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methods offer considerable flexibility and strong predictive performance, they are often
criticised for their ‘black box’ nature and lack of economic transparency. A growing body of
research addresses this limitation by introducing structure into ML models — most notably
through Block-Additive Models (BAMs) and theory-consistent monotonicity constraints. BAMs
group predictors into economically meaningful blocks and impose additivity across blocks,
while permitting non-linearities and interactions within them. This architecture enables clear
attribution of each block’s contribution to the model’s predictions. Monotonicity constraints
further improve interpretability by aligning the model’s directional responses with economic
theory, allowing for the separation of opposing effects — such as distinguishing between
supply and demand-driven components of inflation. Empirical evidence shows that these
structured ML approaches retain strong predictive performance while yielding economically
meaningful narratives.
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1 Introduction: How does machine learning fit into
central banks’ toolkits for economic analysis?

The succession of major economic shocks in recent years—including the COVID-19 pan-
demic, the Russia—Ukraine war and its associated energy disruptions, and the increasing
relevance of climate risks—has exposed the limitations of conventional macroeconomic mod-
els. Such shocks can have highly non-linear effects, and might generate shifts in economic
relationships that traditional parametric models would struggle to capture. In response,
central banks and policy institutions are exploring new methodologies that can incorporate
high-dimensional, non-standard data and flexibly account for structural instabilities.

Machine learning (ML) methods offer powerful tools for forecasting, as they can ap-
proximate complex, non-linear functional forms while processing a wide range of indica-
tors. Common approaches include tree-based ensembles—such as random forests (Breiman,
2001), gradient boosting (Friedman, 2001), and Bayesian Additive Regression Trees (BART,
Chipman et al., 2016)—as well as neural networks (Amari, 2006). Central banks are also
increasingly adopting ML for broader purposes, including data collection, financial supervi-
sion, and the construction of new indicators using large language models (de Araujo et al.,
2024; Cipollone, 2024; Benford, 2024).

However, the direct application of machine learning to economic policy analysis remains
constrained by a fundamental challenge: the trade-off between predictive accuracy and
economic interpretability. Although ML methods can extract signals from data with high
precision, they typically lack the structural foundations necessary for policy use. Central
banks must not only generate accurate forecasts but also ensure these forecasts are grounded
in sound economic reasoning and can be clearly communicated to both policymakers and the
public. To this end, forecasts are accompanied by narratives that elucidate the underlying
transmission channels, aiming to shape and anchor agents’ expectations around the central
bank’s inflation target and broader economic outlook. Economic interpretability is essential
for explaining key drivers—such as distinguishing between demand-driven inflation and
supply shocks—and for guiding appropriate policy responses. Standard ML approaches,
when employed as black boxes, often fall short in this respect, as they neither impose
economic structure nor facilitate the identification of underlying economic mechanisms.

One way to reconcile the flexibility of ML with the structural needs of economic analysis
is to embed economic restrictions directly into the ML framework. Imposing constraints will
not alter the fundamental nature of machine learning (ML) models as predictive, reduced-
form tools. Nonetheless, recent advances in the literature suggest that ML models can be
designed as to align with economic theory through simple structural constraints.

One approach to imposing constraints involves machine learning models with additive,
blockwise structures, which we refer to as Blockwise Additive Models (BAMs). Rather than
learning unconstrained interactions among all predictors, variables are grouped into blocks
that represent theoretically meaningful economic drivers—for example, real variables, nom-
inal variables, financial indicators, and expectations. The block structure reflects the mod-
eller’s intuition that groups of variables jointly capture an underlying economic driver, or at



the very least, exhibit similar predictive patterns that differ across blocks. This preserves
interpretability while allowing flexible within-block non-linearities. We will examine recent
advancements in machine learning approaches proposed in the literature for applications
to inflation (Goulet Coulombe, 2024; Buckmann et al., 2025) and bond pricing (Bianchi
et al., 2021).

Another approach we highlight involves the use of monotonicity constraints. To ensure
economic interpretability, it may not be sufficient to simply separate blocks of determinants
if these blocks do not uniquely identify the direction of association between a predictor and
the variable of interest. To address this ambiguity, the modeller can impose directional
constraints on the relationships learnt between predictors and the target variable. By
enforcing prior economic knowledge on the associations learnt—such as the expectation
that higher demand should place upward pressure on inflation—ML methods can produce
results that are both statistically robust and economically plausible. Buckmann et al.
(2025) pursue this route within a BAM based on gradient boosting, as we will discuss. ML
models can also incorporate identifying information—such as shock series or instruments
used as predictors—to further anchor model components to specific economic determi-
nants. Furthermore, components of machine learning models can be constrained in their
stochastic properties to distinguish between slow-moving and cyclical elements, analogous
to approaches commonly employed in unobserved component models. Goulet Coulombe
(2024) pursues this approach in a neural BAM.

