Global value chains and the dynamics of UK inflation

Staff Working Paper No. 1,060
February 2024

Tommaso Aquilante, Aydan Dogan, Melih Fırat and Aditya Soenarjo

Staff Working Papers describe research in progress by the author(s) and are published to elicit comments and to further debate. Any views expressed are solely those of the author(s) and so cannot be taken to represent those of the Bank of England or to state Bank of England policy. This paper should therefore not be reported as representing the views of the Bank of England or members of the Monetary Policy Committee, Financial Policy Committee or Prudential Regulation Committee.
Global value chains and the dynamics of UK inflation

Tommaso Aquilante,(1) Aydan Dogan,(2) Melih Firat(3) and Aditya Soenarjo(4)

Abstract

This paper explores the link between the UK’s participation in global value chains (GVCs) and inflation dynamics. Using sectoral data, we find evidence indicating that UK industries with higher proportions of imported inputs from emerging market economies (EMEs) exhibit a flatter Phillips curve. We then build a two-country model with input-output linkages and demonstrate analytically that an increased reliance on imported intermediate goods, serving as a proxy for GVCs, results in a flatter Phillips curve. Additionally, GVC integration affects inflation dynamics through the influence of cyclical forces that shape firms’ marginal costs via terms of trade fluctuations. Specifically, we highlight how the limited business cycle correlation between the UK economy and EMEs reduces the pass-through of domestic shocks to prices.

Key words: Global value chains, inflation dynamics, Phillips curve.

1 Introduction

Over the last few decades, the rise in global value chains (GVCs) has led to increasingly interlinked production processes across countries and sectors, making firms’ pricing decisions much more dependent on foreign factors. The implications of globalisation of production for inflation dynamics have become even more central after the supply-chain disruptions following the COVID-19 crisis. In this paper, we investigate whether the integration of the UK economy into GVCs has affected the link between domestic output and inflation.

While existing literature extensively discusses the role of globalization in shaping inflation responses to economic activity, much of this focus centers on the US (e.g. Auer and Fischer, 2010; Borio and Filardo, 2007; Erceg et al., 2007; Forbes, 2019; Guilloux-Nefussi, 2020; Heise et al., 2022; Obstfeld, 2020). Here, our focus shifts to the UK, due to its high degree of openness and substantial integration into GVCs. Figure 1a illustrates the growing dependence of UK production on imported inputs. The blue line shows the slight increase in imported intermediate goods dependence at the aggregate level. However, aggregate series mask the heterogeneity in trends between manufacturing and service sectors. The manufacturing sector imported intermediate goods share (red line) increased from 31% to 61% between 2000 and 2012 whereas this share has been stable in the service sector (green line) during this period.1 Digging deeper into the data, we show that the increase in the UK’s manufacturing sector imported intermediate goods share is almost entirely attributable to Emerging Market Economies (EMEs), with the share of the European Union (EU) and Advanced Economies (AEs) remaining relatively stable between 2000 and 2014 (Figure 1b). Motivated by this fact, we investigate the relationship between the increased involvement of the UK economy in GVCs and its implications for the UK’s inflation dynamics.

First, we employ industry-level data to examine the impact of an increased proportion of imported intermediate inputs on the response of the sectoral Producer Price Index (PPI) to the sectoral output gap over the 2000-2014 period. Our empirical strategy is similar to Gilchrist and Zakrajsek (2019). By using industry-level data, they show that increased integration of the US economy to trade is important in explaining the fall in the response of inflation to the domestic output gap. We also rely on industry-level data but instead of looking at trade integration, which includes both trade in final and intermediate goods, we investigate the role of only imported inter-

1The UK has experienced a relatively higher rate of integration into GVCs compared to other advanced countries. This can be seen in Appendix B Figure A1, which shows the comparison in “the change” in imported intermediate goods share from 2000 across four selected advanced countries.
Figure 1: UK’s integration in the global economy

(a) Imported intermediate good share

(b) The share of regions in total intermediates: Change from the initial level

Note: Panel (a) presents Imported Intermediate Good Share: \(\frac{\text{Imported Intermediate Goods}}{\text{Total Intermediate Goods}} \) using World Input-Output data (WIOD). Panel (b) displays the aggregate imported intermediate good share from different regions which are weighted averages of sectoral imported intermediate good shares. The shares are normalized to 1 in 2000. Country classifications follow IMF.

We find that greater integration into GVCs is not consistently associated with a flatter Phillips curve. Rather, it is the interaction between the sectoral and source-country dimensions that drives this flattening effect. We discover that UK industries with higher proportions of intermediate imports from EMEs exhibit flatter sectoral Phillips curve.

While integration with China constitutes an influential factor, this phenomenon is not exclusive to China alone. Integration with other EMEs also significantly weakens the response of UK inflation to the output gap. Importantly, this result withstands various specifications, including the use of an instrumental variable approach inspired by Autor et al. (2013).

Having examined the empirical implications of increased GVCs integration on inflation dynamics, we shift our focus to the theoretical underpinnings by constructing a two-country, multi-sector New Keynesian model with trade in intermediate and final goods. We first use a static version of the model as this model allows us to delve into the theoretical connection between GVC integration and the slope of the Phillips curve.\(^2\) In this framework, inflation is a function of domestic and foreign output gap, productivity and the exchange rate. We demonstrate analytically that a rise in

\(^2\)In a closed economy setting, by building a multi-sector New Keynesian model with input-output linkages, Rubbo (2023) shows that the use of intermediate inputs lowers the slope of the Phillips curve. By using a similar framework in an open economy setting, we instead show how trade in intermediate inputs leads to a fall in the slope of the Phillips curve.
the share of imported intermediate goods flattens the Phillips curve. GVC integration results in firms employing a higher amount of imported intermediate inputs in their production, thereby reducing the sensitivity of their marginal cost to domestic wage pressures. Consequently, domestic inflation becomes increasingly linked to the foreign output gap in the presence of integration to GVCs.

To understand why our empirical results exhibit an impact specifically for EMEs and not for AEs, we explore the determinants through two crucial channels within GVCs. The first channel, the slope channel, implies that for given prices abroad, the higher the imported input share, the lower the response of inflation to an increase in domestic demand. The second channel, the terms of trade channel, emphasizes the influence of the relative price of imported inputs on inflation dynamics. Specifically, for a given slope, a lower relative price of imported inputs results in a diminished response of inflation to an increase in domestic demand. This latter channel holds particular significance for small open economies like the UK, as their inability to alter world prices underscores the impact of terms of trade fluctuations on inflation responses. In essence, our examination of these channels aims to elucidate the intricate dynamics that govern the relationship between GVC integration and inflation, with a focus on the nuanced role played by terms of trade movements.

To fully capture this, we extend our initial static two-country New Keynesian model to a multi-sector DSGE model. This extension is imperative as it allows us to fully capture the determinants of GVCs, providing a more complete understanding of the empirical measure used in our analysis. By incorporating the multi-sector, dynamics dimension, our model accounts for not only the share of imported intermediate inputs for a sector’s inflation but also the influence of international relative prices, particularly through terms of trade fluctuations. This refinement enables a more comprehensive exploration of the mechanisms driving the observed relationship between GVCs integration and inflation dynamics. Terms of trade fluctuations affect the empirical measure of GVCs through their impact on marginal cost. When firms use imported intermediate goods in production, their marginal cost does not only move with the fluctuations in wages (or cost of value added) but also moves with domestic and imported intermediate input prices. The relative price of imported intermediate inputs to domestic intermediate inputs, i.e. the terms of trade, allows firms to switch between domestic and foreign inputs in response to shocks, reducing the pass-through from wages to prices.\(^3\)

\(^3\)There is a relatively large literature that studies the transmission of shocks within frameworks that include production networks Galesi and Rachedi (2019); Pasten et al. (2020) etc. We contribute to this literature by emphasising the importance of terms of trade movements for the pass-through from wages to inflation in response to shocks.
It is well-known in international macroeconomics literature that business cycles are highly correlated across developed economies. Put differently, when demand increases in the UK, it also increases in other AEs. This limits the degree of fluctuations in the terms of trade, a fact that is clearly visible in our sample period over which the business cycle correlation of the UK economy is lower with EMEs than AEs. Specifically, we show that, in our sample period, the correlation of the UK’s output with AEs is on average 74% while with EMEs is 40%.

Finally, we test the importance of these medium-term forces for our benchmark results and find that a rising imported intermediate goods share from countries with low business cycle correlation with the UK leads to a fall in response of inflation to real economic activity. We do not find a significant role for imported intermediates from countries with high business cycle correlations with the UK. We argue that this relative price channel may be an important driver of our results.

Our work paper is closely related to two other notable studies in the literature. First, Comin and Johnson (2020) build an open economy New Keynesian framework with trade in both intermediate inputs and final goods and analyse the impact of an input trade shock on US inflation. They focus on the impact of a permanent shock on trade openness and show that this shock does not lead to a fall in inflation. We do not focus on a shock that increases the imported inputs share in production but instead, we analyse whether intermediate input trade lowers the response of domestic inflation to domestic slack. We show that this is indeed the case both through the slope and also through terms of trade movements. We find that investigating the importance of integration of EMEs into the GVCs both empirically and theoretically is crucial to shed light on the inflation dynamics of a small open economy such as the UK. Second, Amiti et al. (2023) examine how supply chain disruptions, coupled with labor supply constraints, have contributed to the surge in inflation since 2021. They explore the interaction of these forces with an expansionary monetary policy and a demand shift from services to goods. They build a two-sector New Keynesian model with input-output linkages and augment it with shocks to price of imported inputs, price of competitors abroad, and labor supply and show that this framework can account for the observed rise in inflation in the US. While our model does not explicitly incorporate the foreign competition channel, it would yield similar results in response to labor supply and terms of trade shocks.

The remainder of the paper is structured as follows. Section 2 presents the empirical analysis followed by robustness checks in section 3. Section 4 describes the theoretical framework for the relationship between the input trade and the slope of
the Phillips curve. In section 5 we extend our model to a dynamic setting and discuss the importance of cyclical forces. Finally, section 6 concludes.

2 Sectoral Phillips Curve and GVCs

Can the use of imported inputs in production, affect the inflation dynamics in the UK? This section analyzes the role of rising imported intermediate goods share on the UK Phillips curve using a sectoral Phillips curve.\(^4\)

We combine quarterly ONS inflation and output data with the annual WIOD for 40 UK industries between 2000Q1 and 2014Q4.\(^5\) Interacting the imported intermediate good dependence series with the sectoral output gap, we examine the role of GVCs and in particular GVC integration to the EMEs on the inflation and output gap relationship in reduced-form.\(^6\)

To investigate the relation between GVCs and inflation, we estimate the following specification for the period 2000Q1-2014Q4

\[
\pi_{j,t} = \beta_1 \left(y_{j,t} - y_{j,t}^*\right) + \beta_2 IIS_{j,t} + \beta_3 \left(y_{j,t} - y_{j,t}^*\right) \times IIS_{j,t} + \beta_4 \left(\frac{1}{4} \sum_{k=1}^{4} \pi_{j,t-k}\right) + \delta_j + \delta_t + \varepsilon_{j,t},
\]

where \(IIS_{j,t}\) is defined above as the ratio of imported intermediate goods in total intermediate goods in sector \(j\) at time \(t\). To provide clarity in interpretation, \(IIS_{j,t}\) is standardized (around the mean). Sectoral inflation series \(\pi_{j,t}\) are calculated as the four-quarter percentage change in PPI and SPPI, and sectoral output gap \(\left(y_{j,t} - y_{j,t}^*\right)\) is the deviation of production index series (IoP and IoS) from their HP filtered trends.\(^7\) The rich panel data allow us to control for time-invariant sector-specific factors using sector fixed-effects (\(\delta_j\)) as well as time-varying aggregate factors affecting inflation such as monetary policy (McLeay and Tenreyro (2020)) and inflation expectations (Ball and Mazumder (2019)) using time fixed-effect (\(\delta_t\)).\(^8\)

\(^4\)We also look at whether aggregate trade openness can be related to the weakened relationship between the UK’s inflation and the output gap. We find supporting evidence that rising trade openness in the UK led to a flattening in the Phillips curve. However, given that the estimations at the aggregate level are subject to identification issues and that our focus is trade in intermediate inputs, we do not report the results in the main text. See, Appendix C for details.

\(^5\)We can merge trade, price, and output data for 40 out of 56 WIOD sectors with a balanced panel, and they comprise 70% of total output in the UK.

\(^6\)Inflation and output data are always winsorized at 1st and 99th percentiles. Results are qualitatively unchanged if we do not winorize the data.

\(^7\)Both sectoral inflation and output series are at a quarterly frequency and \(IIS_{j,t}\) is available at the annual frequency.

\(^8\)We use year fixed-effects in our benchmark analysis, however, our results are robust to using quarterly fixed effects. Results from these estimations are available upon request from the authors.
We assess the role of the integration into the GVCs on the flattening of the UK Phillips curve by estimating the coefficient of the interaction term (β_3). A negative interaction term would imply that more GVC integration is associated with lower responsiveness of inflation to the output gap.

