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Agent expectations are central to macroeconomics. The concept of rational expecta-

tions (RE) assumes individual rationality and consistency of expectations for all agents.

When applied econometrically, RE models attribute significantly more knowledge to agents

than what is typically available to econometricians (Sargent 1993, Evans & Honkapohja

2009). While this framework serves as a logical benchmark, the assumptions underpinning

it are strong, and many have argued that they should be relaxed (Woodford 2013, Moll

2024).

The literature on Adaptive Learning (AL) (Sargent 1993, Evans & Honkapohja 2001)

is one of the leading paradigms in the learning literature and the one that we take as

our starting and reference point. AL retains the assumption of individual rationality,

while replacing consistency of expectations with the assumption that agents form their

expectations iteratively, and use recursive linear least squares as a forecasting rule. These

forecasts are an input into agents’ decision rules, and in each period the economy attains

a temporary equilibrium. Models populated with AL agents put the agents on an equal

footing with an econometrician who is observing data from the model. However, this type

of parametric recursive method assumes that agents continue to correctly specify the laws

of motion and other relevant functional relationships of the model. By assumption, the

predictions of this econometric model need not coincide with the predictions of the true

model. This makes it important to specify the reduced form forecasting rule such that the

AL agents’ expectations converge to those of the RE agents. In this case, an equilibrium is

referred to as learnable. Importantly, economic dynamics, e.g. the stability of central bank

policies such as Taylor rules or forward guidance, may be different under AL compared to

RE (Eusepi & Preston 2018).

In this paper, we combine a classical dynamic stochastic general equilibrium (DSGE)

model with flexible expectations formation that employs modern developments in deep

reinforcement learning (DRL, Mnih et al. (2015), Sutton & Barto (2018)). We populate

the model with a household agent who is represented by a set of deep neural networks that

encode its knowledge and behavior. Importantly, the agent has no a priori knowledge of

the structure of the economy other than its own preferences encoded in a utility function.

Instead of actions derived from first-order conditions, this agent uses its utility realizations

in response to its actions to learn potentially non-linear decision rules and state values

represented by neural networks (Goodfellow et al. 2016).
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Our approach enables agents to learn flexibly, in the sense of being unconstrained by

a particular functional form, because our learning algorithms are based on nonparametric

universal function approximators (Cybenko 1989, Goodfellow et al. 2016). This reduces

the risk of misspecification inherent in a parametric approach. Learning that replaces

RE agents with DRL agents represented by artificially intelligent neural networks is also

reminiscent of the bounded rationality paradigm of Sargent (1993).

While a RE agent is endowed with comprehensive knowledge about the structure of

the economy, a DRL agent only knows its reward, which it maximizes through learning

from repeated interactions with the model economy environment (Sutton & Barto 2018).

Specifically, at each step, the agent observes state variables, takes actions (e.g. consump-

tion), receives a reward from the environment, and observes a new state. Based on this

experience, the agent updates the weights of its neural networks to improve future decision-

making. The DSGE framework is amenable to the DRL approach, because it can easily

be cast in the temporal setting of state, actions, reward, and next state.

The use of deep artificial neural networks in reinforcement learning is at the forefront

of advances in artificial intelligence, where agents learn to master complex dynamic en-

vironments. DRL has powered landmark AI successes — from Atari and AlphaGo to

robotics (Mnih et al. 2013, 2015, Silver et al. 2016) — yet its properties for modelling

macroeconomic agents is largely unexplored. We contribute to the literature by showing

that DRL can be used by economists to solve complex behavioral problems. We argue

that this approach offers a principled computational way to represent bounded rationality.

We apply our approach to a classical model from the learning literature in macroe-

conomics (Benhabib et al. 2001, Evans & Honkapohja 2005). This model looks at the

interaction of monetary and fiscal policies in the presence of a single representative house-

hold agent. It studies the dynamics of inflation, debt, and money under a global Taylor

rule that generates two steady states of inflation, the inflation target and a low inflation

“liquidity trap”.

Evans & Honkapohja (2005), Eusepi (2007) and Evans & Honkapohja (2008) have stud-

ied the stability properties of this model under AL, and have shown that the learnability of

the two steady states depends on the parameterizations of monetary and fiscal policy rules.

Specifically, monetary and fiscal policy can both be “active”or “passive”depending on how

strongly the central bank or the fiscal authority react to deviations from the inflation target

or to the outstanding stock of debt, respectively.
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We investigate whether and how our proposed DRL approach enables the household

agent to learn the analytically known locally optimal RE solutions, and compare these

results with those under AL. When an active fiscal or monetary policy is paired with a

passive policy counterpart, the corresponding RE equilibria are determinate. We find that

both AL and DRL agents can learn these equilibria. When both monetary and fiscal

policies are active (or both are passive), the corresponding RE equilibria are explosive (or

indeterminate). We find that, unlike AL agents, DRL agents can learn such equilibria.

The main reason is that DRL agents are not constrained by the dynamics of the linearized

system, but instead follow the “global map” given by long-term utility maximization. This

means that the economy can end up in potentially more states than previously thought.

These findings echo early comparisons between AL and evolutionary algorithms such

as genetic learning (Arifovic 1995). Our study also aligns with recent calls to rethink

rational expectations in heterogeneous agent models on both empirical and computational

grounds (Moll 2024). They underscore the promise of DRL as a flexible, boundedly rational

framework in modern macroeconomic environments.

We assess the state of learning or the state of (bounded) rationality of households

by measuring how far their actions are from the RE solution. To do so we introduce

a set of simple metrics, first-order condition distances (FOC-distances), which quantify

an agent’s behavior on a well-defined spectrum from random to rational. In a small

numerical experiment, we show how the expectations of DRL agents can be extracted

from FOC-distances. Together with the proposed measures of bounded rationality, this

type of analysis may help to eventually bring the proposed approaches to the data.

The DRL agent is able to find global solutions, so that DRL can be used as a global

solution technique. Interestingly, our experiments indicate that, in our model, active

monetary policy has a stabilizing effect over large parts of the state space. The household

converges to the inflation-target steady state despite this having lower utility than the

liquidity trap steady state, suggesting a relatively large basin of attraction for this solution.

DRL also poses several challenges. First, learning can be slow to converge unless one

adopts the “social learning” interpretation that we will discuss below. Second, learning can

be unstable. While the DRL agent generally learns the RE solution, it does not necessarily

remain there as it has no knowledge of its existence or location. This necessitates the

introduction of early stopping criteria, which are common in the reinforcement learning

literature (Hastie et al. (2009), Liu et al. (2021), Xia et al. (2023), Karwowski et al. (2023)).
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Assuming that DRL agents resemble real-world agents who have imperfect knowledge

of their economic environment but are fully aware of their own preferences, these findings

have wider implications for the use or interpretation of DSGE models. In particular,

learning agents may not behave rationally at most times. Linear stability criteria may not

be sufficient to describe whether agent behavior is stable or not, and economic mechanisms

that keep a learning agent at the RE solution need to be justified.

The remainder of this paper is structured as follows. Section 1 presents the model.

Section 2 provides brief introductions to both adaptive learning and deep reinforcement

learning. Section 3 presents the main results. Section 4 conducts robustness analysis. We

conclude with a general discussion in Section 5. Auxiliary information is provided in the

appendix.

1 The Model

The model closely follows Benhabib, Schmitt-Grohe & Uribe (2001) and Evans & Honkapo-

hja (2005). Time is discrete and measured in quarters. Prices are flexible. We focus our

presentation on the components of the model that are needed to formulate the learning

problem.

Households There is a single representative household who discounts the future at a rate

β ∈ (0, 1). The agent seeks to maximize its utility, which depends on real consumption

ct, real money balances mt, and hours worked ht, subject to an inter-temporal budget

constraint. Formally, the household solves the following problem

max
ct,mt,ht

E0

∞∑
t=0

βtU(ct,mt, ht) (1)

s.t. mt + bt + ct =
mt−1

πt

+
bt−1

πt

Rt−1 + wtht − τt, (2)

where πt =
Pt

Pt−1
is the gross inflation rate with Pt as the price level, Rt is the gross nominal

interest rate on government bonds bt held from period t to t+ 1, wt is the real wage rate,

τt is real lump-sum taxation, mt =
Mt

Pt
, and bt =

Bt

Pt
.

