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Abstract

We propose the Blockwise Boosted Inflation Model (BBIM), a boosted tree framework that
decomposes inflation dynamics into predictive components aligned with an open-economy
hybrid Phillips curve. Demand and supply contributions are identified by imposing
monotonicity constraints, ensuring theory-consistent links between inflation and key
indicators. Applied to monthly UK CPI inflation, the model shows that the recent surge

has been driven mainly by global supply shocks transmitted through supply chains. We
also uncover an L-shaped Phillips curve relationship between inflation and labour market
tightness, with tight labour markets amplifying recent inflationary pressures. By contrast,
earlier episodes saw non-linearities more strongly tied to broader slack, particularly during
recessions. The model further accounts for trend shifts informed by inflation expectations.
Short-term household expectations have recently displayed persistent non-linear effects,
temporarily raising trend inflation and prolonging inflationary pressures, while longer-term
expectations remain anchored. Out-of-sample, the BBIM delivers competitive forecasting
performance relative to linear benchmarks and unstructured machine learning methods. Our
approach provides a flexible yet interpretable framework that combines economic structure
with machine learning for policy-relevant analysis of inflation dynamics.
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1 Introduction

Disentangling the sources of inflationary pressure is a central task for monetary policy-
makers aiming to stabilise inflation. Yet this task becomes particularly difficult when
inflation dynamics are shaped by non-linearities—conditions under which standard lin-
ear models often fail to identify underlying drivers or produce reliable forecasts. This
challenge became evident in the aftermath of the Covid-19 pandemic and Russia’s inva-
sion of Ukraine, when many central banks initially underestimated the magnitude and
persistence of the inflation surge.

Could the flexibility of machine learning help policymakers detect and interpret complex,
non-linear inflation dynamics? While machine learning has gained traction in economic
forecasting for its ability to capture high-dimensional, non-linear relationships (de Araujo
et al., 2024), its use has largely centred on maximising predictive accuracy. Meanwhile,
its use for uncovering fundamental economic relationships has been limited by the lack-
ing economic interpretability of current machine learning models. These models are often
considered to be “black boxes,” offering little insight into the underlying economic mech-
anisms (Nakamura, 2005; Medeiros et al., 2021; Joseph et al., 2021; Lenza et al., 2023).
The value of such methods for monetary policy hinges on understanding of the drivers of
inflation signals, and whether those are likely to be temporary or persistent.

In this paper, we bridge the gap between predictive accuracy and economic intuition by
introducing the Blockwise Boosted Inflation Model (BBIM)—a novel machine learning
framework that combines the predictive power of gradient boosting with an economically
interpretable structure inspired by the open-economy hybrid Phillips curve. At its core,
the model’s decision trees capture non-linear associations between inflation and a large set
of indicators. Boosting models have shown accurate performance on tabular prediction
problems (Grinsztajn et al., 2022; McElfresh et al., 2024) and have delivered strong
empirical results in macroeconomic forecasting (Ng, 2014; Dopke et al., 2017; Yoon, 2021).

To generate economically interpretable insights, we impose a blockwise structure on the
model, with each block representing a distinct group of indicators linked to specific in-
flation determinants. The blocks are designed to mirror a hybrid open-economy Phillips
curve. A time-varying trend component captures non-linear associations between infla-
tion, a time indicator, inflation expectations, and indicators of domestically generated
inflation. Global and domestic supply blocks reflect cyclical effects from cost pressures,
commodity price fluctuations, and global supply-chain disruptions. Global and domestic
demand blocks capture broader economic activity, with domestic demand further divided
to isolate the role of labour market slack.

Within each block, decision trees capture potentially non-linear relationships with in-
flation. Across blocks, the model is additive, estimated sequentially through boosting
iterations that alternate between blocks. This design enhances interpretability by de-
composing the overall forecast into economically meaningful components: rather than
producing a single aggregate prediction, the model generates blockwise predictive contri-
butions, with each block’s marginal effect given by the sum of its trees’ predictions. It
also allows for the imposition of additional structural restrictions within each block.

Specifically, grouping alone might not suffice for identification, as the association be-
tween inflation and activity indicators often reflects a mix of demand and supply forces.
To address this, we apply monotonicity constraints that ensure relationships between pre-



dictors and inflation with the supply and demand blocks are directionally consistent with
a theoretically consistent separation of demand- and supply-driven inflation dynamics.
Specifically, activity indicators within the demand blocks are constrained to contribute
positively to inflation, while in the supply blocks they are constrained to contribute nega-
tively (the reverse sign is imposed if an indicator measures slack, such as unemployment).
Indicators of cost shocks and global supply chain pressures are constrained to have a pos-
itive effect on inflation within supply. To further support identification, we incorporate
externally identified global shocks—such as oil supply or global demand shocks (Baumeis-
ter and Hamilton, 2019; Kénzig, 2021)—placing them in the relevant blocks and applying
similar constraints.

We train the model in up to 200 boosting rounds, where each round adds one tree per
block, fitted to the residuals from the previous prediction and subject to any monotonicity
constraints within that block. The order of blocks is randomly permuted each round,
and a slow learning rate ensures that all blocks condition on one another, giving them
similar opportunities to contribute to the overall prediction. As a robustness check, we
also explore structured sequences that assume certain blocks contain more exogenous
information—for example, training global blocks or the trend block first.

We apply the BBIM to monthly UK CPI inflation data spanning 1989 to 2024—a setting
particularly suited to our approach given the UK’s openness and exposure to external
shocks. The model incorporates more than 50 monthly indicators, each included with
multiple lags. We provide a near-term predictive decomposition of inflation into blockwise
contributions over time, based on estimation using repeated cross-validation. The model
is initialised at the 2% inflation target so that predictive contributions capture deviations
from this baseline, and a small learning rate ensures incremental updates that reduce the
risk of overfitting. Additionally, we conduct a pseudo out-of-sample forecasting exercise
at horizons of up to 12 months to demonstrate that the model remains competitive in
predictive performance relative to unstructured linear and machine learning models.

The BBIM provides intuitive, policy-relevant insights regarding the determinants of UK
CPI inflation over time. The time-varying trend is generally slow-moving but shifts up-
ward during high-inflation periods. Crucially, these dynamics are not imposed a priori;
they emerge from the model learning non-linear associations between inflation, a time
indicator, and expectations measures. The model also captures cyclical demand contri-
butions from broader activity, as during the 2008 Global Financial Crisis (GFC) and
the post-pandemic recovery. The importance of monotonicity constraints is evident by
comparison: without them, the model produces a slow-moving rather than cyclical de-
mand component, missing the disinflationary impact of the GFC. In the recent episode,
demand-like inflationary pressures have instead been concentrated in labour market tight-
ness rather than broad activity.

Non-linearities have been central to recent UK inflation dynamics. Using Shapley values
(Lundberg and Lee, 2017), we trace the shape and strength of non-linear associations be-
tween indicators and their predictive contributions within each model block. Three key
findings emerge. First, supply-side non-linearities have been more pronounced in recent
years than in earlier episodes, with increases in global supply chain pressures and com-
modity prices generating stronger inflationary signals, also reflected in disproportionately
large contributions from domestic food prices. Second, UK inflation exhibits a non-linear
relationship with labour market tightness: predictive contributions rise steeply for high



vacancy-to-unemployment gaps and low unemployment gaps, as observed in the recent
episode, echoing U.S. evidence of an L-shaped Phillips curve with labour market slack
(Benigno and Eggertsson, 2023, 2024; Bernanke and Blanchard, 2025). Third, short-term
household inflation expectations show asymmetric effects: weak at low levels but increas-
ingly inflationary once they exceed 4%. These non-linear effects temporarily elevated
trend inflation, sustaining price pressures even after supply shocks subsided. This likely
reflects adaptive expectations at high inflation, with potential threshold effects (Pfauti,
2023), as well as heightened sensitivity to salient price changes (Anesti et al., 2024). In
contrast, long-term expectations have remained well anchored, unlike the pronounced
non-linearities observed during the pre-inflation-targeting era of the early 1990s.

The block structure imposed to inform the model, and the order in which each block
is trained, reflect a priori modelling choices that, while enhancing economic intuition,
may influence results. To assess robustness, we run a range of specifications varying the
training sequence, for example fitting the trend block first or imposing block exogeneity
by training external blocks before domestic ones. Both the cyclical characteristics of each
block’s contribution and the non-linear associations with indicators within blocks remain
robust across specifications. While the relative sizes of block contributions vary—blocks
trained earlier tend to capture a larger share—the overall picture remains intact. In the
recent episode, supply continues to dominate, rising demand-like effects linked to labour
market tightness are evident but less pronounced compared to global supply effects, and
the expectations-informed trend rises later in the inflation episode—particularly when the
trend is trained first. We also test alternative trend specifications. Results are broadly
similar but reveal the importance of an expectations-informed trend. Omitting the trend
increases the weight of other blocks but underestimates inflation during high-inflation
periods. Replacing it with a purely time-based indicator weakens the model’s ability to
capture a generally flat, slow-moving trend that occasionally rises.