Estimating Equation (1), Table 1 presents the results. Column (1) shows the positive and significant relationship between sectoral inflation and the output gap. This provides evidence that the UK Phillips curve can be precisely estimated using sectoral data. This is in line with the McLeay and Tenreyro (2020) critique that a successful monetary policy might have caused a flattening in the Phillips curve by reacting to inflation at the right time and muting its response following demand-side shocks at aggregate level. However, exploiting the rich panel structure in inflation and output gap and after controlling for aggregate level time-varying trends with time fixed-effects, we find a positive and significant Phillips curve coefficient in the UK within our sample period.

Moving to our main argument that increasing input trade might be an important cause of the flattening of the UK Phillips curve, we present the results from the interaction of the sectoral output gap with the imported intermediate goods share in column (2). The coefficient of the interaction term (the third row) is negative, pointing to a role for GVCs in explaining the heterogeneity in inflation and output gap relationship across sectors. However, the coefficient is insignificant, implying an insufficient heterogeneity in IIS_{jt} to precisely estimate the role of GVCs on the flattening of the UK Phillips curve. Next, we will examine the sources of heterogeneity in integration to the GVCs in terms of the sources of imports.

In Figure 1b, we showed that the UK manufacturing sector has integrated into the EMEs since 2000s. Here we further demonstrate that there is considerable heterogeneity in dependence on EME inputs within the manufacturing sector. Figure 2 compares the change in the share of AEs and EMEs in intermediate inputs used by each sector in the UK. The figure displays the widespread rise in integration to the EMEs compared to the stable levels in dependence on the AE imports between 2000 and 2014. The integration is more striking in sectors such as "Computer Electronics," "Electrical equipment" and "Transport equipment," reaching up to six times higher share in intermediate goods used in these sectors. By decomposing the IIS_{jt} variable into regional sources of imports, we observe the heterogeneity comes from the EMEs rather than AEs or EU countries.\(^9\)

To formally differentiate the roles of integration of the UK sectors to different

\(^9\)Note that the level of imported intermediate goods is much higher from AEs than EMEs. However, the change in our sample, which is our focus, can be attributable to the increased importance of EMEs in world trade. We present the level of imported intermediate goods share in Appendix B, Figure A2.
Table 1: GVCs and the UK Phillips Curve

<table>
<thead>
<tr>
<th>2000Q1-2014Q4</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dep Var: π_{jt}</td>
<td>Only Output Gap</td>
<td>Role of GVCs</td>
</tr>
<tr>
<td>$(y_{jt} - y^*_j, t)$</td>
<td>0.0430***</td>
<td>0.0419***</td>
</tr>
<tr>
<td></td>
<td>(0.0138)</td>
<td>(0.0118)</td>
</tr>
<tr>
<td>IIS_{jt}</td>
<td>0.616</td>
<td>0.616</td>
</tr>
<tr>
<td></td>
<td>(0.533)</td>
<td>(0.533)</td>
</tr>
<tr>
<td>$(y_{jt} - y^*j, t) \times IIS{jt}$</td>
<td>-0.0164</td>
<td>-0.0164</td>
</tr>
<tr>
<td></td>
<td>(0.0197)</td>
<td>(0.0197)</td>
</tr>
<tr>
<td>Average of Lags</td>
<td>0.376***</td>
<td>0.373***</td>
</tr>
<tr>
<td></td>
<td>(0.0429)</td>
<td>(0.0449)</td>
</tr>
<tr>
<td>Industry FE</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Time FE</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>No of Obs.</td>
<td>2158</td>
<td>2158</td>
</tr>
<tr>
<td>R^2</td>
<td>0.251</td>
<td>0.255</td>
</tr>
</tbody>
</table>

Note: Results are from Equation (1). Column (1) uses the equation without IIS_{jt} term. Column (2) estimates the full equation. Driscoll-Kraay standard errors are in parenthesis with a lag of 8. * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$

regions, we estimate Equation (1) distinguishing between different source-region in variable IIS_{jt} such that

$$IIS_{jt}^{AEs} = \frac{\text{Imported Intermediate Goods}_{jt}^{AEs}}{\text{Total Intermediate Goods}_{jt}} \quad IIS_{jt}^{EMEs} = \frac{\text{Imported Intermediate Goods}_{jt}^{EMEs}}{\text{Total Intermediate Goods}_{jt}},$$

and using the same equation, we can measure the impact of imported intermediate goods share for each country/region. Since we aim to compare the relative flattening effects of imports from each region, we standardize each variable around their mean before adding in regressions (leaving out the scaling effects).

Table 2 presents the results. The previous estimation result from total imported intermediate goods shares is shown in column (1). The estimated coefficients from columns (2), (3), and (4) provide the striking difference in the role of integration to the EU, AEs, and EMEs on the UK Phillips curve, respectively. Column (4) shows that the coefficient of the interaction term is negative and statistically significant, implying a role for imported intermediate goods shares from EMEs. To state differently, we find that increased integration of the UK sectors to the EMEs led to a diminished response of UK inflation to the output gap between 2000 and 2014. On the other hand, columns (2) and (3) suggest that we cannot precisely estimate the role of integration to the EU or AEs on the UK Phillips curve.

To report the economic significance of the results, recall that IIS_{jt}^{EME} is standardized; thus, the coefficient for the output gap (0.0433) denotes the Phillips curve coef-
Figure 2: The Share of Regions in Total Inputs, by Sector (Change)

![Graph showing the share of regions in total inputs by sector (change).]

Note: We present $IIS_{j,t}^{AEs}$, $IIS_{j,t}^{EMEs}$ for selected sectors. The shares are normalized to 1 in 2000 to display the different trends in integration towards two regions. Country classifications follow IMF and details are provided in Appendix A.

Sufficient for the mean level of integration to the EMEs. The coefficient of the interaction term (-0.0426) implies that one standard deviation increase in the share of imported intermediate goods from EMEs in UK sectors reduces the slope of the Phillips curve near 0. Furthermore, we apply back-of-the-envelope calculations to understand the importance of rising imported intermediate goods dependence on the EMEs on the value of UK Phillips curve slope. Using the coefficients from column (4), we find that Phillips curve coefficient reduced by 64% between 2000 and 2014 due to rising $IIS_{j,t}^{EME}$, after controlling for aggregate time-varying sector-specific time-invariant effects.

Our findings provide new evidence on the reasons behind the fall in response of inflation to the fluctuations in domestic demand in the UK. Different from previous studies that emphasise the importance of trade integration on inflation dynamics, here we argue that the regional direction of the integration affects inflation and economic activity relationships. Comparing the role of integration towards EMEs and other regions, we show that the sources of imports are extremely important to provide a claim on the role of imported intermediate goods dependence on the UK inflation dynamics.
Table 2: GVCs and the UK Phillips Curve: Source Matters

<table>
<thead>
<tr>
<th>2000Q1-2014Q4</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dep Var: π_{jt}</td>
<td>Total</td>
<td>EU</td>
<td>AEs</td>
<td>EMEs</td>
<td>EMEs vs. AEs</td>
</tr>
<tr>
<td>$(y_{jt} - y_{jt}^*)$</td>
<td>0.0419***</td>
<td>0.0406***</td>
<td>0.0412***</td>
<td>0.0433***</td>
<td>0.0384***</td>
</tr>
<tr>
<td></td>
<td>(0.0118)</td>
<td>(0.0123)</td>
<td>(0.0124)</td>
<td>(0.00965)</td>
<td>(0.0107)</td>
</tr>
<tr>
<td>IIS_{jt}</td>
<td>0.616</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.533)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(y_{jt} - y_{jt}^*) \times IIS_{jt}$</td>
<td>-0.0164</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0197)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIS_{j}^{EU}</td>
<td>0.768</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.668)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(y_{jt} - y_{jt}^*) \times IIS_{j}^{EU}$</td>
<td>-0.00256</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0169)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIS_{j}^{AE}</td>
<td>0.533</td>
<td>0.353</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.603)</td>
<td>(0.619)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(y_{jt} - y_{jt}^*) \times IIS_{j}^{AE}$</td>
<td>-0.00746</td>
<td>0.0417*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0178)</td>
<td>(0.0222)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIS_{j}^{EME}</td>
<td></td>
<td>0.445***</td>
<td>0.348</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.213)</td>
<td>(0.212)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(y_{jt} - y_{jt}^*) \times IIS_{j}^{EME}$</td>
<td></td>
<td>-0.0426***</td>
<td>-0.0735***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0149)</td>
<td>(0.0202)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average of Lags</td>
<td>0.373***</td>
<td>0.369***</td>
<td>0.374***</td>
<td>0.365***</td>
<td>0.364***</td>
</tr>
<tr>
<td></td>
<td>(0.0449)</td>
<td>(0.0484)</td>
<td>(0.0453)</td>
<td>(0.0448)</td>
<td>(0.0447)</td>
</tr>
<tr>
<td>Industry FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Time FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>No of Obs.</td>
<td>2158</td>
<td>2158</td>
<td>2158</td>
<td>2158</td>
<td>2158</td>
</tr>
<tr>
<td>R^2</td>
<td>0.255</td>
<td>0.256</td>
<td>0.254</td>
<td>0.259</td>
<td>0.261</td>
</tr>
</tbody>
</table>

Note: Results are from Equation (1). Columns (1)-(4) use $IIS_{j,t}$, $IIS_{j,t}^{EU}$, $IIS_{j,t}^{AEs}$, $IIS_{j,t}^{EMEs}$, respectively. Column (5) includes both $IIS_{j,t}^{AEs}$ and $IIS_{j,t}^{EMEs}$ in the regression. Driscoll-Kraay standard errors are in parenthesis with a lag of 8. * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

3 Robustness

Here we examine the sensitivity of our estimation results to (a) the role of China in EMEs; (b) the instrumental variable approach; (c) the impact of medium-term forces. We show that our findings are robust.\(^{10}\)

\(^{10}\)We also examine the role of indirect effects of the rising imported intermediate goods dependence on the UK Phillips curve. We find that taking indirect effects into account does not matter for our results both qualitatively and quantitatively. Details of this exercise can be found in Appendix D.
3.1 Integration to the EMEs: With and Without China

Table 2 has shown that the integration of the UK to the EMEs resulted in a diminished response of UK inflation to the output gap. We now ask whether this result can be attributed to imports from a single EME such as China. To answer this question, we calculate the $IIS_{j,t}^{CH}$ variable using imported intermediate goods from only China for 40 sectors. We also calculate the share of imported intermediate goods from EMEs excluding China as $IIS_{j,t}^{exCH}$.

Estimating Equation (1) using these variables, we present the results in Table 3. Column (1) shows the previous result pointing to the role of integration in the EMEs. Columns (2) and (3) compare the role of rising imported intermediate goods share from China and excluding China on the UK Phillips curve, respectively. The coefficients of interaction terms are close to each other, implying a significant role for both groups. Therefore, we can not claim that the effects of integration to the EMEs are only due to rising dependence on Chinese goods in the UK.

Furthermore, we control for the imported intermediate goods prices (from ONS) to isolate the role of greater imported input dependence on the slope of the Phillips curve rather than the direct effects on inflation. However, due to data availability, we can focus only on the 18 manufacturing sectors. The results are presented in columns (4-6). The flattening effect of the integration to the EMEs and China is robust to controlling for imported intermediate goods prices, whereas the coefficient of interaction is borderline insignificant for the imports from EMEs excluding China. Since the coefficient (-0.0449) is higher for this group (exCH) compared to the other two groups (-0.0467 for EME and -0.0374 for CH), the insignificance can be due to lower variation in $IIS_{j,t}^{exCH}$ within manufacturing sectors.

3.2 Instrumental Variable Analysis

Following the trade literature, we assess the potential endogeneity problem due to including the $IIS_{j,t}$ variable in Equation (1) which can affect the interpretation of its role on the flattening of the Phillips curve. In particular, we follow Autor et al. (2013) and argue that import increases might not be due to the increased competitiveness or higher productivity in the source country but also be caused by increasing demand in the importer country. Since higher import demand is correlated with higher inflation, estimations would suffer from endogeneity, and an OLS estimation would understate the actual impact.
We follow Autor et al. (2013) and estimate the following structural equation and the first stage of the IV specification

$$\pi_{j,t} = \beta_1(y_{j,t} - y_{j,t}^*) + \beta_2 IIS_{j,t} + \beta_3(y_{j,t} - y_{j,t}^*) \times IIS_{j,t} + \beta_4 \left(\begin{array}{c} \frac{1}{4} \sum_{i=1}^{4} \pi_{i,t-j} \end{array} \right) + \delta_j + \delta_t + \epsilon_{j,t},$$

$IIS_{j,t} = aIIS_{j,t}^{Others} + \delta_j + \delta_t + \eta_{j,t}$,

where we use the imports of 8 other developed countries from EMEs and China separately to calculate $IIS_{j,t}^{Others} = \frac{\text{Imported Intermediate Goods}_{j,t}^{Others}}{\text{Total Intermediate Goods}_{j,t}}$. Here, the identification assumption is that the import demand shocks at the sector level between the UK and 8 other developed countries are independent.\(^{13}\)

Table 4 shows that the flattening effect of integration with both EMEs (columns (1) and (2)) and China (columns (1) and (2)) are robust to IV estimation. The coefficients

\(^{11}\)Australia, Denmark, Finland, Germany, Japan, Spain, Switzerland, United States.

\(^{12}\)The correlation between the instrument and the endogenous regressor is 0.85.