We follow Evans & Honkapohja (2005) by adopting a utility function of the form

U(ct,mt, ht) =
c1−σ
t

1− σ
+ χ

m1−σ
t

1− σ
− h1+φ

t

1 + φ
. (3)
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Firms The representative firm operates a constant returns to scale production function

yt = εytht, (4)

where εyt is an exogenous and stochastic technology shock with mean one. In each period

the firm maximizes profits as the difference between production and the wage bill by setting

the real wage rate, i.e.

max
ht

yt − wtht ⇒ wt = εyt . (5)

Market Clearing We assume that the goods market clears in every period,

ct = yt. (6)

Government Budget Constraint and Policy Rules The government issues interest-

bearing bonds and non-interesting bearing currency (money), and collects taxes. It oper-

ates under the real inter-temporal government budget constraint (GBC)

mt + bt + τt =
mt−1

πt

+Rt−1
bt−1

πt

. (7)

The above is subject to the transversality condition

lim
j→∞

j∏
k=0

(
πt+k

Rt+k−1

)
bt+j = 0 . (8)

Fiscal Policy is represented by the linear tax rule of Leeper (1991),

τt = γ0 + γbt−1 + ετt , (9)

where ετt is an exogenous and stochastic fiscal policy shock with mean zero. We also

make the natural assumption that γ is not excessively large, 0 ≤ γ ≤ β−1. We follow the

terminology of Leeper (1991) to define fiscal policy as being active if γ < β−1 − 1 and

passive if γ > β−1 − 1. Active (passive) fiscal policy implies that taxes rise insufficiently

(sufficiently) to ensure fiscal solvency through adjustments in the primary surplus.

Monetary Policy follows Benhabib, Schmitt-Grohe & Uribe (2001) and Evans &
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Honkapohja (2005), with a nonlinear global interest rate rule

Rt − 1 = f(πt)ε
r
t . (10)

The function f(π) is assumed to be non-negative and non-decreasing, while εrt is an ex-

ogenous and stochastic monetary policy shock with mean one. We use the functional

form

f(πt) = (R∗ − 1)
( πt

π∗

) AR∗
R∗−1

, (11)

where A > β, π∗ is the inflation target of the monetary authority, and R∗ = β−1π∗ is the

steady state nominal interest rate that is consistent with this inflation target. We adopt

the notation

α := f ′(π) =
A

β

( π

π∗

)R∗(A−1)+1
R∗−1

, (12)

where α measures how strongly monetary policy responds to inflation around a steady

state value of inflation given by π.

This specification of monetary policy implies that the nominal interest rate is strictly

positive and strictly increasing in the inflation rate. We refer to monetary policy as active

(passive) if the monetary authority raises the nominal interest rate by more (less) than

one-for-one in response to an increase in the inflation rate around the steady state π, that

is, if α > (<)1.

Optimality Conditions While our learning approach will not rely on optimality con-

ditions, some of the measures that we will define will reference them. The first-order

conditions are given by the Euler equation

1 = βEt

(
ct+1

ct

)−σ
Rt

πt+1

, (13)

the real money demand

mt = ct

(
Rt − 1

χRt

)−1/σ

, (14)
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and the labor supply equation

wt = cσt h
φ
t . (15)

Under optimality, the labor market clears. Combining (4), (5), (6) and (15) we find that

consumption, output and labor depend on the technology shock,

ct = yt = εytht = εyt
1+φ
σ+φ . (16)

The Two Steady States Both deterministic steady states are characterized by the

following set of equations:

Euler / Fisher Equation: R =
π

β
(17)

Money Demand: m = y

(
π − β

χπ

)−1/σ

(18)

Monetary Policy: R = 1 + (R∗ − 1)
( π

π∗

) AR∗
R∗−1

(19)

Fiscal Policy & GBC: b =

(
1

β
− 1− γ

)−1(
γ0 + (1− 1

π
)m

)
(20)

Output: y = 1 (21)

Equation (17) and (19) together determine the steady state of inflation:

π

β
= 1 + (R∗ − 1)

( π

π∗

) AR∗
R∗−1

. (22)

If f(·) is continuous and differentiable as in (11), and has a steady state π∗ with

f ′(π∗) > 1 in accordance with the Taylor principle, there exists a second low inflation

steady state πL with f ′(πL) < 1. Figure 1 illustrates this multiplicity of steady-state

inflation via the intersection of the Fisher equation and the monetary policy rule.

These results are formalized by

Proposition 1 [Benhabib, Schmitt-Grohe & Uribe (2001)] There exist two steady states

of inflation. The first steady state is characterized by an inflation rate π∗ ≥ 1 such that

the steady state Fisher equation is satisfied and the feedback rule is active, R∗ = 1
β
π∗ and

f ′(π∗) = A
β
> β−1. The second steady state is characterized by an inflation rate πL < π∗
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Figure 1 The Two Steady States of Inflation

such that the steady state Fisher equation is satisfied and the interest rate rule is passive,

RL = 1
β
πL and f ′(πL) =

A
β
(πL

π∗ )
(A−1)R∗+1

R∗−1 < β−1.

Once inflation is determined, real money balances are determined by (18) and real debt

by (20). The linearized dynamic system of equations used in the RE and AL settings is

presented in the Appendix. In the neighborhood of either steady state, our model can be

described by a linear approximation in two variables, πt and bt.

2 Learning Approaches

In this section we first review the AL approach and then give a general introduction to the

main concepts of (deep) reinforcement learning and to the specific DRL algorithm used in

this paper. We apply this algorithm to our model and derive state transition and learning

protocols tailored to the model setting. Finally, we put both learning approaches into

context using the concept of generalized policy iteration, which offers a unifying framework.

2.1 Adaptive Learning

Learning in macroeconomics represents deviations from the RE hypothesis while still ad-

hering to the general equilibrium principle (Sargent 1993, Evans & Honkapohja 2001, 2009,

Eusepi & Preston 2018). In this sense, all learning approaches contribute to the study of

the general notion of bounded rationality, which may include RE as a special case.

One of the main approaches in the economic learning literature is AL. Private agents,

the household agent in our case, make forecasts using a reduced form econometric model

of the relevant variables, and estimate the parameters of this model in a self-referential

system based on past data. In each period, the economy uses the agent forecast as an
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input and attains a temporary equilibrium. This provides a new data point for the next

period’s forecast. This sequence of temporary equilibria may generate parameter estimates

that converge to a fixed point corresponding to a RE equilibrium. In this case, the RE

equilibrium is stable under learning, or learnable.

Evans & Honkapohja (2001) show that there is a close connection between the con-

vergence of least squares learning to a RE equilibrium and a stability condition, known

as E-stability, based on a mapping from a perceived law of motion (that private agents

are estimating) to an implied actual law of motion that generates the data under these

perceptions. E-stability represents the local stability properties at a rational expectations

equilibrium of a system of equations based on this map.

If there are multiple RE equilibria, the econometric model that agents use for fore-

casting can determine which of these equilibria are learnable. This may then serve as an

equilibrium selection criterion.

We translate this to our model setting. In doing so we focus on the case in which the

exogenous shocks are i.i.d. processes, which simplifies our analysis without affecting the

theoretical results. The linearized model for πt and bt is shown in equation A.1 in the

appendix. The rational expectation solutions of πt and bt are then i.i.d. processes around

their deterministic steady states. In AL, the agents treat the system describing πt and bt as

i.i.d. processes with unknown means that they try to estimate by least squares (perceived

law of motion). The agents forecast πe
t+1 and bet+1 by estimating the mean values of πt and

bt, which is called steady state learning, and where the expectations operator no longer

signifies rational expectations. We can then identify the expectations of the variables with

the estimates of their means. This can be written as a simple recursive algorithm

xe
t+1 = xe

t + ϕt(xt − xe
t ) , (23)

with x ∈ {π, b}. The superscript e refers to the agent’s expected quantity, and ϕt is a gain

sequence. Under least-squares learning it is usually taken to be ϕt =
1
t
, often termed a

“decreasing-gain”sequence, where the influence of new observations decreases over time.

E-stability can be evaluated using a linearized system matrix B evaluated at the steady

state, a derivation of which is presented in Section A.2 in the appendix. For a system

comprised of two variables, the E-stability condition is that one eigenvalue of |B− I| have
a real part less than zero and the other an eigenvalue with a real part greater than zero.
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The formal learning results are summarized by

Proposition 2 Under steady state learning, if the supports of shocks are sufficiently small,

we have: (i) If fiscal policy is passive, |γ − β−1| < 1, the steady state π∗ is locally stable

under learning and the steady state πL is not locally stable under learning.