Finally, the out-of-sample forecast exercise shows that the BBIM performs competi-
tively against a range of benchmark models, particularly during the recent high-inflation
episode. It significantly outperforms a simple autoregressive model, reducing root mean
squared errors by 10-25%, and performs broadly on par with leading alternatives such
as Lasso regression and an unobserved components model. During the recent episode,
forecast errors are larger overall, and while machine learning models perform relatively
better, the BBIM delivers modest improvements over unstructured alternatives. Notably,
removing the block structure and monotonicity constraints—thereby increasing model
flexibility—does not improve forecast accuracy, suggesting that economically motivated
structure can enhance interpretability without sacrificing predictive performance.

Our analysis contributes to expanding the practical relevance of machine learning mod-
els in economic applications. While the BBIM remains a predictive rather than fully
structural approach, its combination of blockwise structure and monotonicity constraints
offers a principled, theory-informed framework for disentangling supply- and demand-
driven contributions to inflation. In doing so, it provides policymakers with timely and
interpretable insights into the non-linear drivers of inflation dynamics.

We contribute to a growing literature that integrates machine learning methods—such as
neural networks and tree-based approaches—with economically motivated constraints to
enhance interpretability, rather than relying solely on post-hoc explanations. Buckmann
and Potjagailo (2025) survey this emerging field and highlight how economic reasoning can



be embedded directly within machine learning models. Closely related to our approach is
Goulet Coulombe (2024), who develops a neural network with a block structure designed
to reflect a Phillips curve framework for the United States. His model separately identifies
a slow-moving slope and a cyclical output gap contribution by imposing assumptions akin
to those used in time-varying unobserved components models, but does not distinguish
demand and supply drivers based on economically motivated directional restrictions.
Block structures have also been used in more traditional macroeconomic models, such as
dynamic factor models (Kose et al., 2003; Potjagailo and Wolters, 2023).

We adopt boosted trees, which are well-suited to incorporating economic priors. They
are computationally efficient, robust to hyperparameter choices and can accommodate
blockwise structures through sequential learning. Prior work used boosting models (Lou
et al., 2012) to learn generalised additive models (Hastie and Tibshirani, 1990), which
uncover non-linear relationships by decomposing predictions into sums of functions of
individual predictors (blocks of size 1), without allowing for interactions between them.
Blockwise boosting, with several variables per block, is not prominently discussed in the
machine learning literature (but see Hothorn et al., 2010; Mayer et al., 2021) and, to our
knowledge, has not been used to introduce economically motivated constraints.

The use of monotonicity constraints—where the relationship between predictors and the
target variable is restricted to follow a prespecified direction—is a well-established strat-
egy for enhancing model interpretability. While such constraints have been extensively
studied in the general machine learning literature (Nanfack et al., 2022; Cano et al.,
2019) and have also been used in economic and financial prediction models to increase
the predictive performance by imposing expert knowledge (Li and Tsiakas, 2017; Fisher
et al., 2020; Wen et al., 2022; Richman and Wiithrich, 2024), their application in macroe-
conomic contexts remains limited (but see Chalaux and Turner, 2023). To the best of
our knowledge, this paper is the first to integrate component-wise non-linear boosting
with monotonicity constraints to recover economically interpretable decompositions of
inflation dynamics.

Our analysis also connects naturally to the macroeconometric literature that seeks to
identify the drivers of inflation—particularly in the U.S. context—using approaches such
as disaggregated price data (Shapiro et al., 2022; Firat and Hao, 2023), dynamic factor
models (Eickmeier and Hofmann, 2022), and structural vector autoregressions (SVARs)
(Kabaca and Tuzcuoglu, 2023; Giannone and Primiceri, 2024). These methods typically
rely on identifying structural demand and supply shocks via sign or zero restrictions
(Arias et al., 2018). In contrast, our approach imposes monotonicity constraints directly
during model estimation, ensuring that each predictor maintains a theory-consistent di-
rectional effect across its domain. This enables a decomposition of predicted inflation
into contributions from distinct economic drivers, while also allowing for the tracing of
potentially non-linear and time-varying signals associated with each block of determi-
nants. Additionally, the inclusion of a block capturing a stochastic trend component
informed by inflation expectations is consistent with unobserved components models of
inflation (Chan et al., 2018), and reflects recent findings emphasising the central role of
expectations—alongside demand and supply shocks—in explaining the recent inflation
surge (Coibion and Gorodnichenko, 2025).

The remainder of the paper is structured as follows. Section 2 outlines the methodologi-
cal framework: a blockwise boosted tree model structured in line with an open-economy



Phillips curve, with monotonicity constraints to distinguish demand and supply determi-
nants. It also describes the empirical setup for the UK inflation application. Section 3
presents the results, including the inflation decomposition, the learned non-linear associ-
ations, and robustness checks across alternative specification. Section 4 concludes.

2 Blockwise Boosted Trees for Modelling Inflation

We first present the blockwise boosted tree method, extending standard boosting, and
propose its application to inflation forecasting within an economic structure resembling an
open-economy Phillips curve. Section 2.3 introduces monotonicity constraints to identify
demand and supply contributions. Section 2.4 outlines model training and parameter
choices, and Section 2.5 details the UK inflation application.

2.1 Blockwise boosting

Our method builds on the standard boosting paradigm in machine learning (Friedman,
2001), an ensemble approach that combines predictions from a large number of base
learners trained sequentially. We use decision trees as base learners, which partition the
data into subsets of observations with similar outcome values, assigning the mean outcome
in each subset as its prediction. Decision trees are well-suited for boosting due to their
ability to capture non-linear relationships and due to their computational efficiency.

Let f(X;—,) denote a decision tree, where X;_, represents predictor variables lagged by
p periods relative to time ¢t. The variable of interest is inflation at forecast horizon h, de-
noted by m; . A standard boosting model predicts inflation by summing the predictions
of M trees:

M

Toin = Y fm(Xip) + &, (1)

m=1

where each decision tree m is fitted on the residuals of the previous trees, such that each
additional tree improves the prediction of the ensemble slightly.

The blockwise boosting model distinguishes between separate blocks of predictors. Within
each block k, the model contains M block-specific decision trees f* that are trained on
the sub-group of predictors Xf_p. The model allows for interactions among variables
within blocks but imposes conditional linearity between blocks.! The model prediction is
obtained by summing the predictions of the trees from all K blocks:

Tith = Z Z frI)C’L(Xf—p) + €. (2)

k=1 m=1

The blockwise structure enhances interpretability by expressing the contribution of each
block as the sum of its base learners’ outputs. These contributions have a meaning-
ful economic interpretation when blocks are constructed based on economic intuition or
statistical properties—for example, when predictors within a block jointly capture an

'The model does not assume or impose statistically independent block contributions.



unobserved economic driver. This design reflects a macroeconomic principle: economic
fluctuations are determined by a small number of structural shocks or latent forces. The
identification of interpretable common components parallels dynamic factor models where
factors can be extracted from predefined variable groups for interpretation (Kose et al.,
2003; Potjagailo and Wolters, 2023), and has been applied in blockwise neural networks
(Goulet Coulombe, 2024). For a discussion of the blockwise structure and its capacity to
embed economic structure into machine learning, see Buckmann and Potjagailo (2025).

2.2 Blockwise boosting to represent a Phillips curve

Our aim is to represent a structure that reflects a stylised open-economy hybrid new-
Keynesian Phillips curve, in line with Gali and Monacelli (2005) and Forbes (2019):

Ty = pmi—1 + BE(m1) + k1l + fizﬁf + ’ch + uy, (3)

where inflation 7; is modelled as a combination of a term reflecting the role of forward-
looking expectations and backward-looking inertia, domestic demand pressures, such as
a domestic output gap §; = y; — y;, foreign demand pressures ¢/, and foreign cost-
push shocks cf’. The latter can reflect commodity prices, global supply chain pressures,
exchange rates, or global financial conditions. Since we are interested in inflation in the
United Kingdom, a small open economy, accounting for foreign demand and supply effects
is important to cleanly separate out a Phillips curve association with domestic effects.
Finally, the residual u; = ¢¢; represents domestic cost-push shocks.

How can we incorporate economically intuitive structure in accordance with a Phillips
curve as in (3) within a machine learning set-up? In a first step, we can rely on a block-
wise boosting structure to sequentially fit decision trees that are calibrated on groups
of indicators, where each group or model block intends to summarise one component of
the Phillips curve. Specifically, we can group lagged inflation indicators and expecta-
tions series (X]) to reflect a stochastic trend component 7; that captures backward- and
forward-looking dynamics. Next, we can group global and domestic activity indicators
(X} ,X,g”F) to approximate the association with demand conditions y; or y!, and finally,
group measures of global and domestic costs or supply pressure indicators (X7, XtCF)
This results in the following blockwise boosted tree specification:

M
Teen = 20 (Fa(X0,) + FA(XE,) + Fi (XPL) 4 ol XE) + fil (X)) + e ()
m=1

This model imposes conditional linearity between blocks, but allows flexible functional
forms between inflation and the indicators within each block. A comparable grouping
was introduced by Goulet Coulombe (2024) to represent a Phillips curve structure via a
blockwise neural network model for inflation in the United States.