While the literature we discuss here is still in its nascent tracks, it represents a first
step in extending the applicability of ML methods from purely predictive tools into more
interpretable frameworks that central banks can use to analyse non-linear determinants of
economic variables such as inflation. There can exist a trade-off between imposing structure
and maximising predictive performance, but imposing economic priors may also increase the
predictive power, if the imposed constraints reduce the risk of overfitting spurious patterns
in short time series. By embedding economic structure ex-ante, rather than relying solely on
ex-post interpretability methods such as Shapley values, these models retain the flexibility
of ML while improving their applicability to policy analysis.

Traditional methods have remained central in the toolkits of policy institutions, due to
their balance of economic and statistical interpretability alongside solid forecasting perfor-
mance. As illustrated in Figure 1, different approaches span a spectrum between purely
predictive models and those grounded in economic theory. Vector autoregressions (VARs),
unobserved components models (UCs), and dynamic factor models (DFMs) are reduced-
form approaches that largely allow the data to speak for itself. In contrast, semi-structural
and structural DSGE models embed explicit assumptions about microeconomic behavior.
While reduced-form models often offer a better fit to the data, they are more agnostic in
interpretation; augmenting them with identifying assumptions—as in structural VARs and
structural DFMs—enhances their economic interpretability. These models are typically lin-
ear, although introducing non-linearities and regime shifts can improve flexibility. However,
this additional flexibility increases the need for regularization through priors or restrictive
assumptions on the degree of time variation, particularly to ensure stable estimates when
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Figure 1: ML from purely predictive tools towards interpretability.
Source: Broadly based on an illustration by Luca Onorante, Workshop on Macroeconomic Anal-
ysis and Forecasting for Policy and Practice, University of Strathclyde, November 2024.

working with short samples.

Machine learning methods offer clear advantages in addressing greater complexity and
flexibility in economic prediction problems (Dépke et al., 2017; Medeiros et al., 2021; Masini
et al., 2023; Lenza et al., 2023; Joseph et al., 2024). However, they are typically viewed
primarily as predictive tools. While their forecasting performance can be strong, it is not
guaranteed, as illustrated by the blue line in Figure 1. A parallel and growing strand of the
literature integrates ML techniques—such as BART or other Bayesian approaches, random
forests, and neural networks—with standard econometric models, where they serve as non-
parametric tools for estimating non-linear coefficients within frameworks like VARs, local
projections, asset pricing models, and DSGE models (Fernandez-Villaverde and Guerrén-
Quintana, 2021; Hauzenberger et al., 2023; Huber, 2023; Paranhos, 2024; Barbaglia et al.,
2025). In contrast, the direct use of machine learning as a tool with inherent economic
interpretability remains relatively underexplored. The recent innovations in structured ML
approaches discussed in this paper seek to bridge this gap by moving ML toward partially
identified representations.

The remainder of this paper is structured as follows. Section 2 examines the concept
of interpretability as it is commonly defined in the machine learning literature, focusing
on how input variables influence predictions. We discuss the main approaches typically
used to achieve this: post-hoc interpretability tools and machine learning methods with
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inherently interpretable structures. In Section 3, we explore how economically motivated
structures can be incorporated into machine learning models a priori, either through block
structures or monotonicity constraints, and review recent studies that have pursued this
approach. Section 4 concludes by highlighting avenues for future research and the potential
for a broader role of machine learning in central banks’ analytical toolkits.

2 Interpretability in the machine learning context

Interpretability in prediction models has multiple dimensions. For economic policy, co-
herence with expert knowledge and theory, as well as communicability, are especially im-
portant. While we return to these aspects later, we now focus on a narrower definition
common in the ML literature: “the degree to which an observer can understand the cause
of a [model’s] decision” (Miller, 2019). Under this definition, interpretability means under-
standing how input variables influence predictions—regardless of whether the model aligns
with economic theory, accurately captures the data-generating process, or predicts well.
footnote Interpretability is also closely linked to sparsity (Molnar, 2020; Burkart and Huber,
2021; Rudin et al., 2022). Miller (2019) show that people tend to prefer concise explanations
that involve only a few contributing factors. However, in macroeconomics, sparse models
often underperform compared to dense ones, and identifying stable sparse representations
is challenging due to the high correlation among indicators (Giannone et al., 2021; Cross
et al., 2020; Chu and Qureshi, 2023; Coulombe et al., 2024). Models like random forests,
gradient boosting, and neural networks are generally considered non-interpretable. Al-
though their individual operations—such as threshold comparisons, weighted summations,
and monotonic transformations—are straightforward, the sheer volume and complexity of
these operations render the models opaque to users.