(ii) If fiscal policy is active, |γ − β−1| > 1, the steady state π∗ is not locally stable under

learning and the steady state πL is locally stable under learning.

Proof: The eigenvalues of |B − I| are ev1(π) = 1
βf ′(π)

− 1 and ev2 = 1
1/β−γ

− 1. Since

f ′(π∗) > 1
β
and f ′(πL) < 1, we have ev1(π

∗) < 0 and ev1(πL) > 0. When fiscal policy is

passive, ev2 > 0 and when fiscal policy is active, ev2 < 0.

Proposition 2 states that the stance of fiscal policy determines which of the two steady

states is learnable via AL. Only the combinations active-passive and passive-active of the

monetary-fiscal policy mix are learnable via AL.

2.2 (Deep) Reinforcement Learning

Reinforcement learning studies the problem of maximizing the long-run reward of an agent

within a modeling environment that is unknown to the agent. The objective is to find be-

havioral rules or policies that, as a function of state observations, lead to agent actions

that maximize the expected discounted reward. Instead of relying on extensive knowledge

of the model on the part of the agent, reinforcement learning imposes minimal require-

ments on agents’ knowledge and behavior. Specifically, the agent observes state variables

and responds to reward signals without explicit transition dynamics. Here we give a brief

introduction to reinforcement learning and relate it to the model of Section 1. This intro-

duces features that can be readily transferred to other model settings. A comprehensive

introduction to reinforcement learning is given in Sutton & Barto (2018).

An agent in reinforcement learning aims to maximize its expected cumulative lifetime

reward, or the expected return,

max
P

Et[Gt] with Gt ≡
∞∑
k=0

βkr(st+k, at+k) , (24)

where β ∈ (0, 1] is a discount factor, r(st, at) ∈ R is the reward given state st ∈ S ⊂ Rns

and action at ∈ A ⊂ Rna , where ns and na are the dimensions of the state and action

spaces. The agent achieves maximization of (24) by optimizing its behavioral rule, or
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Figure 2 Agent-Environment Interaction in Reinforcement Learning

policy, P : st → at ∈ A ⊂ Rna based on observed state transitions. These actions

interact with the environment in which the agent lives, leading to the next state as well

as returning the current reward, i.e. E : (st, at)→ (st+1, rt). This process is schematically

shown in Figure 2. This can be formulated as a Markov decision process defined by the

tuple (S, A, T , r). The transition probability T : S × A × S → [0, 1] describes the

probability of the next state Pr(st+1|st, at) = F (st+1|st, at) given the current state st and

action at, where F (·) describes the model environment. This transition function fulfills the

Markov property in that it only depends on the current state and action, but not on the

history of state transitions.

Finding the optimal policy P∗ can be approached from the state value function

V ∗(s) = max
a∈A

EP∗
[
Gt|st = s, at = a

]
= max

a∈A
Q∗(s, a) , (25)

where the last expression defines the action-value function Q, i.e. the expected return from

following a behavioral rule P given a state and an action. The optimal policy P∗ optimizes

both state and action values, which also maximizes expected return - our final goal.

The action-value function fulfills the recursive Bellman equation

Q∗(st, at) = r(st, at) + βEP
[
max
at+1

Q∗(st+1, at+1)|st, at
]
. (26)

The current state-action value is the current reward plus the expected discounted value

of the next period’s state-action value. These components form the backbone of many

different reinforcement learning algorithms, including value-based ( Q-learning), policy-

based (Lillicrap et al. (2015), Schulman et al. (2017)), and hybrid approaches. The quality

of learning may differ between problems, algorithms, and their implementation.
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We will primarily use the Soft Actor-Critic (SAC) approach (Haarnoja et al. 2018,

Raffin et al. 2021). This is based on the iterative improvement of a policy at = P(st)
(actor) that is evaluated by the action-value function Q(st, at) (critic). That is, we will

estimate two separate objects, P andQ, where one can be used to evaluate the other. These

can be parameterized using general function approximators in the form of deep artificial

neural networks with internal weights ϕ and θ, denoted by Pϕ and Qθ.
1 This combination

of traditional reinforcement learning and deep artificial neural networks is referred to as

deep reinforcement learning.2 General function approximators dramatically increase the

capabilities of reinforcement learning and have facilitated many recent advances.

Interactions of the agent and the environment produce state transitions that the agent

samples as observations. Using standard optimization techniques like stochastic gradi-

ent descent, the policy and action-value function networks can be trained by iteratively

minimizing the Bellman residuum

L(ϕ, θ) = Est,at,rt

[
1

2

(
Qθ(st, at)− Q̂θ(st, at)

)2]
, (27)

with the entropy-augmented target given by

Q̂θ(st, at) = r(st, at) + β Est+1∼P (·|st,at),P
[
Qθ̄

(
st+1,Pϕ(st+1) + αSACH(Pϕ(·|st+1))

)]
, (28)

where θ̄ is a target network updated via Polyak averaging, H(Pϕ(·|st)) = − logPϕ(at|st)
is the policy entropy, αSAC > 0 is the temperature parameter adjusted to match a target

entropy H̄. The entropy term encourages exploration while optimizing returns.

Our learning process is summarized in Algorithm 1. Learning takes place in episodes

that are initiated with a random state drawn uniformly from a region of interest in the state

space. Subsequent iterations between agent actions and the environment result in state

transitions, and optimization routines are applied to update the neural network weights

in Pϕ and Qθ.
3 A learning episode ends when one of two termination criteria is reached,

either a maximal number of steps Nmax
epi or a utility change that remains below a fixed

small threshold dmin
u .4 This approach allows the agent to exploit knowledge to improve its

1We use standard feed-forward networks with two or three hidden layers and 32 nodes in each layer.
See Table A.1 for details.

2See Goodfellow et al. (2016) on the use of deep artificial neural networks.
3The learning rate ζlearn controls the size of parameter updates in Pϕ and Qθ. Larger values imply

faster learning, but at the risk of destabilized learning with explosive or stagnant behavior.
4A smaller value of dmin

u means that the agent spends more time within a narrow region of the state
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utility while experiencing a sufficiently large part of the state space.

Learning happens via a combination of updates of neural network weights between steps

and explorative actions. Explorative actions are not optimal according to the currently

learned behavioral policy. Instead they are either purely random during a “burn-in” pe-

riod (Prandom
ϕ (st)),

5 or they follow the currently learned policy Pϕ but with an added noise

component (Pexpl
ϕ (st)). This is a crucial part in DRL, as it allows the agent to discover new

and ultimately better actions. The magnitude of the random component in actions charac-

terizes the exploration-exploitation trade-off. Set too small or too large, the agent will fail

to learn efficiently, or will not learn at all. Specifically, our action space is continuous, and

exploration after “burn-in” is achieved by drawing from a normal distribution generated

from the currently learned policy function Pϕ(st). That is, most actions will be close to the

mean of this action distribution, which represents the currently learned best action, while

deviations from this mean explore the action space. If such actions yield higher utility at

the current state, the weights of the action network Pϕ are updated accordingly.

For updates of the parameters in Pϕ and Qθ the agent draws randomly from a fixed-size

memory of experience consisting of Nmem past state transitions, and on this basis performs

stochastic batch gradient descent. The oldest transition drops out if the memory is full.

The overall learning phase is set to last for a maximal number of Nlearn steps, where Nlearn

is the number of parameter updates by which we expect the agent to solve its optimization

problem. We consider the agent’s problem solved if it finds action values that correspond

to one of the RE steady states of the model.

Testing takes place at intervals of Ninterval ≪ Nlearn learning steps. During testing,

parameter updates are halted temporarily, and learning goals such as distances to one of

the steady states are evaluated. Testing consists of a fixed number of test episodes Ntest,

each of which is initiated with a random state drawn uniformly from the state space. Like

in learning, testing iterations between agent actions and the environment result in state

transitions, but unlike in learning, neural network weights remain fixed at their previously

optimized values. The termination criteria for testing episodes are identical to the criteria

for learning episodes. Testing is likely to happen within an unfinished learning episode

due to the stochastic nature of the length of both learning and testing episodes. The

space. This gives the agent less experience in terms of the number of states it has seen, but it may lead
to increased learning precision.