The assumption of linear separability across blocks may be overly restrictive, especially in
high-dimensional settings where many indicators lack clear structural interpretation and
may not uniquely represent a single component. For example, the relationship between



inflation and domestic activity or slack variables X; may reflect both demand-driven pres-
sures—key to identifying the Phillips curve slope via f? —and supply-side forces ideally
captured by f¢. As a result, trees fY may conflate signals from both sources, weakening
the structural interpretability of the demand contribution. Such conflation can also re-
duce predictive accuracy by diluting otherwise distinct informational signals. To address
this, we incorporate additional identifying assumptions via monotonicity constraints.

2.3 Monotonicity constraints to separate supply and demand

For interested readers, we first illustrate the general mechanics of monotonicity constraints
before presenting our main BBIM specification, which incorporates these constraints, in
Section 2.3.2.

2.3.1 Illustration of monotonicity constraints

A monotonicity constraint on predictive model f(-) for variable y with predictors xy, ...,
requires that:

f(x17x27... ’xij...>2f(x1’x27... 7x;7“'>

when z; > z is a positive (increasing) constraint; or

f(x17x2’... 7xz.’...) S f(x17x27... 733;’...)
when z; < z} is a negative (decreasing) constraint.

For instance, with a positive constraint imposed on variable 7, tree f will only allow splits
that predict f(x) > f(a'), if 2; > 2}, and x; = 2},Vj # i. Figure 1 illustrates this for a
simple tree with a single indicator.

The blue-framed box highlights a disallowed split that violates the monotonicity con-
straint and is therefore discarded. Such splits would allow the tree to fit non-monotonic
patterns or associations inconsistent with the modeller’s priors (bottom left panel). By
excluding them, the resulting tree captures only the monotonically increasing portion of
the relationship (bottom right panel).

This setup allows an indicator to appear in two identified blocks, while restricting its
association with inflation to opposite directions across the blocks. Monotonicity con-
straints, especially when imposed on various indicators within the identified blocks, en-
hance identification by guiding the model toward theory-consistent relationships. By
training many trees across a broad set of indicators, the model leverages both tempo-
ral and cross-variable variation to disentangle supply- and demand-driven contributions.
Although these constraints do not identify structural shocks directly, they support a
theory-informed decomposition of predicted inflation, for instance into supply and de-
mand components. For further discussion on aligning models with economic theory using
monotonicity constraints, see Buckmann and Potjagailo (2025).?

2Unlike sign (or zero) restrictions in VARs (Arias et al., 2018), which identify structural shocks by
imposing sign constraints on impulse responses over specific horizons using rotations of contemporaneous
correlations, monotonicity constraints are embedded directly in the estimation of the predictive model.
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Figure 1: Constraining a decision tree towards fitting a monotonically positive association.
Notes: Top panel: Decision tree with split violating positive monotonicity constraint in blue-framed box.
Bottom panel: Black line shows ground-truth function, red lines shows prediction by a decision trees
without (left panel) and with (right panel) positive monotonicity constraint imposed.

2.3.2 Blockwise Boosted Inflation Model

Enhancing the model in equation (5) with monotonicity constraints yields our proposed
Blockwise Boosted Inflation Model (BBIM), which avoids attributing all activity-related
variation solely to demand and instead distinguishes between (global and domestic) de-
mand (D9, D4) and supply (59, S%) blocks.

M
mn = 3 (FR(XT) + £2OX20) + £ (XPY) + £ (X)) + 15/ (XPy)) + e (5)

The demand block is restricted to have positive relationships with activity indicators (and
negative ones with labour market slack), while the supply block is restricted to negative



relationships with activity and positive ones with supply pressures. To further distinguish
global from domestic drivers, we include externally identified global oil supply and global
demand shocks, constrained to load positively in the global supply and demand blocks,
respectively. These shocks support interpretation, though the monotonicity constraints
do most of the work in separating the demand component (see Section 3.3). Indicators
in the trend block remain unrestricted, though imposing positive constraints produced
similar results. Section 2.5 details the indicators and restrictions used in our application.

2.4 Model training and parameterisation

During training, the blockwise boosting model, as described in equations (2) and (5), is
initialised with a baseline prediction Fg and then fitted sequentially. The total number of
trees in the ensemble is K x M, where K denotes the number of blocks and M the number
of boosting rounds. In each boosting round, the ensemble F' is updated by adding one tree
f¥(X*) from each block k, respectively. F; denotes the boosting ensemble containing j
trees, where 0 < 7 < M x K. The order of blocks within each round is randomly permuted
via permutation P. Each new tree is trained—subject to any monotonicity constraints
imposed within block £—on the residuals from the previous prediction, r = m; — F;_;. A
small learning rate v ensures that each tree contributes only incrementally to the overall
prediction, thereby reducing the risk of overfitting: F; = F;_1 + vf* (X*). The training
procedure is summarised in Algorithm 1.

Algorithm 1 Training of blockwise boosting model

: Fy < baseline prediction

7+ 1

: for m =1to M do

P < RANDPERM({1,...,K}) > Shuffle block order

for all k € P do
rm— I > Compute pseudo-residuals
Fit £ on (X* r)
Fj«+ Fi1+v fEXP) > Update ensemble
jJ+1

end for

: end for

© X e Wy

—_ =
— O

Specifically, we train the model for M = 200 rounds during cross-validation, but stop early
if the cross-validation error increases with additional boosting rounds. For forecasting, we
use M = 100 rounds without early stopping because we lack a sufficiently large validation
set to identify the stopping point without leaking information from the test sample.® The
model is initialised with the inflation target, Fy = 2%, so that predictive contributions
reflect deviations from this baseline. The learning rate is set to v = 0.02.

To mitigate overfitting during training, we apply several strategies in addition to the
small learning rate and stopping rule discussed above. First, each decision tree is fitted
on a random subsample containing 50% of the training observations. Second, within

3Figure C10 in the appendix shows that the cross-validation and forecasting error increase only slowly
when using a large number of boosting rounds. Using early stopping in cross-validation, our baseline
model stops training after 56 boosting rounds, on average.



each block, trees are trained on a random subset of 25% of the predictors. Third, tree
complexity is constrained by limiting the maximum depth to 3 and requiring at least 5
observations per node. The results are robust to these hyperparameter choices, as shown
in Appendix C.5.

Note that the random permutation of blocks in each boosting round operationalises the
assumption that every block conditions on the others during training. Combined with the
slow learning rate, this ensures that blocks have the same opportunity to contribute to the
overall prediction. In alternative specifications, we also explore more structured training
sequences that impose explicit assumptions about block ordering—for example, training
the global blocks or the trend block first, before proceeding with random permutations
of the remaining blocks.

We implement BBIM in Python and use the xgboost library (Chen and Guestrin, 2016)
to train individual decision trees. Although the library is primarily designed for gra-
dient boosting, we restrict it to training single trees by setting n_estimators = 1 and
learning rate = 1. This library is computationally efficient and effectively imposes
monotonicity constraints with the monotone_constraints parameter.

2.5 Empirical implementation for UK inflation
2.5.1 Data and block specification

Our variable of interest is monthly CPI inflation in the United Kingdom. The sample
period spans from February 1988 to December 2024. The baseline model includes 54
monthly indicators, grouped into distinct blocks and incorporated contemporaneously
and with two lags each.* A few indicators have missing values at the start or end of the
sample, which we impute using median values.” Series that are not available in seasonally
adjusted form (mainly CPI sub-components) are seasonally adjusted using X-12-ARIMA.
To ensure stationarity, most variables are expressed as month-on-month log changes. Full
details on indicators and grouping by blocks, data coverage, transformations, and data
sources are provided in Appendix B.

A summary of the groups of indicators in each model block and the associated mono-
tonicity constraints is provided in Table 1. The trend component includes household
one-year-ahead inflation expectations, five-year market-based expectations derived from
inflation swap rates, and indicators of domestic inflation persistence, such as services
inflation and aggregate as well as industry-level wage growth. A linear time trend is also
included to allow for a smoothly evolving inflation trend.

The demand and supply components are informed by a broad set of activity indicators,
including indices of production and services, PMIs, trade volumes, retail sales, and con-
sumer confidence—as well as labour market slack measures, notably deviations of the
unemployment rate and the vacancy-to-unemployment ratio from their trends as a proxy
for labour market tightness.® We also incorporate identified global activity (demand) and

4We experimented with alternative lag numbers, with results similar, see Figure C5 in appendix.

5We also tested Expectation Maximisation, which gave overall similar results, but tended to attribute
stronger Shapley contributions to imputed values. This is likely because the latent-variable method
captures co-movement that the model interprets as meaningful signals.

6As trend estimates around which the gap measures are computed, we use estimates for the long-run
equilibrium unemployment rate (u*) and a trend measure for the v-u-ratio produced by the Bank of

10



BLOCK INDICATORS SIGN €D&S

Trend time indicator, 1-y ahead household infl. expectations, 5-y
ahead financial market expectations, regular wage growth, ser-
vices inflation, sub-components by sector
Global demand global PMI; UK exports, US, EA: industrial production: US, + yes
EA: imports
global activity shock, oil consumption demand shock (BH2019) +

Domestic demand  industrial production, index of services; UK imports, PMIs: ser- + yes
vices, manufacturing, construction; retail sales; consumer senti-
ment, quarterly (interpolated): consumption, investment
Labour market: v/u ratio gap, yes
Labour market: unemployment rate gap - yes

Global supply global PMI; US, EA: industrial production, UK: imports
commodity prices: energy, non-energy, metals, food, agriculture
global supply chain pressures: GSCPI (Fed), SCI (BoE)

US PPI, EA PPI
oil supply news shock (Kénzig, 2021), global oil supply shock
(BH2019)

Domestic supply industrial production, index of services; UK exports, PMIs: ser-
vices, manufacturing, construction; retail sales; consumer senti-
ment, quarterly (interpolated): consumption, investment, TFP
Labour market: v/u ratio gap
Labour market: unemployment rate gap
CPI components: goods, food, electricity, gas;

PPIs: input, output, gas, electricity; UK spot gas price

+

yes

A+

yes

yes
yes

+ 4+

Notes: Last column indicates groups of activity indicators that are included in both demand and supply blocks,

under monotonicity constraints with opposite signs.

