspond to the quantity-shading incentives of oligopolists facing

uncertain demand in Klemperer and Meyer (1989). A bidder can reduce the expected auction

price paid for all units that they win by reducing the quantity that they demand at each

price; the strength of this incentive is increasing in the quantity that the bidder demands.

If bidders were acting strategically, we would therefore expect to observe larger bidders to

ceteris paribus submit lower bid prices relative to their values.

Table 2 shows the average bid prices of bidders who demand less than 2.5% of the maximum

supply in all auctions, who are labelled “Small”, and bidders in the remaining set, labelled

“Large”.15 Larger bidders do submit lower bid prices in the ILTR auctions, but this does

not isolate differences in strategic incentives from unobserved variation in bidders’ values.

It is possible, for example, that larger bidders in the ILTR auctions have greater access

to alternative funding sources which affect their valuations. The main contribution of this

paper is to employ a testing procedure, described in Section 4.3, which isolates the variation

in bidders’ strategic incentives from variation in their values in order to evaluate alternative

models of behaviour.
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Figure 2: Number of bids submitted per bidder within auction on each good in June 2010 –
May 2012.

(a) Good A

(b) Good B
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2.4 Bids submitted per bidder

A striking feature of the data is that bidders submit few bids per auction (Figure 2). This

characteristic of bidding is also seen in many other multi-unit auction settings.16 It motivates

the model of bidding behaviour, developed by Kastl (2011, 2012), which is now widely used

in empirical studies (e.g. Cassola, Hortaçsu and Kastl, 2013; Hortaçsu, Kastl and Zhang,

2018; Allen, Kastl and Wittwer, 2022).

In the model, bidders face costs of submitting additional bids, which I refer to as “bidding

costs”. Given these costs, the number of bids to submit is also a strategic choice: a bid-

der must trade off the marginal bidding cost with the marginal benefit of fine-tuning their

demand by submitting an additional bid. If the marginal benefits of fine-tuning are small,

bidders optimally submit few bids.

Larger bidders submit more bids per good (see Table 2), but the number of bids they submit

is still small. Without bidding costs or other frictions, this is difficult to explain within a

strategic framework. Even if a bidder had a constant marginal value for the good, we would

expect them to submit a large number of bids, as their incentive to strategically understate

their value is increasing in the quantity that they demand (see Section 2.3).

It is therefore natural to use Kastl’s (2011) model with bidding costs as a benchmark to

compare alternative models of behaviour.

15Natural alternative definitions of bidder size give similar results.
16In Czech, Canadian and US Treasury auctions, bidders on average submit 2.3 bids (Kastl, 2011), 2.9

bids (Hortaçsu and Kastl, 2012) and between 3 and 5 bids (Hortaçsu, Kastl and Zhang, 2018), respectively.
In wholesale electricity auctions, Hortaçsu and Puller (2008, p.106) document that bidders in Texas “do
not make full use of the strategy space available to them, but rather use coarse-grained bidding strategies”,
and bidders only submit 4.4 bids on average in Spain (Reguant, 2014). This small number of bids is also
observed in central bank operations: Cassola, Hortaçsu and Kastl (2013) find that participants submit 1.7
bids on average in the European Central Bank’s auctions for short-term repurchase agreements, and 82% of
participants in the Bank of Canada’s cash management auctions submit only one bid (Chapman, McAdams
and Paarsch, 2006).
Moreover, institutional constraints on the number of bids that a bidder may submit are almost never

binding. For example, both Kastl (2011) and Hortaçsu and Puller (2008) document that not one bidder
submits the maximum number of permitted bids (10 and 40, respectively). Even when this bound is relatively
tight, as is the case in the cash-management auctions studied by Chapman et al.’s (2006) in which only 4
bids are permitted, only 2.5% of bidders submit the maximum number.
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3 Candidate models of behaviour

This paper analyses competing models of behaviour of participants in the BoE’s liquidity

auctions using a testing procedure based on instrumental variables, described in Section 4.3.

In this section, I first lay out the assumptions on the economic environment that are required

for the test to be valid; the main assumption is that bidders have independent private values.

I then describe the competing models. The first is a “truthful bidding” model in which all

bidders submit bids according to their true marginal values.

The second is a conventional strategic model of bidding (Kastl, 2011)—widely used in em-

pirical studies of multi-unit auctions—which I generalise to allow for risk aversion. I focus on

Kastl (2011) because it captures the key features of the BoE’s liquidity auctions, namely that

bidders make few bids per auction. One limitation is that the model does not permit bidders

to be risk averse. Therefore I relax Kastl’s (2011) assumption of risk neutrality. This gener-

alisation shows that optimal strategies in the strategic model tend towards truthful bidding

as the degree of risk aversion becomes large.

The correct model of course may differ from both of these two models; the procedure tests

which of the two models is closer to the correct model.

The test is based on the amount of “bid shading”—the difference between bidders’ marginal

values and their bids—implied by the different models. Equipped with the setup of the two

models, I show how bidders’ marginal values, and therefore their bid shading, are identified

in each model. In the truthful bidding model, bid shading is of course always zero, whereas

in the conventional model it varies across bidders and across the quantities they demand.

This variation in the amount of bid shading is key to the test’s identification. The following

description refers to one auction and I suppress the time subscript.

3.1 Assumptions on the economic environment

Two goods, A and B, are perfectly divisible, measured in the same units, and allocated by

a Product-Mix Auction as described in Klemperer (2008) and Section 2.1.

There are N potential bidders. Prior to the auction, each bidder i ∈ N = {1, ..., N}, receives
a privately known, multi-dimensional signal, Θi. Bidder i’s signal is distributed such that

their value is above the reserve price for at most one of the goods. Each bidder will therefore

only bid on at most one good. This greatly improves the tractability of the model and is

appropriate for the majority of bidders (85%) in the data who only bid for one good. For

14



the purpose of the analysis, it is also appropriate for an additional 4% of bidders per auction

who bid on both goods, but for at least one of the goods, they submit only one bid and that

bid is at the reserve price, so that it is irrelevant for the implications of the model.17,18 Let

Θ−i = {Θj}{j ̸=i} denote the signals received by all bidders except i.

Motivated by the evidence of heterogeneity described in Section 2.3, bidders for each good

are split into two groups, so the set of potential bidders for good g ∈ {A,B} with bidder size

h ∈ {1, 2} is N g,h. This set has dimension N g,h, where
∑

g={A,B}
∑

h={1,2}N
g,h = N . Bidders

are assumed to be symmetric within group, that is, signals are identically distributed and

marginal valuation functions are symmetric.19

The main assumption required for the testing procedure to be valid is that bidders have

independent private values. Let yi ∈ R+ be the quantity allocated to bidder i expressed as

a share of the maximum supply.

The IPV Assumption The marginal valuation of bidder i ∈ N g,h, g ∈ {A,B}, h ∈ {1, 2},
denoted vg,h(yi,Θi), is only a function of yi and the bidder’s signal Θi.

Three reasons suggest that an independent private values framework is a reasonable approx-

imation.

17The analysis uses local deviations in the quantity that a bidder demands to identify their values. If a
bidder bids on both goods, but their bid is at the reserve for good A, then the bidder is always indifferent
between winning and losing good A, so a deviation in the quantity they demand of good B does not affect
their surplus from good A (and vice versa). We can therefore treat a bidder for both goods as if they are
two bidders, one for each good.

18Moreover, for those bidders who do submit bids for both goods within an auction, additive separability
of their utility functions in the quantities allocated of the two goods seems a reasonable assumption. This
is because bidders have the option to submit “paired bids”, which allow bidders to express rich one-for-one
substitutes preferences between goods A and B (for details, see Klemperer, 2018), but they very rarely
choose to submit such bids. The absence of these bids reveals that bidders do not view goods A and B as
simple one-for-one substitutes. It is also reasonable to rule out complement and more complicated substitute
preferences. This is because goods A and B represent liquidity borrowed against two different collateral sets.
These can be interpreted as two goods measured in the same units that face different opportunity costs (the
return on the next best use of the assets put up as collateral) but are used for broadly the same purpose of
meeting liquidity needs. In this context, one-for-one or non-substitutability appear most plausible. Indeed,
the BoE designed the ILTR auction anticipating bidders to express one-for-one substitutability between
goods A and B, if at all.

19Bidders are financial institutions with diverse liquidity needs and motivations for participation, which
suggests that bidders are drawing from different distributions of signals or have different marginal valuation
functions. Section 2.3 shows one example of this heterogeneity: bidders systematically differ by the quantities
that they demand. In line with the literature which assumes either one or few groups (see, e.g. Hortaçsu,
2002; Kastl, 2011; Hortaçsu, Kastl and Zhang 2018; Boneva, Kastl and Zikes, 2020), I group bidders by
size of demand and assume i.i.d. signals within group to permit a sufficient sample size for estimation (see
Section 4.2).
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First, while the ILTR auctions were designed to enhance financial stability by meeting de-

mands for liquidity insurance, the sample period of 2010 – 2014 was relatively stable. This

suggests that the possible interdependence, which would arise from another bidder’s private

signal revealing information of perceived stress in the market, was less relevant in our sample.

Second, it is plausible that participation over the period studied was driven largely by id-

iosyncratic liquidity needs, rather than by speculation in the interbank market. The fairly

short maturity of loans secured in the ILTR auctions limited incentives for speculation,20

and this was especially the case for good B, because collateral assets in the Level B set were

less liquid by definition. Moreover, the general collateral repo rate was a good proxy for the

market value of good A, i.e. loans secured by highly liquid collateral. Because this rate was

readily observable, the uncertainty about the future market value of good A was plausibly

symmetric, which is consistent with an independent private values framework.21

Finally, neither Bindseil, Nyborg and Strebulaev (2009) nor Hortaçsu and Kastl (2012) find

evidence for interdependent values in ECB repo auctions and Canadian Treasury auctions,

respectively. It is not possible to perform these tests in our context, but their findings are

informative given the similarity of our context to theirs.22

Bidders are also assumed to have marginal valuation functions that are non-increasing and

continuous in the quantities they are allocated and bounded and strictly increasing in their

own signals.23

20Hortaçsu and McAdams (2010) and Haile (2001) provide evidence, in the Turkish Treasury security
market and timber market respectively, of limited scope for resale (i.e. speculation on the future price) at
short time horizons.

21Tighter liquidity regulation, introduced by the UK Financial Services Authority in 2010, might explain
participation in the ILTR auctions for 6-month loans. The regulation increased demand for high-quality
liquid assets with more than 3-month maturity, and required banks to regularly participate in a number
of different funding markets (Banerjee and Mio, 2018). Anecdotal evidence suggests that this was one
motivation for participation, but unlikely to be the key driver given the relatively short maturity of the loans
(Winters, 2012).

22Tests for interdependent values exist for single-unit auctions, exploiting random variation in the number
of bidders (Athey and Haile, 2002; Haile, Hong and Shum, 2003), but are more difficult to construct for
multi-unit auctions. Bindseil, Nyborg and Strebulaev’s (2009) main test exploits variation in an interbank
rate which can be seen as a benchmark for the auctions. We cannot construct this in our setting given the
variation in assets used as collateral, especially in the Level B set. Similarly, Hortaçsu and Kastl’s (2012)
test, which relies on variation specific to their institutional setting, is not applicable to this context. In their
setting, some bidders are dealers, observing a subset of the other bids prior to the auction, and variation in
the behaviour of these bidders can be exploited to detect interdependent values. It is not possible to observe
analogous variation in my data.

23The funds that a given bidder is allocated in the auction is one component of their larger stock of
cash reserves. Collateral that can be used to back ILTR loans is typically deposited at the BoE prior to
the auction, although it is possible to submit collateral for settlement following the operation (Alphandary,
2014). The setup costs are therefore mostly sunk, and there are no other obvious fixed costs associated with

16



Turning to the utility function, bidders are assumed to have utility functions which are quasi-

linear in assets outside the auction.24 I allow for bidders to be risk averse, with constant

absolute risk aversion utility described by parameter ρg ≥ 0, which is common to all bidders

for good g ∈ {A,B}.

Let P g be the auction price of good g ∈ {A,B}. The expected utility of type θi ∈ Θi of

bidder i ∈ N g,h, g ∈ {A,B}, h ∈ {1, 2} given strategy profile σ(Θ) = {σj(Θj)}{j∈N} in

Model m is therefore

Vi(θi) =

EΘ−i

[
Ui

(
yi(σ(Θ)), P g(σ(Θ))|θi

)]
if ρg = 0

EΘ−i

[
1
ρg

(
1− e−ρgUi(yi(σ(Θ)),P g(σ(Θ))|θi)

)]
if ρg > 0

where

Ui

(
yi(σ(Θ)), P g(σ(Θ))|θi

)
=

∫ yi(σ(Θ)|θi)

0

vg,h(u, θi)du− P g(σ(Θ)|θi)yi(σ(Θ)|θi).

In each auction, each bidder can submit multiple bids. These bids are summed horizontally

in (price, quantity)-space to form an individual bid function, which is a step function. Hence,

bidder i chooses the number of bids to submit, Ki, and, for each bid k ∈ {1, ..., Ki}, the bid
price bi,k, and cumulative quantity demanded, qi,k, where the bids are ordered in increasing

quantity. (The marginal quantity demanded at bid price bi,k is therefore (qi,k − qi,k−1).)

Corresponding to the ILTR auction rules, bids must be integers (i.e. bids must be whole

basis points). To simplify the analysis, I approximate the grid of quantities permitted in

the ILTR by assuming that quantities demanded are continuous in the unit interval.25 Let

bi ∈ RKi
+ and qi ∈ RKi

+ respectively denote the vector of bid prices and cumulative quantities

demanded by bidder i. I refer to (bi,k, qi,k) as the bid price and quantity demanded at step

k in bidder i’s bid function.

accessing and using the liquidity. This suggests limited scope for increasing returns. If any allocated funds
are put to its highest value use, a non-increasing marginal valuation function is a reasonable assumption.
Chapman, McAdams and Paarsch (2006) corroborates this in a similar context of the Bank of Canada’s
liquidity auctions.
It is less clear whether the assumption of continuity is reasonable. It is supported by the fact that both

the collateral used to back ILTR loans, and the funds obtained, constitute a small fraction of participants’
total assets. This would be useful to explore in future work.

24Quasi-linearity is motivated by the fact that bidders use a negligible fraction of total assets as collateral
for liquidity obtained in the ILTR auctions (de Roure and McLaren, 2021).

25In the ILTR auctions, the minimum permitted cumulative quantities demanded are 0.1% and 0.2% of
the maximum supply in the 3-month and 6-month term auctions respectively, with increments of 0.02% and
0.04%, respectively.
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3.2 The truthful bidding model

The first of the two competing models is a “truthful bidding” model, in which all bidders

optimally submit bids which approximate their true demand for liquidity. Specifically, I

assume that each bidder submits a bid function equal to the greatest integer function of

their true marginal valuation function.26

Definition 1 (Model T ) In Model T , the IPV Assumption holds and each bidder submits

a bid function that corresponds to the greatest integer function of their marginal valuation

function (i.e. for all quantities, the largest integer that is weakly less than their marginal

value).

3.3 The conventional strategic model

The second model that I consider closely follows Kastl’s (2011) modification of Wilson’s

(1979) share auction model, which is commonly used in the literature (e.g. Cassola, Hortaçsu

and Kastl, 2013; Hortaçsu, Kastl and Zhang, 2018; Allen, Kastl and Wittwer, 2022). The

main exception is that I relax Kastl’s (2011) assumption of risk neutrality.

In this model, bidders choose their bids to maximise their expected surpluses, conditional

on the information available to them at the time of bidding. The assumptions on bidders’

information are as follows.

Bids in the ILTR auctions are submitted privately through an online platform, and so the

number of other bidders is unknown, as are their bids. In the model, bidders are assumed to

have common knowledge of the number of potential bidders, the joint distribution of signals,

and the risk aversion parameters.27

In the ILTR setting, as in other studies in which a model of behaviour is assumed in order

to recover bidders’ values, the suitability of this common prior is unclear. Some information

about the number of potential bidders, equal to the number of financial institutions with

access to the BoE’s OMOs, was publicly available during the period. For example, Winters

26This could be motivated in many ways. For example, each bidder faces an arbitrarily large cost of
determining and submitting what would otherwise be the optimal bid function. Truthful bidding is an
especially natural heuristic in the conventional strategic model that I consider because the optimal bid may
be above or below a bidder’s true value.

27Common knowledge of the number of potential bidders can be relaxed by instead assuming that the
number of potential bidders is stochastic, but its distribution is common knowledge. Hortaçsu (2002) finds
that this modification does not have a significant impact on his findings.
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(2012) stated that there were 50 bidders signed up for OMOs at the time. Bidders also may

have learned about the distribution of other bidders’ values in auctions held by the BoE

prior to our sample period, which had similar purpose to the ILTR auctions but differed in

design.28

In addition, for simplicity, I assume that the BoE’s maximum supply and relative supply

curve are commonly known.29

Different assumptions on bidders’ information would imply different optimal strategies. One

of the benefits of the testing procedure described in Section 4.3 is that it tests the relative

performance of the two models and so is robust to their misspecification. For example, if

bidders are actually strategic but have different information from what is assumed here, the

procedure tests which of the two models are a better approximation of this ‘correct’ model.

In this model, bidders face costs of submitting additional bids, which are increasing in the

number of bids that they submit. Kastl (2011) introduces these “bidding costs”, denoted

ci(Ki), to rationalise the fact that bidders submit few bids per auction (see Section 2.4).

There are various ways to interpret the bidding costs, including the physical and time costs

of submitting bids or of fine-tuning them (see Appendix F for discussion).

The model is defined as follows.

Definition 2 (Model S(ρ)) In Model S(ρ), the IPV Assumption holds; the number of po-

tential bidders in each group, N g,h, g = {A,B}, h = {1, 2}, the joint distribution of signals,

the risk aversion parameters, the maximum supply and the relative supply curve are com-

monly known; ci(Ki) is the cost of submitting bids, where ci(Ki + 1) ≥ ci(Ki) ≥ 0 ∀Ki ∈
[1, K̄ − 1]; and the risk aversion parameters are equal to ρ = (ρA, ρB).

The solution concept is a group-symmetric Bayesian Nash Equilibrium, in which bidders

within the same group who receive the same signal adopt the same strategy. An equilibrium

is a strategy profile, σ(Θ), such that for every bidder i ∈ N and almost every type θi, σi(θi)

solves σi(θi) ∈ argmaxσi(θi)∈Fi
(Vi(θi)− ci(Ki))

28The ILTR auctions replaced the BoE’s Long-Term Repo operations, which were pay-as-bid auctions in
which a reserve price of 50bps was imposed for bids on good B (see Fisher (2011a) for further details).

29We could relax this assumption by assuming that the distribution of supply of each good is commonly
known or we could assume that the BoE is a strategic actor with privately known preferences. Hortaçsu
(2002) models the total supply in Turkish Treasury auctions as an AR(1) process, because bidders face
some uncertainty in its precise quantity, but he finds this makes very little difference to his results. Our
assumption may be more reasonable in later auctions in the sample, as some information about the relative
supply function is revealed in the publicly released data of auction outcomes.
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3.4 Bid shading in equilibrium

The testing procedure described in Section 4.3 exploits differences in the amount of “bid

shading”—the difference between bidders’ marginal valuations and their bids—implied by

the alternative models of behaviour in order to compare their model fit.

Definition 3 (Bid shading) The bid shading of bidder i ∈ N g,h, g ∈ {A,B}, h ∈ {1, 2} at

the quantity they demand at step k ∈ {1, ..., Ki} is µi,k = vg,h(qi,k)− bi,k.

In Model T , an equilibrium strategy profile is one in which each bidder submits a set of

bids which correspond to the greatest integer function of their marginal valuation function.

Because the marginal valuation function is assumed continuous, this implies that a bidder’s

bid at step k ∈ {1, ..., Ki} is equal to their marginal value so that µi,k = 0 ∀k ∈ {1, ..., Ki}, i ∈
N in Model T . This is the case regardless of the bidder’s degree of risk aversion.

Bid shading in Model S(ρ) is more complicated. A necessary condition for a strategy profile

to be a Bayesian Nash Equilibrium in this model is that bidder i ∈ N cannot increase

their expected utility by unilaterally deviating from their prescribed strategy, σi, given their

beliefs. Each bidder’s strategy is multi-dimensional—for each auction, and for each type

θi ∈ Θi, the bidder must choose the number of steps to submit, and for each step, a bid price

and quantity to demand—so there are many possible ways in which to deviate.

The main identifying condition rules out profitable deviations in the quantity that a bidder

demands at a particular step for type θi ∈ Θi in Model S(ρ), holding the rest of their

strategy constant.30 Proposition 1 (below) states this condition, generalising Kastl’s (2011)

corresponding condition to allow for risk aversion.

The benefit of this deviation to the bidder is the difference between two effects. The first

effect is the increase in expected utility from winning the marginal unit at step k, holding

the distribution of the auction price constant. This effect is captured by the left-hand side

of Equation 1 below. Following the standard Kastl (2011) decomposition, this distinguishes

between the cases in which the bidder wins the full marginal unit, and the bidder “ties” with

other bidders at step k and step k + 1 and so is rationed.

The second effect is a market power effect (the right-hand side of Equation 1 below). It mea-

30Appendix F presents a set of additional necessary conditions for equilibrium in Model S(0), which rule
out profitable unilateral deviations in the bid prices submitted by a bidder, holding the rest of their strategy
constant.
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sures the reduction in expected utility due to the bidder having to pay more in expectation

for the units that they win, if the marginal increase in their demand increases the auction

price.

A necessary condition for equilibrium in Model S(ρ), stated in the following proposition, is

that the bidder does not benefit from deviating, i.e. the two effects must be equal. This

condition enables us to determine the optimal amount of bid shading at the quantity the

bidder demands at step k, i.e. µi,k = vg,h(qi,k)− bi,k, which is a key input to the test.