5To overcome randomness in initialization at the beginning of each learning episode, the algorithm
starts by generating Nburn state transitions based on random actions. These are put into memory to allow
learning to begin.
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Algorithm 1 Learning and Testing Protocol of the Household Agent

Initialize environment E (parameterized model) and agent (parameterized by Pϕ,
Qθ)

for steps = 1 to Nlearn do
Initialize new learning episode with random state st
while new learning episode is not done do
if steps ≤ Nburn then
Take allowed random action at = Prandom

ϕ (st)
else
Draw exploration action at = Pexpl

ϕ (st)
end if
Environment returns (rt, st+1) = E(st, at)
Add state transition (st, at, rt, st+1) to memory
Update the weight in Pϕ and Qθ using batch gradient descent with gradient
∇(Pϕ, Qθ) from memory of Nmem state transitions:
(ϕ, θ) ← (ϕ, θ)− ζlearn∇(ϕ,θ)L(ϕ, θ) .
if mod(steps, Ninterval) = 0 then
ntrain = steps/Ninterval

for test = 1 to Ntest do
Initialize new testing episode with random state st
Run testing episode without updates of Pϕ and Qθ

Testing episode termination criteria (Nmax
epi , dmin

u )
Save state transitions (*)

end for
Save current agent (Psteps

ϕ , Qsteps
θ )

end if
State update st ← st+1

Learning episode termination criteria (Nmax
epi , dmin

u )
end while

end for
Save final agent (Pfinal

ϕ , Qfinal
θ ) =0

Values used in main experiments (Figure 5 top, Figures 6,7,8,9,11): Nlearn = 1, 500, 000,
Nmem = 25, 000, Nburn = 10, 000, Ninterval = 10, 000, Ntest = 10, Nmax

epi = 25, 000

Values used in alternative experiments (Figure 5 bottom, Figure 10): Nlearn = 10, 000, 000,
Nmem = 25, 000, Nburn = 10, 000, Ninterval = 10, 000, Ntest = 10, Nmax

epi = 25, 000
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motivation for using a fixed number of learning steps between sequences of test episodes is

that this allows us to measure the agent’s learning progress uniformly based on the number

of parameter updates or learning steps.

For each testing episode, and therefore at different stages of learning, we save the agent

parameters (Pϕ, Qθ) as well as all state transitions. This allows ex-post experimentation,

the reproduction of test results, or the flexible adjustment of the learning setting.

We have now defined the general DRL framework and algorithm. Next, we describe

how this setting can be applied to our model.

2.3 DRL Applied to Our Model

The household’s problem (1) is analogous to the learning agent’s problem (24) when replac-

ing the general reward r(st, at) with the household’s period utility (3). The environment E ,
about which the agent is ignorant, is given by the production process (4), wage setting (5),

market clearing (6), the government budget constraint (7), fiscal policy (9) and monetary

policy (10). It does not include the first-order conditions (13)–(15).

The state at time t, st, is given by last period’s real money balances, bond holdings,

inflation, consumption, and hours worked:

st = (mt−1, bt−1, πt−1, ct−1, ht−1) (29)

The state representation is not unique,6 but it does need to fulfill the Markov property

when combined with the agent’s actions and the environment.

The household’s actions at at each time step t are a tuple of consumption, bond saving,

and hours worked denoted by

at =
(
cactt , bactt , ht

)
(30)

where xact
t , x ∈ {c, b}, represents actions with reference to last period’s price level, i.e.

Xt/Pt−1 with Xt being nominal consumption and nominal bond holdings. The action

specification is again not unique. It must only allow for valid state transitions that satisfy

the Markov property.

The state at time t+1, st+1, is determined by the interactions of the household’s actions

(30) and the model environment. These actions set the levels of inflation, real consumption

6Inflation can be replaced by the gross nominal interest rate according to (10).
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and real bond holdings as

πt = cactt /yt , (31)

ct = cactt /πt , (32)

bt = bactt /πt . (33)

The first relation states that prices ensure market clearing according to (6), where the

relationship between the agent’s action (here, choosing consumption with reference to last

period’s price level) and the price adjustment process between different periods has been

made explicit. This mechanism respects the information flow in the model.

We next define the state transition (*) of a single testing step in Algorithm 1.

Step sequence for a single transition: st → st+1

1. Observe state st

2. Take actions Pϕ(st) = at = (bactt , cactt , ht)

3. Shock realizations (ϵτt , ϵ
R
t , ϵ

y
t )

4. Production yt takes place according to (4) and the firm sets wages according to (5)

5. Markets clear: Inflation πt is set by (31)

6. This determines real consumption ct and real bond holdings bt according to (32)-(33)

7. Policy realizations:

• Government sets taxes τt based on the taxation rule (9)

• Monetary authority sets interest rate Rt based on the Taylor rule (10)

8. Money holdings mt are realized from the government budget constraint (7)

9. Agent obtains reward rt = U(ct,mt, ht)

10. State is updated st ← st+1 = (mt, bt, πt, ct, ht)
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Figure 3 Schematic Representation of Generalized Policy Iteration

2.4 Generalized Policy Iteration

AL and DRL can be conceptually compared from the point of view of generalized policy

iteration (GPI). In GPI, policy evaluation delivers a state value VP , policy improvement P
delivers a change of agent behavior to attain higher returns, and both interact iteratively

(Sutton & Barto 2018) - see Figure 3. Under the (non-trivial) assumption that learning

converges, this results in a fixed point of an optimal policy P∗(s) and maximal-return state

values VP∗(s) that represent the RE equilibrium in our model. As long as the agent has

not converged to this point, it is called boundedly rational.

In our model, optimal agent behavior is given by the household first-order conditions,

which are listed in the appendix as equations A.12–A.13. The (locally) optimal state

values are the two steady states corresponding to π∗ and πL in Fig. 1. AL fixes behavior

by using the agent’s first-order conditions from the outset – the agent does not have to learn

behavior. This can be thought of as a horizontal rather than an upward-sloping policy or

agent behavior line, as indicated by the dashed line in Figure 3. State values are described

by the state equations (23), and they converge to their optimum according to Proposition

2 – the agent does have to learn state values. DRL does not fix behavior, instead both the

policy and the corresponding state-action values are learned simultaneously. GPI can also

be used to describe Euler learning in macroeconomics, where the behavioral rules differ

from the first-order conditions (Eusepi & Preston 2018). GPI convergence cannot happen

if the behavioral rules are not flexible enough to converge to the first-order conditions.

DRL addresses this problem through the flexibility of deep neural networks.
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2.5 Early Stopping

In the machine learning and reinforcement learning literatures, early stopping is a com-

monly used technique to mitigate overfitting and to enhance model performance (Hastie

et al. 2009, Liu et al. 2021, Xia et al. 2023, Karwowski et al. 2023). That is, when one or

several criteria are met by the agent’s actions or by the corresponding state transitions,

learning stops, either partially or completely.7 Here, we impose early stopping by making

the steady state absorbing. Specifically, we introduce small catchment areas around the

steady state values of agent actions, which we set to 0.01% of the corresponding steady

state values. Let xt ∈ at and x denote its steady state value, and let δES = 1e− 4. Then

xt′ → x ∀t′ ≥ t, if |(xt − x)/x| < δES . (34)

Eq. (34) fixes the three household actions at their steady state values once these have been

reached. However, the first order conditions (13) – (15) also make use of the household

budget constraint (2), which necessitates the imposition of an additional criterion to guar-

antee that the steady state is absorbing. We do this by making use of the government

budget constraint (7) once (bactt , cactt ) have reached their steady state values. The reason is

the state transition protocol, where the money demand mt is the residual of all previous

events at time t. We make a one-time adjustment to the household’s saving decision bt

before the absorbing state is reached based on the model’s steady state values (b,m, π,R)

and money holdings mt of the form

bt → bES =
π (m+ b+ γ0 −mt/π)

R− γ π
. (35)

This adjustment is needed because the presence of intertemporal assets (money and bonds)

creates a path dependence in the model structure such that reaching optimal steady state

action values does not automatically guarantee reaching the steady state of the system

across all variables. This can be seen in the household or government budget constraints,

which connect previous period money and bond holdings to the current period.8

7Early stopping is natural both from a behavioral and a computational perspective. It is a simple
implementation of the exploration-exploitation trade off when agents can be thought of as having a finite
“search budget”.