Table 1: Groups of indicators and restrictions imposed to separate supply and demand.

oil supply series (Baumeister and Hamilton, 2019, referred to as BH2019 in what follows)
and oil supply news shock series (Kénzig, 2021) directly into the corresponding blocks.
Supply blocks are further enriched with supply chain pressure indices and selected CPI
sub-components. Both demand and supply are disaggregated into global and domestic
sub-blocks. For instance, the global supply block includes the global supply chain pres-
sure index, global oil price shocks, and commodity prices, while the domestic supply
block covers CPI food and energy components, domestic supply pressure indicators, and
negatively restricted economic activity variables. Monotonicity constraints on UK trade
variables help distinguish global from domestic blocks: UK exports load positively on
global demand and negatively on domestic supply, while UK imports load positively on
domestic demand and negatively on global supply.

2.5.2 Estimation and forecast evaluation

To derive the inflation decompositions and functional forms in our main results, we use 10-
fold cross-validation. This approach enables us to train the model across the full sample
period while estimating consistent functional relationships without having to adjust for
model instability or shifts over time (see also Bluwstein et al., 2023; Buckmann et al.,

England. In alternative specifications, we also used the unemployment rate and v-u-ratio directly in
levels and log levels, or alternatively in differences, to check that our results were not dependent on
specific trend estimates.
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2023). We fit annualised monthly CPI inflation 1-month ahead in our main specification,
but also run specifications for longer horizons, with h = 1,3,6,9,12.” To enhance the
model’s robustness to randomness in the estimation process—arising from data sampling
in cross-validation, tree building, and the random order of components in each boosting
iteration—we repeat the cross-validation procedure 10 times and average the predictions.

We also evaluate forecasting performance against various linear and standard machine
learning benchmarks, in a pseudo out-of-sample exercise, with more details and results
discussed in Section 3.6.

2.5.3 Shapley values for ex-post signal communication

While our model linearly decomposes predicted inflation into components, this does not
directly reveal the learned relationships between individual variables and the output. To
understand these functional forms, we use Shapley values, a standard interpretability
tool in machine learning (Strumbclj and Kononenko, 2014; Lundberg and Lee, 2017).
Following Buckmann et al. (2023), each predicted value y; is decomposed as g; = > ; ¢l +
#°, where ¢’ is the Shapley value of predictor j and ¢ is the baseline (usually the mean
prediction from the training sample). Indicators not entering in any tree split have zero
Shapley values, while larger values indicate stronger contributions. We compute Shapley
values for each tree and aggregate them across trees belonging to the same component.
To assess the average importance of each variable over the sample, we calculate mean
absolute Shapley values. Estimation uses the Python shap library (Lundberg and Lee,
2017) with the efficient TreeExplainer method (Lundberg et al., 2018).

3 Results

3.1 Inflation determinants

Figure 2 presents the decomposition of the Blockwise Boosted Inflation model predicting
CPI one month ahead. This specification focuses on month-on-month annualised CPI
inflation, and includes blocks for global and domestic demand and supply, identified
using monotonicity constraints, as well as the expectations-informed trend block.

The model provides a meaningful decomposition of UK CPI inflation over the sample
period. During the early 1990s high-inflation episode, the trend component (purple)
was driven by rises in both long-term and short-term expectations, gradually declining
as expectations re-anchored. While generally slow-moving, the trend adjusts relatively
quickly when expectations shift. Crucially, these dynamics are not imposed a priori
but emerge from the model learning non-linear associations, with higher expectation
realizations exerting stronger inflationary effects. Supply (orange and yellow) contributed
modestly in the early 1990s, exerted downward pressure from the late 1990s to mid-
2000s—Ilikely reflecting global supply chain integration—and again in the mid-2010s after
the drop in global oil prices. Demand (green) typically contributes positively, though the

"We also estimated a specification with year-on-year CPI inflation as the target and used indicators
in year-on-year growth rates. Figure C6 shows that decompositions are similar to those for annualised
monthly CPI growth. Non-linear were also broadly consistent—though month-on-month transformations
yield slightly clearer signals.
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Figure 2: Decomposition of 1-month-ahead CPI inflation from main BBIM specification.
Notes: Blockwise predictive contributions (coloured bars) to 1-month-ahead annualised month-on-month
CPI inflation (black line), around inflation target (2%). Model estimated via cross-validation over
1988M2-2024M12. Dashed line: actual CPI inflation, annualised and smoothed over 12 months. Grey
bars indicate recessions.

model captures sharp negative demand effects during the Global Financial Crisis and
near-zero contributions during the Covid-19 pandemic.

In the recent inflation episode, supply factors were the main drivers of the initial surge.
Global supply effects rose sharply in 2021-2022 and spilled over into domestic supply,
though both components unwound over 2023. Domestic demand contributed strongly
from 2021 to mid-2023, driven primarily by tight labour markets rather than broader
activity measures. Later in the episode, the inflation trend rose, reflecting mainly rising
short-term expectations that had non-linear effects. Part of inflation in 2022-early 2023
remains unexplained.

Block contributions reflect meaningful signals from individual indicators, based on mean
absolute Shapley values (Figure 3). The trend is largely driven by short-term household
expectations, with smaller contributions from five-year market-based expectations and
services inflation; wage growth is weak. Effects from short-term expectations dominated
the recent trend rise more so than in the past, while long-term expectations remained
anchored and thus contributed less than in the early 1990s. Global supply is driven by
supply chain pressures, partner production, and commodity prices, while domestic supply
captures the transmission of global shocks into food and goods prices. Global demand
contributions stem from shocks to oil demand, economic activity, trade, and production
in major partners.

Domestic demand is primarily influenced by labour market indicators, services indices,
retail sales, PMIs, and imports. Notably, labour market indicators were the main demand-
sided drivers in the recent episode. This is highlighted in an extended BBIM specifica-
tion (Figure 4), where the domestic demand block is split into labour market tight-
ness—comprising the positively constrained vacancy-to-unemployment gap and nega-
tively constrained unemployment gap—and other demand, which includes broader ac-
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Figure 3: Mean absolute Shapley values within each component.

Notes: Ten indicators with the largest average Shapley contributions in each block, averaged over 1989-
2024 (dark grey) and 2021-2024 (light grey).

tivity indicators constrained positively.®

B Trend '
© _, @ Other demand By
* B Labour market tightness W

@ Global demand i\

O Supply
oo -| O Global supply

c : “5

QOO —H # i

a

£ i :

o :

N N“ “
~ T
o —

R RN R LR R L L L R L LR L L LR R L R L L Rl L s AR L RS AR LA L RARE LR LALS RARE LR RAs

1989 1992 1995 1998 2001 2004 2007 2010 2013 2016 2019 2022

Figure 4: BBIM specification with domestic demand split into “labour market tightness”
and “other demand”.

Demand effects linked to labour market tightness (blue bars) were the dominant driver
in the recent inflation episode and in the early 1990s, whereas other demand (green bars)
played a larger role in periods such as the GFC. In the recent episode, the vacancy-

8The global and domestic supply blocks and the trend component are unchanged in this exercise.
Figure C7 in the appendix shows the average Shapley contributions for each block in this model.
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to-unemployment ratio gap emerged as a key signal, alongside a negative unemployment
gap. By contrast, in the early 1990s, the v/u ratio gap was less relevant, with the negative
unemployment gap around a structurally high equilibrium rate u* driving the demand-
like labour market contribution. During recessionary periods like the GFC, it was broader
contractions in domestic activity that acted in a deflationary manner.

3.2 The role of non-linearities in inflation determinants
3.2.1 Non-linearities in the Phillips curve, supply, and inflation expectations

Next, we examine the direction and shape of signals extracted by the model from specific
indicators within each block. For indicators with monotonicity constraints, the model
learns strictly non-decreasing or non-increasing relationships, though the slope and shape
can vary. For unconstrained indicators, the model learns fully flexible functional forms.
Comparing Shapley values to actual indicator values allows us to assess the non-linear
patterns captured over time.

Figure 5 illustrates these learned functions for selected indicators and lags of each block
of our baseline model.” We plot indicator values (horizontal axis) against their Shapley
value contributions to CPI inflation predictions (vertical axis). Dots represent monthly
observations, with early 1990s data in dark grey and 2021-2024 data in colour. Non-linear
patterns arise when stronger signals align with very high or low indicator values. Several
key indicators exhibit strong non-linear signals during the recent UK inflation episode.