Proposition 1 (Necessary condition on quantity deviations in Model S(ρ)) In Model

S(ρ) with ρ = (ρA, ρB) ≥ 0, in any type-symmetric Bayesian Nash Equilibrium, for almost

every type θi, every step k in the Ki-step bid function in strategy σi of bidder i ∈ N g,h, g ∈
{A,B}, h ∈ {1, 2}, must satisfy

EΘ−i

[
e−ρgUi(qi,k,P

g |θi)
(
vg,h(qi,k, θi)− P g

) ∣∣∣bi,k > P g > bi,k+1

]
P(bi,k > P g > bi,k+1)

+EΘ−i

[
e−ρgUi(yi,bi,k|θi)

(
vg,h(yi, θi)− bi,k

) ∂yi
∂qi,k

∣∣∣∣P g = bi,k ∧ Tieg
]
P(P g = bi,k ∧ Tieg)

+EΘ−i

[
e−ρgUi(yi,bi,k+1|θi)

(
vg,h(yi, θi)− bi,k+1

) ∂yi
∂qi,k

∣∣∣∣P g = bi,k+1 ∧ Tieg
]
P(P g = bi,k+1 ∧ Tieg)

=


qi,k

∂
∂ϵ

(
EΘ−i

[
P̃ g(ϵ)I

(
bi,k ≥ P̃ g(ϵ) ≥ bi,k+1

)]) ∣∣∣∣
ϵ=0

if ρg = 0

1
ρg

∂
∂ϵ

(
EΘ−i

[
e−ρgUi(qi,k,P̃

g(ϵ)|θi)I
(
bi,k ≥ P̃ g(ϵ) ≥ bi,k+1

)]) ∣∣∣∣
ϵ=0

if ρg > 0
(1)

where P g = P g(σ(Θ)|θi) and yi = yi(σ(Θ)|θi); (P g = p ∧ Tieg) denotes the event that the

auction price for good g is p and at least one other bidder submits a bid for good g with a bid

price equal to p; bi,Ki+1 = 0; I(.) is the indicator function; and P̃ g(ϵ) is the auction price of

good g if bidder i unilaterally deviates to a strategy in which type θi of bidder i demands a

quantity (qi,k − ϵ) for good g at step k and the rest of the strategy profile, including the rest

of their strategy, is unchanged.

Proof. See Kastl (2011) for ρg = 0 and Appendix B for ρg > 0.

To understand this condition, it is helpful to first consider the simplest case in which a bidder

takes the distribution of the auction price as given and is risk neutral. In this case (ignoring

ties for convenience), Equation 1 simplifies to vg,h(qi,k) = E
[
P g
∣∣bi,k > P g > bi,k+1

]
; the

bidder demands a quantity at step k which equates their marginal value for the good with

the expected auction price, conditional on winning. Because the auction price is uncertain,
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the bidder’s demand for the marginal unit is equivalent to accepting a lottery with an

expected payoff of zero.

If the price-taking bidder is instead risk averse (and may tie), winning the marginal unit

at a loss (i.e. at a price above their marginal value) has a larger, negative, impact on

the bidder’s utility than winning the unit at a gain. For the same reason that risk aversion

makes bidders more aggressive in single-unit first-price auctions (Krishna, 2009), risk aversion

reduces the difference between the bid price that a bidder submits and their marginal value.

With sufficiently high risk aversion, any lottery with the possibility of a negative payoff is

undesirable, so a price-taking bidder who faces ties on the margin will bid truthfully.31

More generally a bidder has market power—the distribution of the auction price depends on

the bids that they submit. Demanding a larger quantity weakly increases the price, which

is paid for all units that they win.

If the bidder is risk neutral, market power creates an incentive for bid shading that cor-

responds to the quantity-shading incentive of an oligopolist facing uncertain demand in

Klemperer and Meyer (1989). In my setting, the bidder has an incentive to bid for a quan-

tity below the true amount that they demand at each price, in order to lower the auction

price and reduce the total amount they must pay. The incentive to do so is increasing in the

quantity that they demand.

At moderate levels, risk aversion’s effect on the incentive to exert market power depends

on the distribution of the auction price. Risk aversion weakens the incentive if the bidder’s

market power is weaker at higher prices. This is because exerting less market power would

reduce the dispersion of the auction price, and hence of the bidder’s utility. Because a risk

averse bidder prefers a less dispersed distribution of the auction price, risk aversion therefore

ceteris paribus reduces the amount of bid shading of a bidder with market power in this case.

The converse holds if the bidder’s market power is weaker at higher prices.

Nonetheless, as risk aversion increases, the difference between the bidder’s bid and marginal

value decreases for the same reasons as for the price-taking bidder. At a sufficiently high

degree of risk aversion, a bidder bids truthfully, regardless of their market power.

Appendix B provides a more detailed explanation for Proposition 1.

31This result depends on the assumption of independent private values. In their study of Indian Treasury
bill auctions, Gupta and Lamba (2023) assume that bidders’ values have a common component. In their
model, risk averse bidders increase their bid shading as uncertainty in the common value of the good rises
to protect against the risk of a low ex post common value.
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4 Econometric method

This section explains how the models are compared. I first describe the identification (Section

4.1) and estimation (Section 4.2) of bidders’ marginal values, and therefore their bid shading,

in each model. Section 4.3 then describes the testing procedure which is based on the relative

amount of bid shading implied by the models.

4.1 Identification

In Model T , the marginal value of bidder i ∈ N at the quantity that they demand at step

k ∈ {1, ..., Ki} of their bid function is point identified by their bid at step k, bi,k.

In Model S(ρ), bidders’ marginal values must satisfy Equation 1 in any type-symmetric

Bayesian Nash Equilibrium. This condition can be used to recover bidders’ unobserved

marginal values at the quantities they demand at the steps of their bid functions from the

observed bids, and hence to point identify their bid shading at these quantities.32

If bidder i does not expect to submit a bid at the same price as another bidder and therefore

“tie” if their bid is marginal, their marginal value at the quantity they demand at step k

can be readily estimated (see Equation 3 in Appendix D).

However, ties are important in our setting because bidders frequently submit bids at the

same prices as other bidders in the ILTR auctions. This is especially the case for good A,

for which the majority of bids (85.1% in June 2010 – May 2012) are submitted between 0

and 5bps. For goods A and B, respectively, 69% and 20% of bids in June 2010 – May 2012

are submitted at prices at which at least one other bidder bids in the same auction.

Allowing for ties makes identification more complex because the bidder is rationed pro rata

if the auction price equals their bid. To evaluate the benefit of the quantity deviation, we

therefore need to know the quantity the bidder will win if they do tie, which depends on the

rationing coefficient, and their marginal value function between the quantity they win and

the quantity they demand.

I therefore make two assumptions in order to identify bidders’ marginal values in Model

S(ρ). The first assumption is that bidder i’s marginal valuation function is flat around

the quantity that they demand, so that their marginal value at the quantity that they win

32Equation 1 does not identify bidders’ marginal values at quantities between the quantities demanded
at the steps. In Appendix F, I provide additional necessary conditions for equilibrium in Model S(0) which
can be used to set-identify bidders’ full marginal valuation functions.
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when rationed is the same as their marginal value at the quantity they demand. For bidders

who submit one bid (67% of bidders per auction in our sample), this corresponds to the

assumption made by Kastl (2011) for identification when allowing for ties in Model S(0).33

Some natural alternative assumptions would achieve the same result, e.g. that the marginal

value function is piecewise linear.

The second assumption is that the rationing coefficient that bidder i expects to face at price

bi,k, conditional on the strategy profile in Model S(ρ), is deterministic. This approximates a

situation in which the bidder does not take the variation in their net utility from the auction

into account when evaluating the marginal benefit of winning an additional unit at a auction

price equal to their bid.34

Under these assumptions, the necessary condition for bidders’ strategies to be a Bayesian

Nash Equilibrium in Model S(ρ) simplifies to

EΘ−i

[
eρ

gP gqi,k
(
vg,h(qi,k, θi)− P g

) ∣∣∣bi,k > P g > bi,k+1

]
P(bi,k > P g > bi,k+1)

+

(
eρ

g(1−ri,k)(qi,k−qi,k−1)v
g,h(qi,k,θi)eρ

gbi,k(qi,k−1+ri,k(qi,k−qi,k−1))

(
vg,h (qi,k, θi)− bi,k

)
ri,k

)
P(P g = bi,k ∧ Tieg)

+

(
e−ρgri,k+1(qi,k+1−qi,k)v

g,h(qi,k,θi)eρ
gbi,k+1(qi,k+ri,k+1(qi,k+1−qi,k))

(
vg,h (qi,k+1, θi)− bi,k+1

) (
1− rgi,k+1

))
P(P g = bi,k+1 ∧ Tieg)

=


qi,k

∂
∂ϵ

(
EΘ−i

[
P̃ g(ϵ)I

(
bi,k ≥ P̃ g(ϵ) ≥ bi,k+1

)]) ∣∣∣∣
ϵ=0

if ρg = 0

1
ρg

∂
∂ϵ

(
EΘ−i

[
eρ

gP̃ g(ϵ)qi,keI
(
bi,k ≥ P̃ g(ϵ) ≥ bi,k+1

)]) ∣∣∣∣
ϵ=0

if ρg > 0
(2)

Appendix C provides additional details on identification in Model S(ρ).

Equation 2 can be solved numerically to recover bidders’ marginal values, by calibrating

33Kastl (2011) assumes that the expected marginal valuation function in the range yi ∈
[E[yi|P g = bi,k ∧ Tieg], qi,k] is constant at vg,h (qi,k, θi). For bidders who submit more than one bid per
auction, allowing for risk aversion also requires the stronger assumption that the marginal valuation func-
tion is also flat between the quantity that the bidder demands at step k and the quantity they are allocated
when rationed at step k + 1.

34We could relax the assumption by estimating the bidder’s net utility for each realisation of the rationing
coefficient and weighting by the probability of its occurrence. This would be difficult to estimate precisely
given the available data.
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the risk aversion parameter and using the bidding data to estimate bidders’ beliefs over the

distribution of the auction price and the impact of their own bids on this distribution.

It is not possible to identify the degree of risk aversion from Equation 2, so I test the relative

performance of models which differ in this parameter in Section 4.3. I also estimate bidders’

marginal values assuming no ties (see Appendix D).

I turn next to the estimation method for the remaining components of Equation 2.

4.2 Estimation

I estimate each bidder’s marginal values at the quantities they demand at the steps of their

bid function separately for each auction in which they participate. For ease of notation, I

suppress time subscripts, except for when describing the resampling method for estimating

a bidder’s beliefs and the sample of other bidders used.

For Model T , the marginal value of bidder i ∈ N at the quantity they demand at step k of

their bid function is trivially estimated by their bid at step k, bi,k.

For Model S(ρ), we must estimate bidders’ beliefs over the distribution of the auction price

in order to estimate their values. Under the assumption that bidders are playing a Bayesian

Nash Equilibrium, each bidder forms beliefs over the distribution of auction prices that

are consistent with other players’ strategies in equilibrium, given their prior. Guerre, Per-

rigne and Vuong (2000) provide a technique to recover bidders’ unobserved beliefs from the

observed distribution of bids, which exploits the fact that the set of observed bids are the

bidders’ strategy profile in a pure-strategy equilibrium for a given realisation of signals. This

strategy profile is determined by bidders’ common prior of the number of potential bidders

and the signal distribution, and the mapping from signals to strategies. Guerre, Perrigne

and Vuong (2000) show that, assuming equilibrium, the realised bid distribution can be used

to estimate bidders’ beliefs without specifying a functional form or making distributional

assumptions.

Hortaçsu (2002) proposes a resampling procedure to implement this technique for multi-

unit auctions, which consistently estimates each bidder’s beliefs of the distribution of the

auction prices, conditional on their strategy. Intuitively, each bidder is best responding to the

strategies of other bidders, and each observed bid function corresponds to another bidder’s

optimal strategy for a particular signal realisation. And so, holding a bidder’s strategy fixed,

the observed bid distribution reflects the bidder’s beliefs over the signal distribution. (In
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line with the model described in Section 3.1, a bidder who submits bids on both goods is

treated as two separate bidders.)

The resampling procedure is as follows. Fixing bidder i in auction t, where i belongs to

group N g,h, g ∈ {A,B}, h ∈ {1, 2}, I construct a stratified sample of other bidders, denoted

Oi,t = {OA,1
i,t ,OA,2

i,t ,OB,1
i,t ,OB,2

i,t }, from the bidding data as described below. The observation

(i′, t′) ∈ Og,h
i,t corresponds to the set of bids (i.e. individual bid function) submitted by bidder

i′ in group (g, h) in auction t′ for a particular realisation of their signal. I draw N g,h − 1

observations from Og,h
i,t and N g′,h′

observations from Og′,h′

i,t , (g′, h′) ̸= (g, h), with replacement.

I calculate the equilibrium given the bids submitted by both the drawn bidders and the fixed

bidder, and repeat this a large number of times for the fixed bidder. This yields an empirical

distribution of auction prices, conditional on the bidder’s own strategy.35

The resulting empirical distribution of auction prices for good g can be used to consistently

estimate the expectation terms in Equation 2. The derivative term is estimated using a

numerical derivative, as described in Kastl (2011).36 Given these estimates, the marginal

values at the quantities demanded at the steps of bidder i’s bid function can be recovered

iteratively, starting with the value at step k = Kg
i (for which qi,k+1 = 0). I solve for

vg,h(qi,k, θi) numerically.

Sample of other bidders The sample, Oi,t, is a subset of all the bid functions submitted

by the N potential bidders across the auctions. For the resampling procedure to yield

a consistent estimator of bidder i’s beliefs, two conditions on Oi,t must hold. First, the

distribution of signals implied by Oi,t must be a consistent estimator for the true distribution

of signals that bidder i faces in auction t. Second, the other bidders in Oi,t must face the

same commonly known economic environment as bidder i faces in auction t and best respond

to it.

In the main analysis, I define Oi,t = {(i′, t′) : (i′, t′) ̸= (i, t), t′ ∈ Yt}, where Yt is the set of

auctions including auction t and its two nearest neighbours of the same term, and stratify by

35The sample of other bidders is finite, so only a finite number of signal realisations is ever (implicitly)
observed and the empirical distribution of auction prices may not have full support. This creates issues for
calculating the conditional expectation terms and the derivative of the auction price. The former may not
be identified and the latter may be numerically unstable. To address this, I use kernel density estimation to
smooth the auction price distribution and ensure full support, discretised at integer prices.

36The quantity demanded by bidder i at step k is perturbed by ϵ > 0, where ϵ is small, holding the rest
of their strategy fixed. The auction price distribution is then recalculated for the bidder. The derivative
term is the difference in expectations under the perturbed and unperturbed distributions, scaled by the size
of the perturbation.
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the grouping defined in Section 2.3.37,38 This aims to maintain consistency in the economic

environment and therefore signal distribution, while increasing precision by pooling bids

from neighbouring auctions.

4.3 Testing procedure

Models S(ρ) and T have different implications for bidders’ marginal values and therefore for

their bid shading. The testing procedure exploits these differences to compare the fit of the

alternative models of behaviour.

Ideally we would compare the bid shading implied by each candidate model to the actual

amount of bid shading. Naturally, the candidate model with the smaller prediction error

would be the better approximation.

Because the actual amount of bid shading is unobserved, I follow Backus, Conlon and Sinkin-

son’s (2021) approach, which uses instrumental variables to mimic this comparison. Bidders’

true marginal values for liquidity are assumed to be mean independent of the instruments.

Under this assumption, bidders’ values are uncorrelated with the projection of their bid

shading on the instruments (i.e. the variation in the bid shading explained by the variation

in the instruments). A particular candidate model is therefore a better approximation if it

generates a smaller covariance between its estimated values and the projection of its esti-

mated bid shading. Broadly speaking, the testing procedure is based on the relative size of

these covariances.

The test compares the fit of two competing models of behaviour. One advantage of this

approach is that it remains valid even if the two models are misspecified because it only

assesses their relative performance.39 This is particularly relevant in the empirical auction

literature, in which a model is often required in order to recover unknown parameters for

37The term to maturity of liquidity in each monthly auction follows a sequence. Two 3-month term
auctions are followed by a 6-month term one. Anecdotal evidence suggests that some bidders participate in
the ILTR auctions at regular 3- and 6-month intervals, with the intention to roll over the ILTR loan with the
same piece of collateral. To eliminate the impact of correlated signals of this kind, I choose the two nearest
neighbours, rather than three or more.

38Under the assumption of i.i.d. signals within group, as the sample becomes large, there is no reason
to exclude observation (i, t) from the sample of other bidders, Oi,t. Observation (i, t) represents the best
response of one possible signal realisation of another bidder. However, with a finite sample including obser-
vation (i, t) in Oi,t artificially increases the estimated probability that bidder i ties on the margin in auction
t, biasing the estimator of the bidder’s beliefs. To address this, (i, t) /∈ Oi,t.

39In Appendix F, I analyse an external measure of fit of Model S(0), by estimating lower bounds on the
bidding costs implied by the model.
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further analysis, but is necessarily a simplification of reality.40 The question we ask is, among

a set of candidate models of behaviour, which is the best approximation in our setting.

For a pair of models m = {1, 2} and a measure of the model fit of each, Qm, the null

hypothesis is that the two measures are equal, whereas the two alternatives are that the fit

of one model is better than the other:

H0 : Q1 = Q2

H1 : Q1 < Q2, H2 : Q1 > Q2

In our test, a larger Qm implies a worse model fit. So H1 implies that Model 1 is a better

fit than Model 2, and H2 is analogous for Model 2.

The test is based on the relationship between the model-implied marginal values and a

function of a set of instruments, denoted z, which are correlated with bidders’ bid shading

but uncorrelated with their true marginal values. One example of an instrument is the

number of other bidders: with independent private values, the number of other bidders in

the auction affects a bidder’s market power but not their value. I define the true marginal

value of bidder i at step k of their bid function in auction t by vi,k,t, a function of a set of

exogenous characteristics, x, and an additively separable residual value, ωi,k,t. The critical

assumption is that conditional on x, the true residual value is mean independent of the

instruments, z, i.e. E [ωi,k,t|x, z] = 0.

In each model, the bidder’s marginal value is the sum of their observed bid and model-implied

bid shading. Let vmi,k,t = bi,k,t + µm
i,k,t be the marginal value of bidder i at step k in auction t

under the assumptions of Model m, where bi,k,t is the bid price and µm
i,k,t is the bid shading.

(The corresponding residual values implied by Model m are denoted ωm
i,k,t.) In Model T ,

µT
i,k,t = 0 so the bidder’s value is simply their bid, vTi,k,t = bi,k,t. By contrast, bid shading is

not necessarily zero in Model S(ρ), and the model-implied value is v
S(ρ)
i,k,t = bi,k,t + µ

S(ρ)
i,k,t .

To provide intuition for the test, I first show how an incorrect model is falsified in a simple

example in which it is compared to the correct one. For simplicity let x be a constant

so that we can ignore the distinction between vi,k,t and ωi,k,t in this example. Suppose

40For example, in the risk-neutral case, I compare Model S(0), which assumes bidders have correct beliefs
about the distribution of other bidders’ bids, to Model T , in which bidders bid truthfully regardless of their
beliefs. If neither model is correct, and the correct model is a version of Model S(0), in which bidders have
incorrect beliefs (or do not know the distribution of bids and their priors are incorrect), then the procedure
tests whether Model T or Model S(ρ) is a better approximation. For example, if bidders believe they face
much stronger competition than in reality, Model T might be the better approximation.
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that Model T is correct and Model S(0) is incorrect (but the reasoning holds for each

pair of models). The bidder’s true marginal value is therefore equal to the marginal value

implied by Model T , vi,k,t = vTi,k,t = bi,k,t. Moreover, because their true value is equal

to their bid, the marginal value implied by Model S(0) is the sum of the true marginal

value and the bid shading, i.e. v
S(0)
i,k,t = bi,k,t + µ

S(0)
i,k,t = vi,k,t + µ

S(0)
i,k,t . So the covariance

between the model-implied marginal valuations and a valid instrument, e.g. zi,k,t, will be

zero for Model T and non-zero for Model S(0): Cov(vTi,k,t, zi,k,t) = Cov(vi,k,t, zi,k,t) = 0 and

Cov(v
S(0)
i,k,t , zi,k,t) = Cov(bi,k,t, zi,k,t) + Cov(µ

S(0)
i,k,t , zi,k,t) = Cov(vi,k,t, zi,k,t) + Cov(µ

S(0)
i,k,t , zi,k,t) =

Cov(µ
S(0)
i,k,t , zi,k,t) ̸= 0.41 The crux of the test is that the correct model would have zero

covariance and a larger covariance implies a worse model fit. In general, neither model will

be correct and, broadly speaking, the test compares the relative magnitude of the covariances.

The steps of the test modified from Backus, Conlon and Sinkinson (2021) are as follows.

1. For the two models m = {1, 2},

(a) For each step k of bidder i’s bid function in auction t, estimate the bid shading,

µm
i,k,t, and calculate the implied values, vmi,k,t = bi,k,t + µm

i,k,t.

(b) Estimate vmi,k,t as a function, h(x), of the set of exogenous characteristics x, which

are specified below, and obtain the residuals, ω̂m
i,k,t, where vmi,k,t = h(x) + ωm

i,k,t.

2. Estimate the difference in bid shading between the models as a function of x and the

instruments, z, i.e. ∆µi,k,t = µ1
i,k,t − µ2

i,k,t = g(x, z) + ζi,k,t, where the instruments, z,

and the function, g(.), are specified below. Obtain the predictions, ∆µ̂i,k,t.
42

3. For each model, compute the value of the moment, Q̂m =
(

1
n

∑
i,k,t ω̂

m
i,k,t∆µ̂i,k,t

)2
, where

n is the number of observations.