The machine learning literature offers two broad approaches to achieving interpretability
in this context. The first involves post-hoc interpretability tools, such as Shapley values,
which help users make sense of black-box models after estimation; we discuss these in
Section 2.1. However, we argue that Shapley values alone do not render black-box models
truly interpretable, because complex models will inevitably produce complex explanations.
The second avenue involves additive machine learning models, which effectively capture
non-linear relationships between predictors and outcomes while retaining interpretability.
We discuss these models in detail in Section 2.2. This class of models also serves as a
foundation for incorporating economic structure, as further elaborate on in Section 3.

2.1 Post-hoc frameworks for signal interpretation

A wide variety of methods have been developed to interpret the predictions of machine
learning models (Ribeiro et al., 2016; Lundberg and Lee, 2017; Sundararajan et al., 2017;
Ribeiro et al., 2018; Goldstein et al., 2015). These frameworks are applied after model
training, i.e. post-hoc, and do not alter the model’s output. In economic forecasting, they
can reveal economically meaningful associations between variables and can point model



misspecifications or spurious patterns learnt from the data.

Arguably, the most prominent post-hoc interpretability framework is based on Shapley
values (Shapley, 1951). Lundberg and Lee (2017) proposed SHAP (SHapley Additive
exPlanations). SHAP decomposes a machine learning model’s prediction for an observation,
Ui, into the sum of the contributions from each indicator: y = Z]Ail ;T + ¢o, where ¢;
is the Shapley value associated with indicator j and phig is the baseline value (typically
the mean predicted value). Shapley values can be applied to any type of ML model and
have seen widespread use in macroeconomic applications, including forecasts of financial
crises (Bluwstein et al., 2023; Casabianca et al., 2022) and inflation (Aras and Lisboa, 2022;
Lenza et al., 2023; Joseph et al., 2024).

However, post-hoc methods such as Shapley values are not a panacea; they do not
render black-box models as interpretable as simple linear models. Complex models inher-
ently produce intricate explanations for their predictions. When explaining an individual
prediction, for instance why a credit risk model denied a loan for a certain applicant, the
sum of all indicators’ Shapley values explain the prediction. However, in macroeconomics,
the goal is broader understanding, not isolated outcomes (e.g. the predicted inflation in a
specific month). Fully grasping a model with many interactions requires analysing a large
set of Shapley values, including interaction effects (Murdoch et al., 2019). Rudin (2019)
describes this issue clearly: “FEzplanations must be wrong. [...] If the explanation was com-
pletely faithful to what the original model computes, the explanation would equal the original
model/...]”. The issue of complex explanations is particularly pressing for algorithms like
random forests, gradient boosting, and neural networks that do not tend to learn sparse
models from data but instead use a large number of variables and their interactions.

A second limitation of Shapley values is their approximate nature. Their estimation
relies on permutations and approximations that may lead to inaccurate measures of variable
importance (Kumar et al., 2020; Janzing et al., 2020; Sundararajan and Najmi, 2020; Huang
and Marques-Silva, 2023, 2024). Moreover, they are frequently misunderstood or misapplied
by practitioners, as shown by Kaur et al. (2020). The authors observed that inherently
interpretable additive models (which we discuss in the next sub-section) are used more
accurately and impose a lower cognitive load.

2.2 Interpretable machine learning and additive models (AMs)

Inherently interpretable non-linear ML methods, such as decision trees, do not require
post-hoc interpretability tools. Their predictions can be easily explained by following the
tree’s decision nodes. However, single decision trees are rarely used in economic forecasting
due to their limited predictive power and non-smooth outputs.! Additive models offer a
more suitable alternative for economic forecasting.