8Eq. 35 is derived from the government budget constraint at time t + 1 to derive a relation bES(mt)
which is consistent with mt+1 = m and bt+1 = b assuming all other state variables have reached their
steady state values.
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3 Quantitative Evaluation

We apply the DRL framework of Section 2 to the model of Section 1.

3.1 Calibration

The model parameterization is given in Table 1. For preferences, we set β = 0.99, which

implies a steady state real interest rate of about 4 percent, φ = 1, implying a unitary

Frisch elasticity of labor supply, σ = 3, which is within the range of 1 to 3.5 found in

the literature, and χ = 0.1, following Evans & Honkapohja (2005). The fiscal policy rule

coefficient that corresponds to passive fiscal policy is γP = 0.02, while γA = 0 corresponds

to active fiscal policy. The monetary policy rule coefficient A = 1.3 gives two steady

states of inflation, one at π∗ = 1.01 (4% net per annum) and the other at πL = 1.0014

(0.56% net per annum). The shock series ϵτt , ϵ
R
t , ϵ

y
t follow log-normal, normal and normal

distributions, with means of zero, one, and one, respectively. The standard deviations

of the shocks either take standard values from the range found in the empirical literature

(monetary policy and technology), or are calibrated to the US economy (taxation).9 Steady

state values for the high and low inflation steady states, as well as for passive and active

monetary and fiscal policies, are presented in Table 2. For better comparability across

regimes, the fiscal policy intercept γ0 is recalibrated for each policy regime such that bond

holdings equal annualized output.10

Steady state money holdings equal between 40-50% of annual output, which for the US

equals approximately double/half of M1/M3. While strictly speaking our model only repre-

sents narrow money, extensions with a financial sector could represent broader aggregates.

Note that money and therefore household utility is generally higher in the low-inflation

steady state πL, with passive monetary policy.

3.2 AL Learnability

The learnability and local stability characteristics of the policy regimes in Table 2 are

determined by the parameterization of the fiscal and monetary policy rules as described

in Proposition 2. This is summarized graphically in Figure 4 for the parameterization in

Table 1. The horizontal axis shows the fiscal response parameter γ and the vertical axis

9We compute the standard deviation of the ratio of the nominal primary surplus to detrended nominal
GDP using either the Hodrick–Prescott or the Hamilton filter. We take the mean of these two measures
and adjust the standard deviation of ϵτt to match their model equivalent.

10This does not affect the local stability properties of the model or the learning dynamics of the agent.
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parameter value description

β 0.9900 discount factor
σ 3.0000 inverse of intertemporal elasticity of consumption and money holdings
φ 1.0000 inverse of Frisch elasticity of labor supply
χ 0.1000 relative preference weight of money holdings
γP 0.0200 passive fiscal policy (PFP) coefficient
γA 0.0000 active fiscal policy (AFP) coefficient
A 1.3000 Taylor rule coefficient
π∗ 1.0100 target gross high-inflation rate (4% net per annum)
πL 1.0014 implied gross low-inflation steady state (0.56% net per annum)

sd(ϵτt ) 0.0080 fiscal policy shock
sd(ϵRt ) 0.0010 monetary policy shock
sd(ϵyt ) 0.0100 technology shock

Table 1 Baseline Model Parameterization

AMP PMP
PFP AFP PFP AFP

πss 1.0100 1.0100 1.0014 1.0014
mss 1.7157 1.7157 2.0614 2.0614

css/nss/yss 1 1 1 1
bss 4 4 4 4
uss -1.0170 -1.0170 -1.0118 -1.0118
γ0 -0.0566 0.0234 -0.0426 0.0375

Table 2 Steady State Values under Different Policy Regimes

shows the inflation rate π, where each π corresponds to a value of α through (12). The

two steady-state inflation rates are marked by the dashed horizontal lines at π∗ = 1.01

(active monetary policy; AMP) and πL = 1.0014 (passive monetary policy; PMP). The

two fiscal policy rule parameters are marked by vertical red lines at γP = 0.02 (passive

fiscal policy; PFP) and γA = 0 (active fiscal policy; AFP). Note that this graph combines

a model parameter γ with a state variable π on the two axes, because for any given fiscal

stance (γ) there are two possible steady states. This results in the four regimes marked by

their local stability characteristics. These are separated by the vertical and horizontal solid

gray boundary lines in Figure 4, which are located at γboundary = 1/β − 1 = 0.0101 and

πboundary = 1.0059, where the latter is implicitly determined by f ′(πL)β = 1. As shown in

the AL literature (Evans & Honkapohja 2001), the determinate regimes (AMP-PFP and

PMP-AFP) are learnable while the explosive (AMP-AFP) and indeterminate (PMP-PFP)

regimes are not. We next investigate which of these policy regimes are learnable by DRL.
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Figure 4 Local Dynamic Stability Properties by Policy Regime

3.3 DRL Learnability

While there exists a correspondence between the dynamic stability properties of non-linear

maps and of local linear approximations, such a correspondence does not exist for DRL.

Instead, learnability is an empirical question, which we address via numerical simulations.

In each of our experiments, we follow the learning protocol described in Algorithm 1 and,

depending on the policy regime, we define symmetric and local regions in the action and

state spaces, around either the low or high inflation steady state. Details of the settings of

the learning algorithm are listed in Table A.1 in the appendix. Exogenous shocks remain

switched off in Sections 3.3 and 3.4, and will instead be investigated separately in Section

4.3. Most of our experiments run for Nlearn = 1, 500, 000 learning steps.11 We conduct

Ntest = 10 test episodes for each Ninterval = 10, 000 learning steps. A state or regime is

described as DRL learnable if the household’s action values converge to the corresponding

steady state values during testing. All results presented below are taken from test episodes

between learning intervals. We focus on the final action and state values of each test episode

to assess the state of convergence of household behavior. We initially focus on the AMP-

PFP regime, the classical policy regime of monetary dominance around the target inflation

level π∗.

11All learning experiments are performed once with a fixed random seed. The effects of different random
initializations are investigated in Sextion 4.4.
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3.3.1 Unconstrained DRL

Learning is unconstrained when we allow the household agent to explore the state and

action spaces for long periods without imposing stopping criteria. The agent is assumed to

have learned the RE solution for a given number of learning steps if all of its action values

are at the policy regime’s steady state values at the ends of the test episodes. Normalized

learning outcomes for inflation, bond holdings, and hours worked after 1,500,000 learning

steps are shown in the upper part of Figure 5. Normalization divides all values by their

corresponding steady state values and subtracts one.

In this and all following figures, the horizontal line is the RE benchmark and the hatched

areas (if shown) mark different learning phases. All learning curves are constructed using

the averages of the last 50 state transitions within the ten test episodes that occur at

each learning interval. Solid lines are the means across test episodes, after taking moving

averages of 10 learning-test cycles, or 100,000 learning steps, to focus on learning trends.

There can be volatility in learning outcomes across the test episodes due to the ran-

domization of their initial state values. This is captured by the shaded areas that represent

three standard deviations, approximating 99% confidence intervals. This variation is neg-

ligible for most quantities, but may not be for money and utility, with the latter guiding

learning. The reason is that money and utility, being the product of a state transition,

absorb all sources of uncertainty.

If the rational expectations solution is learned, we expect all lines to intersect with the

horizontal line at about the same time. This occurs after about 750,000 steps. We define

this rational phase (star hatches) as the interval of learning steps where the confidence

intervals of utility realizations overlap with the horizontal line. This is marked by checkered

hatches. However, the agent does not stay at the rational expectations solution when the

duration of learning is extended, instead it diverges from it and does not return by the

time 1,500,000 learning steps are reached.

To explore whether this divergence is permanent or temporary, we extend learning to

10,000,000 steps in the lower part of Figure 5. We observe that the household agent moves

in long cycles around the steady state.12 We label this the overfitting phase, which is

marked by circled hatches.13

12It is not clear whether the leveling off at about 7,000,000 learning steps is due to a numerical break-
down of the learning algorithm or potentially an especially long cycle.

13Overfitting in the DRL context is not associated with fitting to noise but with a deterioration of
generalization performance (Zhang et al. (2018)). We do not test this in the current work, but rather refer
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Figure 5 Learning under Unconstrained DRL in the AMP-PFP Regime.
Upper part: 1,500,000 learning steps. Lower part: 10,000,000 learning steps.
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The reason for this fragility is that the agent continuously tries to improve on the

rational expectations solution while being unaware of its existence. This reflects the fact

that the agent is not guided by the dynamics of the linearized system but rather by its

actual preferences as encoded in its utility function.