4. Estimate the standard error, σ̂√
n
, of the difference between the moments, (Q̂1 − Q̂2),

by repeating Steps 1–3 on bootstrapped samples.43

41It is straightforward to see the converse. Suppose that Model S(0) is correct and Model T is incorrect.
The bidder’s true marginal value is therefore equal to the marginal value implied by Model S(0), vi,k,t =

v
S(0)
i,k,t = bi,k,t+µ

S(0)
i,k,t . So the marginal value implied by Model T is vTi,k,t = bi,k,t = v

S(0)
i,k,t−µ

S(0)
i,k,t = vi,k,t−µ

S(0)
i,k,t ,

and the covariance between the model-implied marginal values and a valid instrument, zi,k,t, will be zero

for Model S(0) and non-zero for Model T : Cov(v
S(0)
i,k,t , zi,k,t) = Cov(vi,k,t, zi,k,t) = 0 and Cov(vTi,k,t, zi,k,t) =

−Cov(µ
S(0)
i,k,t , zi,k,t) ̸= 0.

42This specification is chosen to maximise the power of the test (see Backus, Conlon and Sinkinson (2021)
for details).

43I follow Backus, Conlon and Sinkinson (2021) and Roussille and Scuderi (2022) and treat the bid shading
estimates for each model as data.
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5. Compute the test statistic, T =
√
n(Q̂1−Q̂2)

σ̂
, which is distributed N (0, 1).

The set of exogenous characteristics, x, which affect both bidders’ values and their bid shad-

ing, includes auction-specific dummy variables, which control for heterogeneity in bidders’

values across time, and a dummy variable equal to one if the bidder is large (as defined in

Section 2.3.44 The set x also includes a dummy variable equal to one if the bid corresponds

to the last step in a bidder’s bid function; this is intended to control for variation in bidders’

values at the bid-bidder-auction level (our unit of observation), conditional on the bidder’s

size and on the auction.45,46

For the set of instruments, z, I use measures of the strength of competition that a bidder

faces in the auction (listed below). The main assumption for these instruments to satisfy

the exogeneity condition, i.e. E [ωi,k,t|x, z] = 0, is that bidders have independent private

values (the IPV Assumption). Section 3.1 gives three reasons for why this assumption seems

reasonable in my setting. For the instruments to be relevant, they must be correlated with

the difference in bid shading between the competing models. Because one of the models

is the conventional strategic model in which bidders are assumed to have consistent beliefs

about the distribution of other bidders’ bids, measures of the strength of competition are

also relevant instruments.

There are many potential ways to measure the strength of competition. For a given bidder,

this includes the number of bidders, or small or large bidders, for each good in the auction

excluding the bidder themself (where size is defined in Section 2.3); the probability distri-

bution of the auction price for each good that the bidder expects would occur if they did

not bid at all, and moments of this distribution; and moments of the distribution of bids

excluding the bidder’s own bids. The IPV Assumption ensures that these statistics, which

depend on other bidders’ bids and their entry decisions, are valid instruments because bidder

i’s own valuation is mean independent of them.

Specifically, for bidder i in auction t, the set of instruments, which satisfy the exogeneity

condition under the IPV Assumption, includes:

44Good-specific dummies are included in x in the test which pools bids across goods.
45The quantities demanded at the bids are excluded from x because, if Model S(ρ) is the correct model

of behaviour, they are an equilibrium outcome and therefore endogenous to bidders’ values. In principle, we
could alternatively find additional instruments for the quantities demanded, or estimate bidders’ marginal
values at all quantities (not just the quantities demanded at the steps of the bidders’ bid functions), which
would require additional identifying conditions (see Appendix F).

46Appendix D repeats the analysis excluding the last-step dummy from x.
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• For goods g = {A,B}, number of bidders, number of small bidders, and number of

large bidders, each excluding bidder i, in auction t47

• The average bid in auction t, excluding the bids of bidder i

• For P g
i,t, defined by the clearing price of good g in auction t, which is calculated using

the resampling procedure described in Section 4.2 but excluding bidder i’s bids when

calculating the equilibrium distribution of the auction price,

– The conditional expected price for good A, E
[
PA ≤ X

]
for X = [1, 5, 10]

– The conditional expected price for good B, E
[
PB ≤ X

]
for X = [6, ..., 40]

– The conditional expected price differences for B: (X−E
[
X − 5 ≤ PB ≤ X

]
) for

X = [6, ..., 40] and (X −E
[
X − 10 ≤ PB ≤ X

]
) for X = [6, ..., 40]48

• All of the above set interacted with good-term-specific dummies

This implies a large number of potential instruments (equal to 460). Following Carrasco

(2012), Conlon (2017) and Backus, Conlon and Sinkinson (2021), I therefore project this

set of instruments onto their principal components and select the three leading principal

components as the three instruments to be used in the estimation; these explain 80% of the

variation in the original to include in z. The relationship between the instruments—measures

of competition—and bid shading, are non-linear (for Model S(ρ), this is shown by Equation

1). To capture these non-linearities, the functions h(.) and g(.) are estimated using a random

forest.

I restrict the set of observations to bids strictly above the reserve prices.49 Observations are

weighted by the quantities demanded to ensure that the results are not driven by the fact

that small bidders might submit bids far below their marginal values in Model S(ρ) because

the model implies that they are constrained in the number of bids that they submit.

47The model is estimated using a random forest so multicollinearity is not an issue.
48The bounds of the conditional expectations represent sensible points on the distribution of bids (see

Table 1). They capture the range of auction prices that are likely to occur.
49Bids at the reserve prices might correspond to bidders who would have optimally submitted bids below

the reserve (corresponding to larger bid shading) in Model S(ρ) if negative bids were allowed.
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5 Results

5.1 Model fit

I run the test for pairs of models including Model T and Model S(ρ) with different degrees

of risk aversion. Results are reported in Table 3. The first set of results includes bidders for

both goods. For these tests, Model S(ρ) is estimated with a common rationing coefficient

for all bidders (written as a single parameter, ρ, for shorthand). The second and third sets

of results only include bidders for good A and bidders for good B, respectively. For these

cases, the test results for one good do not depend on the risk aversion of bidders for the

other good, so I only specify the relevant risk aversion parameter (also written as a single

parameter, ρ, for shorthand).

Each entry in Table 3 shows the test statistic for the row being Model 1 and the column being

Model 2, so that a negative entry indicates that Model 1 has better model fit than Model 2

(and a positive entry indicates the converse). The test statistic is distributed N (0, 1) so the

standard critical values apply: -1.645 for a 5% confidence level; -1.960 for 2.5%; -2.326 for

1%.

The test statistic when comparing Model T (Model 1) to Model S(0) (Model 2) when pooling

the two goods is -1.982, so Model T outperforms at the 2.5% significance level.

Table 3 shows that this is driven by Model T providing significantly better fit than Model S(0)

for good B, but the models fitting equally well for good A. Moreover, Model T outperforms

Model S(ρ) for low levels of risk aversion and Model S(ρ) fits the data better for higher

values of ρ for good B, but the fit across models cannot be differentiated for good A. There

are two possible explanations for these differences between goods.

First, the definition of the two goods suggests that bidders for good B could plausibly be

more risk averse than bidders for good A. Good B corresponds to funds lent against less

liquid collateral assets, which typically have fairly illiquid secondary markets. A bidder for

good B, who does not win in the BoE’s auctions may have limited opportunities to obtain

the loan elsewhere, unlike bidders for good A, who typically face a liquid secondary market.

Second, we have less power to discriminate between the different models for good A. 85.1%

of bids for good A are between 0 and 5 basis points (and have to be a whole basis point),

and the auction price is rarely above 2 basis points. This means that there is less variation

in the observed bids, and therefore estimated values. This lack of variation makes it difficult

to discriminate between models.
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Table 3: Testing results

Both goods

Model 1 Model 2

S(0) S(0.1) S(0.2) S(0.3) S(0.4) S(0.5) S(1)
T -1.982 -1.758 -1.662 -1.551 -1.487 -1.310 -1.085

S(0) 0.054 0.071 1.556 1.646 1.739 1.885

Good A

Model 1 Model 2

S(0) S(0.1) S(0.2) S(0.3) S(0.4) S(0.5) S(1)
T 0.215 0.024 0.024 0.024 0.024 0.024 0.193

S(0) 0.014 0.011 0.009 0.006 -0.002 -0.040

Good B

Model 1 Model 2

S(0) S(0.1) S(0.2) S(0.3) S(0.4) S(0.5) S(1)
T -2.574 -2.318 -2.112 -2.101 -1.882 -1.770 -1.447

S(0) 0.279 1.359 1.790 2.011 2.394 2.574

Each entry shows the test statistic for the row being Model 1 and the column being Model 2, so that a

negative entry indicates that the row model has better model fit than the column model (and a positive

entry indicates the converse). The test statistic is distributed N (0, 1) so the standard critical values apply:

-1.645 for a 5% confidence level; -1.960 for 2.5%; -2.326 for 1%.

The results for good B show that Model T outperforms Model S(ρ) for low degrees of risk

aversion, suggesting that truthful bidding is a better approximation than the conventional

risk-neutral strategic model. Moreover, Model S(ρ) with high degrees of risk aversion out-

performs Model S(0), so risk aversion improves the fit of the conventional model.

Appendix D shows that the test results are very similar when Model S(ρ) is estimated under

the assumption that bidders do not tie.

In Appendix F, I analyse an external measure of fit of Model S(0). The measure is the size of

the bidding costs required to explain the data under the assumptions of the model. Larger

bidding costs suggest a worse model fit because the physical costs of submitting bids are

trivial in the BoE’s ILTR auctions.50 I estimate a lower bound on the bidding costs by the

marginal benefit of submitting an additional bid.51 For good A, the estimated bidding costs

50Interpreting the costs as cognitive costs does not seem to improve the model fit (see Appendix F.1).
51For a bidder who submits K bids, the bidding cost of the (K + 1)th bid must be larger than the

marginal benefit of “fine-tuning” their bid function, which is equal to the difference in their expected utility
from submitting what would be the optimal (K+1)-step bid function and what would be the optimal K-step

33



are trivial, suggesting that the model characterises bidding behaviour well by this measure.

This is not the case for good B, at least for the 67% of bidders for good B who submit only

one bid. This complements the main analysis, which finds an improvement on Model S(0).

5.2 Rationalising truthful bidding

The results of the pairwise tests show that if bidders are sufficiently risk averse, both Model

T , i.e. truthful bidding, and Model S(ρ), i.e. strategic bidding, fit the data equally well. This

is because bidders’ optimal strategies in both models are to bid approximately according to

their true values if ρ is sufficiently high. Alternatively, if bidders have a low degree of risk

aversion, Model T fits the data significantly better than Model S(ρ). Moreover, truthful

bidding is the most natural comparator to the conventional strategic model because bidders’

optimal strategies in Model S(ρ) may be to bid above or below their values. This suggests

that a model in which bids correspond to bidders’ true marginal values might be a reasonable

approximation.

I consider two ways to rationalise this “truthful bidding”. First, bidders are sufficiently risk

averse that they bid truthfully even if they are best responding to correct beliefs about the

economic environment and other participants’ behaviour, i.e. the assumptions of Model S(ρ)

hold. Second, regardless of their degree of risk aversion, bidders face sufficiently high costs

of calculating the optimal strategy that it is more profitable to avoid this cost by bidding

in a different way—simply bidding according to one’s value is a natural alternative.52,53 I

consider these two explanations in turn.

Risk aversion With a sufficiently high degree of risk aversion, Model S(ρ) predicts that

bidders will bid according to their true marginal values, i.e. Model S(ρ) and Model T

will predict the same behaviour. This explains the results of the pairwise test in Table 3.

The difference in model fit between Model T and Model S(ρ) is insignificant if ρ ≥ 1 (i.e.

log(ρ) ≥ 0) for good B, and for all ρ for good A, implying that the models explain the data

one. This marginal benefit of fine-tuning, which provides a lower bound on the bidding cost of the (K+1)th
bid.

52In a more general model, a bidder might choose to avoid the cost of precisely calculating the optimal
strategy by choosing an approximation to it. In Wilson’s (1979) classical model, truthful bidding is optimal
for small bidders anyway but larger bidders optimally submit a bid function below their marginal valuation
function in order to exploit market power, in which case, a small amount of bid shading might be a better
approximation than truthful bidding. This is not the case in Model S(ρ), in which the optimal amount of
bid shading can be positive or negative.

53The two explanations are not mutually exclusive. The cost of calculating the optimal strategy required
to rationalise truthful bidding is decreasing in the degree of risk aversion.
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equally well.

There are two potential reasons why risk aversion may be a suitable assumption in the BoE’s

liquidity auctions. First, the incentives of the manager tasked with bidding on behalf of the

participant may lead to risk-averse behaviour within a principal-agent framework.54 Second,

the financial institutions themselves may be risk averse, given the auctions are intended

to provide liquidity insurance, suggesting bidders may be willing to pay higher prices to

reduce the uncertainty in their allocations. Because the sample period turned out to be

relatively stable and participants’ bids did not appear to reflect acute liquidity needs, the

principal-agent interpretation seems more appropriate.

To examine the degree of risk aversion required for bidders to bid truthfully in Model S(ρ),

Figure 3 plots the absolute value of bid shading implied by Model S(ρ) against the log of

the risk aversion parameter, log(ρ).55 It shows that almost all bidders bid approximately

truthfully in Model S(ρ) if log(ρ) ≥ 4. In this range, the mean and 90th percentile of

absolute bid shading for good B (weighted by quantity demanded) are less than 0.43 and 1

basis point, respectively. The mean and 90th percentile for good A are both less than 0.15

basis points.

To put this in context, a bidder in the 3-month auctions with log(ρ) = 4 facing a 50-50 bet

to lose £100,000 or gain X would accept if X > £100,109. (A bidder in the 6-month auctions

would accept if X > £100,209.)56 This suggests that a fairly low degree of risk aversion is

needed for truthful bidding to be optimal in the ILTR auctions.

The degree of risk aversion that is sufficient for truthful bidding to be approximately optimal

in Model S(ρ) is consistent with the degree of risk aversion found for bidders in Treasury

auctions, which are the closest settings to my study in which risk aversion has been estimated.

Armantier and Sbäı (2006) estimate CARA parameters for small and large bidders in French

Treasury auctions, which are approximately equivalent to log(ρ) = 9.83 and log(ρ) = 5.04,

respectively. In US Treasury auctions, Boyarchenko, Lucca and Veldkamp (2021) calibrate a

parameter which is on average approximately equivalent to log(ρ) = 4.48. Using any of these

54For example, Gordy (1999) describes a manager tasked with bidding in the auction, who has a concave
payoff function either because of their own risk preferences or because of the remuneration structure.

55The results show that a small amount of risk aversion has only a very small effect on optimal bid
shading—bid shading is roughly constant as a function of ρ in the range log(ρ) < −2.5 (ρ < 0.082). This is
largely driven by the fact that the optimal amount of bid shading for all bidders depends on the value of a
marginal unit (see Section B.1.1), and the rate at which this value declines as a function of ρ is increasing if
ρ is small.

56Aggregate bidder surplus per auction, assuming bidders bid truthfully, is £220,461 in the 3-month
auctions and £326,687 in the 6-month auctions on average (weighted by the quantities allocated per auction).
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Figure 3: Absolute value of bid shading in Model S(ρ) for log(ρ) ∈ [−10, 10], June 2010 –
May 2012 (observations are weighted by the quantities demanded)

(a) Good A

(b) Good B
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values in Model S(ρ) in my setting would suggest that truthful bidding can be rationalised

by the fact that bidders are risk averse.

However, the degree of risk aversion estimated in auctions varies across studies. When

focusing exclusively on primary dealers in Canadian Treasury auctions, Allen and Wittwer

(2023) estimate a much smaller degree of risk aversion, approximately equivalent to log(ρ) =

−4.57. Unlike in Treasury auctions, bidders are not designated a “primary dealer” status

in the BoE’s liquidity auctions, and I do not have the necessary data to condition the risk

aversion parameter on other bidder characteristics. However, it is plausible that risk aversion

varies across bidders in my context. While my results suggest that risk aversion can explain

truthful bidding when setting a common parameter ρ for all bidders, it may not be a sufficient

explanation for individual bidders.

Appendix E provides the calculations for the results in this section.

Cost of sophistication An alternative way to explain truthful bidding is that a more

sophisticated strategy is complicated and calculating it requires too many resources to be

worthwhile. If the cost of calculating what would otherwise be the optimal strategy, i.e.

the “cost of sophistication”, is larger than the difference in expected utility between this

strategy and bidding according to the bidder’s true value for liquidity, the bidder prefers to

bid truthfully. Hortaçsu and Puller (2008) find that a cost of sophistication best explains

the fact that smaller bidders in Texan electricity markets persistently deviate from profit-

maximising behaviour.

This interpretation of truthful bidding corresponds to Swinkels (2001) and Chakraborty and

Englebrecht-Wiggans (2006), which show that the loss from bidding truthfully rather than

strategically becomes arbitrarily small as the number of bidders increases in discrete multi-

unit auctions. In these studies, truthful bidding is an ε-equilibrium, in which the “ε” can be

interpreted as the cost of determining what otherwise would be the optimal strategy. If the

incremental profit from this strategy is small, only a small cost of calculating it is required

for truthful bidding to be a best response.

In the ILTR auctions, I estimate the incremental profit from what otherwise would be the

optimal strategy for each bidder in the absence of a cost of sophistication, assuming bidders

bid truthfully. If a bidder chooses to bids truthfully, the cost must be larger than the incre-

mental profit. The estimate therefore provides a lower bound on the cost of sophistication

that can explain why bidders bid truthfully.
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Specifically, I compare the expected surplus for each bidder from submitting the optimal

bid function with two steps, to submitting a bid function which corresponds to their true

marginal valuation function, under the assumption that bidders bid truthfully and are risk

neutral.57,58 The expected surplus from the optimal strategy would be larger if we estimated

the optimal bid function with three or more steps rather than two (which would increase the

lower bound), but it is likely that the difference would be small.59

I find that the average lower bound on the cost of sophistication is 4.28% of bidder surplus

for bidders for good A and 5.11% for bidders for good B. This suggests that a relatively

small cost of determining the optimal strategy can rationalise truthful bidding. Equivalently,

if bidders’ actual strategies are to bid truthfully, they obtain up to 95% of the surplus that

would have been generated by the two-step optimal bid function. This suggests that a

relatively small amount of surplus is ‘left on the table’ by bidding truthfully. By comparison,

Hortaçsu and Puller (2008) find that bidders’ actual strategies generate between 0% and

80% (excluding loss-making bidders) of that generated by the optimal response (based on

the information available to the bidders at the time of bidding).

6 Conclusion

The BoE introduced its liquidity auctions both to efficiently provide liquidity insurance to

financial institutions and to provide better information to the BoE about market conditions.

The design—a Product-Mix Auction—is efficient if bids correspond to bidders’ true marginal

values for loans. Moreover, Paul Fisher (then Executive Director at the BoE) noted at the

time that the pattern of bids gives a signal of market stress “because bids in the auctions

should provide accurate information on individual banks’ demand for liquidity and the prices

they are willing to pay for it” (Fisher, 2011a pp.11). That is, bids were understood as

57I estimate the surpluses and optimal two-step bid function by estimating the distribution of other
bidders’ bids and implementing a grid search across all bid prices and quantity increments of 0.25% of the
maximum supply. For bidders whose bid functions do not lie on this grid, I take the lower envelope of their
bid functions as their “truthful” bid function (for bidders who submit more than two bids, I take the lower
envelope of the highest two bids they submit). This is analogous to the approach described in Appendix F.

58Allowing for risk aversion would reduce the incremental profit from what otherwise would be the optimal
strategy. This would reduce the estimated lower bound on the cost of sophistication that explains why bidders
bid truthfully

59One reason is that Appendix F estimates the surpluses of optimal bid functions with different numbers
of steps and finds that the benefit of a second step can be large whereas the benefit of a third step is small.
While these benefits are estimated under slightly different assumptions, namely that the bidder is bidding
optimally rather than truthfully, this suggests that the results would not change much if we estimated a
three-step bid function. Moreover, Kastl (2012) shows that the loss from using a step function rather than a
continuous bid function decreases at a quadratic rate, suggesting that the additional surplus from additional
steps would also be small. Estimating the optimal bid function becomes very computationally intensive with
many steps, so I only estimate the two-step optimal bid function.
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expressing bidders’ true valuations for loans.

If the bids were instead viewed through the model of behaviour which is more conventional

in the literature—bidders choose to submit bids which may differ from their true values in

order to maximise their own expected surplus—the measured efficiency of, and information

gleaned from, the auctions would change.

I therefore compare the relative performance of these alternative models of behaviour. I

find that bidding behaviour is better explained by a model of “truthful bidding” than by

a conventional model in which bidders are both strategic and risk neutral, using a testing

procedure based on model fit developed by Backus, Conlon and Sinkinson (2021). Moreover,

I build on Kastl’s (2011) framework to allow for risk aversion, and I find that the degree of risk

aversion required for truthful bidding to be approximately optimal within the conventional

model is consistent with that found in studies of risk aversion that are the most similar to

my setting. Alternatively, truthful bidding can be rationalised by a cost of determining what

otherwise would be the optimal strategy, and so can be interpreted as an ε-equilibrium as

in Swinkels (2001) and Chakraborty and Englebrecht-Wiggans (2006).

Importantly, I have not confirmed that bidders do indeed bid truthfully in the BoE’s liquidity

auctions but only that this simple model of behaviour—truthful bidding—is an improvement

on the conventional model. There may be alternative models that I have not considered that

fit the data even better.
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Cassola, N., A. Hortaçsu, and J. Kastl. 2013. “The 2007 Subprime Market Crisis through the

Lens of European Central Bank Repo Auctions for Short-Term Funds.” Econometrica,

81(4): 1309–45.