First, we detect a non-linear Phillips curve relationship between labour market slack and
inflation within the domestic demand block (panel (a) of Figure 5). During the recent
period—particularly in 2022 (red dots)—the unemployment rate remained below 5%, cre-
ating a negative unemployment gap relative to trend, while the vacancy-to-unemployment
(v/u) ratio was high relative to its slow-moving trend. For these pronounced realisations,
the model produces markedly stronger inflationary signals, with Shapley contributions
rising from near zero to 0.2-0.5 percentage points. These non-linear effects, though less
intense, persisted into 2023 and largely flattened by late 2024. The steep relationship
between labour market indicators and inflation reflects L-shaped Phillips curve dynamics
that a linear model cannot capture, explaining the increased demand-like contribution
from tight labour markets shown in Figure 4. This aligns with recent U.S. and cross-
country evidence on non-linear Phillips curves amplifying inflation under tight labour
conditions (Benigno and Eggertsson, 2023, 2024).

By contrast, broader activity indicators show no notable non-linear demand effects in
the recent episode. PMIs, trade, industrial production, and investment exhibit stronger
effects primarily during contractions, such as the GFC—both within domestic and global
demand (panel (b) of Figure 5, Figure C2). Some non-linearities reflect asymmetric
responses to outliers: global activity shocks, whether expansionary or contractionary,
affect UK inflation most strongly within a moderate range, while very large shocks—e.g.,
the Covid-19 contraction—are down-weighted and have muted deflationary effects. A
similar pattern occurs for UK retail sales and PMIs, and for US production and imports.

9We focus on selected indicators and on more distant lags for variables typically released with delay;
full results for all indicators and all three lags are shown in Figure C1 in the appendix. Non-linear
associations remain very similar for the extended model shown in Figure 4.
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Figure 5: Functional forms learnt within each block.

Note: Baseline BBIM (see Figure 2). Scatter plots show the realised value of each indicator at a selected lag (x-axis)
against its Shapley value contribution to the model’s CPI inflation prediction (y-axis), within a given block (panels a—c).
Monthly predictions are shown without smoothing. For comparison, a fitted linear model with a single breakpoint (i.e. two
slopes) is overlaid in grey, following Muggeo (2003).

These results align with Harding et al. (2022), highlighting muted disinflation during
contractions as firms resist lowering prices to preserve mark-ups.

Second, on the supply side (panels (c) and (d) of Figure 5), the global supply chain pres-
sure index (GSCPI) had little impact before the pandemic but became highly influential
during 20212022, consistent with international evidence of a non-linear inflationary effect
from global supply disruptions (Di Giovanni et al., 2022; Comin et al., 2023; Ascari et al.,
2024). We also observe non-linear effects from global agricultural and food commodity
price inflation, followed—after a lag—Dby similar patterns in UK food CPI inflation, which
significantly contributed to aggregate UK inflation through 2023. These patterns likely
reflect delayed transmission of global shocks and a stronger pass-through of rising input
costs (Cavallo et al., 2024). Energy-related variables—including global energy commodi-
ties, oil supply news shocks, and domestic electricity and gas prices (see Figure C1 in the
appendix)—exhibit more diffuse functional forms, with less clear evidence of non-linear
effects beyond potential indirect channels through supply chains. Labour market slack
does not show a strong signal on the supply side.
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Third, we find that the recent rise in the inflation trend component was primarily driven
by strong effects from short-term household inflation expectations (panel (e)). The model
detects little signal when expectations are below 4%, but identifies steadily increasing
contributions at higher levels—where UK household expectations remained through late
2023. This non-linearity may reflect greater attentiveness and stronger adjustment of
expectations when inflation is elevated (Pfdauti, 2023), particularly in response to salient
price increases in categories like food and energy (Anesti et al., 2024). This can, in
turn, fuel persistent wage and price pressures (Lorenzoni and Werning, 2023), though
our model finds only weak signals from wage growth. By contrast, long-term financial
market expectations had strong effects in the early 1990s but have remained flat in recent
years, suggesting they remain well anchored.

3.2.2 Shutting down of non-linearities within blocks

How relevant are the detected non-linearities for inflation prediction and decomposition?
To assess this, we run a counterfactual exercise where non-linearities are removed block
by block. Specifically, we replace decision trees with linear least-squares models in a given
block—while keeping other blocks unchanged. Monotonicity constraints, as in the base-
line, are still imposed. Figure 6 compares non-linear and linear blockwise contributions
for the extended BBIM specification that separates demand into labour market tightness
and “other demand”.'"
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Figure 6: Shutting down non-linearities within a given block.

Notes: Blockwise predictive contributions to 1-month ahead annualised CPI inflation. Dashed lines:
contributions from specifications where decision trees are replaced with linear least-squares models within
the respective component, compared to the block contribution from the fully non-linear model (solid
lines).

10Shutting down non-linearities in one block had only small effects on other blocks, so we only show
here the respective block from each specification. Full decompositions are available upon request.
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Accounting for non-linearities in demand has the strongest impact on the predictive de-
composition. When global demand and broad (“other”) domestic demand blocks are
modeled linearly, the model underestimates the negative demand contribution during the
Global Financial Crisis. More recently, non-linearities in these components have played
a smaller role. By contrast, removing non-linearities from the labour market tightness
block has a substantial effect in both high-inflation episodes. In the early 1990s, these
effects mainly reflected a negative unemployment gap, with unemployment falling below
a high trend rate. In the recent episode, a combination of very low unemployment and a
high vacancy-to-unemployment ratio generated strong non-linear effects. During the in-
tervening low-inflation period, the linear component instead captured slow-moving rather
than cyclical fluctuations in labour market tightness. This illustrates that non-linearities
in inflation’s sensitivity to labour market slack and broader demand are both important,
but their relevance can shift over time: broader demand non-linearities primarily ex-
plain disinflationary pressures during recessions, while tight labour markets non-linearly
amplified UK inflation during high-inflation periods.

In contrast, removing non-linearities in the other blocks has more limited effects. Lin-
earising the supply blocks (yellow lines) causes the model to miss some supply-side contri-
butions early in the sample and overstate others, but the differences are generally small,
especially in the recent period. This is consistent with the functional forms discussed ear-
lier, where supply indicators exhibit some non-linearity—mainly through down-weighting
of outliers—but their overall relationship to inflation could also be approximated by a
linear component. When the trend block is linearised (blue lines), the estimated trend
becomes more volatile, reducing the model’s ability to differentiate between a stable, flat
trend in a low-inflation environment and periods of genuinely shifting inflation trends.

3.3 Role of monotonicity constraints for decomposing supply
and demand determinants

We have seen that accounting for non-linearity helps isolate a distinct role for demand.
However, the identification of demand versus supply ultimately also relies on the mono-
tonicity constraints imposed within each block. To assess their importance, we compare
our baseline BBIM to an unidentified blockwise Phillips curve-style boosting model, as
defined in Equation 4. This alternative model simply groups all (global and domestic)
activity indicators together—implicitly treating them as demand-driven—while assigning
all (global and domestic) supply and cost indicators to a separate block.

Figure 7 compares this unidentified specification to the demand and supply components
from our baseline model. The activity block in the unidentified model (red line, left panel)
fails to reflect key demand dynamics evident in the baseline—such as the negative demand
contributions during the GFC and Covid-19 recessions—and instead captures broader,
slower-moving cycles. It does, however, pick up the recent rise in demand, indicating that
the strong non-linear effect of labour market tightness emerges even without additional
identification. Conversely, the supply and input cost block (blue line, right panel) tracks
supply fluctuations reasonably well but tends to understate the magnitude of supply
contributions relative to the baseline.!!

HHere, we exclude the identified shock series to avoid providing explicit identifying information.
Results are similar when included (Figure C3), suggesting that monotonicity constraints drive most of
the identification, with shocks mainly refining the magnitude of large global fluctuations.
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Figure 7: Comparison with unidentified model without monotonicity constraints.

Notes: Predictive contributions to 1-month-ahead annualised CPI inflation from baseline BBIM
with monotonicity constraints—separating demand (green bars, left) and supply (yellow bars,
right)—compared to unidentified blockwise boosting that groups activity indicators into a single block
(red line, left) and all supply and cost indicators into another (blue line, right). Both models include a
trend component (not shown).

Further, Figure C4 in the appendix shows that the functional forms estimated by the
unidentified model are less interpretable. The non-linear Phillips curve relationship with
the vacancy-to-unemployment and unemployment gaps are notably weaker. Moreover,
relationships with broader activity indicators, such as retail sales, U.S. imports, and
U.S. industrial production, display mixed signs across lags, failing to yield a coherent or
economically interpretable pattern.

3.4 Alternative block structures

We assess the robustness of the inflation decomposition and learned functional forms to
alternative assumptions regarding block ordering during boosting and the modelling of
the trend component. In the main BBIM specification, each boosting iteration fits one
tree per block, with the block order randomly reshuffled thereafter (see Algorithm 1).
We consider two alternative ordering strategies. First, a fixed ordering where 100 trees
from the expectations-informed trend block are estimated before updating the remaining
blocks in random order—prioritising persistent, forward-looking components. Second, a
reversed structure that fits 100 trees each from the global demand and supply blocks first,
conditioning on external pressures before domestic ones. Additionally, we explore three
alternative specifications for the trend: an uninformed trend using only a time variable;
a trend informed solely by the two expectations series and the time variable, excluding
other persistence indicators; and a specification without a trend component, attributing
inflation entirely to global and domestic demand and supply. Figure 8 shows the resulting
prediction of inflation and blockwise contributions.