The initial distances from steady state equal around 0.2% in the upper part of Figure

5, which compares to action bounds in Table A.1 of 0.5%-1.0%. We will allow for much

larger distances and action bounds in the global learning settings of Section 3.5.

3.3.2 Constrained DRL

We study the same learning problem as in the previous section, but we now apply early

stopping as described Section 2.5. Once an individual action such as hours worked enters

its absorbing area, the household’s actions remain fixed at the steady state value, and

learning stops entirely when all action values have attained their steady state values. The

convergence of household actions is shown in Figure 6 for the AMP-PFP regime.14 In this

figure the vertical axis shows the absolute distance to steady state relative to the maximal

distance observed until convergence. This allows for a uniform representation and the

comparison of learning for different state variables. We again indicate the learning and

rational phases, the latter being absorbing under early stopping.

Compared to Figure 5, the learning curves for inflation and bonds in Figure 6 show

kinks when the household’s choice of hours triggers its early stopping criterion. This is

due to the interactive nature of artificial neural networks with respect to input processing.

We generally cannot identify the network weights corresponding to particular actions,

and therefore cannot stop the updating of only such weights when a stopping criterion is

reached for one of several actions. Instead we override the corresponding action with its

steady state value. This constitutes a discontinuous change in behavior, to which learning

subsequently adapts. The degree to which this behavior can be problematic will depend on

the application.15 We are here concerned with learnability, for which the shape of learning

curves is less relevant. We see that all actions converge to their respective steady state

values after about 1,200,000 learning steps.

to overfitting as optimization beyond the known optimal solution.
14As before, this represents the moving average of 100,000 learning steps averaged over the 50 last

states of test episodes, and the confidence bands mark three standard deviations.
15Ways to address this include smoothing the early stopping criterion or its implementation. We will

later see that noise in the learning process has precisely this effect.
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Figure 6 Learning with Early Stopping in the AMP-PFP Regime

A notable feature of DRL in this setting is its slow convergence of hundreds of thousands

of steps.16 These results can be interpreted in a social learning context (Bandura 1971,

DeGroot 1974, Mobius & Rosenblat 2014). In the simplest social learning setting the

actual learning time in quarters is the number of steps taken by the representative agent

divided by the underlying population size. The idea is that everybody observes everybody

else’s state transitions or an informative summary of them and learns accordingly. When

speaking of a country, this implies much faster learning. Specifying mechanisms through

which such social learning takes place is beyond the scope of the current study. However,

it is worth noting that experimentation (exploration) and learning from others have been

documented in the social learning context. However, as a caveat, social learning does not

necessarily lead to convergence or stability (Kirman 1993, Bikhchandani et al. 2024).

The action learning curves with early stopping for all four regimes are shown in Figure

7. We observe that learning dynamics is qualitatively similar for all four policy regimes,

and that all four are learnable by DRL. This means that the dynamic stability properties

16The precise number of steps is a function of the algorithm used and of its parameterization. However,
different choices do not change the number of required steps by orders of magnitude.
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of the linearized model around its deterministic steady state are not necessarily a selection

criterion if that steady state can be physically attained by the agent. Economically, this

means that all policy regimes can become entrenched if the household spends enough time

close to the corresponding steady state. More generally, this shows that DRL is a “global”

solution technique in that it is able to retrieve multiple steady state solutions without the

need to specify a localized approximation - a point we will discuss in more detail below.
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Figure 7 Learning with Early Stopping in All Four Regimes

3.4 Measuring Bounded Rationality

In this subsection we quantify bounded rationality by measuring how closely the agent’s

actions align with model-implied optimality conditions.

3.4.1 FOC-Learning

We gauge the rationality of the DRL agent at different stages of learning by quantifying the

proximity of household actions and realized state variables to optimal or rational behavior.

Specifically, we assess whether household actions are in line with the first-order conditions

(13)–(15). To evaluate deviations in a standardized way, we divide a first-order condition

by its left-hand side to obtain FOC(x), subtract one, and take absolute values, to define
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the agent’s absolute FOC-distance during learning:

dFOC
x ≡

∣∣FOC(x)− 1
∣∣. (36)

A value of zero implies that the agent satisfies the corresponding first order condition. The

explicit expression for the Euler equation (13), which we call the Euler distance, is

dFOC
π =

∣∣∣∣β Et

[(ct+1

ct

)−σ
Rt

πt+1

]
− 1

∣∣∣∣ , (37)

and similarly for equations (14) and (15). Expected values are set equal to next-period

realized values. We label the process of minimizing measures of the form (37) as FOC-

learning.

The normalized FOC-learning curves for the Euler equation, money demand and labor

supply under the AMP-PFP regime are shown in Figure 8. The pattern is similar to the

convergence of household actions in Figure 6. This is in line with the GPI framework of

Section 2.4, in that there is joint convergence to the RE equilibrium of behavior (FOC-

distances) and state value learning. This also means that equations such as (36) quantify

bounded rationality in this class of models. We also see that any meaningful uncertainty

comes from money demand, while it is negligible for the Euler equation or labor supply.

3.4.2 An Example: Household Inflation Expectations

We apply FOC-learning to household inflation expectations, which are not directly observ-

able. Specifically, we investigate the relationship between the current interest rate Rt and

next-period inflation πt+1 as determined by the household’s consumption choice. Next-

period inflation is Et[πt+1], where the expectations operator refers to agent expectations

that are consistent with its own state of learning Pϕ and Qθ at time t.

We isolate the learned relation between inflation and interest rates by fixing the other

actions (ht, bt) at their steady state values. That is, we set ht = hss ∀t, which fixes

ct = css ∀t through goods market clearing, and determines πt via cactt according to (32).

The Euler equation (13) then simplifies to the Fisher equation

Et[πt+1] = βRt . (38)
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Figure 8 FOC-Learning in the AMP-PFP Regime

We reexamine household behavior at each test stage17 by rerunning test cycles recording

all state transitions until the early stopping criterion for inflation expectations is triggered.

The results are shown in Figure 9. The horizontal axis shows net inflation expectations

implied by the current interest rate Rt and the Fisher equation (38), and the vertical

axis shows net inflation expectations measured through household consumption choices

according to equation (31). The dotted diagonal line describes rational behavior. House-

hold actions during each test transition are given by the scatter points at different times

of learning as indicated by the color coding. The dashed line traces out household learn-

ing. The vertical distance between this line and the diagonal measures the deviation of

expectations from rational expectations and is an explicit measure of bounded rationality.

We observe that implied inflation expectations at the start of learning (darker color)

are about 0.2 percentage points below the optimal ones, during the learning phase ex-

pectations converge (lighter colors), and during the rational phase agent actions coincide

with the Fisher equation (bright color). As in previous simulations, the starting position

17Algorithm 1 saves household policy rules at each test loop at different stages of learning, such that
we can now reload the agent whose learning is only partially complete.
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is a function of the experimental settings, which we do not investigate further. The initial

divergence is again small because we have so far limited state and action spaces to areas

of 0.5%-1% around the steady state (see Table A.1). We will analyze global learning next.

Figure 9 Evaluation of Fisher Equation (38) for the AMP-PFP Regime

3.5 Global Learning

DRL is a global solution method in that it maximizes the full objective function without

reference to local approximations while incorporating exploration to mitigate the risk of

getting stuck at a local extremum. However, we have so far not exploited this fully because

we have only considered limited state and action spaces in the neighborhood of one of

the RE steady states. We now test the household’s ability to learn in global settings,

by considering state and action spaces which include both of the model’s steady states

roughly symmetrically with some distance to the boundaries, for both active and passive

fiscal policies.18 The question is whether the household learns one of the steady states, and

18The monetary policy regime is determined by the location in the state space around the inflation
steady states, while fiscal policy is determined by the parameter γ.
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if so, which one and at what speed, and whether this depends on the fiscal policy regime.

The results are summarized in Figure 10, where early stopping is implemented using the

same criteria as before for each of the steady states separately.19

We find that the household agent learns the high-inflation steady state, with a strong

monetary policy response to inflation, in both fiscal policy regimes, despite the fact that

this has a lower utility than the low-inflation solution. In other words, the economy

converges to the AMP-AFP or AMP-PFP regimes. This suggests that monetary policy

can have stabilizing effects across large regions of the state space. However, it now takes

significantly longer until the agent converges to the steady state, between 5,000,000 and

10,000,000 learning steps. This means that, despite eventual learning, the agent can spend

a long time away from either steady state.