Chakraborty, I., and R. Engelbrecht-Wiggans. 2014. “Truthful Bidding in Uniform-Price

Multi-Unit Auctions.” Working paper.

Chapman, J. T. E., D. McAdams, and H. J. Paarsch. 2006. “Bounding Best-Response

Violations in Discriminatory Auctions with Private Values.” Unpublished.

de Roure, C., and N. McLaren. 2021. “Liquidity Transformation, Collateral Assets and

Counterparties.” Central Bank Review, 21(4): 119-129.

Duarte, M., L. Magnolfi, and C. Roncoroni. 2021. “The competitive conduct of consumer

cooperatives.” Working paper.

Fisher, P. 2011a, March. “Recent developments in the sterling monetary framework.” Lec-

ture given at Manchester Economics Seminar, University of Manchester.

Fisher, P. 2011b, April. “Central Bank Policy on Collateral.” Bank of England.

Friedman, M. 1960. A Program for Monetary Stability. New York: Fordham University

Press.

Friedman, M. 1991, August 28. “How to sell government securities.” Wall Street Journal.

Gentry, M. L., T. P. Hubbard, D. Nekipelov, and H. J. Paarsch. 2018. “Structural Econo-

metrics of Auctions: A Review.” Foundations and Trends(R) in Econometrics, 9(2-4):

79–302.

Giese, J., and C. Grace. 2023. “An evaluation of the Bank of England’s ILTR operations:

Comparing the product-mix auction to alternatives.” Bank of England Staff Working

Paper, No. 1,044.

Gordy, M. B. 1999. “Hedging Winner’s Curse with Multiple Bids: Evidence from the Por-

tuguese Treasury Bill Auction.” Review of Economics and Statistics, 81(3): 448-465.

Guerre, E., I. Perrigne, and Q. Vuong. 2000. “Optimal Nonparametric Estimation of First-

Price Auctions.” Econometrica, 68(3): 525–74.

41



Gupta, S., and R. Lamba. 2023. “Treasury auctions during a crisis.” Working paper.
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Hortaçsu, A., and D. McAdams. 2010. “Mechanism Choice and Strategic Bidding in Divis-

ible Good Auctions: An Empirical Analysis of the Turkish Treasury Auction Market.”

Journal of Political Economy, 118(5): 833–65.

Hortaçsu, A., and D. McAdams. 2018. “Empirical Work on Auctions of Multiple Objects.”

Journal of Economic Literature, 56(1): 157-84.
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Appendices

A The PMA design in the Bank of England’s liquidity auctions

Figure 4: Equilibrium prices, (pA, pB), and allocations, (qA, qB), in the PMA.

(a) Good A (b) Good B

Figure 4 shows the equilibrium prices and allocations in the PMA for a pair of illustrative

demand curves, where each curve is the sum of submitted bids for that good. The PMA

finds the competitive equilibrium, assuming bids correspond to bidders’ marginal values and

the supply curves represent the prices the BoE is willing to accept. Given the demand

curves (“Demand for A” and “Demand for B”),the BoE’s maximum supply (Q̄), and the

BoE’s “Relative Supply Curve”, the PMA therefore finds the quantities, (qA, qB), such that

the benefit of allocating a marginal unit of good A is equal to the benefit of allocating a

marginal unit of good B, i.e. ∆A = ∆B. At this allocation, the auction prices are the highest

losing bids for the two goods, i.e. (pA, pB).

Equivalently, the bidders’ marginal willingness to pay for good B relative to good A (i.e. the

difference in the auction prices, (pB − pA)) is equal to the price the BoE is willing to accept

for good B relative to good A (i.e. the height of the relative supply curve at the equilibrium

allocation).
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Figure 5: New equilibrium prices, (p′A, p
′
B), and allocations, (q′A, q

′
B), in the PMA.

(a) Good A (b) Good B

Figure 5 shows how the PMA automatically adjusts the allocations to find the competitive

equilibrium when demand (or supply) changes. Suppose the demand for good B shifts out

from “Demand for B” to the dotted line. The equilibrium allocation of good B increases

from qB to q′B, and the allocation of good A correspondingly decreases from qA to q′A, so that

the benefit of allocating a marginal unit to each good remains equal, i.e. ∆′
A = ∆′

B. The

equilibrium prices also adjust to p′B and p′A to implement this allocation. The relative price

of good B has increased, from (pB − pA) to (p′B − p′A), because the relative demand for good

B has increased.

B Further details for Proposition 1

B.1 A more detailed explanation of Proposition 1

To understand Proposition 1 and the implications of the degree of risk aversion for bid

shading in equilibrium of Model S(ρ), it is helpful to consider the special case in which there
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are no ties on the margin for bidder i. In this case, Equation 1 implies bid shading of
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(3)

where Ω = 1
P(bi,k>P g>bi,k+1)

(see Appendix B.2.1).

To interpret this bid shading, I consider bidders who take the distribution of the auction

price as given and those with market power in turn.

B.1.1 Price-taking bidders

In Model S(ρ), if a bidder is sufficiently small relative to the market, marginally increasing

the quantity that they demand at step k has no impact on the auction price (the last term

of the right-hand side of Equation 3 is zero).

In the case of no ties on the margin, the deviation only changes their expected utility if the

market clears at a price strictly below their bid price at step k, bi,k, but strictly above their

bid price at step k + 1, bi,k+1. In this range of auction prices, the bidder wins precisely the

cumulative quantity that they demand at step k. The change in their expected utility from

deviating is the expected utility of winning the marginal unit, conditional on the auction

price being in this range.60

If the bidder is risk neutral, they demand a quantity at step k which equates their marginal

value for the good with the conditional expected auction price, i.e. vg,h(qi,k) = E
[
P g
∣∣bi,k >

P g > bi,k+1

]
. This trades off the possibility of winning the unit at a price at which the bidder

60The discussion is more complex with ties (see Kastl, 2011). If the price is strictly between bi,k+1 and
bi,k, the logic of the no ties case is identical. If, instead, the price equals the bidder’s bid at step k, they
are rationed, and their deviation only changes their allocation if another bidder is also rationed at step k,
i.e. there is a “tie”. (If the bidder’s bid is the only one at price bi,k, they are allocated the entire quantity
supplied on the margin so their allocation is independent of the quantity that they demand.) Similarly, if
the price equals their bid at step k+1, they are rationed and their deviation increases the quantity they are
allocated only in the event of a tie, because the deviation increases the quantity they demand strictly above
the auction price and correspondingly reduces the quantity they demand on the margin.
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would like to win, P g ≤ vg,h(qi,k), with winning at a price at which they would prefer to lose,

vg,h(qi,k) < P g. In equilibrium, their demand for the marginal unit is equivalent to accepting

a lottery with an expected payoff of zero. This implies that they bid above their marginal

value at the quantity they demand at step k so their bid shading is negative, µi,k < 0.61

If the bidder is instead risk averse, they dislike the possibility of a negative payoff and are

only willing to accept the lottery if its expected payoff is sufficiently high. Risk aversion leads

the bidder to reduce the difference between the bid price they submit and their marginal

value.

With sufficiently high risk aversion, any lottery with the possibility of a negative payoff

is undesirable. The bidder therefore demands the maximum quantity at bid price bi,k for

which the payoff from winning the marginal unit is non-negative. If the bidder may tie on

the margin (so that P(P g = bi,k ∧Tieg) > 0), this implies that the bidder will bid truthfully,

because the bidder’s payoff from winning the marginal unit is only non-negative if their bid

is weakly below their marginal value at the quantity they demand. So, in the case of ties on

the margin, the bidder will not shade their bid at all.

The case of no ties on the margin is more complex. When their bid is marginal, the quantity

that the bidder demands does not determine their allocation so that a marginal increase in

their demand has no impact on their utility. This means that the bidder’s payoff from winning

the marginal unit is non-negative when their bid is marginal, as well as when their bid is

weakly below their marginal value. When the bidder is sufficiently risk averse, they demand

the maximum quantity at bid price bi,k for which the payoff from winning the marginal unit

is non-negative. With a continuous bid function, this implies that they will bid one basis

point above their value (assuming the auction price distribution has full support). That is,

the bidder’s bid shading is −1.

B.1.2 Bidders with market power

More generally, a bidder has market power—the distribution of the auction price depends on

the bids that they submit. Demanding a larger quantity weakly increases the price, which

is paid for all units that they win.

61Kastl (2011) discusses this somewhat surprising implication, which arises from the bidders’ restricted
strategy sets in Model S(0). In contrast, a price-taking bidder would bid according to their marginal valuation
function in Wilson’s (1979) classical model in which bidders submit continuous bid functions.
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The last term of the right-hand side of Equation 3 captures the effect of this market power

on the profitability of a marginal increase in the quantity demanded by bidder i at step k in

Model S(ρ). Holding the rest of their strategy constant, the deviation increases aggregate

demand at prices between bi,k and bi,k+1, which weakly increases auction prices in this range.

To isolate the effects of risk aversion, it is helpful to approximate the impact of the deviation

by a locally differentiable function.62 Doing so, we can rewrite the last term of Equation 3

for ρg ≥ 0 as:63

qi,kΩEΘ−i

[
∂P g

∂qi,k
I (bi,k > P g ≥ bi,k+1)

]
+ C +D (4)

where

C = qi,kΩEΘ−i

[
∂P g

∂qi,k
I (bi,k > P g ≥ bi,k+1)

]EΘ−i

[
eρ

gP gqi,k

∣∣∣bi,k > P g ≥ bi,k+1

]
EΘ−i

[
eρ

gP gqi,k

∣∣∣bi,k > P g > bi,k+1

] − 1


D =

qi,kΩCov
(
eρ

gP gqi,k , ∂P g

∂qi,k

∣∣∣bi,k > P g ≥ bi,k+1

)
P (bi,k > P g ≥ bi,k+1)

EΘ−i

[
eρ

gP gqi,k

∣∣∣bi,k > P g > bi,k+1

] (5)

See Appendix B.2.2.

If the bidder is risk neutral, C = D = 0. In this case, market power creates an incentive

for bid shading that corresponds to the quantity-shading incentive of an oligopolist facing

uncertain demand in Klemperer and Meyer (1989). In my setting, the bidder has an incentive

to bid for a quantity below the true amount that they demand at each price, in order to

lower the auction price and reduce the total amount they must pay. The incentive to do so

is increasing in the quantity that they demand.

If the bidder is risk averse, ρg > 0 so C ≤ 0 and the sign of D depends on their beliefs over

the distribution of the auction price.

The term C accounts for the fact that the marginal utility of a risk averse bidder is decreasing;

they place greater weight on low-utility outcomes than they do on high-utility outcomes. In

particular, they place disproportionate weight on the outcome where the original auction

62This is only an approximation because the bid functions of other bidders are also step functions.
63This uses the facts that I(bi,k ≥ P̃ g(ϵ) ≥ bi,k+1) = I (bi,k ≥ P g ≥ bi,k+1) and that ∂P g

∂qi,k
= 0 for P g = bi,k

(because the bidder’s deviation does not change the probability of P g ∈ [bi,k+1, bi,k] and the auction price is
an increasing function of qi,k) so the upper bound in the indicator function can be written strictly.
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price equals their bid at step k + 1 because their deviation would unambiguously reduce

their utility: it would not change their allocation (assuming no ties) but might increase

the auction price.64 As risk aversion increases, C → −qi,kΩEΘ−i

[
∂P g

∂qi,k
I (bi,k > P g ≥ bi,k+1)

]
,

cancelling out the incentive of the risk neutral bidder to exploit market power (the first term

of Equation 4), so that, if D = 0, the bidder does not shade their bid in order to exploit

their market power.

The term D is explained by the fact that a risk averse bidder prefers a less dispersed dis-

tribution of utility. If their market power is weaker at higher prices (so that D < 0), a

reduction in the quantity that they demand reduces higher prices by less than it reduces

lower prices. This deviation therefore increases the dispersion of the auction price distri-

bution, and consequently increases the dispersion of the distribution of their utility. This

weakens the incentive of the bidder to exert market power and reduces their bid shading at

step k, relative to a comparable risk neutral bidder. Conversely, if their market power is

stronger at higher prices, reducing the quantity they demand reduces the dispersion of the

distribution of their utility, increasing their bid shading ceteris paribus.

The relationship between the auction price, P g, and its derivative, ∂P g

∂qi,k
, depends on the

bidder’s beliefs over the distribution of other bidders’ signals, as well as on the bid price

that they submit.65 And so, at moderate levels of risk aversion, D may be positive or

negative and the relationship between bid shading and risk aversion is an empirical mat-

ter. Nonetheless, as risk aversion increases, D → 0 for the same reasons why C →
−qi,kΩEΘ−i

[
∂P g

∂qi,k
I (bi,k > P g ≥ bi,k+1)

]
. Truthful bidding is therefore approximately opti-

mal if the bidder is sufficiently risk averse.

B.2 Proof of Proposition 1

Kastl (2011) proves Proposition 1 for ρg = 0. I follow his approach for the case of ρg > 0.

With a slight abuse of notation, it is helpful to define P g(0) and yi(0) by the equilibrium

auction price of good g and bidder i’s equilibrium allocation, respectively, under the original

strategy profile, σ(Θ); and to define P g(ϵ) and yi(ϵ) by the equilibrium auction price of

good g and bidder i’s equilibrium allocation, respectively, if bidder i unilaterally deviates to

64In the knife-edge case that the bidder does not expect their bid at step k + 1 to ever set the auction
price, i.e. P(P g = bi,k+1) = 0, then C = 0.

65The distribution of other bidders’ signals implies a distribution of residual supply functions that the
bidder faces. If the residual supply functions were vertical translations of one another and continuous, the
relationship would be positive if the possible residual supply curves were convex (so D > 0), and negative if
they were concave (D < 0).
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a strategy in which their type θi demands a quantity (qi,k − ϵ), ϵ > 0, at step k and the rest

of the strategy profile, including the rest of their strategy, is unchanged.

For ρg > 0, we aim to evaluate the limit:

lim
ϵ→0

EΘ−i

[
1
ρg

(
1− e−ρgUi(yi(ϵ),P

g(ϵ))
)]

− EΘ−i

[
1
ρg

(
1− e−ρgUi(yi(0),P

g(0))
)]

ϵ
(6)

where I write Ui(.|θi) as Ui(.) for convenience.

Equation 1 divides the impact of bidder i’s deviation into the impact on the quantity allocated

to bidder i and the impact on the expected auction price conditional on winning. To do this,

I follow Kastl’s (2011) approach, which partitions the state space as follows

θ1k(x) = {Θ−i : bi,k+1 < P g(x) ≤ bi,k, yi(x) = qi,k − x}

θ2k(x) =
{
Θ−i : P

g(x) = bi,k, yi(x) = yRAT
i (qi,k − x− qi,k−1) : qi,k−1 < yRAT

i < qi,k − x
}

θ3k(x) =
{
Θ−i : P

g(x) = bi,k+1, yi(x) = yRAT
i (qi,k+1 − qi,k + x) : qi,k − x < yRAT

i < qi,k+1

}
θ4k(x) = {Θ−i : bi,k < P g(x), yi(x) ≤ qi,k−1}

θ5k(x) = {Θ−i : P
g(x) < bi,k+1, qi,k+1 ≤ yi(x)}

for x ∈ {0, ϵ}, where ϵ > 0 and yRAT
i (q) is the quantity that bidder i is allocated when

rationed, given the quantity that i demands at the margin is q.

The set θ1k(x) corresponds to the outcomes in which bidder i is allocated precisely the

quantity they demand at step k; θ2k(x) and θ3k(x) correspond to the outcomes in which

bidder i is rationed at step k and step k+1, respectively (the distinction between tying with

another bidder or not when rationed is made later in the proof); θ4k(x) and θ5k(x) correspond

to the outcomes in which bidder i is allocated strictly less and strictly more, respectively,

than the quantity they demand at step k. We then define the following subsets of θ2k and

θ3k as

ω1k(ϵ) = {Θ−i : Θ−i ∈ θ2k(0) ∩ θ1k(ϵ)}

ω2k(ϵ) = {Θ−i : Θ−i ∈ θ2k(0) ∩ θ3k(ϵ)}

ω3k(ϵ) = {Θ−i : Θ−i ∈ θ1k(0) ∩ θ3k(ϵ)}

We have that
∑3

j=1P (θjk(0)) =
∑3

j=1P (θjk(ϵ)), because the deviation only changes bidder

i’s outcome in cases in which the auction price is weakly between their bid prices at steps k
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and k + 1. By the Law of Total Probability, we can evaluate the utility function piecewise

using the definition of the partition:

EΘ−i

[
1

ρg
(
1− e−ρgUi(yi(ϵ),P

g(ϵ))
)]

− EΘ−i

(
1

ρg
(
1− e−ρgUi(yi(0),P

g(0))
)]

=EΘ−i

[
1

ρg
(
1− e−ρgUi(qi,k−ϵ,P g(ϵ))

)
; θ1k(ϵ)

]
− EΘ−i

[
1

ρg
(
1− e−ρgUi(qi,k,P

g(0))
)
; θ1k(0)

]
+ EΘ−i

[
1

ρg

(
1− e−ρgUi(y

RAT
i (qi,k−ϵ−qi,k−1),bi,k)

)
; θ2k(ϵ)

]
− EΘ−i

[
1

ρg

(
1− e−ρgUi(y

RAT
i (qi,k−qi,k−1),bi,k)

)
; θ2k(0)

]
+ EΘ−i

[
1

ρg

(
1− e−ρgUi(y

RAT
i (qi,k+1−qi,k+ϵ),bi,k+1)

)
; θ3k(ϵ)

]
− EΘ−i

[
1

ρg

(
1− e−ρgUi(y

RAT
i (qi,k+1−qi,k),bi,k+1)

)
; θ3k(0)

]
=EΘ−i

[
1

ρg
(
1− e−ρgUi(qi,k−ϵ,P g(ϵ))

)
; θ1k(0)

]
+ EΘ−i

[
1

ρg

(
1− e−ρgUi(y

RAT
i (qi,k−ϵ−qi,k−1),bi,k)

)
; θ2k(0)

]
− EΘ−i

[
1

ρg

(
1− e−ρgUi(y

RAT
i (qi,k−qi,k−1),bi,k)

)
; θ2k(0)

]
+ EΘ−i

[
1

ρg

(
1− e−ρgUi(y

RAT
i (qi,k+1−qi,k+ϵ),bi,k+1)

)
; θ3k(0)

]
− EΘ−i

[
1

ρg

(
1− e−ρgUi(y

RAT
i (qi,k+1−qi,k),bi,k+1)

)
; θ3k(0)

]
− EΘ−i

[
1

ρg
(
1− e−ρgUi(qi,k,P

g(0))
)
; θ1k(0)

]
− EΘ−i

[
1

ρg

(
1− e−ρgUi(y

RAT
i (qi,k−ϵ−qi,k−1),bi,k)

)
;ω1k(ϵ)

]
− EΘ−i

[
1

ρg

(
1− e−ρgUi(y

RAT
i (qi,k−ϵ−qi,k−1),bi,k)

)
;ω2k(ϵ)

]
+ EΘ−i

[
1

ρg

(
1− e−ρgUi(y

RAT
i (qi,k+1−qi,k+ϵ),bi,k+1)

)
;ω3k(ϵ)

]
+ EΘ−i

[
1

ρg

(
1− e−ρgUi(y

RAT
i (qi,k+1−qi,k+ϵ),bi,k+1)

)
;ω2k(ϵ)

]
+ EΘ−i

[
1

ρg
(
1− e−ρgUi(qi,k−ϵ,P g(ϵ))

)
;ω1k(ϵ)

]
− EΘ−i

[
1

ρg
(
1− e−ρgUi(qi,k−ϵ,P g(ϵ))

)
;ω3k(ϵ)

]
(7)
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where the last line follows from the facts that

P (θ1k(ϵ)) = P (θ1k(0)) +P (ω1k(ϵ))−P (ω3k(ϵ))

P (θ2k(ϵ)) = P (θ2k(0))−P (ω1k(ϵ))−P (ω2k(ϵ))

P (θ3k(ϵ)) = P (θ3k(0)) +P (ω3k(ϵ)) +P (ω2k(ϵ))

Note that

EΘ−i

[
1

ρg
(
1− e−ρgUi(qi,k,P

g(ϵ))
)
; θ2k(0)

]
− EΘ−i

[
1

ρg
(
1− e−ρgUi(qi,k,P

g(ϵ))
)
; θ2k(ϵ)

]
− EΘ−i

[
1

ρg
(
1− e−ρgUi(qi,k,P

g(ϵ))
)
;ω1k(ϵ)

]
− EΘ−i

[
1

ρg
(
1− e−ρgUi(qi,k,P

g(ϵ))
)
;ω2k(ϵ)

]
= 0

(8)

and

EΘ−i

[
1

ρg
(
1− e−ρgUi(qi,k,P

g(ϵ))
)
; θ3k(0)

]
− EΘ−i

[
1

ρg
(
1− e−ρgUi(qi,k,P

g(ϵ))
)
; θ3k(ϵ)

]
+ EΘ−i

[
1

ρg
(
1− e−ρgUi(qi,k,P

g(ϵ))
)
;ω3k(ϵ)

]
+ EΘ−i

[
1

ρg
(
1− e−ρgUi(qi,k,P

g(ϵ))
)
;ω2k(ϵ)

]
= 0

(9)

Summing Equations 7-9, adding and subtracting

EΘ−i

[
1

ρg
(
1− e−ρgUi(qi,k,P

g(ϵ))
)
; θ1k(0)

]
,EΘ−i

[
1

ρg
(
1− e−ρgUi(qi,k,P

g(0))
)
; θ2k(0)

]
,

EΘ−i

[
1

ρg
(
1− e−ρgUi(qi,k,P

g(0))
)
; θ3k(0)