\(^{13}\)The results are robust to using G7 countries or only the US for instrumenting the UK’s imports.
Table 4: Instrumental Variable Analysis

<table>
<thead>
<tr>
<th></th>
<th>(EMEs)</th>
<th></th>
<th>(China)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td>OLS IV</td>
<td>OLS IV</td>
<td>OLS IV</td>
<td>OLS IV</td>
</tr>
<tr>
<td>(y_{jt} - y_{jt}^*)</td>
<td>0.0433</td>
<td>0.0428***</td>
<td>0.0438***</td>
<td>0.0432***</td>
</tr>
<tr>
<td></td>
<td>(0.00965)</td>
<td>(0.0103)</td>
<td>(0.00980)</td>
<td>(0.00948)</td>
</tr>
<tr>
<td>(IIS_{jt}^{EM})</td>
<td>0.445**</td>
<td>1.125</td>
<td>(0.213)</td>
<td>(0.694)</td>
</tr>
<tr>
<td>(y_{jt} - y_{jt}^*) \times (IIS_{jt}^{EM})</td>
<td>-0.0426***</td>
<td>-0.0498***</td>
<td>(0.0149)</td>
<td>(0.0170)</td>
</tr>
<tr>
<td>(IIS_{jt}^{CH})</td>
<td>0.462***</td>
<td>0.771***</td>
<td>(0.131)</td>
<td>(0.199)</td>
</tr>
<tr>
<td>(y_{jt} - y_{jt}^*) \times (IIS_{jt}^{CH})</td>
<td>-0.0415***</td>
<td>-0.0463***</td>
<td>(0.0108)</td>
<td>(0.0133)</td>
</tr>
<tr>
<td>Average of Lags</td>
<td>0.365***</td>
<td>0.358***</td>
<td>0.360***</td>
<td>0.355***</td>
</tr>
<tr>
<td></td>
<td>(0.0448)</td>
<td>(0.0496)</td>
<td>(0.0444)</td>
<td>(0.0465)</td>
</tr>
<tr>
<td>First-stage Fstat</td>
<td>1048.6</td>
<td></td>
<td>520.7</td>
<td></td>
</tr>
<tr>
<td>Industry FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Time FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>No of Obs.</td>
<td>2158</td>
<td>2158</td>
<td>2158</td>
<td>2158</td>
</tr>
<tr>
<td>R²</td>
<td>0.259</td>
<td>0.268</td>
<td>0.261</td>
<td>0.266</td>
</tr>
</tbody>
</table>

Note: Driscoll-Kraay standard errors are in parenthesis with a lag of 8.

* \(p < 0.10\), ** \(p < 0.05\), *** \(p < 0.01\)

on interaction terms are slightly higher (in absolute terms) and statistically significant at 5%.

3.3 Further Controls on Medium-term Impacts

Finally, we provide another control on the role of GVC integration following the arguments from Comin and Johnson (2020). They argue that long-lived shocks’ impact on trade openness provides a long phase-in dynamics. They also note that a shift in steady states, from a less open to a more open world, would slowly occur over time.

However, our GVC integration measurement is defined at the annual level. To address the potential concern that the role of GVCs from previous periods would also matter for the recent period on inflation dynamics, we use lags of our GVC measurement in our regressions. Furthermore, we calculate the two- and three-year moving average in \(IIS_{jt}^{EM}\) to take into account the medium-term impacts of GVC integration on the Phillips curve relationship.

Table 5 presents the results with a baseline specification (column (1)), using the lag of our GVC measurement \(IIS_{jt-1}^{EM}\) (column (2)), two-year moving average \(\frac{IIS_{jt}^{EM} + IIS_{jt-1}^{EM}}{2}\), and three-year moving average \(\frac{IIS_{jt}^{EM} + IIS_{jt-1}^{EM} + IIS_{jt-2}^{EM}}{3}\). The interaction terms from each
Table 5: Further Controls on Medium-term Impacts

<table>
<thead>
<tr>
<th></th>
<th>(1) Baseline</th>
<th>(2) Lag Variable</th>
<th>(3) Two-Year Moving Average</th>
<th>(4) Three-Year Moving Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>((y_{j,t} - y_{j,t}^*))</td>
<td>0.0483**</td>
<td>0.0429**</td>
<td>0.0432**</td>
<td>0.0363*</td>
</tr>
<tr>
<td></td>
<td>(0.02130)</td>
<td>(0.02024)</td>
<td>(0.02061)</td>
<td>(0.02080)</td>
</tr>
<tr>
<td>II(S^E_{j,t})</td>
<td>0.216</td>
<td>0.146</td>
<td>0.158</td>
<td>-0.0672</td>
</tr>
<tr>
<td></td>
<td>(0.2993)</td>
<td>(0.3043)</td>
<td>(0.3326)</td>
<td>(0.3108)</td>
</tr>
<tr>
<td>((y_{j,t} - y_{j,t}^*) \times II(S^E_{j,t})</td>
<td>-0.0429**</td>
<td>-0.0382**</td>
<td>-0.0402**</td>
<td>-0.0376*</td>
</tr>
<tr>
<td></td>
<td>(0.0163)</td>
<td>(0.0174)</td>
<td>(0.0168)</td>
<td>(0.0201)</td>
</tr>
<tr>
<td>Average of Lags</td>
<td>0.379***</td>
<td>0.382***</td>
<td>0.381***</td>
<td>0.426***</td>
</tr>
<tr>
<td></td>
<td>(0.1093)</td>
<td>(0.1121)</td>
<td>(0.1125)</td>
<td>(0.1069)</td>
</tr>
<tr>
<td>Industry FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Time FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>No of Obs.</td>
<td>2158</td>
<td>2030</td>
<td>2030</td>
<td>1877</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.537</td>
<td>0.536</td>
<td>0.537</td>
<td>0.549</td>
</tr>
</tbody>
</table>

Note: Driscoll-Kraay standard errors are in parenthesis with a lag of 8. * \(p < 0.10\), ** \(p < 0.05\), *** \(p < 0.01\).

column suggest that our results are robust to taking into account the medium-term phase in effects of GVC integration with the EMEs and integration to the EMEs flattens the slope of the UK’s Phillips curve.

4 A Model of Global Value Chains

How does GVC integration affect the Phillips curve relationship? In this section, we build a two-country, New-Keynesian model with trade in intermediate and final goods. We build on the work of Rubbo (2023) to derive a theoretical relationship between GVC integration and the Phillips curve.

4.1 Outline of Model

Households The global economy consists of a home (H) and foreign (F) economy, each producing a differentiated good in the spirit of Armington (1969). The two countries, home and foreign, are populated by a continuum of infinitely lived households with a fraction of \(n\) and \((1-n)\) of the total world population, respectively. Throughout the paper, we use the notation \”*\” to capture variables in the foreign economy. To start with, we abstract from multiple sectors for simplicity.\(^{14}\) Households in the home

\(^{14}\)Extending to a multi-sector setup would allow for an additional dimension of heterogeneity in the price-stickiness across sectors, and the centrality of sectors in the production network. We abstract from a multi-sector setup in this static model for simplicity. We focus on the importance of multi-sector dimension, in Section 5 where we extend our model to a dynamic setting.
economy consume and supply labor and have preferences

\[U = \frac{C^{1-\sigma}}{1-\sigma} - \Xi \frac{L^{1+\varphi}}{1+\varphi}, \]

where \(\sigma \) and \(\varphi \) denote the inverse of the intertemporal elasticity of substitution and Frisch elasticity of labor supply, respectively. The consumption bundle in turn consists of home and foreign goods

\[C = C^\alpha_H C^{1-\alpha}_F, \]

where \(\alpha \) represents the expenditure share of home goods. As in De Paoli (2009), the share of imported goods in each country is a function of relative country size, \(1-n \), and the degree of openness in final demand, \(\nu_C \): \(1-\alpha = (1-n) \nu_C \). When \(\alpha > 0.5 \), there is home bias in preferences. A similar expression holds for households in the foreign economy.

Production Firms in each economy are identical and use labor \((L) \) and intermediate inputs \((M) \) to produce a unit of output. The production function has the following constant-returns-to-scale functional form

\[Y_H(i) = AL(i)^\delta M(i)^{1-\delta}, \]

where \(Y_H \) denotes firm \(i \)'s gross-output of home goods, \(A \) is the aggregate productivity and \(\delta \) denotes the share of labor in production. Intermediate goods used by the firms are a CES aggregate of home and foreign-produced intermediate inputs

\[M(i) = \left[\mu^{\frac{1}{\varphi}} (M_H(i))^{\frac{\varphi-1}{\varphi}} + (1-\mu)^{\frac{1}{\varphi}} (M_F(i))^{\frac{\varphi-1}{\varphi}} \right]^{\frac{\varphi}{\varphi-1}}. \]

where \(M_H(i) \) and \(M_F(i) \) denote the demand for domestically and foreign-produced intermediate goods, respectively and \(\varphi \) denotes the elasticity of substitution between home and foreign-produced intermediate goods. The parameter \((1-\mu) \) captures the share of intermediate goods that are imported from abroad. Similar to the consumption preference structure, we assume that the share of imported intermediate goods is a function of relative country size, \((1-n) \), and the degree of openness in intermediate goods in a sector, \(\nu_M \): \(1-\mu = (1-n) \nu_M \).

Pricing To introduce a Phillips Curve into the model, we allow for nominal rigidities in the form of sticky-information as in Mankiw and Reis (2002). The timing within the period is as follows:
1. All firms pre-set their price as a markup over the expected marginal cost.

2. A fraction \(1-\theta \) of firms are able to observe aggregate shocks in the economy.

3. Firms who observe aggregate shocks are able to change their price.

We assume that all firms price goods according to producer currency pricing, therefore there is a perfect exchange rate pass-through.\(^{15}\) Thus, home and foreign firms pre-set their price to

\[
P^\#_H(i) = \frac{e}{\epsilon - 1} \mathbb{E}[MC],
\]

\[
P^\#_F(i) = \frac{e}{\epsilon - 1} \mathbb{E}[MC^*],
\]

where the expectation is taken over aggregate states. A fraction \(1-\theta \) of home (\(1-\theta^* \) of foreign) firms are able to observe aggregate shocks and hence update their price. These firms change their prices to

\[
\tilde{P}_H(i) = \frac{e}{\epsilon - 1} MC,
\]

\[
\tilde{P}_F^*(i) = \frac{e}{\epsilon - 1} MC^*.
\]

The aggregate price level at the end of the period is given by

\[
P^{1-\epsilon}_H = \theta P^{1-\epsilon}_H + (1 - \theta) \tilde{P}^{1-\epsilon}_H,
\]

and inflation is given by

\[
\Pi^{1-\epsilon}_H = \theta + (1 - \theta) \left(\frac{MC}{\mathbb{E}[MC]} \right)^{1-\epsilon},
\]

where \(\Pi_H \equiv \frac{\bar{P}_H}{\bar{P}^*_H} \). Thus inflation is defined as the change in prices relative to the preset price before any shocks hit the economy. Inflation occurs when the actual marginal cost rises above the expected marginal cost. We can linearise this equation as

\[
\log \Pi_H \equiv d \log \bar{P}_H = (1 - \theta)d \log MC,
\]

\(^{15}\)We acknowledge that imperfect exchange rate pass-through can be important to understand the fluctuations in international relative prices as explored by Devereux and Engel (2002). Nevertheless, we follow Galí and Monacelli (2005) and focus on producer currency pricing to single out the mechanism at play.
where

\[d \log P_H \equiv \log P_H - \log P_{H}^*, \]

\[d \log MC \equiv \log MC - \log E[MC]. \]

A symmetric expression holds for the foreign economy.

Trade Trade of both final goods and intermediate goods arises in the economy. We assume financial autarky such that there is balanced trade in both final and intermediate goods in equilibrium.

\[nP_F(C_F + M_F) = (1 - n)P_H(C_{H}^* + M_{H}^*). \tag{6} \]

4.2 The Global Phillips Curve

We define the following notation:

\[\log \mathbf{p} = \begin{pmatrix} \log P_H \\ \log P_{F}^* \end{pmatrix}, \quad \log \mathbf{w} = \begin{pmatrix} \log W \\ \log W^* \end{pmatrix}, \quad \log \mathbf{A} = \begin{pmatrix} \log A \\ \log A^* \end{pmatrix}, \quad \delta = \begin{pmatrix} \delta \\ \delta^* \end{pmatrix}, \quad \mathbf{1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \]

\[\Phi = \begin{pmatrix} \alpha & 1 - \alpha \\ 1 - \alpha^* & \alpha^* \end{pmatrix}, \quad \Omega = \begin{pmatrix} 1 - \delta & 0 \\ 0 & 1 - \delta^* \end{pmatrix} \begin{pmatrix} \mu & 1 - \mu \\ 1 - \mu^* & \mu^* \end{pmatrix}. \]

Ω represents the global input-output matrix. Let \(\log \mathbf{P} = \Phi \log \mathbf{p} \) denote the vector of (log) CPI inflation

Proposition 1. The Global Phillips Curve can be written as

\[d \log \mathbf{P} = \mathcal{K} \tilde{y} + \mathcal{G} d \log \mathbf{A} + \mathcal{H} d \log \mathcal{E}, \tag{7} \]

where \(\mathcal{K} = \Phi \Theta (I - \Omega \Theta)^{-1} \delta [I - ((1 + \sigma \Phi - \sigma I) \Theta (I - \Omega \Theta)^{-1} \delta]^{-1}(\sigma + \varphi) \) and \(\mathcal{E} \) is the nominal exchange rate (units of foreign currency in home currency). The proof and expressions for the \(\mathcal{G}, \mathcal{H} \) matrices are shown in Appendix E.