Additive models (AMs)(Hastie and Tibshirani, 1990) capture non-linear relationships
between predictors and outcomes while remaining highly interpretable. An AM with k

IThe same applies to decision lists (Rivest, 1987; Wang and Rudin, 2015), another interpretable model
class often used in medical decision-making.



indicators learns separate smooth functions for each variable and sums them to generate a
prediction. Formally, the model takes the form:

F(x) = 8o+ fi(z1) + fa(w2) + -+ + frlaw), (1)

where each f;(z;) is a smooth function of predictor i learnt from the data.? AMs do not
allow for interactions of predictors and the marginal effect of a predictor is directly visible
from its corresponding function f;(z;).3

AMs offer several advantages for predictive economic modeling. First, their additive
structure resembles linear models—the predominant approach in econometrics. Linear mod-
els are a special case of AM when each f;Vi is restricted to be linear. Second, standard
approaches to learning AMs employ smooth functions f;, which is a desirable property for
economic models. Third, the functions f; can incorporate expert knowledge through con-
straints, such as enforcing a positive association between the predictor x; and the outcome.
We discuss this in detail in Section 3.2. Finally, as we discuss in Section 3.1, AMs can be
extended to learn from blocks of variables that represent distinct economically meaningful
determinants.

A key component of AMs is the smoothing function used to estimate the relationship be-
tween each predictor and the outcome. Traditionally, non-parametric regression techniques
like splines are employed (Hastie and Tibshirani, 1990). Other work has used boosting to
train additive models. Boosting is indeed a natural choice since it builds predictions by
sequentially adding the contributions of its base learners (Lou et al., 2012). When each
base learner is restricted to a single predictor, the model retains its additive structure.

To encourage sparsity—and thus improve interpretability—in AMs, component-wise
boosting can be applied (Bithlmann and Yu, 2003; Buehlmann, 2006; Schmid and Hothorn,
2008; Hothorn et al., 2010; Groll and Tutz, 2012), where, in each boosting iteration, one
candidate base learner is trained on each of the predictors, but only the one that reduces
the error the most is added to the ensemble. This often yields sparse models in practice.?

The success of neural networks in prediction problems has spurred the development of
additive models based on neural networks (Agarwal et al., 2021). These models employ
a constrained architecture where separate sub-networks are trained on individual indica-
tors, and combined linearly in the output layer. While boosting learns the base learners
sequentially from data, neural networks allow simultaneous optimisation of sub-networks.
Agarwal et al. (2021) show that neural AMs perform on par with additive models learnt

2In the literature these models are usually referred to as generalised additive models (GAM), which, as
generalised linear models (Nelder and Wedderburn, 1972) are formulated with a link function g(E) where
¢ is a monotone, differentiable function chosen to match the distribution of the dependent variable (e.g.,
logit for binomial, log for Poisson, identity for Gaussian variables). Without loss of generality and for
simplicity, we omit the link function g and omit the term generalised.

3Bordt and von Luxburg (2023) show the direct correspondence between Shapley values and AMs:
variable contributions can be directly extracted from an AM without separate Shapley value estimation.

4See Biihlmann et al. (2014) for a comparison of component-wise boosting to Lasso regularisation, the
more prominent approach to training sparse models.



with boosted trees.?

While additive models enhance interpretability, they sacrifice expressiveness (i.e., the
ability to capture complex patterns in the data) by not capturing interactions between
variables. As a result, they often underperform compared to black-box models such as
random forests or gradient boosting (Lou et al., 2012; Zschech et al., 2022). To overcome
this limitation, several studies have developed algorithms that selectively incorporate pair-
wise interactions, thereby improving predictive performance while retaining much of the
interpretability Lou et al. (2013); Yang et al. (2021); Enouen and Liu (2022).

In economic forecasting, Kauppi and Virtanen (2021) use component-wise boosting
with regression splines to predict macroeconomic time series.® Other studies apply lin-
ear component-wise boosting models, primarily for variable selection in macroeconomic
prediction (Lehmann and Wohlrabe, 2016; Zeng, 2017).

How non-linear additive models (AMs) compare to black-box methods like random
forests in economic prediction remains an open question. While black-box models often
outperform in standard machine learning tasks, these results may not extend to economic
time series, which typically involve small sample sizes and highly correlated variables.”
Rather, constrained models, such as additive models might actually perform better, as their
structure acts as regularisation, helping to avoid spurious patterns that fail to generalise
to the test data. Additional constraints—such as imposing monotonic relationships—could
further enhance performance. We explore this in detail in Section 3.2.

3 Machine learning with economically plausible con-
straints

In this section, we move beyond the basic notion of interpretability as merely identifying
signals that drive predictions. Instead, we emphasize the integration of economic intuition
by organizing variables into economically meaningful blocks and imposing constraints on
functional forms. These structural choices enhance interpretability by ruling out estimates
that are economically implausible (see Elliott and Timmermann, 2016).