]
,EΘ−i

[
1

ρg
(
1− e−ρgUi(qi,k,bi,k)

)
;ω1k(ϵ)

]
,

EΘ−i

[
1

ρg
(
1− e−ρgUi(qi,k,bi,k)

)
;ω2k(ϵ)

]
,EΘ−i

[
1

ρg
(
1− e−ρgUi(qi,k,bi,k+1)

)
;ω3k(ϵ)

]
,

EΘ−i

[
1

ρg
(
1− e−ρgUi(qi,k,bi,k+1)

)
;ω2k(ϵ)

]
,

and collecting terms, we therefore aim to evaluate

53



lim
ϵ→0

(
1

ϵ

(
EΘ−i

[
1

ρg
(
1− e−ρgUi(yi(ϵ),P

g(ϵ))
)]

− EΘ−i

(
1

ρg
(
1− e−ρgUi(yi(0),P

g(0))
)]))

= lim
ϵ→0

(
1

ϵ

(
EΘ−i

[
1

ρg
(
1− e−ρgUi(qi,k−ϵ,P g(ϵ))

)
; θ1k(0)

]
− EΘ−i

[
1

ρg
(
1− e−ρgUi(qi,k,P

g(ϵ))
)
; θ1k(0)

]))

+ lim
ϵ→0

(
1

ϵ

(
EΘ−i

[
1

ρg

(
1− e−ρgUi(y

RAT
i (qi,k−ϵ−qi,k−1),bi,k)

)
; θ2k(0)

]

− EΘ−i

[
1

ρg

(
1− e−ρgUi(y

RAT
i (qi,k−qi,k−1),bi,k)

)
; θ2k(0)

]))

+ lim
ϵ→0

(
1

ϵ

(
EΘ−i

[
1

ρg

(
1− e−ρgUi(y

RAT
i (qi,k+1−qi,k+ϵ),bi,k+1)

)
; θ3k(0)

]

− EΘ−i

[
1

ρg

(
1− e−ρgUi(y

RAT
i (qi,k+1−qi,k),bi,k+1)

)
; θ3k(0)

]))

+ lim
ϵ→0

(
1

ϵ

(
EΘ−i

[
1

ρg
(
1− e−ρgUi(qi,k,P

g(ϵ))
)
− 1

ρg
(
1− e−ρgUi(qi,k,P

g(0))
)
;

3⋃
j=1

θjk(0)

]))

+ lim
ϵ→0

(
1

ϵ

(
EΘ−i

[
1

ρg
(
1− e−ρgUi(qi,k,bi,k)

)
;ω1k(ϵ)

]
− EΘ−i

[
1

ρg

(
1− e−ρgUi(y

RAT
i (qi,k−ϵ−qi,k−1),bi,k)

)
;ω1k(ϵ)

]
+ EΘ−i

[
1

ρg
(
1− e−ρgUi(qi,k,bi,k)

)
;ω2k(ϵ)

]
− EΘ−i

[
1

ρg

(
1− e−ρgUi(y

RAT
i (qi,k−ϵ−qi,k−1),bi,k)

)
;ω2k(ϵ)

]
+ EΘ−i

[
1

ρg

(
1− e−ρgUi(y

RAT
i (qi,k+1−qi,k+ϵ),bi,k+1)

)
;ω3k(ϵ)

]
− EΘ−i

[
1

ρg
(
1− e−ρgUi(qi,k,bi,k+1)

)
;ω3k(ϵ)

]
+ EΘ−i

[
1

ρg

(
1− e−ρgUi(y

RAT
i (qi,k+1−qi,k+ϵ),bi,k+1)

)
;ω2k(ϵ)

]
− EΘ−i

[
1

ρg
(
1− e−ρgUi(qi,k,bi,k+1)

)
;ω2k(ϵ)

]
+ EΘ−i

[
1

ρg
(
1− e−ρgUi(qi,k−ϵ,P g(ϵ))

)
;ω1k(ϵ)

]
− EΘ−i

[
1

ρg
(
1− e−ρgUi(qi,k,P

g(ϵ))
)
;ω1k(ϵ)

]
− EΘ−i

[
1

ρg
(
1− e−ρgUi(qi,k−ϵ,P g(ϵ))

)
;ω3k(ϵ)

]
+ EΘ−i

[
1

ρg
(
1− e−ρgUi(qi,k,P

g(ϵ))
)
;ω3k(ϵ)

]))
(10)

Recalling the definition of Ui(yi(x), P
g(x)), we have that

∂Ui(yi(x), P
g(x))

yi(x)
=vg,h(yi(x), θi)− P g(x)
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Applying L’Hôpital’s rule, the first three limits are

lim
ϵ→0

1

ϵ

(
EΘ−i

[
1

ρg
(
1− e−ρgUi(qi,k−ϵ,P g(ϵ))

)
; θ1k(0)

]
− EΘ−i

[
1

ρg
(
1− e−ρgUi(qi,k,P

g(ϵ))
)
; θ1k(0)

])
= EΘ−i

[
e−ρgUi(qi,k,P

g(0))
(
vg,h(qi,k, θi)− P g(0)

)
; θ1k(0)

]
lim
ϵ→0

1

ϵ

(
EΘ−i

[
1

ρg

(
1− e−ρgUi(y

RAT
i (qi,k−ϵ−qi,k−1),bi,k)

)
; θ2k(0)

]

− EΘ−i

[
1

ρg

(
1− e−ρgUi(y

RAT
i (qi,k−qi,k−1),bi,k)

)
; θ2k(0)

])
= EΘ−i

[
e−ρgUi(y

RAT
i (qi,k−qi,k−1),bi,k)

(
vg,h(yRAT

i (qi,k − qi,k−1), θi)− bi,k
)
; θ2k(0)

]
lim
ϵ→0

1

ϵ

(
EΘ−i

[
1

ρg

(
1− e−ρgUi(y

RAT
i (qi,k+1−qi,k+ϵ),bi,k+1)

)
; θ3k(0)

]

− EΘ−i

[
1

ρg

(
1− e−ρgUi(y

RAT
i (qi,k+1−qi,k),bi,k+1)

)
; θ3k(0)

])
= EΘ−i

[
e−ρgUi(y

RAT
i (qi,k+1−qi,k),bi,k+1)

(
vg,h(yRAT

i (qi,k+1 − qi,k), θi)− bi,k+1

)
; θ3k(0)

]

Now consider the fourth limit. We can show that the expectation term is continuous in ϵ by

first partitioning EΘ−i

[
1
ρg

(
1− e−ρgUi(qi,k,P

g(ϵ))
)
;
⋃3

j=1 θjk(0)
]
, into

EΘ−i

[
1

ρg
(
1− e−ρgUi(qi,k,P

g(ϵ))
) ∣∣∣∣θ1k(0)]P (θ1k(0))

+ EΘ−i

[
1

ρg
(
1− e−ρgUi(qi,k,bi,k)

) ∣∣∣∣θ2k(0)]P (θ2k(0)) + EΘ−i

[
1

ρg
(
1− e−ρgUi(qi,k,bi,k+1

) ∣∣∣∣θ3k(0)]P (θ3k(0)) .

Because both
[
P g(ϵ)

∣∣∣θ1k(0)] ∈ [bi,k+1, bi,k] (so that
[
Ui(qi,k, P

g(ϵ)))
∣∣∣θ1k(0)] ≥ 0) and ρg > 0,

it follows that the exponential is bounded, i.e.
[
eρ

gUi(qi,k,P
g(ϵ))
∣∣∣θ1k(0)] ∈ [0, 1]. Therefore by

the same reasoning as Kastl’s (2011) Lemmas A3 and A4, EΘ−i

[
1
ρg

(
1− e−ρgUi(qi,k,P

g(ϵ))
) ∣∣∣∣θ1k(0)]

is continuous in ϵ at ϵ = 0 for a.e. θi ∈ Θi, is of bounded variation and satisifes the Luzin N

property and so is locally differentiable with respect to ϵ at ϵ = 0 for a.e. θi ∈ Θi.
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And so, applying L’Hôpital’s rule to the fourth limit, we have

lim
ϵ→0

(
1

ϵ

(
EΘ−i

[
1

ρg
(
1− e−ρgUi(qi,k,P

g(ϵ))
)
− 1

ρg
(
1− e−ρgUi(qi,k,P

g(0))
)
;

3⋃
j=1

θjk(0)

]))

=
∂

∂ϵ

(
EΘ−i

[
1

ρg
(
1− e−ρgUi(qi,k,P

g(ϵ))
)
;

3⋃
j=1

θjk(0)

])∣∣∣∣∣
ϵ=0

And finally, we can express the expectations in the last limit in terms of their conditional

expectations, i.e.

EΘ−i

[
1

ρg

(
1− e−ρgUi(y

g
i,k(x),P

g(x))
)
;ωjk(ϵ)

]
= EΘ−i

[
1

ρg

(
1− e−ρgUi(y

g
i,k(x),P

g(x))
) ∣∣∣∣ωjk(ϵ)

]
P (ωjk(ϵ))

for j ∈ {1, 2, 3} and note that limϵ→0

(
yRAT
i (qi,k − ϵ− qi,k−1)

∣∣∣ωjk(ϵ)
)

= qi,k;

limϵ→0

(
yRAT
i (qi,k+1 − qi,k−1 + ϵ)

∣∣∣ωjk(ϵ)
)

= qi,k; limϵ→0

(
qi,k−1 − ϵ

∣∣∣ωjk(ϵ)
)

= qi,k; and, be-

cause Kastl’s (2011) Lemma 1 holds, limϵ→0 (P (ωjk(ϵ))) = 0. It follows from L’Hôpital’s

rule that the last limit is zero (see Kastl (2011) for details).

Combining these results, recalling the definitions of the θjks, observing both that I(bi,k ≥
P g(ϵ) ≥ bi,k+1) = I (bi,k ≥ P g(0) ≥ bi,k+1) and that the deviation only affects the quantity

allocated to bidder i in the event of being rationed (i.e. in the sets θ2k and θ3k) if another

bidder is also rationed (i.e. bidder i “ties” on the margin), the necessary condition for

equilibrium, for ρg > 0, is the second case of Equation 1.

B.2.1 Proof for the case of no ties

In the case that there are no ties on the margin for bidder i, the condition which rules out

profitable local deviations in the quantity that they demand is particularly simple. The

bidder’s gross utility,
∫ qi,k
0

vg,h(u, θi)du, is deterministic, conditional on winning, as are their

bidding costs, ci(Ki), so these elements do not enter into the bidder’s tradeoff, even if they

are risk averse. The only random component in their utility function is the price that they

must pay for the units that they win. Simple manipulation as follows shows that Equation

1 simplifies to Equation 3 under these assumptions.
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If there are no ties then P(P g = bi,k+1∧Tieg) = P(P g = bi,k∧Tieg) = 0, Equation 1 becomes

EΘ−i

[
e−ρgUi(qi,k,P

g |θi)
(
vg,h(qi,k, θi)− P g

) ∣∣∣bi,k > P g > bi,k+1

]
P(bi,k > P g > bi,k+1)

=


qi,k

∂
∂ϵ

(
EΘ−i

[
P̃ g(ϵ)I

(
bi,k ≥ P̃ g(ϵ) ≥ bi,k+1

)]) ∣∣∣∣
ϵ=0

if ρg = 0

1
ρg

∂
∂ϵ

(
EΘ−i

[
e−ρgUi(qi,k,P̃

g(ϵ)|θi)I
(
bi,k ≥ P̃ g(ϵ) ≥ bi,k+1

)]) ∣∣∣∣
ϵ=0

if ρg > 0

=⇒e−ρg
∫ qi,k
0 vg,h(u,θi)dueρ

gci(Ki)EΘ−i

[
eρ

gP gqi,k
(
vg,h(qi,k, θi)− P g

) ∣∣∣bi,k > P g > bi,k+1

]
P(bi,k > P g > bi,k+1)

=


qi,k

∂
∂ϵ

(
EΘ−i

[
P̃ g(ϵ)I

(
bi,k ≥ P̃ g(ϵ) ≥ bi,k+1

)]) ∣∣∣∣
ϵ=0

if ρg = 0

e−ρg
∫ qi,k
0 vg,h(u,θi)dueρ

gci(Ki) 1
ρg

∂
∂ϵ

(
EΘ−i

[
eρ

gP̃ g(ϵ)qi,kI

(
bi,k ≥ P̃ g(ϵ) ≥ bi,k+1

)]) ∣∣∣∣
ϵ=0

if ρg > 0

=⇒vg,h(qi,k, θi)EΘ−i

[
eρ

gP gqi,k

∣∣∣bi,k > P g > bi,k+1

]
P(bi,k > P g > bi,k+1)

−EΘ−i

[
eρ

gP gqi,kP g
∣∣∣bi,k > P g > bi,k+1

]
P(bi,k > P g > bi,k+1)

=


qi,k

∂
∂ϵ

(
EΘ−i

[
P̃ g(ϵ)I

(
bi,k ≥ P̃ g(ϵ) ≥ bi,k+1

)]) ∣∣∣∣
ϵ=0

if ρg = 0

1
ρg

∂
∂ϵ

(
EΘ−i

[
eρ

gP̃ g(ϵ)qi,kI

(
bi,k ≥ P̃ g(ϵ) ≥ bi,k+1

)]) ∣∣∣∣
ϵ=0

if ρg > 0

=⇒µi,k = vg,h(qi,k, θi)− bi,k

=
EΘ−i

[
eρ

gP gqi,kP g
∣∣∣bi,k > P g > bi,k+1

]
EΘ−i

[
eρ

gP gqi,k

∣∣∣bi,k > P g > bi,k+1

] − bi,k

+


Ωqi,k

∂
∂ϵ

(
EΘ−i

[
P̃ g(ϵ)I

(
bi,k ≥ P̃ g(ϵ) ≥ bi,k+1

)]) ∣∣∣∣
ϵ=0

if ρg = 0

Ω

∂
∂ϵ

(
EΘ−i

[
e
ρgP̃g(ϵ)qi,kI(bi,k≥P̃ g(ϵ)≥bi,k+1)

])∣∣∣∣
ϵ=0

ρgEΘ−i

[
e
ρgPgqi,k

∣∣bi,k>P g>bi,k+1

] if ρg > 0

where Ω = 1
P(bi,k>P g>bi,k+1)

, which corresponds to Equation 3.
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B.2.2 Proof for Equation 4, the market power component

The following shows that Equation 4 holds. The first line follows because ∂P g

∂qi,k
= 0 for

P g = bi,k,

qi,kΩ
EΘ−i

[
eρ

gP gqi,k ∂P g

∂qi,k
I (bi,k ≥ P g ≥ bi,k+1)

]
E

[
eρ

gP gqi,k

∣∣∣bi,k > P g > bi,k+1

]
=qi,kΩ

EΘ−i

[
eρ

gP gqi,k ∂P g

∂qi,k
I (bi,k > P g ≥ bi,k+1)

]
E

[
eρ

gP gqi,k

∣∣∣bi,k > P g > bi,k+1

]
=qi,kΩ

EΘ−i

[
eρ

gP gqi,k ∂P g

∂qi,k

∣∣∣bi,k > P g ≥ bi,k+1

]
P (bi,k > P g ≥ bi,k+1)

E

[
eρ

gP gqi,k

∣∣∣bi,k > P g > bi,k+1

]
=qi,kΩEΘ−i

[
∂P g

∂qi,k

∣∣∣∣∣bi,k > P g ≥ bi,k+1

]
P (bi,k > P g ≥ bi,k+1)

+ qi,kΩEΘ−i

[
∂P g

∂qi,k

∣∣∣∣∣bi,k > P g ≥ bi,k+1

]
P (bi,k > P g ≥ bi,k+1)

EΘ−i

[
eρ

gP gqi,k

∣∣∣bi,k > P g ≥ bi,k+1

]
EΘ−i

[
eρ

gP gqi,k

∣∣∣bi,k > P g > bi,k+1

] − 1


+

qi,kΩCov
(
eρ

gP gqi,k , ∂P g

∂qi,k

∣∣∣bi,k > P g ≥ bi,k+1

)
P (bi,k > P g ≥ bi,k+1)

EΘ−i

[
eρ

gP gqi,k

∣∣∣bi,k > P g > bi,k+1

]
=qi,kΩEΘ−i

[
∂P g

∂qi,k
I (bi,k > P g ≥ bi,k+1)

]

+ qi,kΩEΘ−i

[
∂P g

∂qi,k
I (bi,k > P g ≥ bi,k+1)

]EΘ−i

[
eρ

gP gqi,k

∣∣∣bi,k > P g ≥ bi,k+1

]
EΘ−i

[
eρ

gP gqi,k

∣∣∣bi,k > P g > bi,k+1

] − 1


+

qi,kΩCov
(
eρ

gP gqi,k , ∂P g

∂qi,k

∣∣∣bi,k > P g ≥ bi,k+1

)
P (bi,k > P g ≥ bi,k+1)

EΘ−i

[
eρ

gP gqi,k

∣∣∣bi,k > P g > bi,k+1

]
which corresponds to Equation 4.

C Further details on identification in Model S(ρ)

This section shows how Equation 2, which identifies bidders’ marginal values, is derived from

Equation 1, which is the necessary condition for equilibrium in Model S(ρ).

The main complexity comes from allowing for ties. If both a bidder’s bid equals the auction
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price and another bidder submits a bid at that same price, a marginal increase in the quantity

the bidder demands at step k increases the quantity they are allocated by the product of

the marginal quantity they demand at step k and the rationing coefficient.66 The bidder’s

deviation in the quantity they demand therefore affects their utility differently in the case

that their bid is marginal relative to the case that their bid is strictly above the auction

price.

To estimate a bidder’s marginal value at step k using Equation 1, we therefore require three

further pieces of information beyond what is required in the case of no ties:

1. The rationing coefficient at step k, which determines the quantity the bidder wins when

rationed at step k.

2. The bidder’s marginal value at the quantity they win when rationed at step k, which

is the marginal benefit of winning a additional unit at step k when the bidder is risk

neutral, ceteris paribus.

3. The bidder’s marginal value function between the quantity they win when rationed at

step k and the quantity they demand at step k. When the bidder is risk averse, this

impacts the bidder’s overall net utility from the auction and therefore the marginal

benefit of winning an additional unit, ceteris paribus.

Bidders beliefs about the size of the rationing coefficient can be estimated from the data

(see Section 4.2). As described in Section 4.1, I make two additional assumptions to recover

the two remaining pieces of information. Alternative natural assumptions would achieve the

same result.

Assumption 1 For bidder i ∈ N g,h, g ∈ {A,B}, h ∈ {1, 2},

vg,h (yi, θi) = vg,h (qi,k, θi) ∀yi ∈
[
qi,k−1 + ri,k (qi,k − qi,k−1) , qi,k + ri,k+1 (qi,k+1 − qi,k)

)
.

Assumption 2 The rationing coefficient for type θi ∈ Θi of bidder i ∈ N at step k ∈
{1, ..., Ki}, conditional on the strategy profile σ(Θ), is deterministic and denoted ri,k.

66The bidder is allocated the entire quantity they demand at step k − 1 as well as an amount which is
proportional to the marginal quantity they demand at step k. If the bidder ties, the deviation increases
their allocation by the product of the marginal quantity they demand at step k and the rationing coefficient
because bids are rationed pro-rata. If the bidder does not tie, they are allocated the entire quantity supplied
on the margin, so a deviation in the quantity they demand has no impact on their allocation.