This expression shows that inflation dynamics are driven by: (i) domestic and foreign output gap, (ii) cross-country, relative productivity, (iii) exchange rate. The main diagonal of \(\mathcal{K} \) represents the *slope* of the Phillips Curve – the dependence of CPI inflation on the domestic output gap. The off-diagonal elements of \(\mathcal{K} \) capture
the dependence of domestic inflation on the foreign output gap. This leads us to the following corollary.

Corollary 1. The higher the imported intermediate good share, the flatter the Phillips curve. Mathematically,

\[
\frac{dK_{ii}}{d(1 - \mu_i)} < 0.
\]

Intuitively, as firms depend more on intermediate inputs imported from abroad, their marginal costs are less exposed to the domestic output and more exposed to foreign output. As a result, inflation depends less on the domestic output gap and more on the foreign output gap. Given that the share of imported goods (both final demand and intermediate) is proportional to the country size as in De Paoli (2009), the relative country size will matter for the slope through \(\alpha \) and \(\mu \). Smaller countries like the UK are more open, so all else equal should have a flatter Phillips Curve. In addition, unsurprisingly, the Phillips Curve become steeper as labor share increases, consistently with the standard three-equation closed-economy New Keynesian model.

In addition, the price-stickiness of domestic and foreign goods captured by \(\Theta = \text{diag}(1 - \theta, 1 - \theta^*) \), is also amplified along the production network. The price stickiness of foreign goods implies that the cost of imported intermediate goods, and hence the marginal costs for home firms do not rise by as much as in the flexible-price case. This then implies that domestic prices do not rise by as much.

Note that this channel also interacts with the degree of exchange rate pass-through. Under producer currency pricing, the price of goods is sticky in the currency of the producer. Therefore, the changes in import prices transmit through the nominal exchange rate which is captured in the \(H \) matrix. International relative prices are very volatile in the data and in the presence of GVCs, relative prices affect the firms marginal cost directly as some inputs are sourced from abroad. The following section will introduce a the dynamic, multi-sector version of our model exploring the importance of international relative price fluctuations for inflation dynamics.

5 The Role of Medium-Term Forces

While our findings consistently demonstrate the significance of the slope effect of GVCs integration to EMEs on the UK’s Phillips curve, it is important to acknowledge that our benchmark results may not be driven only by slope effect, but also influenced by cyclical forces acting as an additional channel. This can provide insights into why our results are specifically applicable to EMEs but not AEs. To understand the
importance of the source dimension of GVCs integration, we use a more general version of the model presented in Section 4.

In particular, the static model we have presented in Section 4 does not discuss why our results hold only when the source of GVCs integration is EMEs. According to this model, sectors with higher GVCs integration should have a flatter Phillips Curve. However, our empirical results show that the source of GVC integration also matters. This requires a more general model.

To address this, we extend our static model in two ways. First, we introduce dynamics into our model. This allows us to move away from the financial autarky assumption. Second, we introduce multiple sectors in each economy. This framework is much closer to our empirical framework so can shed results on the importance of source dimension. We outline the details of this model in Appendix F.

GVCs in our Model: Why EMEs? In our framework, GVC integration affects the link between inflation and domestic slack through two distinct channels: Firstly, it exerts a direct impact on the slope, thereby influencing the response of inflation to fluctuations in real economic activity. Secondly, our GVC measure is influenced by movements in terms of trade. Differential prices across countries enable firms to switch between domestic and imported inputs, thereby creating a disconnect between domestic prices and marginal costs.

In our empirical analysis, we use the sum of the nominal value of imported goods from all sectors divided by the value of intermediate goods as our GVC measure. In our model, this corresponds to

\[
GVC_{st} = \frac{n \sum_{s'} P_{F's't} M_{Fss't}}{(1-n) \bar{P}_{st}^M \bar{M}_{st}} = \frac{\sum_{s'} P_{F's't} (1 - \mu_{ss'}) \left(\frac{P_{Fs't}}{P_{F's't}} \right)^{-\phi_M} \omega_{ss'} \left(\frac{P_{M's't}}{P_{M's't}} \right)^{-\theta_M} \bar{M}_{st}}{\bar{P}_{st}^M \bar{M}_{st}},
\]

where \(M_{Fss't} \) is the imported intermediate good demand of sector \(s \) from sector \(s' \) at time \(t \), and \(M_{st} \) is total intermediate goods demand in sector \(s \). The intermediate input price index is \(\bar{P}_{st}^M \) and sectoral intermediates price index, \(P_{M's't} \), is a weighted average of home, \(P_{Hs't} \), and foreign, \(P_{F's't} \), sectoral output prices. \(\omega_{ss'} \) is the share of sector \(s' \) in total intermediate good expenditure of sector \(s \) with \(\sum_{s'} \omega_{ss'} = 1 \). The elasticity of substitution across sectoral intermediate goods is denoted by \(\theta_M \). The share of foreign-produced goods at the intermediate level is denoted by \(1 - \mu_{ss'} \), and \(\phi_M \) denotes the elasticity of substitution between home and foreign-produced intermediate goods.

In our benchmark model, we discussed how imported intermediate goods share, \(1 - \mu \), can make the slope of the Phillips curve flatter. Indeed our GVC measure is a
function of μ and increases as the share of imported intermediates increases. However, our measure is also affected by relative prices. We discussed briefly how exchange rate can affect the inflation in the previous section. International relative prices, terms of trade, will affect our measure of GVCs as long as the elasticity of substitution between home and foreign-produced goods are different from one. Specifically, under Cobb-Douglas aggregation, when ϕ_{Ms}, the elasticity of substitution between home and foreign-produced intermediate goods in each sector, and θ_M, the elasticity of substitution across sectoral intermediate goods, are equal to 1, our measure would boil down to

$$\frac{\sum_{s'} P_{Fs't} M_{Fs't}}{P_{st} M_{st}} = \sum_s (1 - \mu_{s'}) \omega_{ss'}.$$

Then the only channel that our GVCs measure captures is the increased openness in production. As shown, the higher the imported intermediate goods share the flatter the Phillips curve. Additionally, with a multi-sector set-up, the higher the input demand from sectors with large import share, the flatter the Phillips curve. However estimates of the elasticity of substitution between home and foreign traded goods vary significantly in the literature and they are far from 1 (e.g., see Feenstra (1994)) making CES aggregation the appropriate choice.

These relative price movements are crucial because the terms of trade directly affect our GVCs measure. The log-linearised version of our GVC measure corresponds to

$$\hat{GVC}_{st} = \sum_{s'} \left(\hat{p}_{Fs't} - \phi_M \left(\hat{p}_{Fs't} - \hat{p}_{ss't} \right) \right) - \theta_M \left(\hat{p}_{ss't} - \hat{p}_{st} \right) + \hat{m}_{st} - \left(\hat{p}_{st} + \hat{m}_{st} \right),$$

where

$$\hat{p}_{Fs't} - \hat{p}_{ss't} = \mu_{s'} \left(\hat{p}_{Fs't} - \hat{p}_{Hs't} \right).$$

Intuitively, the relative price channel operates through firms’ marginal cost. In our model, the marginal cost is not only a function of wages (or cost of value added) but also domestic and imported intermediate input prices. By log-linearizing the marginal cost presented in Appendix F, Equation (F.16) around the steady-state, we obtain

$$\dot{m}_{cst} = \delta_s \hat{w}_t + \left(1 - \delta_s \right) \sum_{s'} \omega_{ss'} \left[\mu_{ss'} \hat{p}_{Hs't} + \left(1 - \mu_{ss'} \right) \hat{p}_{Fs't} \right] - \hat{a}_t - \hat{a}_{st}. \quad (8)$$

The above expression shows that changes in sectoral marginal cost depend on i) the
changes in wages, ii) the changes in domestic input prices, iii) the changes in imported input prices, and iv) the changes in aggregate and sector-specific productivity. When domestic wages increase and home intermediate goods prices increase relative to the foreign ones, firms can switch towards cheaper imported intermediate inputs as terms of trade improve. This might shed light on why the source of GVC integration matters. It is well-known that business cycles are highly correlated across advanced economies. For instance, Kose et al. (2003) examines the business cycle co-movements across countries and provides empirical evidence on the high degree of synchronization in business cycles among developed economies. This means that, when wages in the UK economy increase, they is likely to also increase in the EU and the US too as output is highly correlated across these countries.

To test this argument thoroughly, we now show the role of business cycle correlations of the UK with the countries that the UK economy has integrated with. We first calculate the business cycle correlation of each country c with the UK (corr(c,UK)) by using HP-filtered real GDP series between 2000Q1 and 2014Q4. Then, we separate countries into low/medium/high correlation groups depending on the correlation coefficients. Using this country classification, we calculate the imported intermediate good share from each group, e.g. the low correlation group country’s share in total intermediate goods as $IIS_{j,t}^{Low} = \frac{\text{Imported Intermediate Goods}_{j,t}^{Low}}{\text{Total Intermediate Goods}_{j,t}}$. Appendix A Table A1 displays the business cycle correlation category of each country with the UK.

To compare the role of integration with each group of countries, we estimate Equation (1) using the imported intermediate good share of low and high business cycle correlations groups and present results in Table 6. Column (1) shows the previous results to compare as a baseline. Columns (2) and (3) present the role of business cycle correlations on the inflation dynamics. The interaction term from column (2) suggests that rising imported intermediate goods share from countries with low business cycle correlation leads to a fall in response of inflation to the real economic activity. We do not find a significant role for goods and services imported from countries with high business cycle correlations with the UK (column 3).

Comparing columns (2) and (3) from Table 6, we observe the new evidence that not only does the integration of a country to GVCs matter but also the correlation with the business cycle of the integrated country matters. Table 2 suggested a geographical interpretation of the role of GVCs on the flattening of the UK Phillips curve, emphasizing the importance of integrating toward EMEs. On the other hand, Table 6 provides an economic interpretation of the question of why integrating EMEs matters.

16Note that, under multi-sector, input-output linkages setting increase in the share of imported intermediates (μ_{sector}) not only affect the sectoral marginal cost directly but also indirectly as domestic intermediate input suppliers also use imported intermediates in their production.
Table 6: GVCs and the UK Phillips Curve: Business Cycle Correlations

<table>
<thead>
<tr>
<th>2000Q1-2014Q4</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dep Var: $\pi_{j,t}$</td>
<td>$\pi_{j,t}$</td>
<td>$\pi_{j,t}$</td>
<td>$\pi_{j,t}$</td>
</tr>
<tr>
<td>$(y_{j,t} - y^*_j,t)$</td>
<td>0.0419***</td>
<td>0.0349**</td>
<td>0.0345**</td>
</tr>
<tr>
<td></td>
<td>(0.0118)</td>
<td>(0.0139)</td>
<td>(0.0133)</td>
</tr>
<tr>
<td>$IIS_{j,t}$</td>
<td>0.616</td>
<td>0.533</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(y_{j,t} - y^*j,t) \times IIS{j,t}$</td>
<td>-0.0164</td>
<td>-0.0164</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0197)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$IIS_{BClow}^{B_{j,t}}$</td>
<td>0.338</td>
<td>0.338</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.215)</td>
<td>(0.215)</td>
<td></td>
</tr>
<tr>
<td>$(y_{j,t} - y^*j,t) \times IIS{BClow}^{B_{j,t}}$</td>
<td>-0.0251**</td>
<td>-0.0251**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0121)</td>
<td>(0.0121)</td>
<td></td>
</tr>
<tr>
<td>$IIS_{BChigh}^{B_{j,t}}$</td>
<td>-0.0144</td>
<td>-0.0144</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.228)</td>
<td>(0.228)</td>
<td></td>
</tr>
<tr>
<td>$(y_{j,t} - y^*j,t) \times IIS{BChigh}^{B_{j,t}}$</td>
<td>-0.0014</td>
<td>-0.0014</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0098)</td>
<td>(0.0098)</td>
<td></td>
</tr>
<tr>
<td>Average of Lags</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
</tbody>
</table>

Industry FE	Y	Y	Y
Time FE	Y	Y	Y
No of Obs.	2158	2158	2158
R^2	0.255	0.258	0.251

Note: Driscoll-Kraay standard errors are in parenthesis with a lag of 8.

* $p < 0.10$, $^{**} p < 0.05$, $^{***} p < 0.01$.

more significantly than AEs. Table A1 shows that the business cycle correlation of the UK economy is lower with EMEs than with AEs. We argue that when the UK economy is integrated into a country with low business cycle correlation, it leads to a decline in pass-through from demand-side shocks to prices. Assume a demand-side shock in the UK that generates a rise in the output gap. The increase in market demand would normally also push the input demand and their costs in the UK. However, if the UK economy is highly integrated with the GVCs, and especially to the countries that have low business cycle correlations with the UK, then firms would switch to the imported intermediate goods (from domestic goods) since these countries have not experienced a rise in their costs and prices due to lack of demand-side shock in that period. Following this shift in input demand of the UK sectors, the change in input costs would be limited. Therefore, we argue that the rise in output prices would also be limited following a demand-side shock in the UK reducing the link between inflation and the domestic demand.
6 Conclusion

In this paper, we studied the impact of GVC integration into EMEs on the inflation dynamics of the UK. Leveraging sectoral data we examined the impact of GVC integration on the UK inflation and the output gap relationship. We showed that a rise in imported intermediate goods dependence from EMEs implies a reduced response of inflation to the increases in domestic output gap across various reduced-form specifications. Subsequently, building a model that includes trade in intermediate inputs, we showed analytically that an increased share of imported intermediate goods in production leads to a flatter Phillips curve. We showed that international relative price movements is important in understanding why our results only hold for EMEs: sourcing inputs from countries with low business cycle correlation with the UK can mute the response of inflation to the increase in domestic output gap.