While block ordering influences the relative size of contributions—with earlier-trained
blocks receiving more weight—the overall inflation prediction remains broadly stable.
In the block-exogenous ordering (orange lines), global demand and supply become more
prominent, while domestic components and the trend contribute less. Instead, prioritising
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Figure 8: Model specifications with alternative block orderings and trend specifications.
Notes: Predictive contributions to 1-month-ahead annualised CPI inflation (first panel) and blockwise
components, comparing baseline BBIM (black) with alternative specifications for block orderings—global
blocks fitted first (orange), trend block fitted first (red)—and trend: no trend (grey), trend based on a
time variable only (teal), trend based on both a time variable and expectations series (blue).

the trend block (red lines) substantially increases the trend contribution while reducing
the role of demand and supply. When removing the trend altogether (grey lines), the
model assigns stronger contributions to both supply and demand—but this leads to a
more pronounced underestimation of inflation in the early 1990s. The model with an
uninformed time-trend (teal lines) captures broad dynamics but overstates trend fluctu-
ations during the Covid-19 period and the recent inflation surge. A model with a trend
based solely on the two expectations series (blue lines) closely matches the baseline,
though with a slightly weaker recent trend contribution—consistent with the baseline
additionally drawing on services inflation as a driver of recent trend dynamics.

Overall, the cyclical patterns of block contributions are preserved, and the learned func-
tional forms remain stable across specifications (see Figure C2 in the appendix), suggest-
ing that the model captures consistent underlying dynamics regardless of block ordering.

3.5 Extended model with financial conditions and monetary
policy surprises

In an extended model, we add two blocks that capture financial conditions and monetary
policy surprises. The financial block includes UK house prices, corporate bond spreads,
the FTSE stock price index, the real effective exchange rate and the US-GBP spot ex-
change rate. The monetary policy block uses identified UK policy surprises—target rate,
path, and QE factors—from Braun et al. (2023); it thus does not capture systematic
monetary policy but instead instances where monetary policy surprises on the upside or
downside. To pin down the direction of this block’s contribution to reflect expansionary
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surprises, we impose negative monotonicity constraints on the association between infla-
tion and the target and path factors, respectively. As data for these additional indicators
have a shorter coverage, this specification covers the shorter sample 1997-2024. Figure 9
presents the resulting decomposition, and Figure C8 displays the mean absolute Shapley
values.
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Figure 9: Extended model with financial and monetary policy surprises blocks.

Notes: Predictive contributions to 1-month-ahead annualised CPI inflation from extended BBIM with
additional blocks containing monetary policy surprises (black) and financial conditions (red). Estimation
with cross-validation over sample period 1997M9-2024M12.

Within the financial block, house prices and corporate bond spreads are the most in-
fluential indicators on average. In the monetary policy block, the QE and path factors
dominate, capturing the impact of unconventional monetary policy surprises.'? Looking
at the predictive decomposition over time, tight financial conditions contributed to in-
flation following the Global Financial Crisis (GFC)—mainly reflected in rising corporate
bond spreads, which may have prompted firms to raise prices, consistent with Gilchrist
et al. (2017). Exchange rate movements following the 2016 Brexit referendum also provide
inflationary signals.

Expansionary monetary policy surprises contributed modestly to inflation predictions
post-GFC, to a lesser extent in 2017-2019 and again during the Covid-19 stimulus in
2020. In late 2022 and early 2023, monetary surprises are as mildly inflationary by the
model—likely reflecting slower than expected tightening given the economic context at
the time. Contributions from the demand, supply, and trend components remain broadly
in line with the baseline model, though post-GFC supply effects are smaller—now partly
captured by the financial block.

3.6 Out-of-sample forecasts

The key strength of the BBIM lies in its intuitive cross-validation decomposition of in-
flation drivers and its ability to trace non-linear signals. Nonetheless, strong out-of-

12We also estimated a specification with only the path and target factors; results were similar, indi-
cating that including the QE factor does not drive the findings.
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sample forecasting performance remains an important evaluation criterion. Ideally, the
introduction of economic structure should not come at the expense of predictive accu-
racy—typically a strength of machine learning models. We therefore assess the BBIM’s
forecasting performance in a pseudo out-of-sample exercise, comparing it against linear
and standard machine learning benchmarks. Starting with an initial training sample
ending in 1999M12, we generate monthly forecasts from 2000M1 to 2024M12 using an
expanding window, retraining the model every three months.'® The forecast averages
predictions from 10 boosting models, each trained on a random 80% subsample of the re-
spective training set. Forecasts are produced for horizons h = 1, 3,6, 9, 12 months ahead.
Figure 10 presents annualised A-month-ahead out-of-sample forecasts, generated at the
start of each year in the test sample, alongside the actual CPI inflation realisation (panel
a), as well as corresponding out-of-sample forecasts for each of the block components,
alongside the annualised 1-month-ahead cross-validation decomposition (panel b).

At the 1-month horizon, the out-of-sample forecasts for CPI inflation and the block-
wise component predictions closely replicate the cyclical patterns observed in the cross-
validation results. In the early 2000s inflation is mostly over-predicted, which reflects
that at this point the model has a relatively short training sample that in large parts
covers a high-inflation period whereas realised inflation turned out lower given a low
inflation trend following the introduction of inflation targeting as well as global sup-
ply factors weighing on inflation. Subsequently the model predicts quite well at shorter
horizons, albeit with a lag at higher horizons. The recent episode of high inflation is
under-predicted out-of-sample, driven by lower contributions of domestic demand and
global supply—precisely the components where we observe strong non-linearities. Out
of sample, the model captures these non-linearities only to a limited and noisier extent,
even at short horizons. At higher horizons, predicted fluctuations are more muted and
at times lagged, but broadly aligned with the cross-validation results.

Next, we evaluate the BBIM’s forecasting performance relative to a range of alternative
models. Forecast accuracy is measured by root mean squared forecast errors (RMSFE)
relative to a simple AR(2) benchmark, with statistical significance assessed using the
Diebold and Mariano (1995) test. We compare the baseline BBIM to variants with-
out block structure or monotonicity constraints, as well as to standard linear and ma-
chine learning benchmarks, including an unobserved components model (UC, Stock and
Watson, 2007), Lasso regression, random forest (Breiman, 2001), and standard boost-
ing. Implementation details are provided in Appendix A.1. Most alternative models
use the same indicator set as the BBIM but omit its structural constraints. For standard
boosting without block structure, we also test specifications using only a subset of indica-
tors—specifically those informing the trend in our baseline (time indicators, expectations,
wage growth, and services inflation), excluding activity and supply variables.

Table 2 reports forecast evaluation results for annualised monthly CPI inflation at hori-
zons h = 1,6,12 months. At short horizons (one to six months), the baseline BBIM
delivers the strongest results, reducing RMSFE by around 10% pre-pandemic and up to
25% during the recent high-inflation period—though model differences are less signifi-
cant in the latter due to smaller sample size. Alternative boosting specifications without
structural constraints and using fewer indicators perform notably worse, especially post-

13 As out-of-sample forecasting is not the primary focus of our analysis, we abstract from data revisions
and publication delays in this stylised setup.
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Panel a) Inflation out-of-sample predictions
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Figure 10: Pseudo out-of-sample forecasts over horizons.

Notes: Predictions of annualised monthly CPI inflation (panel a) and of blockwise components (panel
b). Grey lines show actual monthly CPI inflation (annualised). Teal lines in panel b) indicate 1-month-
ahead cross-validated predictive contributions by block (h = 1), as in Figure 2. Coloured dots represent
out-of-sample forecasts at 1-, 3-, 6-, 9-, and 12-month horizons, generated at the start of each year.