59



Under Assumptions 1 and 2, Equation 1 simplifies as follows. First note that Assumption

2 implies that EΘ−i

[
∂yi
∂qi,k

∣∣∣P g = bi,k+1 ∧ Tieg
]
= (1 − ri,k). Splitting up Ui(qi,k, P

g|θi) and

Ui(qi,k, P̃
g(ϵ)|θi) into their constituent parts, we have

EΘ−i

[
e−ρg

∫ qi,k
0 vg,h(u,θi)dueρ

gP gqi,ke−ρgci(Ki)
(
vg,h(qi,k, θi)− P g

) ∣∣∣bi,k > P g > bi,k+1

]
P(bi,k > P g > bi,k+1)

+EΘ−i

[
e−ρg

∫ qi,k
0 vg,h(u,θi)due

ρg
∫ qi,k
(qi,k−1+ri,k(qi,k−qi,k−1))

vg,h(u,θi)du
eρ

gbi,k(qi,k−1+ri,k(qi,k−qi,k−1))e−ρgci(Ki)

(
vg,h (qi,k−1 + ri,k (qi,k − qi,k−1) , θi)− bi,k

)
ri,k

]
P(P g = bi,k ∧ Tieg)

+EΘ−i

[
e−ρg

∫ qi,k
0 vg,h(u,θi)due−ρg

∫ (qi,k+ri,k+1(qi,k+1−qi,k))
qi,k

vg,h(u,θi)dueρ
gbi,k+1(qi,k+ri,k+1(qi,k+1−qi,k))e−ρgci(Ki)

(
vg,h (qi,k + ri,k+1 (qi,k+1 − qi,k) , θi)− bi,k+1

) (
1− rgi,k+1

) ]
P(P g = bi,k+1 ∧ Tieg)

=


qi,k

∂
∂ϵ

(
EΘ−i

[
P̃ g(ϵ)I

(
bi,k ≥ P̃ g(ϵ) ≥ bi,k+1

)]) ∣∣∣∣
ϵ=0

if ρg = 0

1
ρg

∂
∂ϵ

(
EΘ−i

[
e−ρg

∫ qi,k
0 vg,h(u,θi)dueρ

gP̃ g(ϵ)qi,ke−ρgci(Ki)I

(
bi,k ≥ P̃ g(ϵ) ≥ bi,k+1

)]) ∣∣∣∣
ϵ=0

if ρg > 0

Then, cancelling the deterministic components of the bidder’s expected utility,

EΘ−i

[
eρ

gP gqi,k
(
vg,h(qi,k, θi)− P g

) ∣∣∣bi,k > P g > bi,k+1

]
P(bi,k > P g > bi,k+1)

+

(
e
ρg

∫ qi,k
(qi,k−1+ri,k(qi,k−qi,k−1))

vg,h(u,θi)du
eρ

gbi,k(qi,k−1+ri,k(qi,k−qi,k−1))

(
vg,h (qi,k−1 + ri,k (qi,k − qi,k−1) , θi)− bi,k

)
ri,k

)
P(P g = bi,k ∧ Tieg)

+

(
e−ρg

∫ (qi,k+ri,k+1(qi,k+1−qi,k))
qi,k

vg,h(u,θi)dueρ
gbi,k+1(qi,k+ri,k+1(qi,k+1−qi,k))

(
vg,h (qi,k + ri,k+1 (qi,k+1 − qi,k) , θi)− bi,k+1

) (
1− rgi,k+1

))
P(P g = bi,k+1 ∧ Tieg)

=


qi,k

∂
∂ϵ

(
EΘ−i

[
P̃ g(ϵ)I

(
bi,k ≥ P̃ g(ϵ) ≥ bi,k+1

)]) ∣∣∣∣
ϵ=0

if ρg = 0

1
ρg

∂
∂ϵ

(
EΘ−i

[
eρ

gP̃ g(ϵ)qi,keI
(
bi,k ≥ P̃ g(ϵ) ≥ bi,k+1

)]) ∣∣∣∣
ϵ=0

if ρg > 0

60



Finally, Assumption 1 on the shape of the marginal valuation function implies

EΘ−i

[
eρ

gP gqi,k
(
vg,h(qi,k, θi)− P g

) ∣∣∣bi,k > P g > bi,k+1

]
P(bi,k > P g > bi,k+1)

+

(
eρ

g(1−ri,k)(qi,k−qi,k−1)v
g,h(qi,k,θi)eρ

gbi,k(qi,k−1+ri,k(qi,k−qi,k−1))

(
vg,h (qi,k, θi)− bi,k

)
ri,k

)
P(P g = bi,k ∧ Tieg)

+

(
e−ρgri,k+1(qi,k+1−qi,k)v

g,h(qi,k,θi)eρ
gbi,k+1(qi,k+ri,k+1(qi,k+1−qi,k))

(
vg,h (qi,k+1, θi)− bi,k+1

) (
1− rgi,k+1

))
P(P g = bi,k+1 ∧ Tieg)

=


qi,k

∂
∂ϵ

(
EΘ−i

[
P̃ g(ϵ)I

(
bi,k ≥ P̃ g(ϵ) ≥ bi,k+1

)]) ∣∣∣∣
ϵ=0

if ρg = 0

1
ρg

∂
∂ϵ

(
EΘ−i

[
eρ

gP̃ g(ϵ)qi,keI
(
bi,k ≥ P̃ g(ϵ) ≥ bi,k+1

)]) ∣∣∣∣
ϵ=0

if ρg > 0

which corresponds to Equation 2.
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D Robustness of the test results

Table 4 shows the test results for each pair of models, with the bid shading in Model S(ρ)

estimated under the assumption that bidders do not tie, i.e. estimated from Equation 3, and

the testing specification identical to the main analysis. Figure 6 plots the absolute value of

bid shading implied by Model S(ρ) against the log of the risk aversion parameter, log(ρ),

assuming bidders do not tie.

Table 4: Testing results assuming no ties

Both goods

Model 1 Model 2

S(0) S(0.1) S(0.2) S(0.3) S(0.4) S(0.5) S(1)

T -1.764 -1.701 -1.655 -1.456 -1.408 -1.375 -1.243

S(0) 0.064 0.879 1.145 1.281 1.428 1.670

Good A

Model 1 Model 2

S(0) S(0.1) S(0.2) S(0.3) S(0.4) S(0.5) S(1)

T 0.019 0.018 0.018 0.017 0.017 0.017 0.014

S(0) 0.004 0.004 0.004 0.004 0.004 -0.046

Good B

Model 1 Model 2

S(0) S(0.1) S(0.2) S(0.3) S(0.4) S(0.5) S(1)

T -2.322 -2.223 -2.174 -2.094 -2.014 -1.941 -1.770

S(0) 0.053 0.088 0.120 0.149 1.673 2.125

Each entry shows the test statistic for the row being Model 1 and the column being Model 2, so that a

negative entry indicates that the row model has better model fit than the column model (and a positive

entry indicates the converse). The test statistic is distributed N (0, 1) so the standard critical values apply:

-1.645 for a 5% confidence level; -1.960 for 2.5%; -2.326 for 1%.
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Figure 6: Absolute value of bid shading in Model S(ρ) for log(ρ) ∈ [−10, 10], June 2010 –
May 2012, assuming no ties (observations are weighted by the quantities demanded)

(a) Good A

(b) Good B
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Table 5 shows the test results for each pair of models, with the bid shading in Model S(ρ)

estimated under the assumption of the main model and the testing specification identical to

the main analysis except that the dummy variable for a last step in a bidder’s bid function

is excluded from the set of characteristics, x.

Table 5: Testing results excluding the dummy for last step from x

Both goods

Model 1 Model 2

S(0) S(0.1) S(0.2) S(0.3) S(0.4) S(0.5) S(1)

T -1.609 -1.511 -1.464 -1.307 1.295 -1.101 -1.000

S(0) 0.060 0.085 0.094 0.099 1.342 1.724

Good A

Model 1 Model 2

S(0) S(0.1) S(0.2) S(0.3) S(0.4) S(0.5) S(1)

T 0.024 0.024 0.025 0.025 0.024 0.023 0.023

S(0) 0.005 0.006 0.006 0.005 0.004 -0.024

Good B

Model 1 Model 2

S(0) S(0.1) S(0.2) S(0.3) S(0.4) S(0.5) S(1)

T -2.144 -2.032 -1.952 -1.875 -1.798 -1.739 -1.494

S(0) 0.137 0.152 0.175 1.770 1.875 2.103

Each entry shows the test statistic for the row being Model 1 and the column being Model 2, so that a

negative entry indicates that the row model has better model fit than the column model (and a positive

entry indicates the converse). The test statistic is distributed N (0, 1) so the standard critical values apply:

-1.645 for a 5% confidence level; -1.960 for 2.5%; -2.326 for 1%.
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E Calculations for Section 5.2

The 50-50 bet

In the model, the risk aversion parameter, ρ, measures the rate at which a bidder’s marginal

utility decreases when their net utility from the auction (or their “wealth”) increases by one

unit of the maximum supply. Maximum supply is £5 billion in the 3-month term auctions

and £2.5 billion in the 6-month term auctions so the risk aversion parameters measured in

£ would be ρM = (0.2× 10−9 × ρ) and ρM = (0.4× 10−9 × ρ), respectively.

Let W be the bidder’s initial wealth. A bidder will be indifferent to the 50-50 bet to lose

Y and win X if 1
2

1
ρM

(
1− exp−ρM (W+X)

)
+ 1

2
1

ρM

(
1− exp−ρM (W−Y )

)
= 1

ρM

(
1− exp−ρM (W )

)
,

then X = − log(2−expρ
MY )

ρM
. And so, if Y = 100, 000 and log(ρ) = 4 for a bidder in the 3-month

auctions, so that ρM = 1.091963 × 10−8, then X = £100,109. For a bidder in the 6-month

auctions, i.e. ρM = 2.18393× 10−8, then X = £100,209.

Estimates of CARA parameters

Armantier and Sbäı (2006) estimate CARA parameters of 6.907 × 10−6 and 5.732 ×
10−8, respectively, in euros in auctions held in May 1998 – December 2000. I convert these

at the average EUR/GBP exchange rate in May 1998 – December 2000 of 1.55 (where

the EUR/GBP exchange rate in 1998 is calculated by (1/6.55957)FRF/GBP). The average

maximum supply in my study is £4.17 billion, so Armantier and Sbäı’s (2006) estimates

imply ρ = (6.907×10−6)
1.55

× 4.17× 109 and ρ = (5.732×10−8)
1.55

× 4.17× 109, respectively.

Boyarchenko, Lucca and Veldkamp (2021) calibrate a CARA parameter of 366.61 given

a total auction supply normalised to one, which implies ρ = 366.61Q̂, where Q̂ is the ratio of

the average maximum supply in my model to the average issuance in their study. The average

maximum supply in my study is £4.17 billion; their sample includes US Treasury auctions of

2-, 3-, 5-, 7-, and 10-year notes in September 2004 – June 2014, of which the average issuance

was £17.3 billion (converted from US dollars at the exchange rate on issuance date), which

implies Q̂ = 0.24.

Allen and Wittwer (2023) provide a median estimate for the risk aversion parameter

in their setting equal to 0.006, for a total auction supply normalised to one. The auction

supply is on average Can$4.12 billion, which is approximately £2.43 billion (converted from

Canadian dollars at an exchange rate of 0.59). Following the same approach as above, this

implies Q̂ = 4.17
2.43

= 1.72, and therefore ρ ≈ 0.006 ∗ 1.72 = 0.01032.
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F Bidding costs

In the main analysis, I evaluate the relative performance of alternative models of behaviour,

including Model S(0), a conventional model in which bidders are both strategic and risk

neutral. However, the approach gives no insight to absolute model fit so this appendix

analyses an external measure of fit of Model S(0). The model assumes that bidders face

“bidding costs”, unobserved to the researcher, which deter bidders from making a large

number of bids and which explain the few number of bids submitted in practice. The

measure of fit that I focus on is the size of these bidding costs required to explain the data

under the assumptions of the model. In the BoE’s ILTR auctions, the physical costs of

submitting bids are trivial.67 Under this interpretation, I find that the estimated bidding

costs for bidders for good B are relatively large, which suggests evidence against this model.

To estimate the bidding costs, I make use of the fact that the number of bids submitted is a

strategic choice for the bidder. If they submit K bids, the bidding cost of the (K +1)th bid

must be larger than the marginal benefit of “fine-tuning” their bid function, which is equal to

the difference in their expected utility from submitting what would be the optimal (K + 1)-

step bid function and what would be the optimal K-step one. Having estimated a bidder’s

full marginal valuation function, we can estimate this marginal benefit of fine-tuning, which

provides a lower bound on the bidding cost of the (K + 1)th bid.

This exercise requires estimates of bidders’ full marginal valuation functions, but the condi-

tion which rules out profitable deviations in the quantities that bidders demand (Equation 2

in the main text) only identifies bidders’ marginal values at the quantities demanded at the

steps of their bid functions. I therefore provide a set of novel additional necessary conditions

which rule out profitable unilateral deviations in the bid prices submitted by a bidder, hold-

ing the rest of their strategy constant. Kastl (2011) derives similar conditions for a deviation

in bid price, under the conditions that the support of the auction price is continuous and

bidders do not tie on the margin. I instead derive conditions for the case in which the set

of possible auction prices is discrete and bidders may ties on the margin, both of which

characterise my context. These additional conditions set identify the full marginal valuation

function. (It is not possible to point identify the full marginal valuation function without

further assumptions.) I combine these with the necessary conditions which point identify

the marginal valuation function at the quantities demanded at the steps of the bid function

(Equation 2 with ρ = 0), and use a statistical interpolant to point estimate bidders’ full

marginal valuation functions in a way which is consistent with these conditions.

67The following section discusses alternative interpretations in terms of cognitive costs.
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I then estimate the expected marginal benefit of submitting an additional bid by the differ-

ence in a bidder’s expected utility from submitting the optimal (K + 1)-step bid function

and from submitting the optimal K-step bid function. This provides a lower bound on the

bidding costs implied by the model.68 Because the estimation procedure is computationally

intensive, I obtain results for bidders who submit one or two bids per auction, which covers

81% of observations.

For a range of marginal valuation functions consistent with the necessary conditions for equi-

librium, I find that the average lower bound on the bidding costs for bidders who submit one

bid per auction for funds against Level B collateral (67% of observations for B), ranges from

£1,800 to £12,000, equivalent to around 3% of average bidder surplus, and is significantly

different from zero. I also find that the estimated lower bounds are of similar magnitude

when using the same estimation method for the marginal valuation functions as Kastl (2011).

These bidding costs seem large when interpreted as the physical costs of submitting bids.

These seemingly large costs are explained by the fact that bidders make very few bids in

the BoE’s liquidity auctions but could increase their surplus by submitting additional bids.

The results suggest that the conventional strategic model does not characterise this aspect

of bidding behaviour well, at least for the 67% of bidders for good B who submit only one

bid. This complements the findings that the simpler model of truthful bidding is a better

approximation.

In contrast, the results show that the average lower bound on bidding costs for bidders who

submit one bid per auction for funds against Level A collateral (68% of observations for A),

the estimated lower bounds on bidding costs are very small, equal to approximately £100,
equivalent to around 0.2% of average bidder surplus. This is unsurprising given the auction

price for these funds is stable across auctions so there are limited gains from further fine-

tuning one’s bid function; it is also consistent with the findings in the main text that we

cannot discriminate between alternative models of behaviour for bidders for A. Similarly,

the average lower bound on bidding costs for bidders who submit two bids per auction for

funds is very small for both goods. This is consistent with Kastl’s (2012) finding that even

a small cost of submitting additional bids can make it optimal to submit few bids.

This appendix proceeds as follows. Section F.1 first discusses possible interpretations of the

bidding costs. Section F.2 provides necessary conditions for equilibrium that, together with

Equation 2 in the main text, set identify bidders’ marginal valuation functions. Estimating

68An analogous method (which is not relevant to the external measure of fit) provides an upper bound on
the bidding costs, equal to the difference in a bidder’s expected utility from submitting the optimal K-step
bid function and from submitting the optimal (K − 1)-step bid function.
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the marginal valuation functions and bidding costs is described in Sections F.3 and F.4.

Section F.5 shows the results.

F.1 Interpretation

Evaluating Model S(0) based on the size of the bidding costs requires an interpretation of

these costs.

The most natural interpretation is that they represent the costs of physically submitting

the bids. In the ILTR auctions, as in many other settings, bids are submitted through an

online platform, called BTender, which is used by bidders to participate in many other BoE

operations. So the financial and time costs of submitting bids are trivial.69

Alternatively, the bidding costs could be interpreted cognitively. For example, if we assume

bidders have infinite experience in participating in the auctions, then they know the average

expected utility from submitting a given number of steps based on prior experience, and

decide how many steps to submit given the bidding cost of each. Given their choice of number

of steps, Ki, a bidder then determines their optimal bids. Under this interpretation, the

bidding cost may be interpreted as the cost of calculating the optimal Ki-step bid function.

However, this requires a long history of a stable environment, which is not directly applicable

to the ILTR setting.

An alternative cognitive interpretation would be that bidders have unlimited cognitive ability,

calculate the maximum expected surplus that can be obtained for every possible number of

submitted bids, and then choose the optimal number to submit. This would imply that

only negligible bidding costs could rationalise the few bids per bidder that are seen in the

data. Both cognitive interpretations seem extreme if taken literally, and it is unclear which

is preferable.70

69There is a fixed cost of registering to participate in the ILTR auctions. The bidder must register to
become a participant of the BoE’s Sterling Monetary Framework and Open Market Operations and typically
pledge collateral prior to the auction. These costs are sunk at the time of bidding.

70Because bidders can submit any number of bids in the ILTR auctions, we cannot interpret these bidding
costs as a constraint imposed by the auction rules. (In this interpretation, the cost of submitting bids of
number greater than K̄ would be infinite: ci(Ki) → ∞ ∀Ki > K̄.) Upper bounds on the number of bids
are observed in other settings, but they are never binding as far as I know. For example, in Kastl’s (2011)
Czech Treasury auctions, the upper bound is 10 and the maximum number of bids by an individual bidder
is 9. Similarly, in Hortaçsu and Puller’s (2008) study of Texan electricity auctions, “only one firm ever used
the maximum number of steps, and that only occurred once for that firm” (McAdams, 2008, citing private
communication with Steven Puller).

68



F.2 Set identification of the marginal valuation function

In equilibrium of Model S(0), the observed number of bids submitted by a bidder is optimal,

chosen to trade off the marginal cost of an additional bid with the marginal benefit of fine-

tuning the bidder’s bid function, i.e. the additional expected utility net of bidding costs

from submitting an additional bid.

For type θi of bidder i, the marginal benefit is equal to the difference in expected utility

(net of bidding costs) between submitting the (Ki + 1)-step bid function which maximises

expected utility conditional on submitting (Ki+1) bids, and submitting the observedKi-step

bid function, which is optimal conditional on submitting Ki bids. This difference therefore

provides an estimate of the lower bound of bidder i’s bidding cost of an additional bid,

ci(Ki + 1)− ci(Ki).

To estimate this difference in expected utility, we must first estimate the bidder’s unobserved

marginal valuation function.

While point identification in a single-unit auction is feasible under certain conditions, iden-

tification in multi-unit auctions is more challenging (McAdams, 2008). Equation 2 point

identifies a bidder’s marginal values at the quantities they demand at the steps of their bid

function by ruling out profitable unilateral deviations in the quantity they demand at each

step, holding the rest of their strategy constant.

I derive a set of novel necessary conditions that rule out profitable local deviations in the

bid prices that a bidder submits, in order to set identify the marginal valuation function

between the quantities a bidder demands at the steps of their bid function. I also bound

the bidder’s marginal value for the first unit (i.e. the intercept of the marginal valuation

function) from below.

Equilibrium in Model S(0) requires that a bidder cannot profit from a unilateral deviation

in the bid price that they submit at a particular step, holding the rest of their strategy fixed.

I consider single basis point deviations, above and below the original bid price, as these are

the smallest permitted deviations in price that a bidder may make. Equilibrium requires

that the bidder’s expected utility given each of these unilateral local deviations is weakly

less than their expected utility given their original strategy. The change in expected utility

depends on whether the bidder has market power, and the amount of rationing the bidder

expects to face if the auction price is set equal to their bid.
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To build intuition, I first consider two examples in which a bidder submits a single bid. In

both examples, the bidder is a price taker, so their deviation does not affect the distribution

of the auction price. In the first example, there is no rationing, so all bids weakly above the

auction price are fully allocated, whereas the second example allows for rationing.

In Proposition 2, I then state the pair of conditions that are necessary for equilibrium in

Model S(0), allowing for multiple bids and market power. This pair of conditions provides

set identification of each bidder’s marginal valuation function at all quantities (not just at the

quantities they demand at the steps of their bid function). To identify the marginal valuation

functions in Model S(0), I assume that the rationing coefficient that bidder i expects to face

at a particular price, conditional on the strategy profile, is deterministic. To my knowledge,

the constraints imposed by Proposition 2 have not yet been applied in the literature.

By ruling out a profitable unilateral downward deviation in bid price by 1 basis point,

Corollary 1 provides set identification of each bidder’s marginal value for the first unit (i.e.

intercept of their marginal valuation function). This also makes the identifying assumption

of a deterministic rationing coefficient, conditional on the strategy profile. I am unaware of

any existing studies that have recognised this bound.

F.2.1 Example: price-taking bidder, no rationing

I first consider a bidder who submits a single bid on good g ∈ {A,B} at bid price b for a

quantity q. In this example, the bidder is a price taker (so they take the distribution of the

auction price as fixed) and there is no rationing (so all bids weakly above the auction price

are fully allocated).

I consider two unilateral deviations in bid price to b − 1 and b + 1, holding the quantity

demanded by the bidder (and the number of bids, equal to one) constant.

Equilibrium requires that the bidder cannot profit from either of these unilateral deviations.

That is, their expected utility if they follow their original strategy must weakly exceed their

expected utility if they instead deviate.

Since they are a price taker and there is no rationing, the downward deviation only changes

their allocation in states in which the auction price is b: they win the entire quantity that

they demand under their original strategy, but win nothing if they deviate. Equilibrium

requires that they weakly prefer to win rather than lose in this case, and so requires that
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their average marginal value for those units is greater than the price paid, b. The quantity

that they win at all other possible auction prices is unchanged.

Analogously, equilibrium requires that the bidder would prefer to lose at price b + 1 rather

than win the quantity q that they originally demand at price b. They would win at this price

given the upward deviation but lose under their original strategy. So equilibrium requires

that their average marginal value for those units is less than the price that would be paid,

b+ 1.

Combining these two conditions, the bidder’s average marginal value for the units up to the

quantity that they demand is bounded by their bid price and the integer above their bid

price:

b ≤ 1

q

∫ q

0

vg,h(u, θi)du︸ ︷︷ ︸
Average marginal value for quantity demanded

≤ b+ 1 (11)

This constraint is illustrated in Figure 7 in an example in which the bidder’s marginal

valuation function is linear. Equilibrium requires that Area G ≥ Area H in panel (a) and

Area I ≤ Area J in panel (b).

F.2.2 Example: price-taking, allowing for rationing

For the same price-taking bidder, I now allow for the possibility that the bidder is rationed if

the auction price is set equal to their bid. Suppose that the rationing coefficient is determin-

istic at each auction price, conditional on the strategy profile: rgi,b is the rationing coefficient

at auction price P g = b, conditional on the original strategy profile.71

For this bidder, I consider the same two unilateral deviations in bid price to b− 1 and b+1.

I denote the respective rationing coefficients at prices b− 1 and b+ 1 by rgi,b−1 and rgi,b+1.

First consider the downward deviation to b− 1. The bidder is a price taker, so the deviation

only changes their allocation in states in which the auction price is either b− 1 or b. In the

case that P g = b − 1, they are fully allocated the quantity that they demand under their

original strategy, but rationed if they deviate. In the case that P g = b, they are rationed

under their original strategy, and strictly loses if they deviate. So their deviation weakly

reduces the quantity they are allocated at each of the auction prices, b− 1 and b.