Our findings have potential implications for understanding the implications of supply chain disruptions on inflation dynamics as well as the consequences of de-integration from GVCs and related concerns. The interaction between medium-term forces through terms of trade movements and long-term structural shifts through the slope is important for the conduct of monetary policy and is central to understanding the current debate around deglobalisation. We argue that the terms of trade movements is important to understand why we find our results only for EMEs but not for AEs.
References

Appendices

A Data

Aggregate Data: Aggregate price, output and unemployment data are from the Office for National Statistics (ONS). We calculate the aggregate output gap using the HP filtering method. Aggregate import and export variables are also from the ONS, and imported intermediate good value is from the World Input-Output Database (WIOD).

Sectoral Data: Sectoral inflation is calculated as a four-quarter percent change in Producer Price Index (PPI) and Service Producer Price Index (SPPI) from ONS. Data has been available at a quarterly frequency since 1997. The sectoral output series, Index of Production (IoP), and Index of Services (IoS) are also from ONS. Data has been available at a quarterly frequency since 1995 (1997 for the service sectors). Sectoral output gap series is calculated as the deviation indexes from their HP-filtered trends separately.

World Input-Output Database (WIOD): We use the last version (2016) of the WIOD to calculate imports, exports, and imported intermediate good values for 56 sectors at an annual frequency from 2000 to 2014. However, the sectoral aggregation from WIOD does not match the aggregation level of sectoral price and output data from ONS. Therefore, we use many-to-many matching using the weights from Blue Book GDP Source Catalogue. **Country Coverage:** Following the IMF classification, we consider Brazil, Hungary, China, India, Indonesia, Mexico, Poland, Romania, Russia and Turkey as EMEs; Austria, Belgium, Czech Republic, Cyprus, Germany, Denmark, Spain, Estonia, Finland, France, Greece, Croatia, Hungary, Ireland, Italy, Lithuania, Latvia, Luxembourg, Malta, the Netherlands, Norway, Poland, Romania, Slovakia, Slovenia and Sweden as the EU and Australia, Canada, South Korea, Japan, US, Switzerland and the EU excluding Poland, Hungary and Romania as AEs.

Business cycle correlations: We use OECD country-level real GDP growth statistics to calculate business correlations between countries and the UK.
Table A1: Business Cycle Categories

<table>
<thead>
<tr>
<th>Country</th>
<th>corr(y^{UK}, y^C)</th>
<th>Country</th>
<th>corr(y^{UK}, y^C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Croatia</td>
<td>0.648</td>
<td>Estonia</td>
<td>0.832</td>
</tr>
<tr>
<td>Chile</td>
<td>0.642</td>
<td>United States</td>
<td>0.831</td>
</tr>
<tr>
<td>Slovenia</td>
<td>0.640</td>
<td>Japan</td>
<td>0.803</td>
</tr>
<tr>
<td>Slovakia</td>
<td>0.614</td>
<td>Latvia</td>
<td>0.801</td>
</tr>
<tr>
<td>Argentina</td>
<td>0.597</td>
<td>Lithuania</td>
<td>0.799</td>
</tr>
<tr>
<td>Korea</td>
<td>0.571</td>
<td>Hungary</td>
<td>0.787</td>
</tr>
<tr>
<td>Netherlands</td>
<td>0.565</td>
<td>Denmark</td>
<td>0.779</td>
</tr>
<tr>
<td>Norway</td>
<td>0.563</td>
<td>Mexico</td>
<td>0.768</td>
</tr>
<tr>
<td>Spain</td>
<td>0.557</td>
<td>Sweden</td>
<td>0.768</td>
</tr>
<tr>
<td>Iceland</td>
<td>0.547</td>
<td>South Africa</td>
<td>0.767</td>
</tr>
<tr>
<td>Israel</td>
<td>0.481</td>
<td>Belgium</td>
<td>0.749</td>
</tr>
<tr>
<td>New Zealand</td>
<td>0.456</td>
<td>Colombia</td>
<td>0.743</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>0.441</td>
<td>Luxembourg</td>
<td>0.735</td>
</tr>
<tr>
<td>Ireland</td>
<td>0.429</td>
<td>Germany</td>
<td>0.730</td>
</tr>
<tr>
<td>Roumania</td>
<td>0.410</td>
<td>France</td>
<td>0.724</td>
</tr>
<tr>
<td>Australia</td>
<td>0.386</td>
<td>Russia</td>
<td>0.706</td>
</tr>
<tr>
<td>Portugal</td>
<td>0.289</td>
<td>Canada</td>
<td>0.699</td>
</tr>
<tr>
<td>Indonesia</td>
<td>0.260</td>
<td>Switzerland</td>
<td>0.686</td>
</tr>
<tr>
<td>Greece</td>
<td>0.251</td>
<td>Finland</td>
<td>0.685</td>
</tr>
<tr>
<td>Brazil</td>
<td>0.217</td>
<td>Turkey</td>
<td>0.676</td>
</tr>
<tr>
<td>Poland</td>
<td>0.210</td>
<td>Czech Republic</td>
<td>0.675</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>-0.079</td>
<td>Austria</td>
<td>0.672</td>
</tr>
<tr>
<td>India</td>
<td>-0.490</td>
<td>Italy</td>
<td>0.651</td>
</tr>
<tr>
<td>Mean</td>
<td>0.401</td>
<td>Mean</td>
<td>0.742</td>
</tr>
<tr>
<td>Median</td>
<td>0.456</td>
<td>Median</td>
<td>0.743</td>
</tr>
</tbody>
</table>

Note: Sample period is between 2000Q1 and 2014Q4 (matching the main empirical analysis period).
Data is from OECD.
B Additional Figures

Figure A1: Change in IIS across other countries

![Graph showing change in IIS across other countries over years for different countries and sectors.]

Figure A2: Share of Regions in Total Inputs by Sectors

![Graph showing share of regions in total inputs by sectors over years for different regions and sectors.]

Graphs by Description
C The Role of Trade

Here we explore the role of openness in the flattening of the UK’s Phillips curve. We begin by displaying the trade openness and total import share over time (Figure A4) since the 1950s. Trade openness almost doubled from the mid-1980s to 2000 and then further increased by 50% from 2000 to 2020. Analogously, the share of imports doubled between the 1950s and 2010, remaining stable after that.

Both measures from Figure A4 point to a significantly increasing integration of the UK economy in global markets. We argue that increasing trade openness makes the prices in the UK economy less dependent on domestic factors. Therefore, the relationship between inflation and domestic economic activity weakens. To test this argument, we follow Ball (2006) and estimate the following regression where we interact aggregate output gap with trade openness

\[
\pi_t = \beta_1 (y_t - y_t^*) + \beta_2 \text{Openness}_t + \beta_3 (y_t - y_t^*) \times \text{Openness}_t + \beta_4 \pi_t^M + \beta_5 \pi_t^{oil} + \beta_6 \left(\frac{1}{\sum_{i=1}^4 \pi_{t-i}} \right) + \epsilon_t
\]

where \(\text{Openness}_t = \frac{\text{Imports} + \text{Exports}}{\text{Real GDP}} \). This variable is standardized (around the mean) to ease the interpretation of the estimated coefficients. Previously, we have shown a positive relationship between inflation and the output gap. In this exercise, we are interested in the estimation of the interaction parameter, \(\beta_3 \).

Table A2 column (1) suggests that the coefficients attached to \((y_t - y_t^*) \times \text{Openness}_t \) is negative and statistically significant, supporting the argument that rising trade

Figure A3: Aggregate Inflation and Output Gap

Note: Aggregate inflation is from ONS and the output gap is the deviation of real GDP from its HP-filtered trend.
openness in the UK led to a flattening in the Phillips curve. Recall that, openness\(_i\) is standardized, thus \(\beta_1\) coefficient denotes the Phillips curve slope for the mean trade openness period (e.g., the mid-1990s) in our sample and the coefficient for the interaction term (\(\beta_3\)) represents the effect of a one standard deviation increase in trade openness on the slope of the Phillips curve.

As a robustness check, we control the role of the inflation targeting regime in 1992 and central bank independence in 1997. We include a dummy variable equal to 1 after 1992 (\(Post_{1992}\)) and another one after 1997 (\(Post_{1997}\)) to control separately for the possible effects of these two policies. Columns (2) and (3) show that the results remain qualitatively unchanged, implying that one standard deviation increase in the trade variable flattens the slope of the Phillips curve to roughly 0.1.

The results imply that openness may be an important driver behind the flattening of the UK Phillips curve.
Table A2: Trade and the UK Phillips Curve (1980Q1-2017Q1)

<table>
<thead>
<tr>
<th>$(y_t - y^*_t)$</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.427***</td>
<td>0.426***</td>
<td>0.429***</td>
</tr>
<tr>
<td></td>
<td>(0.0934)</td>
<td>(0.0936)</td>
<td>(0.0952)</td>
</tr>
<tr>
<td>Openness$_t$</td>
<td>0.00983</td>
<td>0.0804</td>
<td>0.238</td>
</tr>
<tr>
<td></td>
<td>(0.0563)</td>
<td>(0.120)</td>
<td>(0.212)</td>
</tr>
<tr>
<td>$(y_t - y^*_t) \times$ Openness$_t$</td>
<td>-0.315***</td>
<td>-0.316***</td>
<td>-0.319***</td>
</tr>
<tr>
<td></td>
<td>(0.0870)</td>
<td>(0.0883)</td>
<td>(0.0892)</td>
</tr>
<tr>
<td>π^{oil}_t</td>
<td>0.0104*</td>
<td>0.0104*</td>
<td>0.0107*</td>
</tr>
<tr>
<td></td>
<td>(0.00593)</td>
<td>(0.00589)</td>
<td>(0.00588)</td>
</tr>
<tr>
<td>π^M_t</td>
<td>0.0498***</td>
<td>0.0500***</td>
<td>0.0489***</td>
</tr>
<tr>
<td></td>
<td>(0.0179)</td>
<td>(0.0173)</td>
<td>(0.0176)</td>
</tr>
<tr>
<td>$\frac{4}{3} \sum_{j=1}^{n} \pi_{t-j}$</td>
<td>0.913***</td>
<td>0.918***</td>
<td>0.924***</td>
</tr>
<tr>
<td></td>
<td>(0.0241)</td>
<td>(0.0274)</td>
<td>(0.0272)</td>
</tr>
</tbody>
</table>

Observations	149	149	149
R^2	0.9674	0.9675	0.9677
Post$_{1992}$	No	Yes	No
Post$_{1997}$	No	No	Yes

Newey-West standard errors in parentheses with a lag of 18

* $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$

D Indirect Effects

We examine the sensitivity of our results to the indirect effects of the rise in imported intermediate goods in production on the UK Phillips curve. The benchmark results documented the “direct” effects of the GVCs on the Phillips curve. However, a growing literature shows how a shock to one industry can propagate to other industries through sectoral linkages and generate more amplified effects on the aggregate economy. This subsection examines the role of amplified (direct+indirect) effects using input-output tables.

Let’s redefine the variable $IIS_{j,t}$ from our estimations as the direct effects of the GVCs on industry j. Previous results showed that the inflation and output gap relationship is weaker in industries with higher imported intermediate goods dependence. This result also implies that the rigidity in output prices of an industry j will also be experienced by other industries that use goods/services from industry j as intermediate goods. Thus, the direct effects of $IIS_{j,t}$ to industry j propagates indirectly to its buyers. We define “Indirect effects” following Acemoglu et al. (2016) as

$$IIS_{j,t}^{Ind} = \sum_g \omega_{gj} IIS_{gt},$$

(D.1)
which is equal to the weighted average of directly imported intermediate good shares \((IIS_{gt})\) across all industries, indexed by \(g\), that supply goods to the industry \(j\). The weights \(\omega_{gj}\) are defined as

\[
\omega_{gj} = \frac{\mu_{gj}}{\sum_{g'} \mu_{g'j}},
\]

where \(\mu_{gj}\) is the value of inputs used by industry \(j\) from industry \(g\), and calculated using 2000 ONS UK input-output tables. The weight \(\omega_{gj}\) in Equation (D.2) is the share of inputs from industry \(g\) in total inputs used by industry \(j\).

We also note that the imported intermediate good dependence of industry \(j\) affects other industries \((g)\). Then, an affected industry \(g\) would further affect industry \(j\) and so on. To take into account the full chain of effects, we use the Leontief inverse of the linkages from weights of Equation (D.2) following Acemoglu et al. (2016). Thus, the total effects from GVC integration is measured using Leontief inverse matrices of weights such that

\[
IIS_{j,t}^{Total} = \sum_{g} \omega_{gL}^{L} IIS_{gt},
\]

where \(\omega_{gL}^{L}\) are the weights adjusted by Leontief inverses.

The intuition for the indirect effects is that when an industry \(j\)’s suppliers experience a high imported intermediate good dependence from abroad, then the industry \(j\)’s inputs would be further dependent on imported goods and services. Therefore, we argue that this channel would further weaken the sensitivity of “output” prices against a change in economic activity as the input costs would be dependent abroad.