pandemic, indicating that the BBIM’s added structure improves both interpretability and
out-of-sample forecasting performance. Compared to other models, the BBIM performs
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2000-2024 2000-2019 2020-2024

monthly CPI inflation

h=1
AR(2), absolute RMSFE 3.77 3.15 5.61
BBIM (baseline) 0.87** (0.03) 0.91** (0.01)  0.82* (0.05)
BBIM (without trend) 0.90%* (0.04)  0.96 (0.27) 0.82%* (0.05)
Blockwise boosting (unidentified)  0.90* (0.05) 0.93 (0.18) 0.85* (0.07)
Boosting 0.89%* (0.05)  0.90% (0.07) 0.87* (0.08)
Boosting (only trend indicators) 0.92 (0.15) 0.92* (0.04) 0.93 (0.21)
Random forest 0.89* (0.06) 0.90 (0.13) 0.86* (0.08)
Lasso regression 0.88* (0.06) 0.89* (0.06) 0.86* (0.09)
uc 0.92 (0.15) 0.90 (0.15) 0.95 (0.18)
h=6
AR(2), absolute RMSFE 4.22 3.40 6.52
BBIM (baseline) 0.83* (0.07)  0.92 (0.35) 0.72* (0.05)
BBIM (without trend) 0.89 (0.11) 1.04 (0.81) 0.69* (0.05)
Blockwise boosting (unidentified)  0.84* (0.07) 0.88 (0.11) 0.80* (0.06)
Boosting 0.84* (0.06) 0.87*% (0.02)  0.81* (0.06)
Boosting (only trend indicators) 0.86* (0.05) 0.86** (0.01) 0.87* (0.07)
Random forest 0.84* (0.06) 0.87** (0.03) 0.80* (0.06)
Lasso regression 0.87* (0.07) 0.89* (0.06) 0.84* (0.08)
uc 0.86* (0.07) 0.85%* (0.04) 0.87* (0.08)
h=12
AR(2), absolute RMSFE 4.46 3.51 7.08
BBIM (baseline) 0.85 (0.13) 0.89% (0.06) 0.80 (0.13)
BBIM (without trend) 0.88 (0.14) 0.99 (0.49) 0.77 (0.12)
Blockwise boosting (unidentified)  0.86* (0.10) 0.84** (0.02) 0.88 (0.13)
Boosting 0.85* (0.10)  0.83** (0.02) 0.86 (0.12)
Boosting (only trend indicators) 0.87 (0.12) 0.84** (0.03) 0.90 (0.15)
Random forest 0.88* (0.09) 0.84%% (0.02)  0.92 (0.14)
Lasso regression 0.89 (0.13) 0.89* (0.05) 0.89 (0.16)
uC 0.90 (0.17) 0.83%* (0.02)  0.96 (0.23)
year-on-year CPI inflation
h=12
AR(2), absolute RMSFE 2.24 1.14 4.46
BBIM (baseline) 0.82* (0.08) 1.12 (0.53) 0.72*%* (0.01)
BBIM (without trend) 0.80* (0.08)  1.27 (0.97) 0.62** (0.01)
Boosting 0.85 (0.12) 0.94 (0.29) 0.83* (0.10)
Boosting (only trend indicators) 0.98 (0.49) 1.01 (0.41) 0.98 (0.49)
Blockwise boosting (unidentified)  0.87 (0.12) 0.97 (0.31) 0.84* (0.10)
Random forest 0.83* (0.09) 0.95 (0.25) 0.80** (0.05)
Lasso regression 1.00 (0.53) 1.20 (0.89) 0.94 (0.51)
uc 0.99% (0.10) 1.01 (0.54) 0.98** (0.03)

Table 2: Out-of-sample forecast evaluation comparison.

Notes: Upper panel: Forecasting month-on-month CPI inflation at horizons h = 1,6, 12. Bottom panel: Forecasting year-
on-year CPI inflation at h = 12. Top row: Absolute forecast error of AR(2) across horizons and evaluation samples; other
rows: relative RMSFE of alternative models. BBIM (baseline): model specification as in Figure 7. Blockwise boosting
(unidentified): as in Figure 7, using activity and input cost blocks without monotonicity constraints or identified shocks.
Boosting: standard gradient boosting with decision trees; no monotonicity constraints, no blocks, all indicators. Boosting
(only trend indicators): standard gradient boosting, no blocks, only including time indicator, inflation expectations, wage
growth, services inflation. p-values from Diebold-Mariano tests shown in parentheses. *** **_ * denote significance at the

1%, 5%, and 10% levels, respectively.

a bit worse than Lasso regression and UC before the pandemic, while outperforming all
alternatives, including unstructured machine learning models, more clearly in the recent
period. An unidentified variant of the BBIM without monotonicity constraints or sep-
arate demand-supply blocks performs slightly worse, suggesting that identifying a clean
demand signal supports forecast accuracy. At the 12-month horizon, results are similar
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pre-pandemic, with the BBIM slightly falling behind UC and the unstructured machine
learning models. During the recent period, BBIM performs best but absolute errors grow
and model differences become statistically insignificant.

For the 12-month horizon, we also report results for a specification that directly predicts
year-on-year CPI inflation, with indicators expressed in year-on-year growth rates. In
this setup, the BBIM struggles to outperform the AR(2) benchmark at short horizons
but shows marked improvements at longer horizons (9-12 months), achieving roughly a
20% RMSFE reduction relative to the AR(2). In the post-pandemic period, the BBIM
also outperforms the Random Forest, the strongest unstructured benchmark.

4 Conclusion

We have introduced the Blockwise Boosted Inflation model, a framework for modelling
inflation dynamics that combines the flexibility of machine learning with a structure in
line with economic theory. By organising indicators into interpretable blocks—demand,
supply, and trend—and by imposing monotonicity constraints consistent with economic
priors, the approach enables a theory-informed decomposition of inflation drivers. These
constraints, applied during model estimation, strengthen identification specifically of the
demand contribution, and allow for transparent attribution of inflation movements, even
in high-dimensional settings.

Applied to UK inflation, our results show that monotonicity constraints are crucial for
achieving a meaningful separation between supply- and demand-driven pressures. Within
the demand component, we identify a non-linear Phillips curve-type relationship between
inflation and labour market slack, which contributed more strongly during the recent
inflation episode. We also observe non-linear effects from global supply chain pressures,
which amplified global supply influences and their pass-through to domestic costs, as
well as from short-term inflation expectations, which drove a rise in the inflation trend.
In terms of predictive performance, the structured model matches or exceeds standard
machine learning benchmarks while providing significantly greater interpretability of in-
flation dynamics.

Overall, our approach demonstrates how structured machine learning can serve as a pow-
erful tool for macroeconomic modelling—providing accurate forecasts alongside economi-
cally meaningful insights, with potential for broader future applications, beyond inflation
to other macroeconomic variables or country contexts.
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A Methodology

A.1 Implementation details for benchmarks

We use the UnobservedComponents class from the Python library statsmodels (Seabold
and Perktold, 2010) to calibrate the unobserved component (UC) model. We set the pa-
rameters stochastic_level and stochastic_trend to True as this improves the out-of-sample
performance.

We also tested the standard Unobserved Components Stochastic Volatility (UCSV) model
(Stock and Watson, 2007) using the implementation by Medeiros et al. (2021). However,
this model performed worse than the UC model described above and is computationally
substantially more expensive.

Hyperparameters of the random forest and Lasso are selected using 10-fold block cross-
validation within the training set and updated every five years to reduce computation
time. The AR(2) benchmark and the UC model are re-estimated monthly, all other
models every three months, thus leveraging the lower computational burden of the simpler
benchmarks to their advantage.

We consider the the following hyperparameter values for scikit-learn’s random forest
implementation:

maz_depth € [2,3,4,7,10],

maz_features € [1,3,5,7,10, 15, 20, 30],

min_samples_leaf € [1,2,4,10,15].

For Lasso regression, we use the default regularisation path of the scikit-learn’s Las-
soC'V implementation with 100 values for a.
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B Data Description

Variable Mean SD First Obs. Latest Obs. Transf. Blocks(constraint) Source

Time index 1988M02 2024M12 1 Trend

Wage (Average Weekly Earnings, AWE) 4.1 10.2 1988M02 2024M12 5 Trend ONS

Wage (AWE), regular pay (excl. bonuses) 3.3 3.7 2000M02 2024M12 5 Trend ONS

Wage (AWE), services 3.4 3.9 2000M02 2024M12 5 Trend ONS

Wages (AWE), financial services 3.7 7.1 2000M02 2024M12 5 Trend ONS

Wage (AWE), manufacturing 3.0 5.5 2000M02 2024M12 5 Trend ONS

Wage (AWE), retail and hospitality 3.3 8.0 2000M02 2024M12 5 Trend ONS

Service CPI 4.0 3.2 1988MO02 2024M12 5 Trend ONS

Service CPI, catering 4.0 5.5 1988M02 2024M12 5 Trend ONS

Service CPI, accommodation 3.7 13.1 1996M02 2024M12 5 Trend ONS

Service CPI, recreational and cultural 3.9 5.8 1988M02 2024M12 5 Trend ONS

Service CPI, personal care 2.4 5.4 1988M02 2024M12 5 Trend ONS

5y5y inflation expectations (swaps) 3.6 0.9 1988MO02 2024M12 1 Trend Bloomberg, Tradeweb
1-year-ahead household infl. expectations 3.2 1.4 1988MO02 2024M12 1 Trend Citi Group
Unemployment rate gap 0.3 0.9 1988M02 2024M12 1 Demand~, Supply* ONS

vacancy /unemployment (v/u) ratio gap 0.0 0.1 1988MO03 2024M12 4 Demand ™, Supply ™~ ONS

Retail sales 1.8 19.3 1988M02 2024M12 5 Demand™, Supply™ ONS

Index of production 0.5 20.2 1997M02 2024M12 5 Demand™, Supply™ ONS

Index of services 2.1 17.6 1997MO02 2024M12 5 Demand ™, Supply ™~ ONS

UK imports, real 4.7 539 1988M02 2024M12 5 Demand™*, Global Supply ONS

PMI manufacturing 51.7 4.3 1991M07 2024M12 1 Demand™, Supply™ S&P Global UK
PMI services 54.3 4.9 1996M07 2024M12 1 Demand™, Supply™ S&P Global UK
PMI construction 53.7 6.7 1997M04 2024M12 1 Demand™, Supply~ S&P Global UK
Investment* 1.5 135 1988Q1 2024Q4 5 Demand™, Supply™~ ONS