71One interpretation is that there is very little variation in the rationing coefficient at each auction price,
so the bidder believes it to be approximately constant.
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Figure 7: Constraints on the marginal valuation function for a single-step price-taking bidder,
without rationing

(a) Downward Deviation

(b) Upward Deviation
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Figure 8: Constraints on the marginal valuation function for a single-step price-taking bidder,
with rationing

(a) Downward Deviation

(b) Upward Deviation
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Equilibrium requires that deviating from the bidder’s original strategy reduces their expected

utility. So their value for the additional units that they are allocated under their original

strategy, weighted by the probability of the auction prices occurring, must be weakly greater

than the increase in total expected payment that they would make, that is,

P(P g = b)

∫ qrgi,b

0

vg,h(u, θi)du+ P(P g = b− 1)

∫ q

qrgi,b−1

vg,h(u, θi)du︸ ︷︷ ︸
Expected increase in valuation given demand q, and bid price b, relative to b−1

≥ P(P g = b)bqrgi,b + P(P g = b− 1)(b− 1)q
(
1− rgi,b−1

)︸ ︷︷ ︸
Increase in expected payment given demand q, and bid price b, relative to b−1

(12)

Analogously, equilibrium requires that the bidder cannot profit from a unilateral upward

deviation in bid price by one unit to b + 1. The deviation only changes their allocation in

states in which the auction price is either b or b+1, weakly increasing it in both cases. Given

P g = b, they are rationed under their original strategy but fully allocated if they deviate.

Given P g = b + 1, they strictly lose under their original strategy but are rationed if they

deviate.

Equilibrium requires that the bidder’s value for the additional units that they are allocated

if they deviate, weighted by the probability of the auction prices occurring, is weakly lower

than the expected increase in total payment that they would make, that is,

P(P g = b+ 1)(b+ 1)qrgi,b+1 + P(P g = b)bq
(
1− rgi,b

)︸ ︷︷ ︸
Increase in expected payment given demand q, and bid price b+1, relative to b

≥ P(P g = b+ 1)

∫ qrgi,b+1

0

vg,h(u, θi)du+ P(P g = b)

∫ q

qrgi,b

vg,h(u, θi)du︸ ︷︷ ︸
Expected increase in valuation given demand q, and bid price b+1, relative to b

(13)

These two conditions are illustrated in Figure 8, in an example in which the bidder’s marginal

valuation function is linear and the distribution of the auction price is uniform. Equilibrium

requires that Area L + Area Q ≥ Area M + Area R in panel (a) and that Area W + Area

Y ≤ Area X + Area Z in panel (b).
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F.2.3 Equilibrium conditions ruling out profitable deviations in bid price

For the price-taking bidder considered above, the incentive to deviate depends only on the

effect on the quantity that they are allocated at each auction price. Equilibrium requires

that the expected change in total payment from a unilateral local deviation in bid price

exceeds the expected change in valuation, which deters the bidder from deviating.

Proposition 2 generalises this condition to also account for the fact that each bidder may

submit multiple bids, and may have market power so that their deviation affects the distribu-

tion of the auction price. I consider two, single basis point deviations: one below the original

bid price, and one above. Equations 14 and 15 specify necessary conditions for equilibrium,

which rule out that these unilateral deviations are profitable.

In Model S(0), the equilibrium strategy profile is σ(Θ). Let σ′(Θ) and σ′′(Θ) denote the

strategy profiles which are identical to σ(Θ) except that the bid prices submitted by type

θi of bidder i ∈ N g,h, g ∈ {A,B}, h ∈ {1, 2} at step k, in their Ki-step bid function, are

equal to bi,k − 1 and bi,k +1, respectively. For ease of notation, I write σ(Θ|θi) = σ(Θ), and

similarly for σ′(Θ|θi) and σ′′(Θ|θi).

To permit identification, I extend Assumption 2 to the strategy profiles, σ′(Θ|θi) and

σ′′(Θ|θi), i.e. the rationing coefficient is deterministic at each auction price, conditional

on each strategy profile.72

Assumption 3 The rationing coefficients for type θi ∈ Θi of bidder i ∈ N at step k ∈
{1, ..., Ki}, conditional on the strategy profiles σ(Θ|θi),σ′(Θ|θi) and σ′′(Θ|θi) are determin-

istic and are denoted ri,k, r
′
i,k, and r′′i,k, respectively.

Proposition 2 follows from this assumption and the assumptions of Model S(0).

Proposition 2 (Necessary condition on bid price deviations in Model S(0)) In Model

S(0) under Assumption 3, in any type-symmetric Bayesian Nash Equilibrium, for type

θi ∈ Θi of bidder i ∈ N g,h, g ∈ {A,B}, h ∈ {1, 2}, every step k ∈ {1, ..., Ki} in the Ki-

72The necessary conditions for equilibrium without the identifying assumptions are Equations 22 and 25
in Appendix G.
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step bid function in σi(θi) where bi,k − 1 > bi,k+1 and bi,k + 1 < bgi,k−1, must satisfy73(∫ qi,k−1+(qi,k−qi,k−1)ri,k

0

vg,h(u, θi)du− bi,k (qi,k−1 + (qi,k − qi,k−1)ri,k)

)
P
(
P g = bi,k

∣∣σ(Θ)
)

+

(∫ qi,k

0

vg,h(u, θi)du− (bi,k − 1)qi,k

)
P
(
P g = bi,k − 1

∣∣σ(Θ)
)

≥
(∫ qi,k−1

0

vg,h(u, θi)du− bi,kqi,k−1

)
P
(
P g = bi,k

∣∣σ′(Θ)
)

+

(∫ qi,k−1+(qi,k−qi,k−1)r
′
i,k

0

vg,h(u, θi)du

− (bi,k − 1)
(
qi,k−1 + (qi,k − qi,k−1)r

′
i,k

))
P
(
P g = bi,k − 1

∣∣σ′(Θ)
)

(14)

and (∫ qi,k−1

0

vg,h(u, θi)du− (bi,k + 1)qi,k−1

)
P
(
P g = bi,k + 1

∣∣σ(Θ)
)

+

(∫ qi,k−1+(qi,k−qi,k−1)ri,k

0

vg,h(u, θi)du

− bi,k (qi,k−1 + (qi,k − qi,k−1)ri,k)

)
P
(
P g = bi,k

∣∣σ(Θ)
)

≥

(∫ qi,k−1+(qi,k−qi,k−1)r
′′
i,k

0

vg,h(u, θi)du

− (bi,k + 1)
(
qi,k−1 + (qi,k − qi,k−1)r

′′
i,k

))
P
(
P g = bi,k + 1

∣∣σ′′(Θ)
)

+

(∫ qi,k

0

vg,h(u, θi)du− bi,kqi,k

)
P
(
P g = bi,k

∣∣σ′′(Θ)
)

(15)

Proof. See Appendix G.

As discussed in Section 4.2, each of the probabilities and rationing coefficients in Equations

14 and 15 can be estimated and bi,k, qi,k and qi,k−1 are observed. Approximating the integrals

with summations over an arbitrarily fine quantity grid, these two equations therefore impose

linear constraints on the marginal valuation functions of bidders that rationalise observed

behaviour in Model S(0).

73The conditions for bidders who submit adjacent bid prices are analogous, and shown in Appendix G.3.
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By ruling out profitable unilateral deviations in bid price, it is also possible to bound each

bidder’s marginal value for the first unit (i.e. intercept of their marginal valuation function)

from below.

Corollary 1 (Necessary condition on marginal valuation function in Model S(0))

In Model S(0) under Assumption 3, in any type-symmetric Bayesian Nash Equilibrium, for

type θi ∈ Θi of bidder i ∈ N g,h, g ∈ {A,B}, h ∈ {1, 2}, step k = 1 in the Ki-step bid function

in σi(θi) must satisfy

vg,h(0, θi) ≥ bgi,1 − 1 (16)

under both the assumptions that P
(
P g = bgi,1

∣∣σ(Θ)
)
> 0 or P

(
P g = bgi,1 − 1

∣∣σ′(Θ)
)
> 0 and

that ri,1 ̸= 0.

Proof. See Appendix G.4.

Equation 16 places a further restriction on the set of marginal valuation functions that

rationalise observed behaviour. This constraint is slack for a bidder who submits bids at

prices below their marginal value at the quantity they demand at the first step of their bid

function because the marginal valuation function is downward sloping (see Section 3.1), i.e.

for whom µg
i,1 ≥ 0 (which can be determined by Equation 2). However, for bidders who

submit bids at prices above their marginal value at the quantity they demand at the first

step of their bid functions, i.e. µg
i,1 < 0, Corollary 1 restricts the set of marginal valuation

functions consistent with equilibrium in Model S(0).

F.3 Estimating marginal valuation functions

Equations 2 and 14-16 describe necessary relationships between a bidder’s observed bids and

their unobserved marginal valuation function in equilibrium of Model S(0), for a particular

realisation of their signal. As described in Section 4.2, I use the first equation to obtain

point estimates of each bidder’s marginal values at the quantities they demand at the steps

of their bid function. The points of a bidder’s marginal valuation function between the

quantities they demand at the steps cannot be point identified, but are set identified. I

therefore interpolate the remaining parts of the bidder’s marginal valuation function in a

way which is consistent with Proposition 2 and Corollary 1.

There is a range of possible marginal valuation functions that satisfy Equations 14-16: the

intercept for bidder i could be any value greater than (bgi,1−1) and, for each of these intercepts,
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there is potentially a large range of marginal valuation functions consistent with equilibrium

in Model S(0).

If the point estimate of the bidder’s marginal value at the quantity they demand at the first

step of their bid function is greater than their bid, i.e. µg
i,1 ≥ 0, I set the intercept equal to

this point estimate. For all other observations, the lower bound specified in Equation 16 is

binding so I produce three estimates corresponding to three different intercepts: the price of

the first step of the bidder’s bid function plus a “wedge”, w ∈ {1, 5, 10}.74

v̂i(0) = max {bi,1 + w, v̂i(qi,1)} for w = {1, 5, 10} (17)

where v̂i(q) is the estimated marginal value of bidder i at quantity q.

For each of these intercepts, I estimate a marginal valuation function that passes through the

point estimates at the quantities demanded at the steps of the bid function, using Gaussian

Process Regression (GPR). This is a Bayesian non-parametric statistical interpolant that

assumes a Gaussian prior, updated using the point estimates of the marginal values and

the specified intercept (Rasmussen and Williams, 2006).75 It is more suitable than other

methods such as linear regression as there is no prima facie measurement error in the point

estimates. It also provides more flexibility as there is no strong reason to believe that the

marginal valuation function is linear and the prior is defined over the entire function, rather

than the parameters. Intuitively, it chooses the most likely function that passes through the

specified points.76

I then use minimum-distance estimation to find the marginal valuation function nearest to

the GPR estimate that is consistent with the monotonicity assumption (see Section 3.1) and

Proposition 2; I denote the estimator by MD-GPR.77

74The intercept of the marginal valuation function is not point identified, and there is no appropriate
loss function to guide the choice of intercept within the set specified in Corollary 1. I therefore use three
specifications, with the values of w motivated by the standard deviation of bids submitted in the ILTR
auctions.

75For an arbitrarily fine grid of quantities given by q = (q1, q2, . . . , qN ), where q1 < q2 < ... < qN , q1 =
0, qN ≥ qi,Ki

, and qi,k ∈ {q1, ..., qN} ∀k ∈ {1, ...,Ki}, the GPR prior probability density of the vector of
function values vi(q) = (vi(q1), vi(q2), ..., vi(qN )) is jointly Gaussian, with a covariance matrix defined by a
kernel function. The smaller is the distance |q − qi,k|, the greater is the covariance between the predicted
marginal value at quantity q and the marginal value point estimate, v̂i(qi,k), k = {1, . . . ,Ki}.

76Alternative GPR specifications, including different kernel functions for the covariance matrix that de-
termine the smoothness of the function, make little difference to the results.

77This finds the estimate, nearest to the GPR estimate, that is consistent with the inequality constraints
specified in Equations 14 and 15, approximating the integrals sums over quantity units of 0.1% of the
maximum supply.
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I assume that the bidder’s marginal value for quantities larger than the total quantity that

they demand equals zero, that is, v̂i(q, θi) = 0 ∀ q > qi,Ki
. This reduces the expected utility

from submitting an additional bid and so means the results are conservative estimates of the

lower bounds of the bidding costs implied by Model S(0).

To compare my results to Kastl (2011), I also estimate the marginal valuation function by

a step function which is an upper envelope of the point estimates of the bidder’s marginal

values at the quantities demanded at the steps of the bid function.78 In this specification, the

marginal values for all quantities across the first step of the bidder’s bid function are set equal

to the point estimate of the marginal value at the quantity demanded at the first step. And

so, for bidders who bid above their marginal value (by more than 1 basis point) at the first

step of their bid function, this estimate violates the conditions specified in Proposition 2 and

Corollary 1.79 Under the identifying assumption that I make of a deterministic rationing

coefficient, Kastl’s (2011) method underestimates the average steepness of the marginal

valuation function across the first step of the bid function.

An example of the four estimated marginal valuation functions—three estimated by MD-

GPR and the fourth estimated by the upper envelope which is stepped—is shown for a bidder

who submits a bid function with two steps for good B in Figure 9. The first three estimates

all satisfy the necessary conditions for equilibrium in Model S(0) described in Propositions

1 and 2.

F.4 Estimating bidding costs

In Model S(0), a bidder who submits Ki bids has chosen to do so to maximise their expected

utility: it must be that the marginal cost of submitting an additional bid, equal to ci(Ki +

1)− ci(Ki), is greater than the marginal benefit of fine-tuning, equal to the gain in expected

utility (net of bidding costs) from submitting the (Ki+1)-step bid function which maximises

expected utility conditional on submitting (Ki+1) bids, rather than the Ki-step bid function

that they use. This condition allows us to estimate a lower bound on the size of the bidding

costs implied by Model S(0).

For a bidder who submits Ki bids, the Ki-step bid function which maximises expected utility

conditional on submitting Ki bids is their observed bid function under the assumptions of

78Specifically, this is a step function with the quantities at each step coinciding with those of the bid
function. The marginal values at the quantities demanded at the steps of the bid function are point identified
by Equation 2 (with ρ = 0) and the marginal values for quantities greater than the total quantity demanded
by the bidder are equal to zero.

79Both Kastl (2011) and I find this to be economically relevant.
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Model S(0). I estimate the bidder’s expected utility given their strategy by estimating the

distribution of the auction price using the resampling technique described in Section 4.2. I

use this distribution to estimate the bidder’s expected utility (net of bidding costs) of using

a Ki-step bid function for each of the estimates of the marginal valuation functions.

The (Ki + 1)-step bid function which maximises their expected utility conditional on sub-

mitting (Ki + 1) bids is unobserved. I implement a grid search across all bid prices and

quantity increments of 0.25% to estimate this optimal (Ki + 1)-step bid function. For each

of the (Ki+1)-step bid functions on this grid, and for each estimate of the bidder’s marginal

valuation function, I estimate the bidder’s beliefs over the distribution of the auction price

conditional on the bid function, and then use this distribution to estimate the bidder’s ex-

pected utility (net of bidding costs). The estimate of the optimal (Ki +1)-step bid function

is the one which maximises the bidder’s expected utility.

The difference in the estimated expected utilities from the (Ki+1)- and Ki-step optimal bid

functions provides an estimate of the lower bound on bidding costs for each estimate of the

bidder’s marginal valuation function.80

To estimate the standard errors, I follow Backus, Conlon and Sinkinson (2021) and Roussille

and Scuderi (2022) by treating the optimal bid function for each number of steps as known.

F.5 Results

Table 6 shows the estimated lower bounds on the bidding costs of submitting additional bids

for goods A and B.81 These lower bounds are estimated for the three MD-GPR estimates

of the marginal valuation function: max
{
bgi,1 + w, v̂gi (q

g
i,1)
}

for w = {1, 5, 10}, and for the

step function which is the upper envelope of the point estimates of the bidder’s marginal

values at the quantities they demand at the steps of their bid function.

The estimated bidding costs vary across goods, numbers of steps, and intercepts, and within

these subgroups (shown by the large standard deviations). This variation can be interpreted

in terms of the variation in the expected benefit of fine-tuning one’s bid function from

submitting additional bids.82

80We can also estimate an upper bound on the bidding cost of the Kith bid, by comparing the estimated
expected utilities (net of bidding costs) of submitting the optimal Ki- and (Ki + 1)-step bid functions.

81The lower bounds for the second step are estimated for every bidder, for every auction in which they
participate and submit a bid function with one step, in June 2010 – May 2012. The lower bounds for the
third step are estimated, analogously, for every bidder, for every auction in which they participate and
submit a bid function with two steps.

82The heterogeneity itself if difficult to explain if the costs are interpreted as the physical costs of sub-
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Figure 9: Example of four estimated marginal valuation functions of a bidder, with using
MD-GPR and an upper envelope.
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The results show that the average lower bound on the bidding cost of submitting a second

step for good B is large: bidders who submit one bid for good B are giving up between

£1,800 and £12,707 on average by only submitting one bid. If the costs are interpreted as

physical costs, which are trivial in practice, this suggests that Model S(0), which assumes

both that bidders are strategic and that they are risk neutral, does not provide a good

characterisation of the behaviour of these bidders. This is consistent with the results in the

main analysis: for bidders for good B, a “truthful bidding” model in which bidders’ bids

correspond to their true marginal values for liquidity fit the data better than Model S(0).

In contrast, the average lower bound on bidding costs for bidders for good A are very small,

even for bidders who submit one bid. This can be explained by the fact that there are

limited benefits for these bidders from submitting additional bids, because the range of

possible clearing prices is so narrow. The average clearing price for A in June 2010 – May

2012 is 1.38bps and its standard deviation is 1.82bps in the 3-month term auctions (and these

statistics are respectively 0.38bps and 0.74bps in the 6-month term auctions), so bidders gain

little from fine-tuning.

Finally, the bidding cost of submitting a third step is also small. This suggests that bidders

may only forego a small amount of surplus by submitting a two-step bid function as an

approximation to what would be the optimal bid function in the absence of bidding costs.

This follows similar intuition to Wilson’s (1993) finding that a monopolist can approximate

an optimal non-linear multi-part tariff with four or five two-part tariffs.

The findings for good B, including the results for the marginal valuation functions estimated

as step functions, differ from those found by Kastl (2011), in a study of Czech Treasury

auctions. In that context, he estimates the lower bound on the bidding costs of submitting

a second step to be between $2 and $150. There are some clear institutional differences

which might explain why Model S(0) seems to better characterise bidding behaviour in the

Czech Treasury auctions. For example, bidders appear to face less uncertainty in Kastl’s

(2011) setting, in which only one good is auctioned and supply uncertainty (generated by

non-competitive bids) is limited. However, there are some comparable features, including

the average number of bids submitted per bidder.83

mitting bids, which are constant across bidders and bids in the ILTR auctions.
83In Kastl’s (2011) setting, the average is 1.41 for “Small” bidders (defined as demanding less than 5%

of the auction) and is 2.95 for “Large” bidders (the remaining set).
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Table 6: Estimated lower bound on bidding costs implied by Model S(0), £, June 2010 –
May 2012

Lower bound of cost of submitting 2nd step (£)

Good A Good B

Estimation type Mean Std. Dev. Mean Std. Dev.

MD-GPR (w = 1) 103.7 206.0 9557.6 41734.4
(24.0) (39.8) (4776.7) (13107.6)

MD-GPR (w = 5) 183.6 365.5 1976.7 5884.7
(41.9) (71.2) (700.6) (1423.8)

MD-GPR (w = 10) 129.1 260.3 1839.1 5222.0
(28.4) (44.3) (640.4) (1387.9)

Upper envelope (stepped) 61.9 138.8 12707.5 41325.1
(19.6) (34.2) (6680.2) (13797.1)

Lower bound of cost of submitting 3rd step (£)

Good A Good B

Estimation type Mean Std. Dev. Mean Std. Dev.

MD-GPR (w = 1) 0.9 2.5 42.3 72.1
(0.6) (0.9) (34.6) (33.8)

MD-GPR (w = 5) 0.5 2.1 106.8 168.7
(0.5) (1.3) (81.5) (75.6)

MD-GPR (w = 10) 0.3 1.4 110.3 134.9
(0.3) (0.9) (64.3) (47.6)

Upper envelope (stepped) 0.0 0.0 0.0 0.0
(0.0) (0.0) (0.0) (0.0)

Notes: For each “wedge”, w ∈ {1, 5, 10}, the intercept of bidder i’s marginal valuation function for good

g ∈ {A,B} is equal to v̂gi (0) = max
{
bgi,1 + w, v̂gi (q

g
i,1)
}
. Standard errors in parentheses.
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Table 7: Estimated lower bound on bidding costs implied by Model S(0), percentage of
average bidding surplus, June 2010 – May 2012

Lower bound of cost of submitting 2nd step (% of average bidder surplus)

Good A Good B

Estimation type Mean Std. Dev. Mean Std. Dev.

MD-GPR (w = 1) 0.379 0.547 3.262 6.728
(0.071) (0.098) (1.062) (1.902)

MD-GPR (w = 5) 0.316 0.466 2.336 6.278
(0.059) (0.071) (0.998) (3.299)

MD-GPR (w = 10) 0.106 0.166 2.232 4.816
(0.021) (0.029) (0.776) (2.342)

Upper envelope (stepped) 0.144 0.326 3.377 8.344
(0.047) (0.079) (1.380) (3.405)

Lower bound of cost of submitting 3rd step (% of average bidder surplus)

Good A Good B

Estimation type Mean Std. Dev. Mean Std. Dev.