Note that Equation (D.3) generates a general formula to calculate the total effects of imported intermediate goods share. Thus, we focus on generating total effects for our two main results separately: Role of EMEs and low business cycle correlation countries\(^{17}\).

Table (A3) presents the results from the estimation of specification (1) using both direct and total effects. Comparison of the interaction terms between columns (1) and (2), and (3) and (4) cannot confirm the amplification of the GVCs’ role through sectoral linkages. The interaction terms are negative and significant in each specification, but the coefficients are not different when total effects through sectoral linkages are used. Thus, the results suggest no evidence of the role of sectoral linkages amplifying the previous results.

\(^{17}\)We calculate \(IIS_{j,t}^{EM,Total} = \sum_{g} \omega_{gL}^{L} IIS_{gt}\) and \(IIS_{j,t}^{BClow,Total} = \sum_{g} \omega_{gL}^{L} IIS_{gt}\) separately and use in our regressions.
Table A3: Indirect Effects

<table>
<thead>
<tr>
<th></th>
<th>(EMEs)</th>
<th>(Low BC Corr.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) Direct</td>
<td>(2) Total</td>
</tr>
<tr>
<td>((y_{jt} - y_{jt}^*))</td>
<td>0.0483**</td>
<td>0.0490**</td>
</tr>
<tr>
<td></td>
<td>(0.02130)</td>
<td>(0.02140)</td>
</tr>
<tr>
<td>(IIS_{EM,j,t}^)</td>
<td>0.216</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.2993)</td>
<td></td>
</tr>
<tr>
<td>((y_{jt} - y_{jt}^*) \times IIS_{EM,j,t}^)</td>
<td>-0.0429**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0163)</td>
<td></td>
</tr>
<tr>
<td>(IIS_{EM,Total,j,t}^)</td>
<td></td>
<td>0.231</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.2939)</td>
</tr>
<tr>
<td>((y_{jt} - y_{jt}^*) \times IIS_{EM,Total,j,t}^)</td>
<td>-0.0410**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0159)</td>
</tr>
<tr>
<td>(IIS_{BC,low,j,t}^)</td>
<td></td>
<td>0.552***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.18623)</td>
</tr>
<tr>
<td>((y_{jt} - y_{jt}^*) \times IIS_{BC,low,j,t}^)</td>
<td>-0.0258**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.01145)</td>
</tr>
<tr>
<td>(IIS_{BC,low,Total,j,t}^)</td>
<td></td>
<td>0.563***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.18868)</td>
</tr>
<tr>
<td>((y_{jt} - y_{jt}^*) \times IIS_{BC,low,Total,j,t}^)</td>
<td>-0.0269**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.01139)</td>
</tr>
<tr>
<td>Average of Lags</td>
<td>0.379***</td>
<td>0.379***</td>
</tr>
<tr>
<td></td>
<td>(0.1093)</td>
<td>(0.1092)</td>
</tr>
<tr>
<td>Industry FE</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Time FE</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>No of Obs.</td>
<td>2158</td>
<td>2158</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.537</td>
<td>0.537</td>
</tr>
</tbody>
</table>

Driscoll-Kraay standard errors are in parenthesis with a lag of 8
* \(p < 0.10\), ** \(p < 0.05\), *** \(p < 0.01\)

E Static Model Proofs

Proof of Proposition 1. The marginal cost can be written as

\[
\log MC = \delta \log W + (1 - \delta) \log P^M - \log A,
\]

\[
\log MC^* = \delta^* \log W^* + (1 - \delta^*) \log P^{M*} - \log A^*.
\]

The input price index can be written as

\[
\log P^M = \mu \log P_H + (1 - \mu) \log P_F,
\]

\[
\log P^{M*} = \mu^* \log P_{H}^* + (1 - \mu^*) \log P_{F}^*.
\]
Combining the last two expressions yield

\[
\log MC = \delta \log W + (1 - \delta)(\mu \log P_H + (1 - \mu) \log P_F) - \log A,
\]
\[
\log MC^* = \delta^* \log W^* + (1 - \delta^*)(\mu \log P_H^* + (1 - \mu) \log P_F^*) - \log A^*,
\]

Under producer currency pricing, we have

\[
\log P_F = \log P_F^* + \log E,
\]
\[
\log P_H = \log P_H^* + \log E,
\]

where \(E\) is the nominal exchange rate (units of foreign currency in home currency).

Plugging in PCP yields

\[
\log MC = \delta \log W + (1 - \delta)(\mu \log P_H + (1 - \mu) \log P_F^*) - \log A,
\]
\[
\log MC^* = \delta^* \log W^* + (1 - \delta^*)(\mu^* \log P_H^* + (1 - \mu^*) \log P_F) - \log A^*.
\]

In matrix notation, we can write the previous equation as

\[
\log {\bf MC} = \delta \cdot \log W + \Omega \cdot \log p + (1 - \delta) \cdot \left(\begin{array}{cc} 1 - \mu \\ - (1 - \mu^*) \end{array} \right) \log E - \log A, \quad (E.1)
\]

where \(\log {\bf MC} = \left(\begin{array}{c} \log MC \\ \log MC^* \end{array} \right)\). With nominal rigidities, domestic inflation is given by

\[
d \log p = \Theta d \log {\bf MC}, \quad (E.2)
\]

where \(\Theta = diag(1 - \theta, 1 - \theta^*)\). Plugging in this expression to a differenced version of (E.1), we get

\[
d \log {\bf MC} = \delta \cdot d \log W + \Omega \cdot \Theta d \log {\bf MC} + (1 - \delta) \cdot \left(\begin{array}{cc} 1 - \mu \\ - (1 - \mu^*) \end{array} \right) d \log E - d \log A.
\]

Rearranging for marginal cost yields

\[
d \log {\bf MC} = (1 - \Omega \Theta)^{-1} \left(\delta \cdot d \log W + (1 - \delta) \cdot \left(\begin{array}{cc} 1 - \mu \\ - (1 - \mu^*) \end{array} \right) d \log E - d \log A \right),
\]

where the term \((I - \Omega \Theta)^{-1}\) captures the ‘adjusted’ Leontief inverse as in *Rubbo (2023)* - the production network structure of the economy, suitably adjusted for nominal
rigidities. Plugging the previous equation into (E.2) yields

\[
d \log p = \Theta (1 - \Omega \Theta)^{-1} \left(\delta \cdot d \log W + (1 - \delta) \cdot \left(\frac{1 - \mu}{1 - (1 - \mu^*)} \right) d \log E - d \log A \right).
\]

(CPI inflation can be written as)

\[
d \log P = \Phi d \log p + \left(1 - \alpha \right) d \log E,
\]

where

\[
\log P = \begin{pmatrix} \log P \\ \log P^* \end{pmatrix}, \quad \Phi = \begin{pmatrix} \alpha & 1 - \alpha \\ 1 - \alpha^* & \alpha^* \end{pmatrix}.
\]

Market Clearing

Now we write the Phillips Curve in terms of output gaps of home and foreign countries. Market clearing ensures that

\[
Y_H = C_H + M_H + \frac{1 - n}{n} (C_H^* + M_H^*), \quad (E.5)
\]

\[
Y_F^* = C_F^* + M_F^* + \frac{n}{1 - n} (C_F + M_F). \quad (E.6)
\]

We assume that there is balanced trade in final and intermediate goods \(^{18}\)

\[
nP_F(C_F + M_F) = (1 - n)P_H(C_H^* + M_H^*), \quad (E.7)
\]

and this allows us to write the market clearing (E.5) as

\[
Y_H^{VA} \equiv Y_H - M_H - \frac{P_F}{P_H} M_F = C_H + \frac{P_F}{P_H} C_F, \quad (E.8)
\]

where we define the value-added output as gross output less intermediate goods, both domestic and imported. We can then rewrite the previous equation to get the real consumption in terms of real value-added

\[
P_H Y_H^{VA} = P_H C_H + P_F C_F = PC \iff C = \frac{P_H}{P} Y_H^{VA}, \quad (E.9)
\]

\(^{18}\)Imposing this condition implies that the country size parameter no longer appears in the derivation below. However, the share parameters \(\alpha\) and \(\mu\) capture an equivalent notion.
Similarly, we can write foreign consumption in terms of foreign value added

\[Y_F^{VA} \equiv Y_F - M^*_F - \frac{P_H^*}{P_F^*} M^*_H = C^*_F + \frac{P_H^*}{P_F^*} C^*_H, \]

(E.10)

where the relative price follows from PCP. As above, we can rewrite the previous equation as

\[P_F^* Y_F^{VA} = P_F^* C^*_F + P_F^* C^*_H = P^*_C \iff C^* = \frac{P^*_C}{P^*_F} Y_F^{VA}. \]

(E.11)

From the intra-temporal equation, we have

\[d \log W = d \log P + \sigma d \log C + \phi d \log L = \sigma d \log Y_H^{VA} + \phi d \log L + \sigma(d \log P_H - d \log P), \]

where the last equality follows (E.8). Similarly for the foreign economy,

\[d \log W^* - d \log P^* = \sigma d \log Y_F^{VA} + \phi d \log L^* + \sigma(d \log P_F^* - d \log P^*). \]

Now we write the previous two expressions in terms of the output gap. Using the definition of the output gap, we have

\[d \log W - d \log P = \sigma(y_H + y_H^{nat}) + \phi d \log L + \sigma(d \log P_H - d \log P) \]

\[= \sigma \tilde{y}_H + \sigma y_H^{nat} + \phi d \log L + \sigma(d \log P_H - d \log P), \]

(E.12)

Part of the right-hand side is equal to

\[\sigma y_H^{nat} + \phi d \log L = \sigma y_H^{nat} + \phi(d \log L - d \log L^{nat}) + \phi d \log L^{nat} \]

\[= \sigma y_H^{nat} + \phi \tilde{y}_H + \phi d \log L^{nat}, \]

where the last equation follows from the equation \(Y = AL \), since labor is the only factor of production. Continuing, we have

\[\sigma y_H^{nat} + \phi d \log L = \sigma(d \log L^{nat} + d \log A) + \phi \tilde{y}_H + \phi d \log L^{nat} \]

\[= \phi \tilde{y}_H + \sigma d \log A + (\sigma + \phi) d \log L^{nat}. \]

By Lemma 6 of Rubbo (2020)

\[d \log L^{nat} = \frac{1 - \sigma}{\sigma + \phi} d \log A, \]

(E.13)
hence
\[\sigma y_H^{nat} + \varphi d \log L = \varphi y_H + \sigma d \log A + (\sigma + \varphi) \frac{1 - \sigma}{\sigma + \varphi} d \log A \] (E.14)

= \varphi y_H + d \log A.

Plugging the last equation into (E.12), we get
\[d \log W - d \log P + (\sigma + \varphi) y_H + d \log A + \sigma (d \log P_H - d \log P). \] (E.15)

A similar expression can be derived for the foreign economy. Hence, in matrix form, we have
\[d \log W - d \log P = (\sigma + \varphi) \tilde{y} + d \log A + \sigma (d \log P - d \log p), \] (E.16)

where \(\tilde{y} = \begin{pmatrix} \tilde{y}_H \\ \tilde{y}_F \end{pmatrix} \). The last term of the previous equation is
\[\sigma(d \log P - d \log p) = \left(\sigma(I - \Phi) d \log p - \left(\begin{array}{c} 1 - \alpha \\ -(1 - \alpha^*) \end{array} \right) d \log \mathcal{E} \right). \] (E.17)

Hence we can rewrite (E.16) as
\[d \log W - d \log P = (\sigma + \varphi) \tilde{y} + d \log A + \sigma(I - \Phi) d \log p - \sigma \left(\begin{array}{c} 1 - \alpha \\ -(1 - \alpha^*) \end{array} \right) d \log \mathcal{E}. \] (E.18)

Using (E.4), we can also write
\[d \log W - d \log P = d \log W - \Phi \theta d \log p - \left(\begin{array}{c} 1 - \alpha \\ -(1 - \alpha^*) \end{array} \right) d \log \mathcal{E}. \] (E.19)

Plug in for \(d \log p \) using (E.3), we get
\[d \log W - d \log P = d \log W - \Phi \Theta(I - \Omega \Theta)^{-1} \left[\delta \cdot d \log W + (1 - \delta) \cdot \left(\begin{array}{c} 1 - \mu \\ -(1 - \mu^*) \end{array} \right) d \log \mathcal{E} - d \log A \right] \] (E.20)
Expand and collect

$$d \log W - d \log P = \left[I - \Phi \Theta (I - \Omega \Theta)^{-1} \delta \right] d \log W + \Phi \Theta (I - \Omega \Theta)^{-1} d \log A$$

$$- \left[\Phi \Omega (I - \Omega \Theta)^{-1} (1 - \delta) \cdot \left(\begin{array}{c} 1 - \mu \\ \hline (1 - \mu^*) \end{array} \right) + \left(\begin{array}{c} 1 - \alpha \\ \hline (1 - \alpha^*) \end{array} \right) \right] d \log \mathcal{E}. \quad (E.21)$$