Interestingly, learning is considerably faster in the passive fiscal policy regime. The

feedback provided by taxation seems to be a useful signal to the household, even though

this feedback only arrives through money and utility realizations. Economically, the inter-

pretation is that monetary dominance may support economic stabilization in this setting.

4 Robustness Analysis

The outcomes of reinforcement learning are often sensitive to parameters of the environ-

ment or of the optimization algorithm. Here we discuss four such quantities, learning rate,

memory size, uncertainty, and initialization.

4.1 The Learning Rate

The learning rate ζlearn controls the step size for updating the network weights (Pϕ, Qθ).

While higher values enable faster convergence, excessively large values may prevent the

agent from finding optimal solutions or even cause complete learning failure.

We find that our learning problem is sensitive to the learning rate. The default value

provided in Raffin et al. (2021) for the implementation of the SAC algorithm (Haarnoja

et al. 2018) is 3e−4. We lowered this in steps of one order of magnitude until we observed

convergence at a value of ζ0learn = 3e − 8. Furthermore, we implement learning rate

decay that is dependent on the number of the current learning interval. That is, with

Nlearn = 1, 500, 000 and Ninterval = 10, 000, we have nmax
learn = Nlearn/Ninterval = 150,

nlearn = steps/Ninterval (see Algorithm 1), and ζlearn = ζ0learn/nlearn.

19The state and action bounds for the global learning experiments are given in Table A.2. Note that
each fiscal policy regime has two steady states corresponding to π∗ and πL.
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Figure 10 Global Learning with Early Stopping
(the high-inflation steady state is used as the reference point for distance measures)
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There are two reasons for the observed sensitivity of learning outcomes to the learn-

ing rate. First, household utility (3) is quite flat, especially with respect to changes in

money holdings. Second, the optimization problem is constrained, while the household

only observes an unbounded utility function. Both factors, which are common in the eco-

nomics context, make the learning problem challenging. This means that, while compared

to most problems in the computer science literature our problem (and many others in

economics and finance) is relatively simple in terms of the complexity of the state space,

it nevertheless poses challenges for learning agents.

4.2 Memory Size

Learning is based on batches of observations that are sampled from a replay buffer that may

be interpreted as the length of memory from which the agent can draw. Shorter memory

can have the advantage of learning faster from new experience, while longer memory allows

the agent to retain knowledge, which may be useful when there is a tendency to move away

from good solutions as we saw in the unconstrained learning case of Section 3.3.1.

The default value for our experiments is Nmem = 25, 000 state transitions. This is

considerably shorter than the approximately 1,000,000 steps until convergence that we

observe in Section 3.3.2. This raises the question of whether our convergence results in the

absence of early stopping are due to an excessively small memory, which implies that the

household agent easily ‘forgets’ about the rational expectations solution.

We test this by rerunning the experiment from section Section 3.3.1 while setting

Nmem = 1, 000, 000. The results are qualitatively the same, with the household finding

and later losing the optimal solution at about the same number of learning steps as in

Figure 5. This suggests that the learning dynamics that we observe are robust to a wide

range of memory sizes.
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4.3 Uncertainty

We now repeat the exercises of Section 3.3.2 for all regimes, with the difference that uncer-

tainty during learning is taken into account. Shocks are realized at each state transition

during learning but not during testing. This is because we are interested in quantifying

learning trends and under our maintained assumptions realized action values are unaf-

fected by i.i.d. shocks.20 The agent again follows the learning protocol in Algorithm 1.

The results are summarized in Figure 11.21

We again see that learning is possible and qualitatively similar for all four policy

regimes. Interestingly, learning is faster overall in the presence of shocks. The reason

is that the kink in learning behavior after the hours worked early stopping is triggered

largely disappears because the imposition of steady state hours is not distinguishable from

noise from the point of view of the learning algorithm, resulting in a smoother adjustment.
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Figure 11 Learning with Early Stopping in All Four Regimes - with Shocks

20Shocks are assumed to be unobserved at the time actions are taken - see the step sequence for a single
state transition in Section 2.3. Shocks can be made observable, in which case their realizations have to be
included in the state vector.

21The shock standard deviations are shown in Table 1.
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4.4 Initialization

All results so far have been based on a single random seed. However, results may vary

depending on random initializations, both of the neural network weights and of the point

in the state space where learning starts. To test the relevance and effects of random

initializations, we now run our main experiment of learning in the AMP-PFP regime with

early stopping for ten different random seeds.

The results of this exercise for the steady state learning of bond holdings and hours

worked are shown in Figure 12. The different lines correspond to different seed values,

where the value of 4 (purple line) is the default value used for all other results presented

in this paper.

We see that the time to steady state convergence partly depends on the distance of the

steady state values at the beginning of learning. However, some initializations, like seeds

2 and 8, imply considerably slower learning even though they do not start especially far

away from the target. Some initializations may cross the steady state values at first. This

happens when the algorithm is not aware of the distinctiveness of this point and crosses

over it with high momentum, due to large learning updates, such that the early stopping

criterion is not triggered.

These results suggest further brittleness in the use of DRL to solve macroeconomic

models. However, they also can be used to simplify the learning setting using domain

knowledge. In many situations, only a specific region of the state space may be of inter-

est, and accounting for this in the choice of bounds then leads to more uniform learning

dynamics.
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Figure 12 Testing the Impact of Different Random Seeds in the AMP-PFP Regime
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5 Discussion

We explore the use of DRL to solve DSGE models. Unlike in traditional RE settings, where

agents are assumed to have full knowledge of the model economy, DRL agents have no a

priori knowledge except for their utility function. Instead, they learn by taking actions and

observing the resulting utility rewards and state transitions. We apply DRL to a classical

model from the adaptive learning literature, which studies the interaction of monetary and

fiscal policy with a representative household agent. The model features two steady states,

a high-inflation or inflation-target steady state and a low-inflation or liquidity-trap steady

state.

Our study connects to a recent critique of the RE assumption (Moll 2024), which fo-

cused on heterogeneous agent models. We remain within the representative agent paradigm,

and instead focus on studying whether DRL generates different outcomes from AL.

We find that DRL agents can learn steady states through utility maximization alone,

without prior knowledge of the structure of the economy. Furthermore, unlike AL agents,

DRL agents can learn locally unstable steady states. This is because they do not know of

their existence as they are guided solely by utility realizations. Finally, in a global setting

where the state space includes both the high-inflation and low-inflation steady states, the

DRL agent converges to the high-inflation steady state irrespective of assumptions about

fiscal policy, which suggests a relatively large basin of attraction for this solution.

While promising, DRL also poses challenges. Learning via deep artificial neural net-

works is sensitive to design choices such as learning rates, initializations, action and state

space boundaries, and stopping criteria. Additionally, DRL agents can exhibit slow conver-

gence to RE equilibria, and multi-agent settings can be difficult to implement. Moreover,

DRL requires substantial computational resources and specialized programming skills,

which may limit its practical application.

Agent expectations formation is one of the most important aspects of modern economic

analysis. This study contributes to ongoing developments in the modeling of expectations

formation, by demonstrating how DRL can offer new perspectives within representative

agent models. DRL is a flexible and powerful technique that can be applied to a wide

range of economic problems, provided they can be structured within its framework. This

opens up a rich future research agenda.
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A Appendix

A.1 The Linearized Model

In the neighborhood of either steady state, our model can be described by a linear approximation

for πt and bt of the form

π̂t

b̂t

 = B

Etπ̂t+1

Etb̂t+1

+C


ε̂Rt

ε̂tτ

ε̂yt

 . (A.1)

In this simple model, output (16) is exogenous, depending only on the technology shock. Ac-

cording to Blanchard & Kahn (1980), the solution to (A.1) is locally unique if and only if one

eigenvalue is within the unit circle and the other eigenvalue is outside the unit circle. The two

eigenvalues of the system (A.1) are given by 1
αβ and 1

1/β−γ (derivation given below). These eigen-

values are the inverses of the eigenvalues of the Blanchard-Kahn conditions. This formulation is

common in the learning literature, with the expectations operator on the right-hand side.