MD-GPR (w = 1) 0.003 0.009 0.096 0.151
(0.002) (0.004) (0.073) (0.066)

MD-GPR (w = 5) 0.001 0.004 0.237 0.330
(0.001) (0.003) (0.160) (0.134)

MD-GPR (w = 10) 0.002 0.007 0.171 0.234
(0.002) (0.004) (0.113) (0.097)

Upper envelope (stepped) 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000)

Notes: For each “wedge”, w ∈ {1, 5, 10}, the intercept of bidder i’s marginal valuation function for good

g ∈ {A,B} is equal to v̂gi (0) = max
{
bgi,1 + w, v̂gi (q

g
i,1)
}
. Standard errors in parentheses.
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G Proof of Proposition 2

In Model S(0), the equilibrium strategy profile is σ(Θ). Let σ′(Θ) and σ′′(Θ) denote the

strategy profiles which are identical to σ(Θ) except that the bid prices submitted by type θi

of bidder i ∈ N g,h, g ∈ {A,B}, h ∈ {1, 2} at step k, in their Ki-step bid function for good g,

are equal to bi,k − 1 and bi,k + 1, respectively. For ease of notation, I write σ(Θ|θi) = σ(Θ),

and similarly for σ′(Θ|θi) and σ′′(Θ|θi).

I first derive Equation 14, ruling out a profitable unilateral downward deviation in bid price

of one unit. I then derive Equation 15, ruling out a profitable analogous upward deviation.

G.1 Downward deviation

Equilibrium of Model S(0) requires that the deviation of bidder i ∈ N g,h, g ∈ {A,B}, h ∈
{1, 2} at step k to a bid price of bi,k−1 rather than bi,k weakly reduces their expected utility,

and so requires

EΘ−i
[Ui(σ(Θ)|θi)] ≥ EΘ−i

[Ui(σ
′(Θ)|θi)]

=⇒ EΘ−i

[∫ ygi (σ(Θ))

0

vg,h(u, θi)du− P g(σ(Θ))ygi (σ(Θ))− ci(Ki)

]

≥ EΘ−i

[∫ ygi (σ
′(Θ))

0

vg,h(u, θi)du− P g(σ′(Θ))ygi (σ
′(Θ))− ci(Ki)

]
(18)

By the Law of Iterated Expectations (LIE),

EΘ−i
[Ui(σ(Θ)|θi)]

= EΘ−i

[
Ui

(
σ(Θ)

∣∣P g(σ(Θ)) /∈ {bi,k − 1, bi,k}
)]

P (P g(σ(Θ)) /∈ {bi,k − 1, bi,k})

+ EΘ−i

[
Ui

(
σ(Θ)

∣∣P g(σ(Θ)) = bi,k
)]

P (P g(σ(Θ)) = bi,k)

+ EΘ−i

[
Ui

(
σ(Θ)

∣∣P g(σ(Θ)) = bi,k − 1
)]

P (P g(σ(Θ)) = bi,k − 1) (19)

and EΘ−i
[Ui(σ

′(Θ)|θi)] can be decomposed analogously.

First suppose that the bid prices at steps k and k−1 are non-adjacent so that bi,k−1 > bi,k+1.

I consider the case in which bi,k − 1 = bi,k+1 in Appendix G.3. Using the LIE, the bidder’s
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expected utilities given their strategy and deviation, respectively, can be written as

EΘ−i
[Ui(σ(Θ)|θi)]

= EΘ−i

[∫ yi(σ(Θ))

0

vg,h(u, θi)du

− P g(σ(Θ))yi(σ(Θ))

∣∣∣∣∣P g(σ(Θ)) /∈ {bi,k − 1, bi,k}

]
P (P g(σ(Θ)) /∈ {bi,k − 1, bi,k})

+ EΘ−i

[∫ qi,k−1+(qi,k−qi,k−1)r
g(σ(Θ))

0

vg,h(u, θi)du

− bi,k (qi,k−1 + (qi,k − qi,k−1)r
g (σ(Θ)))

∣∣∣∣∣P g(σ(Θ)) = bi,k

]
P (P g(σ(Θ)) = bi,k)

+ EΘ−i

[∫ qi,k

0

vg,h(u, θi)du− (bi,k − 1)qi,k

∣∣∣∣∣P g(σ(Θ)) = bi,k − 1

]
P (P g(σ(Θ)) = bi,k − 1)

− ci(Ki) (20)

and

EΘ−i
[Ui(σ

′(Θ)|θi)]

= EΘ−i

[∫ yi(σ
′(Θ))

0

vg,h(u, θi)du

− P g(σ′(Θ))yi(σ
′(Θ))

∣∣∣∣∣P g(σ′(Θ)) /∈ {bi,k − 1, bi,k}

]
P (P g(σ′(Θ)) /∈ {bi,k − 1, bi,k})

+ EΘ−i

[∫ qi,k−1

0

vg,h(u, θi)du− bi,kqi,k−1

∣∣∣∣∣P g(σ′(Θ)) = bi,k

]
P (P g(σ′(Θ)) = bi,k)

+ EΘ−i

[∫ qi,k−1+(qi,k−qi,k−1)r
g(σ′(Θ))

0

vg,h(u, θi)du− (bi,k − 1)
(
qi,k−1+

(qi,k − qi,k−1)r
g (σ′(Θ))

)∣∣∣∣∣P g(σ′(Θ)) = bi,k − 1

]
P (P g(σ′(Θ)) = bi,k − 1)

− ci(Ki) (21)

where rg (σ(Θ)) and rg (σ′(Θ)) are the rationing coefficients for good g given strategy profiles

σ(Θ) and σ′(Θ) (and Θi = θi); q0 = 0.

First note that the probability of the event P g ∈ {bi,k−1, bi,k}, and the allocation given each
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auction price P g /∈ {bi,k − 1, bi,k} are identical under σ(Θ) and σ′(Θ).

To show this, I split the distribution of the auction price of good g into three collectively

exhaustive sets, (P g < bi,k−1), (bi,k < P g) and P g ∈ {bi,k−1, bi,k}, and consider each in turn.

The Product-Mix Auction uses the information from the submitted bids and the BoE’s supply

curves to find the competitive equilibrium, assuming bids correspond to bidders’ marginal

values and the supply curves represent the BoE’s marginal costs of supply (see Section 2.1).

The auction price of good g is the maximum of the highest losing bid on good g and the

marginal cost of supply of good g at the quantity allocated (equal to 0 for good A and equal

to the sum of PA and the relative supply of B, evaluated at the quantity allocated of B).

For all signal realisations such that P g < bi,k − 1 under σ(Θ), bidder i’s deviation to a bid

price of bi,k − 1 at step k does not affect the competitive equilibrium, so the outcome is

identical under the two strategy profiles, σ(Θ) and σ′(Θ).

Similarly, for all signal realisations such that P g > bi,k under σ(Θ), bidder i’s deviation

to a bid price of bi,k − 1 at step k also does not affect the competitive equilibrium, so the

outcome is identical under the two strategy profiles, σ(Θ) and σ′(Θ). Now consider signal

realisations such that P g = bi,k under σ(Θ).

First consider g = A. The auction price of A is the maximum of the marginal losing bid on

A and 0. If PA(σ(Θ)) = bi,k > 0, then bidder i’s bid at step k is marginal under σ(Θ). It

follows that, under σ′(Θ), his bid at step k is either marginal (in which case PA(σ′(Θ)) =

bi,k − 1) or his bid at step k is strictly unallocated (in which case PA(σ′(Θ)) = bi,k). So if

PA(σ(Θ)) = bi,k then PA(σ′(Θ)) ∈ {bi,k − 1, bi,k}.

Now consider g = B. There are three subcases:

(i) If bidder i’s deviation has no effect on the auction price of good A, i.e. PA(σ(Θ)) =

PA(σ′(Θ)), the result immediately follows: B’s auction price is determined by the

intersection of the aggregate bid function for good B and the difference between the

relative supply of B and PA. Bidder i’s deviation has no effect on this intersection (if

the quantity he demands at step k is less than the amount of unallocated demand at

PB under σ(Θ)) or his deviation reduces the intersection to P g = bi,k − 1.

(ii) If i’s deviation reduces the auction price of good A, i.e. PA(σ(Θ)) > PA(σ′(Θ)), then

the allocation of good A is strictly larger under σ′(Θ) than under σ(Θ). (The reason is

that PA is the maximum of the marginal losing bid on A and 0. So a bid on Amust have
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been unallocated under σ(Θ) but allocated under σ′(Θ).) If PB(σ′(Θ)) < bi,k−1, then

the quantity allocated of good B under σ′(Θ) is also weakly larger than the quantity

allocated of good B under σ(Θ), so the total allocation across both goods strictly

increases. But PA(σ(Θ)) > PA(σ′(Θ)) implies PA(σ(Θ)) > 0, which can only occur

if the entire maximum supply is allocated under σ(Θ). So we have a contradiction:

if PA(σ(Θ)) > PA(σ′(Θ)), it is not possible that PB(σ′(Θ))) < bi,k − 1. Moreover,

bidder i’s deviation weakly reduces demand at each pair of auction prices (PA, PB)

so cannot increase the price of good B. Overall, if PA(σ(Θ)) > PA(σ′(Θ)), then

PB(σ′(Θ)) ∈ {bi,k − 1, bi,k}.

(iii) Bidder i’s deviation weakly reduces demand at each pair of auction prices (PA, PB),

so cannot increase the auction price of good A.

It follows from these three subcases that if PB(σ(Θ)) = bi,k then PB(σ′(Θ)) ∈ {bi,k−1, bi,k}.

For analogous reasoning, if P g(σ(Θ)) = bi,k − 1 then P g(σ′(Θ)) = bi,k − 1 for g ∈ {A,B}.
Taken together, the probability of the event P g /∈ {bi,k − 1, bi,k}, and the allocation of good

g given each auction price P g /∈ {bi,k − 1, bi,k} are identical under σ(Θ) and σ′(Θ).

Equilibrium therefore requires

EΘ−i

[∫ qi,k−1+(qi,k−qi,k−1)r
g(σ(Θ))

0

vg,h(u, θi)du

− bi,k (qi,k−1 + (qi,k − qi,k−1)r
g (σ(Θ)))

∣∣∣∣∣P g (σ(Θ)) = bi,k

]
P (P g (σ(Θ)) = bi,k)

+

(∫ qi,k

0

vg,h(u, θi)du− (bi,k − 1)qi,k

)
P (P g (σ(Θ)) = bi,k − 1)

≥
(∫ qi,k−1

0

vg,h(u, θi)du− bi,kqi,k−1

)
P (P g (σ′(Θ)) = bi,k)

+ EΘ−i

[∫ qi,k−1+(qi,k−qi,k−1)r
g(σ′(Θ))

0

vg,h(u, θi)du

− (bi,k − 1) (qi,k−1 + (qi,k − qi,k−1)r
g (σ′(Θ)))

∣∣∣∣∣P g (σ′(Θ)) = bi,k − 1

]
P (P g (σ′(Θ)) = bi,k − 1)

(22)

Equation 22 cannot be readily estimated as it requires evaluation of an integral with a random

interval. I therefore make Assumption 3 that the rationing coefficient is deterministic at each
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auction price, conditional on the strategy profile. Under this assumption, the changes in the

bidder’s gross utility, at each auction price, conditional on their strategy, are deterministic,

and can be estimated.

Under this assumption, equilibrium requires(∫ qi,k−1+(qi,k−qi,k−1)ri,k

0

vg,h(u, θi)du

− bi,k (qi,k−1 + (qi,k − qi,k−1)ri,k)

)
P (P g (σ(Θ)) = bi,k)

+

(∫ qi,k

0

vg,h(u, θi)du− (bi,k − 1)qi,k

)
P (P g (σ(Θ)) = bi,k − 1)

≥
(∫ qi,k−1

0

vg,h(u, θi)du− bi,kqi,k−1

)
P (P g (σ′(Θ)) = bi,k)

+

(∫ qi,k−1+(qi,k−qi,k−1)r
′
i,k

0

vg,h(u, θi)du

− (bi,k − 1)
(
qi,k−1 + (qi,k − qi,k−1)r

′
i,k

))
P (P g (σ′(Θ)) = bi,k − 1) (23)

G.2 Upward deviation

Equilibrium of Model S(0) also requires that the deviation of bidder i ∈ N g,h, g ∈ {A,B}, h ∈
{1, 2} at step k to a bid price of bi,k+1 rather than bi,k weakly reduces their expected utility,

and so requires

EΘ−i
[Ui(σ(Θ)|θi)] ≥ EΘ−i

[Ui(σ
′′(Θ)|θi)]

=⇒ EΘ−i

[∫ ygi (σ(Θ))

0

vg,h(u, θi)du− P g(σ(Θ))ygi (σ(Θ))− ci(Ki)

]

≥ EΘ−i

[∫ ygi (σ
′′(Θ))

0

vg,h(u, θi)du− P g(σ′′(Θ))ygi (σ
′′(Θ))− ci(Ki)

]
(24)

By the Law of Iterated Expectations, EΘ−i
[Ui(σ

′′(Θ)|θi)] can be decomposed analogously

to EΘ−i
[Ui(σ(Θ)|θi)] in Equation 19.

First suppose that the bid prices are non-adjacent so that bi,k + 1 < bgi,k−1. I consider the

case in which bi,k + 1 = bgi,k−1 in Appendix G.3.
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By analogous reasoning to the case of the deviation to (bi,k−1), it follows that the probability

of the event P g ∈ {bi,k, bi,k+1}, and the allocation given each auction price P g /∈ {bi,k, bi,k+1}
are identical under σ(Θ) and σ′′(Θ). Equilibrium therefore requires(∫ qi,k−1

0

vg,h(u, θi)du− (bi,k + 1)qi,k−1

)
P (P g (σ(Θ)) = bi,k + 1)

+ EΘ−i

[∫ qi,k−1+(qi,k−qi,k−1)r
g(σ(Θ))

0

vg,h(u, θi)du

− bi,k (qi,k−1 + (qi,k − qi,k−1)r
g (σ(Θ)))

∣∣∣∣∣P g (σ(Θ)) = bi,k

]
P (P g (σ(Θ)) = bi,k)

≥ EΘ−i

[∫ qi,k−1+(qi,k−qi,k−1)r
g(σ′′(Θ))

0

vg,h(u, θi)du

− (bi,k + 1) (qi,k−1 + (qi,k − qi,k−1)r
g (σ′′(Θ)))

∣∣∣∣∣P g (σ′′(Θ)) = bi,k + 1

]
P (P g (σ′′(Θ)) = bi,k + 1)

+

(∫ qi,k

0

vg,h(u, θi)du− bi,kqi,k

)
P (P g (σ′′(Θ)) = bi,k) (25)

Under Assumption 3 that the rationing coefficient is deterministic at each auction price,

conditional on the strategy profile, equilibrium therefore requires(∫ qi,k−1

0

vg,h(u, θi)du− (bi,k + 1)qi,k−1

)
P (P g (σ(Θ)) = bi,k + 1)

+

(∫ qi,k−1+(qi,k−qi,k−1)ri,k

0

vg,h(u, θi)du

− bi,k (qi,k−1 + (qi,k − qi,k−1)ri,k)

)
P (P g (σ(Θ)) = bi,k)

≥

(∫ qi,k−1+(qi,k−qi,k−1)r
′′
i,k

0

vg,h(u, θi)du

− (bi,k + 1)
(
qi,k−1 + (qi,k − qi,k−1)r

′′
i,k

))
P (P g (σ′′(Θ)) = bi,k + 1)

+

(∫ qi,k

0

vg,h(u, θi)du− bi,kqi,k

)
P (P g (σ′′(Θ)) = bi,k) (26)
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G.3 Proposition 2 for adjacent bid prices

The following two conditions adapt Proposition 2 to the case in which bidder i ∈ N g,h, g ∈
{A,B}, h ∈ {1, 2} submits bids with adjacent bid prices on good g ∈ {A,B}.

As in Proposition 2, the equilibrium strategy profile is σ(Θ), and σ′(Θ) and σ′′(Θ) denote

the strategy profiles which are identical to σ(Θ) except that the bid prices submitted by

type θi of bidder i ∈ N g,h, g ∈ {A,B}, h ∈ {1, 2} at step k, in their Ki-step bid function, are

equal to bi,k − 1 and bi,k + 1, respectively.

Adjacent bid prices at steps k − 1 and k only. In Model S(0), under Assumption 3,

in any type-symmetric Bayesian Nash Equilibrium, for type θi ∈ Θi of bidder i ∈ N g,h, g ∈
{A,B}, h ∈ {1, 2}, every step k ∈ {1, ..., Ki} in the Ki-step bid function in σi(θi) where

bi,k − 1 = bi,k+1 and bi,k + 1 < bgi,k−1, must satisfy(∫ qi,k−1+(qi,k−qi,k−1)ri,k

0

vg,h(u, θi)du− bi,k (qi,k−1 + (qi,k − qi,k−1)ri,k)

)
P
(
P g = bi,k

∣∣σ(Θ)
)

+

(∫ qi,k+(qi,k+1−qi,k)ri,k

0

vg,h(u, θi)du

− (bi,k − 1) (qi,k + (qi,k+1 − qi,k)ri,k)

)
P
(
P g = bi,k − 1

∣∣σ(Θ)
)

≥
(∫ qi,k−1

0

vg,h(u, θi)du− bi,kqi,k−1

)
P
(
P g = bi,k

∣∣σ′(Θ)
)

+

(∫ qi,k−1+(qi,k+1

0

−qi,k−1)r
′
i,kv

g,h(u, θi)du

− (bi,k − 1)
(
qi,k−1 + (qi,k+1 − qi,k−1)r

′
i,k

))
P
(
P g = bi,k − 1

∣∣σ′(Θ)
)

(27)

and Equation 15, where qgi,0 = 0.

Adjacent bid prices at steps k and k + 1 only. In Model S(0), under Assumption 3,

in any type-symmetric Bayesian Nash Equilibrium, for type θi ∈ Θi of bidder i ∈ N g,h, g ∈
{A,B}, h ∈ {1, 2}, every step k ∈ {1, ..., Ki} in the Ki-step bid function in σi(θi) where
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bi,k − 1 > bi,k+1 and bi,k + 1 = bgi,k−1, must satisfy(∫ qgi,k−2+(qi,k−1−qgi,k−2)ri,k

0

vg,h(u, θi)du

− (bi,k + 1)
(
qgi,k−2 + (qi,k−1 − qgi,k−2)ri,k

))
P
(
P g = bi,k + 1

∣∣σ(Θ)
)

+

(∫ qi,k−1+(qi,k−qi,k−1)ri,k

0

vg,h(u, θi)du

− bi,k (qi,k−1 + (qi,k − qi,k−1)ri,k)

)
P
(
P g = bi,k

∣∣σ(Θ)
)

≥

(∫ qgi,k−2+(qi,k−qgi,k−2

0

)r′′i,kv
g,h(u, θi)du

− (bi,k + 1)
(
qgi,k−2 + (qi,k − qgi,k−2)r

′′
i,k

))
P
(
P g = bi,k + 1

∣∣σ′′(Θ)
)

+

(∫ qi,k

0

vg,h(u, θi)du− bi,kqi,k

)
P
(
P g = bi,k

∣∣σ′′(Θ)
)

(28)

and Equation 14, where qgi,0 = qgi,−1 = 0.

Adjacent bid prices at steps k− 1, k and k+1. In Model S(0), under Assumption 3,

in any type-symmetric Bayesian Nash Equilibrium, for type θi ∈ Θi of bidder i ∈ N g,h, g ∈
{A,B}, h ∈ {1, 2}, every step k ∈ {1, ..., Ki} in the Ki-step bid function in σi(θi) where

bi,k − 1 = bi,k+1 and bi,k + 1 = bgi,k−1, must satisfy Equations 27 and 28.

G.4 Proof of Corollary 1

At step k = 1 of the Ki-step bid function in σi(θi) of type θi ∈ Θi of bidder i ∈ N g,h, g ∈
{A,B}, h ∈ {1, 2}, Equation 14 becomes

W P
(
P g = bgi,1

∣∣σi(θi)
)
+X P

(
P g = bgi,1 − 1

∣∣σ(Θ)
)

≥ Y P
(
P g = bgi,1

∣∣σ′
i

)
+ Z P

(
P g = bgi,1 − 1

∣∣σ′(Θ)
)

(29)
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where

W :=

(∫ qgi,1ri,1

0

vg,h(u, θi)du− bgi,1q
g
i,1ri,1

)

X :=

(∫ qgi,1

0

vg,h(u, θi)du− (bgi,1 − 1)qgi,1

)
Y := 0

Z :=

(∫ qgi,1r
′
i,1

0

vg,h(u, θi)du− (bgi,1 − 1)qgi,1r
′
i,1

)

Suppose vg,h(0, θi) < bgi,1− 1. Because the bidder’s marginal valuation function is monotonic

(see Section 3.1), it follows that the bidder’s marginal valuation function for good g is

everywhere below bgi,1−1. So, except in the knife-edge case in which ri,1 = 0, thenW < Y = 0;

and X ≤ Z ≤ 0.

As discussed in Appendix B.2,

P
(
P g = bgi,1

∣∣σ(Θ)
)
≥ P

(
P g = bgi,1

∣∣σ′(Θ)
)
≥ 0 (30)

0 ≤ P
(
P g = bgi,1 − 1

∣∣σ(Θ)
)
≤ P

(
P g = bgi,1 − 1

∣∣σ′(Θ)
)

(31)

If P
(
P g = bgi,1

∣∣σ(Θ)
)
> 0, then W P

(
P g = bgi,1

∣∣σ(Θ)
)
< Y P

(
P g = bgi,1

∣∣σ′(Θ)
)
.

If P
(
P g = bgi,1 − 1

∣∣σ′(Θ)
)
> 0, then X P

(
P g = bgi,1 − 1

∣∣σ(Θ)
)
< Z P

(
P g = bgi,1 − 1

∣∣σ′(Θ)
)
.

So, providing P
(
P g = bgi,1

∣∣σ(Θ)
)
> 0 or P

(
P g = bgi,1 − 1

∣∣σ′(Θ)
)
> 0, and ri,1 ̸= 0, these

inequalities contradict Equation 29.
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