Combine (E.18) and (E.21)

$$(\sigma + \varphi) \tilde{y} + \sigma (I - \Phi) d \log p - \sigma \left(\begin{array}{c} 1 - \alpha \\ \hline (1 - \alpha^*) \end{array} \right) d \log \mathcal{E} = \left[I - \Phi \Theta (I - \Omega \Theta)^{-1} \delta \right] d \log W$$

$$+ \Phi \Theta (I - \Omega \Theta)^{-1} d \log A$$

$$- \left[\Phi \Theta (I - \Omega \Theta)^{-1} (1 - \delta) \cdot \left(\begin{array}{c} 1 - \mu \\ \hline (1 - \mu^*) \end{array} \right) + \left(\begin{array}{c} 1 - \alpha \\ \hline (1 - \alpha^*) \end{array} \right) \right] d \log \mathcal{E}. \quad (E.22)$$

Collect terms

$$(\sigma + \varphi) \tilde{y} + \left[I - \Phi \Theta (I - \Omega \Theta)^{-1} \right] d \log A$$

$$+ \left[\Phi \Theta (I - \Omega \Theta)^{-1} (1 - \delta) \cdot \left(\begin{array}{c} 1 - \mu \\ \hline (1 - \mu^*) \end{array} \right) + (1 - \sigma) \left(\begin{array}{c} 1 - \alpha \\ \hline (1 - \alpha^*) \end{array} \right) \right] d \log \mathcal{E} \quad (E.23)$$

$$+ \sigma (I - \Phi) d \log p = \left[I - \Phi \Theta (I - \Omega \Theta)^{-1} \delta \right] d \log W.$$

Plug in for $d \log p$ using (E.3)

$$(\sigma + \varphi) \tilde{y} + \left[I - \Phi \Theta (I - \Omega \Theta)^{-1} \right] d \log A$$

$$+ \left[\Phi \Theta (I - \Omega \Theta)^{-1} (1 - \delta) \cdot \left(\begin{array}{c} 1 - \mu \\ \hline (1 - \mu^*) \end{array} \right) + (1 - \sigma) \left(\begin{array}{c} 1 - \alpha \\ \hline (1 - \alpha^*) \end{array} \right) \right] d \log \mathcal{E} \quad (E.24)$$

$$+ \sigma (I - \Phi) \Theta (I - \Omega \Theta)^{-1} (1 - \delta) \cdot \left(\begin{array}{c} 1 - \mu \\ \hline (1 - \mu^*) \end{array} \right) d \log \mathcal{E}$$

$$= \left[I - \Phi \Theta (I - \Omega \Theta)^{-1} \delta - \sigma (I - \Phi) \Theta (I - \Omega \Theta)^{-1} \delta \right] d \log W.$$
Collect terms

\[(\sigma + \varphi) \bar{y} + \left[I - \Phi \Theta (I - \Omega \Theta)^{-1} - \sigma (I - \Phi) \Theta (I - \Omega \Theta) \right] d \log A \]
\[+ \left[\Phi \Theta (I - \Omega \Theta)^{-1} (1 - \delta) \cdot \left(\begin{array}{c} 1 - \mu \\ -1
\end{array} \right) + (1 - \sigma) \left(\begin{array}{c} 1 - \alpha \\ -1
\end{array} \right) \right] d \log \mathcal{E} \]
\[+ \sigma (I - \Phi) \Theta (I - \Omega \Theta)^{-1} (1 - \delta) \cdot \left(\begin{array}{c} 1 - \mu \\ -1
\end{array} \right) d \log \mathcal{E} \]
\[= \left[I - \Phi \Theta (I - \Omega \Theta)^{-1} \delta - \sigma (I - \Phi) \Theta (I - \Omega \Theta)^{-1} \right] d \log W. \]

(E.25)

Simplify

\[(\sigma + \varphi) \bar{y} + \left[I - ((1 - \sigma) I + \sigma \Phi) \Theta (I - \Omega \Theta)^{-1} \right] d \log A \]
\[+ \left[((1 - \sigma) I - \sigma \Phi) \Theta (I - \Omega \Theta)^{-1} (1 - \delta) \cdot \left(\begin{array}{c} 1 - \mu \\ -1
\end{array} \right) + (1 - \sigma) \left(\begin{array}{c} 1 - \alpha \\ -1
\end{array} \right) \right] d \log \mathcal{E} \]
\[= \left[I - ((1 + \sigma) \Phi - \sigma I) \Theta (I - \Omega \Theta)^{-1} \right] d \log W. \]

(E.26)

Rearrange for \(d \log W\)

\[d \log W = \left[I - ((1 + \sigma) I + \sigma \Phi) \Theta (I - \Omega \Theta)^{-1} \right]^{-1} \]
\[\left[(\sigma + \varphi) \bar{y} + \left[I - \left[(1 - \sigma) I + \sigma \Phi \right] \Theta (I - \Omega \Theta)^{-1} \right] d \log \bar{A} \]
\[+ \left[((1 - \sigma) I - \sigma \Phi) \Theta (I - \Omega \Theta)^{-1} (1 - \delta) \cdot \left(\begin{array}{c} 1 - \mu \\ -1
\end{array} \right) + (1 - \sigma) \left(\begin{array}{c} 1 - \alpha \\ -1
\end{array} \right) \right] d \log \mathcal{E} \]
\[= \left[I - ((1 + \sigma) \Phi - \sigma I) \Theta (I - \Omega \Theta)^{-1} \delta \right] d \log W. \]

(E.27)

Plug back into (E.3)

\[d \log p = \Theta (I - \Omega \Theta)^{-1} \delta \]
\[\left[I - ((1 + \sigma) \Phi - \sigma I) \Theta (I - \Omega \Theta)^{-1} \right]^{-1} \]
\[\left\{ (\sigma + \varphi) \bar{y} + \left[I - ((1 - \sigma) I + \sigma \Phi) \Theta (I - \Omega \Theta)^{-1} \right] d \log A \]
\[+ \left[((1 - \sigma) I - \sigma \Phi) \Theta (I - \Omega \Theta)^{-1} (1 - \delta) \cdot \left(\begin{array}{c} 1 - \mu \\ -1
\end{array} \right) + (1 - \sigma) \left(\begin{array}{c} 1 - \alpha \\ -1
\end{array} \right) \right] d \log \mathcal{E} \}
\[+ \Theta (I - \Omega \Theta)^{-1} \left[(1 - \delta) \cdot \left(\begin{array}{c} 1 - \mu \\ -1
\end{array} \right) d \log \mathcal{E} - d \log A \right]. \]

(E.28)
Collect terms

\[d \log p = \Theta(I - \Omega \Theta)^{-1} \delta \]

\[
\left[I - ((1 + \sigma)\Phi - \sigma\lambda)\Theta(I - \Omega \Theta)^{-1} \delta \right]^{-1} (\sigma + \varphi) \bar{y} \\
+ \left[\Theta(I - \Omega \Theta)^{-1} \delta[I - ((1 + \sigma)\Phi - \sigma\lambda)\Omega(I - \Omega \Theta)^{-1} \delta]^{-1}[I - ((1 - \sigma)I\sigma\Phi)\Theta(I - \Omega \Theta)^{-1}] \right. \\
- \Theta(I - \Omega \Theta)^{-1} \left. \right] d \log A \\
+ \left[\Theta(I - \Omega \Theta)^{-1} \delta[I - ((1 + \sigma)\Phi - \sigma\lambda)\Theta(I - \Omega \Theta)^{-1} \delta]^{-1} \right. \\
\left. \left\{ ((1 + \sigma)I - \sigma\Phi)\Theta(I - \Omega \Theta)^{-1}(1 - \delta) \left(\begin{array}{c} 1 - \mu \\ -(1 - \mu^*) \end{array} \right) + (1 - \sigma) \left(\begin{array}{c} 1 - \alpha \\ -(1 - \alpha^*) \end{array} \right) \right\} \right. \\
+ \Theta(I - \Omega \Theta)^{-1}(1 - \delta) \cdot \left(\begin{array}{c} 1 - \mu \\ -(1 - \mu^*) \end{array} \right) \right. \\
\left. d \log E. \right] \\
\text{(E.29)}

Use (E.4) to get CPI Phillips Curves

\[d \log P = \Phi \Theta(I - \Omega \Theta)^{-1} \delta \left[I - ((1 + \sigma)\Phi - \sigma\lambda)\Theta(I - \Omega \Theta)^{-1} \delta \right]^{-1} (\sigma + \varphi) \bar{y} \\
+ \Phi \left[\Theta(I - \Omega \Theta)^{-1} \delta[I - ((1 + \sigma)\Phi - \sigma\lambda)\Omega(I - \Omega \Theta)^{-1} \delta]^{-1}[I - ((1 - \sigma)I\sigma\Phi)\Theta(I - \Omega \Theta)^{-1}] \right. \\
- \Theta(I - \Omega \Theta)^{-1} \left. \right] d \log A \\
+ \Phi \left[\Theta(I - \Omega \Theta)^{-1} \delta[I - ((1 + \sigma)\Phi - \sigma\lambda)\Theta(I - \Omega \Theta)^{-1} \delta]^{-1} \right. \\
\left. \left\{ ((1 + \sigma)I - \sigma\Phi)\Theta(I - \Omega \Theta)^{-1}(1 - \delta) \cdot \left(\begin{array}{c} 1 - \mu \\ -(1 - \mu^*) \end{array} \right) + (1 - \sigma) \left(\begin{array}{c} 1 - \alpha \\ -(1 - \alpha^*) \end{array} \right) \right\} \right. \\
+ \Theta(I - \Omega \Theta)^{-1}(1 - \delta) \cdot \left(\begin{array}{c} 1 - \mu \\ -(1 - \mu^*) \end{array} \right) \left(\begin{array}{c} 1 - \alpha \\ -(1 - \alpha^*) \end{array} \right) \right. \\
\left. d \log E. \right] \\
\text{(E.30)}

where

\[K = \Phi \Theta(I - \Omega \Theta)^{-1} \delta \left[I - ((1 + \sigma)\Phi - \sigma\lambda)\Theta(I - \Omega \Theta)^{-1} \delta \right]^{-1} (\sigma + \varphi), \]
\[G = \Phi \left[\Theta(I - \Omega\Theta)^{-1} \delta \left[I - ((1 + \sigma)\Phi - \sigma I)\Omega(I - \Omega\Theta)^{-1} \delta \right]^{-1} \right. \\
\left. [I - ((1 - \sigma)I + \sigma\Phi)\Theta(I - \Omega\Theta)^{-1}] - \Theta(I - \Omega\Theta)^{-1} \right], \]

and

\[H = \Phi \left[\Theta(I - \Omega\Theta)^{-1} \delta \left[I - ((1 + \sigma)\Phi - \sigma I)\Theta(I - \Omega\Theta)^{-1} \delta \right]^{-1} \right. \\
\left. \left\{ ((1 + \sigma)I - \sigma\Phi)\Theta(I - \Omega\Theta)^{-1}(1 - \delta) \left(\begin{array}{c} 1 - \mu \\ -(1 - \mu^*) \end{array} \right) + (1 - \sigma) \left(\begin{array}{c} 1 - \alpha \\ -(1 - \alpha^*) \end{array} \right) \right] \right. \\
\left. \left. + \Theta(I - \Omega\Theta)^{-1}(1 - \delta) \cdot \left(\begin{array}{c} 1 - \mu \\ -(1 - \mu^*) \end{array} \right) + \left(\begin{array}{c} 1 - \alpha \\ -(1 - \alpha^*) \end{array} \right) \right]\].

F The Dynamic Model of GVCs

Building on the static model we presented, here we introduce a two-country, multi-sector New Keynesian model with production networks. The two countries, home (H) and foreign (F), are populated by a continuum of infinitely lived households with a fraction of (n) and (1-n) of the total world population, respectively. Foreign country variables will be denoted by an asterisk (*).

In each country, there is a continuum of firms indexed by \(i \in [0, 1] \) and each firm belongs to a sector, \(s \in 1, \ldots, S \). Firms produce differentiated products which can be sold domestically or exported for consumption and production. Our model thus incorporates GVCs through trade in intermediate inputs. In each sector, monopolistically competitive firms produce their output using labor and intermediate goods as inputs. In each period, producers choose how much intermediate input they want to buy from each sector and then they decide whether to buy home or foreign-produced intermediates. Similarly, we assume that aggregate consumption is a composite of sectoral consumption goods and each of these goods is a CES aggregate of home and foreign-produced goods. Thus, there is trade in final goods as well. We assume that international asset markets are complete in the sense that consumers have access to state-contingent bonds that can be traded internationally.

\[^{19}\text{The modelling is quite standard. For instance Comin and Johnson (2020) presents a similar small open economy model with Rotemberg price adjustments instead of Calvo.} \]
Households

Household preferences are identical across countries. Therefore we only explain the intertemporal decision of a representative household in the home country. Households receive utility from consumption, C, and disutility from supplying labor, L. The lifetime utility function of the representative household is given by

$$U = \mathbb{E}_t \sum_{t=0}^{\infty} \beta^t \left[\frac{C_{t+1}^{1-\sigma} - \bar{\Xi}L_t^{1+\varphi}}{1 - \sigma} \right],$$

where \mathbb{E}_t is the expectations operator conditional on time t information, $\beta \in (0, 1)$ is the discount factor, σ and φ denote the inverse of intertemporal elasticity of substitution and Frisch elasticity of labor supply, respectively. Finally, $\bar{\Xi}$ is a preference parameter that allows us to fix the hours worked in the steady state.