When there is a non-stochastic steady state, it can be shown that a stochastic steady state ex-

ists in its neighborhood if the support of the exogenous shocks is sufficiently small. Furthermore,

in this case the steady state is locally determinate, provided the corresponding linearization is

determinate. Throughout the paper we assume that the shocks are small in the sense of having

small support. Determinacy needs to be assessed separately for the two steady states at π∗ and

πL. Following Evans & Honkapohja (2007), we can verify that in the linear system given by

(A.1), if fiscal policy is passive, |γ − β−1| < 1, the steady state π∗ is locally determinate and the

steady state πL is locally indeterminate. If fiscal policy is active, |γ − β−1| > 1, the steady state

π∗ is locally explosive and the steady state πL is locally determinate.22

22With α = f ′(π), it is easy to verify that at the higher steady state π∗, |αβ| > 1 and at the lower
steady state πL, |αβ| < 1. More details can be found in Evans & Honkapohja (2007), who prove that
the linearization yields a locally unique asymptotically stationary rational expectations equilibrium if
monetary policy is (locally) active and fiscal policy is passive, or if monetary policy is (locally) passive
and fiscal policy is active.
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In a neighborhood of a non-stochastic steady state π and c we derive the linear approximation

Euler Equation: R̂t = β−1Etπ̂t+1 +
σ

β

π

c
(Etĉt+1 − ĉt), (A.2)

Monetary Policy: R̂t = απ̂t + δε̂Rt , where α = f ′(π) and δ = f(π), (A.3)

Fiscal Policy & GBC: b̂t + m̂t + ε̂τt =

(
1

β
− γ

)
b̂t−1 −

m+Rb

π2
π̂t +

1

π
m̂t−1 +

b

π
R̂t−1, (A.4)

Money Demand: m̂t =
m

c
ĉt −

1

σ

m

R(R− 1)
R̂t, (A.5)

Output:
σ + φ

1 + φ

1

c
ĉt = ε̂yt . (A.6)

Note that x̂t denotes the deviation of variable xt from steady state. To study determinacy,

we rewrite (A.2)–(A.6) as a bivariate forward-looking system of the form

π̂t

b̂t

 =

B11 B12

B21 B22

Etπ̂t+1

Etb̂t+1

+

C11 C12 C13

C21 C22 C23



ε̂Rt

ε̂tτ

ε̂yt

 . (A.7)

According to Blanchard & Kahn (1980), the solution to (A.7) is locally unique if and only

if one eigenvalue is within the unit circle and the other eigenvalue is outside the unit circle. To

assess this we bring the above expressions into an explicit form

 bα
π −

mα
πσR(R−1)

1
β − γ

α 0

π̂t

b̂t

 =

m+ 1
β
πb

π2 − mα
σR(R−1) 1

1
β 0

Etπ̂t+1

Etb̂t+1

+
 mδ

πσR(R−1) −
bδ
π 0 − m

πcξ

−δ 0 − σπ
βcξ



ε̂Rt

ε̂tτ

ε̂yt

 ,

(A.8)

where ξ = σ+φ
(1+φ)c . ThereforeB11 B12

B21 B22

 =

 bα
π −

mα
πσR(R−1)

1
β − γ

α 0

−1 m+ 1
β
πb

π2 − mα
σR(R−1) 1

1
β 0

 , (A.9)

C11 C12 C13

C21 C22 C23

 =

 bα
π −

mα
πσR(R−1)

1
β − γ

α 0

−1  mδ
πσR(R−1) −

bδ
π 0 − m

πcD

−δ 0 − σπ
βcD

 . (A.10)
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The two eigenvalues are 1
αβ and 1

1/β−γ . Then a unique solution takes the form:

π̂t

b̂t

 =

D11 D12 D13

D21 D22 D23



ε̂Rt

ε̂tτ

ε̂yt

 (A.11)

A.2 E-Stability

To examine the global dynamics of the system we return to the nonlinear model. The full rational

expectations problem can be written as F (Eyt+1, εt) = yt for state variables yt and innovations

εt. We replace rational expectations with point expectations in the model equations (13) and

(7). As an example, we replace Et[ct+1π
σ
t+1] = cet+1π

e
t+1

σ. This is a reasonable approximation for

shocks with small bounded support. This leads to the nonlinear dynamic system F e,

ct = cet+1

(
πe
t+1

βRt

)σ

= (εyt )
1+φ
σ+φ , (A.12)

χσcet+1

(
f(πe

t+1) + 1

f(πe
t+1)

)1/σ

+ bet+1 + γ0 + γbt + ετt+1

= χσ ct
πe
t+1

(
Rt − 1

Rt

)−1/σ

+Rt
bt

πe
t+1

, (A.13)

Rt − 1 = εRt f(πt). (A.14)

The dynamics for πt and bt under learning is then given by equations (A.12)–(A.13) after sub-

stituting Rt using (A.14). Note that output ct is exogenous. According to Evans & Honkapohja

(2001), the local asymptotic stability of the ordinary differential equation

dxe

du
= EF e

x(π
e, be, εt)− xe , (A.15)

again with x ∈ {π, b}, provides the relevant E-stability criterion for the stochastic model under

steady state learning when the shocks are small. Here, u denotes notional time, and EF e
x(·) is the

mapping from the perceived law of motion to the corresponding actual law of motion. E-stability

is determined by the Jacobian matrix of EF e
x(·) at the steady state.
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A.3 DRL Parameterization

parameter AMP (π∗) PMP (πL) description

action bounds

cactmin 1.005 1.000 minimal consumption choice
cactmax 1.015 1.003 maximal consumption choice
bactmin 4.000 3.965 minimal bond holdings
bactmax 4.080 4.045 maximal bond holdings
nmin 0.990 0.990 minimal hours worked
nmax 1.010 1.010 maximal hours worked

initial state bounds

mmin 1.670 2.010 minimal money holdings
mmax 1.750 2.110 maximal money holdings
bmin 3.960 3.960 minimal bond holdings
bmax 4.040 4.040 maximal bond holdings
cmin 0.995 0.997 minimal consumption
cmax 1.005 1.003 maximal consumption
πmin 1.005 1.000 minimal inflation
πmax 1.015 1.003 maximal inflation
nmin 0.990 0.990 minimal hours worked
nmax 1.010 1.010 maximal hours worked

learning algorithm

ζ0learn 3.0e-8 3.0e-8 learning rate
dmin
u 1.0e-6 1.0e-6 utility difference (episode termination)

Nmax
learn 1,500,000 1,500,000 learning steps (experiment)

Ninterval 10,000 10,000 learning steps (between test episodes)
Ntest 10 10 number of test episodes between learning intervals
Nmax

epi 1,000 1,000 max. steps / episode (learning or testing)
Nburn 10,000 10,000 initial burn-in random actions
Nmem 25,000 25,000 max. memory of state transitions
Nbatch 256 256 batch size for parameter updates
Nhidden

layers (3,2) (3,2) number of hidden layers in (Pphi, Qθ)

Nhidden
nodes 32 32 number of nodes in each hidden

δES 1.0e-4 1.0e-4 early stopping threshold

Table A.1 Learning Parameters (Baseline)
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parameter AFP PFP description

action bounds

cactmin 0.995 0.995 minimal consumption choice
cactmax 1.015 1.015 maximal consumption choice
bactmin 2.450 2.450 minimal bond holdings
bactmax 4.150 4.150 maximal bond holdings
nmin 0.990 0.990 minimal hours worked
nmax 1.010 1.010 maximal hours worked

initial state bounds

mmin 1.660 1.660 minimal money holdings
mmax 2.110 2.110 maximal money holdings
bmin 2.450 2.450 minimal bond holdings
bmax 4.150 4.150 maximal bond holdings
cmin 0.990 0.990 minimal consumption
cmax 1.010 1.010 maximal consumption
πmin 0.995 0.995 minimal inflation
πmax 1.015 1.015 maximal inflation
nmin 0.990 0.990 minimal hours worked
nmax 1.010 1.010 maximal hours worked

steady state values

m 2.061 1.716 money holdings
πL 1.001 1.001 inflation
bL 2.610 4.000 bond holdings
π∗ 1.010 1.010 inflation
b∗ 4.000 2.582 bond holdings
c 1.000 1.000 consumption
n 1.000 1.000 hours worked

Table A.2 Learning Parameters (Global Learning). Other parameters are as in the
Baseline.
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