Consumer sentiment -11.9 12,1 1988M02 2024M12 1 Demand™ GIfK

Global economic activity shock 0.0 0.7 1988M02 2024M12 1 Global Demand™* BH2019

Global oil demand shock 0.1 3.7 1988MO02 2024M12 1 Global Demand* BH2019

Global oil inventory demand shock -0.1 1.1 1988M02 2024M12 1 Global Demand™ BH2019

US imports, real 3.0 27.6 2000M02 2024M12 5 Global Demand™ Refinitiv, DS
Euro area imports, real 0.5 249 2000M02 2024M12 5 Global Demand* Refinitiv, DS
US industrial production 1.4 12,1 1988M02 2024M12 5 Global Demand*, Global Supply~ Refinitiv, DS
Euro area industrial production 0.6 21.1 1991M02 2024M12 5 Global Demand™, Global Supply™ Refinitiv, DS
UK exports, real 3.4 63.2 1983M02 2024M12 5 Global Demand*, Supply~ ONS

Goods CPI 1.9 4.7 1988M02 2024M12 5 Supply* ONS

Food CPI 2.8 6.7 1988M02 2024M12 5 Supply* ONS

Gas (CPI) 4.7 432 1988M02 2024M12 5 Supply™ ONS

Gas spot price 6.7 209.8 1996MO05 2024M12 5 Supply* Bloomberg
Electricity (CPI) 4.7 264 1988MO02 2024M12 5 Supply* ONS

Electricity (PPI) 52 337 1996M02  2024M12 5 Supply* ONS

PPI input price 2.8 8.7 1988M02 2024M12 5 Supply™ ONS

PPI output price 2.3 6.6 1988M02 2024M12 5 Supply* ONS
UK-specific supply chain index (SCI) -0.3 1.4 1998MO01 2024M12 1 Supply™ BoE

Total factor productivity (TFP) 1.8  11.9 1988MO02 2023M04 5 Supply ™~

Commodity price index, energy 3.8  94.1 1988M02 2024M12 5 Global Supply™* ‘World Bank
Commodity price index, non-energy 2.2 31.0 1988M02 2024M12 5 Global Supply™ World Bank
Commodity price index, food 2.1 352 1983M02 2024M12 5 Global Supply™ ‘World Bank
Commodity price index, metal 2.6 59.8 1988M02 2024M12 5 Global Supply™* S&P Global UK
Commodity price index, agriculture 1.9 40.7 1988M02 2024M12 5 Global Supply* S&P Global UK
US PPIL 2.4 8.0 1988M02 2024M12 5 Global Supply™ Refinitiv, DS
Euro area PPI 1.8 6.3 1995M02 2024M12 5 Global Supply™ Refinitiv, DS
Global supply chain pressure index (GSCPI) 0.0 1.0 1998M01 2024M12 1 Global Supply™* Fed. Reserve Bank, NY
Global supply chain index (GSCI) 0.0 1.3 2007MO05 2024M12 1 Global Supply* BoE

Global oil supply news shock 0.0 0.6 1988M02 2024M12 1 Global Supply™ Kénzig (2021)
Global oil supply shock -0.1 1.2 1988M02 2024M12 1 Global Supply* BH2019
Extended model specification

Real exchange rate index -0.2 182 1990M02 2024M12 5 Financial FAME
GBP-USD spot exrate 0.0 0.0 1988MO02 2024M12 2 Financial FAME

FTSE UK focused 2.5 472 1995M02 2024M12 5 Financial FAME

House price index 4.8 10.8 1991M02 2024M12 5 Financial Nationwide
Corporate bond spread 156.0  75.5 1998MO1 2023M10 1 Financial FAME

MP shock, target 0.0 0.1 1997M06 2024M07 1 Monetary Policy™ Braun et al. (2023)
MP shock, path 0.0 0.0 1997M06 2024M07 1 Monetary Policy™ Braun et al. (2023)
MP QE shock 0.0 0.0 1997M06 2024MO7 1 Monetary Policy Braun et al. (2023)

Table B1: Data series - descriptive stats, sample coverage, transformations, model blocks
and constraints, data sources.

Notes: Series transformations to achieve stationarity follow McCracken and Ng (2016) codes: 1 — no transformation, 2
— first difference, 4 — logs, 5 — first log difference. In the alternative specification using year-on-year CPI inflation, we

take year-on-year growth rates for series with code 5. *

- Investment series is quarterly, interpolated to monthly. CPI
components such as service, food, energy CPIs are seasonally adjusted using X12-ARIMA, other series come directly in
seasonally adjusted form. Mean and SD are calculated after transformation. When series appear in multiple blocks, these
are listed, separated by commas. Monotonicity constraints indicated as * (positive) or ~ (negative). Source acronyms:
ONS - UK Office for National Statistics, BoE - Bank of England, BH2019 - Baumeister and Hamilton (2019), Bloomberg

- Bloomberg Finance L.P., Refinitiv, DS - LSEG Workspace, Refinitiv, DataStream.
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C Additional results

C.1 Results for baseline specification

C.1.1 Functional forms for all lags and more
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Figure C1 (page 1 of 4): Functional forms of all indicators in the demand blocks of the
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Figure C1 (page 2 of 4): Functional forms of all indicators in the domestic supply block
of the baseline model. Colours show the different lags of the indicators.
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Figure C1 (page 3 of 4): Functional forms of all indicators in the global supply block of
the baseline model. Colours show the different lags of the indicators.
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Figure C1 (page 4 of 4): Functional forms of all indicators in the trend block of the
baseline model. Colours show the different lags of the indicators.
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C.2 Results for alternative specifications to baseline

C.2.1 Functional forms across alternative specifications

a) Domestic demand (Phillips curve) b) Global demand
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Figure C2: Selected functional forms learnt within each block, across model specifications.
Note: Baseline model, see Figure 2. Scatter plots of the realised values of a given indicator at a selected lag (horizontal
axis), against its contribution to the model’s CPI inflation prediction measured by Shapley values (vertical axis), within
a given block (panel a) to ¢)). We show a fitted linear model with a single breakpoint (i.e. two different slopes) to the
relationship between input and Shapely values of the indicators (Muggeo, 2003). Observations with imputed values for the
respective variable are excluded from estimation.
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C.2.2 Role
Predicted inflation
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Figure C3: Predicted inflation and blockwise predictive contributions for alternative mod-
els with and without monotonicity constraints and identified shock series.
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Figure C4: Functional forms of all indicators in the activity block of the model without
monotonicity constraints (see Figure 7). Colours show the different lags of the indicators.

37



C.2.3 Changing the number of lags of indicators included

In the baseline specification, we include indicators with three lags: at times ¢,t — 1,1t — 2.
Figure C5 shows the predictive contribution of the different blocks when altering the
number of lags.
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Figure C5: Blockwise contributions to inflation prediction, different numbers of lags of
indicators included. Model with three lags corresponds to baseline specification.

C.2.4 Model for year-on-year CPI inflation

In the specification shown in Figure C6, the target variable is 1-month ahead year-on-year
CPIl inflation. All indicators that are transformed to monthly growth rates in the baseline
model (see Table B1, transform code 5) are instead transformed into year-on-year growth
rates.
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Figure C6: Decomposition of 1-month-ahead CPI inflation from baseline blockwise
Boosted Inflation Model.

38



C.3 Extended model separating role of labour market tightness

In this specification, the “labour market tightness” block comprises the unemployment
rate gap (—) and the vacancy-unemployment ratio gap (+) and their respective lags.
The “other demand” block comprises all other activity indicators (+) as in the baseline
specification.
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Figure C7: Mean absolute Shapley values, with labour market tightness block.
Notes: Ten largest average contributions in each block, averaged over 1989-2024, ordered by size of
average contribution (global demand block has 8 indicators in total).
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C.4 Extended model
policy shocks
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Figure C8: Extended model with financial conditions and monetary policy blocks, sample
period 1997-2024. Mean absolute Shapley values within each component. Ten largest
average contributions in each component.
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C.5 Robustness of the BBIM to the choice of hyperparameters

We test how the choice of key hyperparameters affects our main result. We alter the
depth of the individual trees (1, 2, 4, baseline: 3), the minimum number of observations
in a node to consider another split (2, 20, baseline: 5), and whether trees are fit on a
random subsample of the training observations (baseline: 50%) and predictors (baseline:
25%) or not.

Figure C9 shows the results. While the predicted inflation as well as the component
values are highly consistent across the different hyperparameter settings, we observe some
notable differences. First, when limiting the trees to a depth of 1, the trend contribution
is substantially higher. Note that a boosting model with a tree depth if 1, while still
allowing for non-linearities, does not allow for interactions between variables. Second,
when limiting splits to nodes with more than 20 observations, we observe some changes
in the demand component.
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Figure C9: Predicted inflation and blockwise predictive contributions for models with
alternative hyperparameter settings.

41



Cross-validation error Forecasting error

N~
© o 7]
o
© ]
4 4
= Swn
X - x o
<
< ™
o = ™ =
I T T T 1 I T T T T 1
0 50 100 150 200 0 20 40 60 80 100
Boosting rounds Boosting rounds

Figure C10: Cross-validation and forecasting error as a function of the number of boosting
rounds. We apply early stopping in cross-validation but not in forecasting, where we limit
the number of rounds to 100.
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