Households finance expenditure on consumption goods through labor income and profits from the ownership of firms. We assume that the international asset markets are complete in the sense that households can trade state-contingent securities that are denominated in the home currency to buy consumption goods. We assume that only bonds that are issued by home can be traded internationally. The period budget constraint of the home household is

$$P_t C_t + \mathbb{E}_t Q_{t,t+1} B_{Ht+1} \leq B_{Ht} + W_t L_t + \Pi_t,$$

where P_t is the CPI, W_t is the nominal wage and Π_t is the nominal profits. B_{Ht+1} denotes the home households holding of nominal state-contingent internationally traded bonds which deliver one unit of home currency in period $t+1$ if a particular state occurs. $Q_{t,t+1}$ is the price of such bond at time t.

First-order conditions to the home household’s utility maximization problem yields

$$\bar{\Xi} C_t^\sigma L_t^\varphi = \frac{W_t}{P_t},$$

and

$$Q_{t,t+1} = \beta \mathbb{E}_t \left[\left(\frac{C_{t+1}}{C_t} \right)^{-\sigma} \left(\frac{P_t}{P_{t+1}} \right) \right].$$

Let the return on the nominal state contingent bond is equal to $(1 + i_t) = 1/Q_{t,t+1}$.
We then have the usual Euler equation

$$\frac{1}{1 + i_t} = \beta \mathbb{E}_t \left[\left(\frac{C_{t+1}}{C_t} \right)^{-\sigma} \left(\frac{P_t}{P_{t+1}} \right) \right].$$ \hspace{1cm} (F.4)

The foreign household’s intertemporal decision yields similar expressions

$$\Xi \left(C_t^* \right)^\sigma \left(L_t^* \right)^\varphi = \frac{W_t^*}{P_t^*},$$ \hspace{1cm} (F.5)

$$\frac{1}{1 + i_t^*} = \beta \mathbb{E}_t \left[\left(\frac{C_{t+1}^*}{C_t^*} \right)^{-\sigma} \left(\frac{P_t^*}{P_{t+1}^*} \right) \right],$$ \hspace{1cm} (F.6)

and

$$Q_{t,t+1} = \beta \mathbb{E}_t \left[\left(\frac{C_{t+1}^*}{C_t^*} \right)^{-\sigma} \left(\frac{S_t P_t^*}{S_{t+1} P_{t+1}^*} \right) \right],$$ \hspace{1cm} (F.7)

where S_t is the nominal exchange rate defined as the home currency price of foreign currency.

Households’ choice on internationally traded bonds, Equations (F.3) and (F.7), yield the international risk-sharing condition

$$q_t = \Psi \left(\frac{C_t}{C_t^*} \right)^\sigma,$$ \hspace{1cm} (F.8)

where $q_t = S_t P_t^* / P_t$ is the real exchange rate and $\Psi = Q_0 \left(\frac{C_0}{C_0^*} \right)^\sigma$ is a constant.

Each period households optimally allocate their total expenditure across sectoral goods. The final consumption basket, C_t, is a CES aggregate of finitely many sectoral goods ($s \in \{1, 2, \ldots, S\}$) in each country

$$C_t = \left[\sum_{s=1}^{S} \eta_s \left(C_{st} \right)^{\theta_C} \right]^{\frac{1}{\theta_C}} .$$ \hspace{1cm} (F.9)

where θ_C is elasticity of substitution between sectoral consumption goods and η_s is the share of sector s in total consumption with $\Sigma \eta_s = 1$.

Sectoral goods themselves are also CES aggregates of home, C_{Hst}, and foreign,
where \(\alpha_s \) represents the share of home-produced goods in sectoral consumption and \(\phi_{Cs} \) is the elasticity of substitution between home and foreign-produced consumption goods which is allowed to be different across sectors. As in the static set-up, the share of imported goods in each sector is a function of relative country size, \(1 - n \), and the degree of openness in final demand, \(\upsilon_{Cs} \):
\[
1 - \alpha_s = (1 - n) \upsilon_{Cs}.
\]
When \(\alpha_s > 0.5 \), there is home bias in preferences in a given sector. Household expenditure minimization yields the following optimal demand for sectoral goods
\[
C_{st} = \eta_s \left(\frac{P_{st}}{P_t} \right)^{-\theta_C} C_t,
\]
where the aggregate price index is
\[
P_t = \left[\sum_{s=1}^{S} \eta_s \left(P_{Hst} \right)^{1-\theta_C} \right]^{-1/\theta_C}.
\]
Then, sectoral consumption is further allocated between home and foreign goods
\[
C_{Hst} = \alpha_s \left(\frac{P_{Hst}}{P_{st}} \right)^{-\phi_{Cs}} C_{st}, \quad C_{Fst} = (1 - \alpha_s) \left(\frac{P_{Fst}}{P_{st}} \right)^{-\phi_{Cs}} C_{st},
\]
where the sectoral price index is
\[
P_{st} = \left[\alpha_s P_{Hst}^{1-\phi_{Cs}} + (1 - \alpha_s) P_{Fst}^{1-\phi_{Cs}} \right]^{-1/\phi_{Cs}}. \]
We assume that the law-of-one-price holds such that the price of foreign goods in the units of home currency is \(P_{Fst} = S_t P_{Fst}^* \) and the price of home goods in the units of foreign currency is \(P_{Hst}^* = P_{Hst} / S_t \). The situation of foreign households is analogous.

F.2 Firms

The supply side of the economy consists of perfectly competitive sectoral producers at the retail level and monopolistically competitive firms at the wholesale level.

Retail Producers

Infinitely many competitive firms aggregate firm level domestic varieties \(Y_{Hst}(i) \) into sectoral goods \(Y_{Hst} \) using the following production function
\[
Y_{Hst} = \left[\int_0^1 Y_{Hst}(i) \, di \right]^\varepsilon_s^{-1},
\]
where ϵ_s is the elasticity of substitution between varieties within a sector. The solution to this aggregation problem implies the following demand for varieties

$$Y_{Hst}(i) = \left(\frac{P_{Hst}(i)}{P_{Hst}} \right)^{-\epsilon_s} Y_{Hst}.$$

Wholesale Producers

Now, we introduce the production process of individual varieties. Firms use labor and intermediate inputs to produce a unit of output. The production function is given by

$$Y_{Hst}(i) = A_t A_{st} L_{st}(i) \delta_s M_{st}(i)^{1-\delta_s}, \quad (F.11)$$

where L_{st} denotes firm i’s labor demand and δ_s denotes the share of labor in production. Aggregate and sectoral productivity assumed to follow an AR(1) process and are represented by A_t and A_{st}, respectively

$$\log A_t = (1 - \rho_A) \log \bar{A} + \rho_A \log A_{t-1} + \epsilon_{At}, \quad (F.12)$$

$$\log A_{st} = (1 - \rho_{As}) \log \bar{A}_{s} + \rho_{As} \log A_{st-1} + \epsilon_{Ast}, \quad (F.13)$$

where \bar{A} and \bar{A}_{s} represent the steady state values, $\rho_A \in (0, 1)$ and $\rho_{As} \in (0, 1)$ denote the persistence, and $\epsilon_{At} \sim N(0, \sigma^2_A)$ and $\epsilon_{Ast} \sim N(0, \sigma^2_{As})$ are iid innovations.

Each firm, i, uses intermediate good, $M_{st}(i)$, which is a CES aggregate of sectoral goods

$$M_{st}(i) = \left[\sum_{s' = 1}^{S} \omega_{ss'}^M (M_{ss'}(i)^{1/\theta_M} \right]^{\theta_M/\theta_M - 1}, \quad (F.14)$$

where $M_{ss'}$ is the intermediate good demand of sector s from sector s' at time t, and $\omega_{ss'}$ is the share of sector s' in total intermediate good expenditure of sector s with $\sum_{s' = 1}^{S} \omega_{ss'} = 1$. The elasticity of substitution across sectoral intermediate goods is denoted by θ_M.

Firms’ sectoral input demand is a CES aggregate of domestic and foreign intermediate goods as in the consumption case

$$M_{ss'}(i) = \left[\frac{\mu_{ss'}^{Ms}}{\phi_{Ms} (M_{Hss'}(i))^{1/\phi_{Ms} - 1} + (1 - \mu_{ss'}) \phi_{Ms} (M_{Fss'}(i))^{1/\phi_{Ms} - 1}} \right]^{\phi_{Ms}/\phi_{Ms} - 1}, \quad (F.15)$$

where $M_{Hss'}(i)$ and $M_{Fss'}(i)$ denote domestic and foreign intermediate good demand of sector s from sector s' at time t, respectively. There exists sectoral home
bias at the intermediate level denoted by $\mu_{ss'}$, and ϕ_{Ms} denotes the elasticity of substitution between home and foreign-produced intermediate goods which is allowed to be different across sectors. Similar to consumption preference structure, we assume that the share of imported intermediate goods is a function of relative country size, $(1 - n)$, and the degree of openness in intermediate goods in a sector, $\upsilon_{Mss'}$: $1 - \mu_{ss'} = (1 - n) \upsilon_{Mss'}$.

Every period, firms choose the labor and intermediate inputs to minimize their costs. Optimal input demands then can be shown as

$$L_{st} = \delta_s \left(\frac{MC_{st}}{W_t} \right) Y_{Hst}, \quad M_{st} = (1 - \delta_s) \left(\frac{MC_{st}}{P_{M_{st}}} \right) Y_{Hst},$$

where MC_{st} is sectoral marginal cost (will be defined below) and $P_{M_{st}}$ is the intermediate input price index for sector s. Firms also optimally choose sectoral intermediate goods as

$$M_{ss't} = \omega_{ss'} \left(\frac{P_{M_{ss't}}}{P_{M_{st}}} \right)^{-\theta_M} M_{st},$$

where intermediate input price index is $P_{M_{st}} = \left[\sum_{s' = 1}^{S} \omega_{ss'} \left(p_{M_{ss't}} \right)^{1-\theta_M} \right]^{\frac{1}{1-\theta_M}}$, and the demand for home and foreign sectoral inputs are given by

$$M_{Hss't} = \mu_{ss'} \left(\frac{P_{Hs't}}{P_{M_{ss't}}} \right)^{-\phi_{Ms}} M_{ss't}, \quad M_{Fss't} = (1 - \mu_{ss'}) \left(\frac{P_{Fs't}}{P_{M_{ss't}}} \right)^{-\phi_{Ms}} M_{ss't},$$

where sectoral intermediates price index is a weighted average of home and foreign sectoral output prices $P_{M_{ss't}} = \left[\mu_{ss'} p_{Hs't}^{1-\phi_{Ms}} + (1 - \mu_{ss'}) p_{Fs't}^{1-\phi_{Ms}} \right]^{\frac{1}{1-\phi_{Ms}}}$.

By using firms’ demand for factors of production, we can derive the sectoral nominal marginal cost

$$MC_{st} = \frac{1}{A_t} \left(\frac{W_t}{\delta_s} \right) \delta_s \left(\frac{P_{M_{st}}}{1 - \delta_s} \right)^{1-\delta_s}.$$ \hspace{1cm} (F.16)

Note that sectoral linkages through input-output relationships at the intermediate goods level imply a sectoral marginal cost that depends on other sectors’ output prices.
Firm’s Pricing Decision

We assume that firms are subject to Calvo-type price rigidities such that a firm can update its price with a probability of $1-\theta_s$, where θ_s denotes the sector-specific price stickiness. Wholesale producer, i, that can re-set its price, maximizes the present discounted future value of profits

$$E_t \sum_{k=0}^{\infty} \beta^k \frac{C_{t+k}^{\sigma}}{C_t^{\sigma}} \theta_s^k \left[P_{Hst}(i)Y_{Hst}(i) - MC_{st}(i)Y_{Hst}(i) \right],$$

subject to demand function

$$Y_{Hst}(i) \leq \left(\frac{P_{Hst}(i)}{P_{Hst}} \right)^{-\epsilon_s} Y_H.$$

The FOC to this problem implies the following nonlinear relationship between firms’ reset prices and marginal cost

$$P_{Hst} = \frac{\epsilon_s}{\epsilon_s - 1} E_t \sum_{k=0}^{\infty} \beta^k C_{t+k}^{\sigma} \theta_s^k MC_{st+k}P_{Hst+k}^{e_s} Y_{Hst+k},$$

where P_{Hst} is the reset price.

F.3 Market Clearing

Sectoral output can be used domestically for consumption and for further production as intermediate inputs or it can be exported, X_{st}. Exports can be consumed by foreign consumers or used by foreign firms as inputs. Thus, we can write the goods market clearing condition such that

$$Y_{Hst} = C_{Hst} + \sum_{s'=1}^{S} M_{Hs'st} + \frac{1-n}{n} \left(C_{Hst}^{*} + \sum_{s'=1}^{S} M_{Hs'st}^{*} \right).$$

We assume that labor is perfectly mobile across sectors but not across countries. Labor market clearing conditions then can be expressed as

$$L_t = \sum_{s=1}^{S} L_{st}.$$
F.4 Monetary Policy

Monetary policy authority sets the nominal interest rate following a Taylor-type rule that targets the CPI inflation

\[i_t = \left({i_{t-1}} \right) \Gamma_i \left(\frac{\pi_t}{\pi} \right)^{\Gamma_i(1-\Gamma_i)} \exp(\epsilon_{mt}), \]

where \(\epsilon_{mt} \sim N(0, \sigma^2_m) \) is the shock to the monetary policy.