A key pillar of a broader definition of interpretability is trust. As Rudin et al. (2022)
note: “Despite common rhetoric, interpretable models do not necessarily create or enable
trust—they could also enable distrust. They simply allow users to decide whether to trust
them”. If a model’s outputs contradict expert knowledge, it is unlikely to gain acceptance.
The alignment of a model’s decision processes and the user’s knowledge or intuition is

SCompared to boosted AMs, the authors argue that neural networks offer a more flexible learning
paradigm, for example allowing more than one dependent variable. Neural additive models might also
offer a more parsimonious representation than additive models with many decision trees. Luber et al.
(2023), Chang et al. (2021), and Kraus et al. (2024) extend the work on neural AMs by proposing more
parameter-efficient neural network architectures and training paradigms that perform competitively.

6Their two-step approach first fits a linear model, then applies the boosted spline model to the residuals.

"Rudin (2019) argues more broadly for machine learning models with tabular data: “It is a myth that
there is necessarily a trade-off between accuracy and interpretability.”



widely recognised as essential in the literature on interpretable machine learning (Doshi-
Velez and Kim, 2017; Selbst and Barocas, 2018; Rudin, 2019; Simkute et al., 2021) and is
equally crucial when communicating model outputs to economic policymakers.

3.1 Blockwise Additive Models (BAMs)

We define Blockwise Additive Models (BAMs) as predictive models characterized by an
additive structure over groups—or blocks—of variables, rather than individual variables as
standard additive models (AMs). While we introduce the term blockwise additive models
to the literature, the underlying concept has been explored in both the economics and
machine learning literature under different names or frameworks. Models aligning with our
definition of BAMs have been introduced in empirical studies applying machine learning to
decompose inflation drivers (Goulet Coulombe, 2024; Buckmann et al., 2025) and forecast
bond prices (Bianchi et al., 2021). We discuss these applications in detail in Section 3.1.1.

The defining characteristic of these models is that the outcome is predicted as a sum of
functions applied to subsets of features:

Fx)= > p0) e

where each x? represents a feature block, and f7(x’) is the associated block score learnt
for block j. As with standard additive models, these functions can be learnt using machine
learning techniques, such as neural sub-networks or boosted decision trees. This structure
allows for interactions within blocks, but not across them.

BAMs offer greater interpretability than standard black-box machine learn-
ing models—provided that each block of variables and its associated score f7
have a meaningful interpretation. This design mirrors a core principle in macroeco-
nomics: economic outcomes are driven by a limited number of structural shocks or unob-
served latent forces. A common empirical framework to capture such latent drivers is the
factor model, which assumes that the co-movement of many macroeconomic series can be
summarized by a few static or dynamic factors (Stock and Watson, 2016).% While tradi-
tional factor models are typically linear, introducing time variation or non-linearity often
requires strong parametric assumptions or Bayesian priors to regularize model complexity
(Stock and Watson, 2009). In contrast, BAMs flexibly estimate the relationship between
the target variable and economic indicators using machine learning techniques such as de-
cision trees—allowing for non-linearities and interactions within blocks without imposing
rigid structural assumptions.

The block structure in BAMs reflects the modeller’s intuition that groups
of variables jointly represent an unobserved or underlying economic driver of

8In classical factor models, residual fluctuations are assumed to be idiosyncratic and uncorrelated.
Generalized dynamic factor models allow for more flexible structures, including lagged factor loadings,
enabling them to capture asynchronous and frequency-specific co-movements across time series (Forni
et al., 2000).



the target variable. The pinning down of “interpretable” blocks parallels structural
dynamic factor models, in which factors are extracted from pre-defined groups of variables
to facilitate economic interpretation (Kose et al., 2003; Potjagailo and Wolters, 2023),
rather than being derived solely through statistical decomposition. Furthermore, BAMs do
not impose assumptions like orthogonality between blocks or other structural constraints
that are common in traditional factor models.

Similar to Partial Least Squares (PLS) approaches (Mateos-Aparicio, 2011), but in
contrast to standard factor models, BAMs learn block-level scores by directly optimizing
predictive performance. In doing so, they unify two steps that are typically conducted
sequentially in econometric workflows: (1) extracting components using an unsupervised
method (such as factor models or filters), and (2) employing these components in a super-
vised model.

The assignment of variables to blocks is determined by the modeller, who
applies economic judgment to define the composition and interpretation of each
block. For example, a modeller aiming to forecast GDP growth might structure the BAM
into blocks representing different sectors of the economy, or distinguish between real and
nominal indicators, global and domestic influences, or exogenous factors and endogenous
policy variables. This approach enables BAMs to learn potentially complex, non-linear
associations among indicators within each block, while preserving an additive (and thus
conditionally linear) structure between blocks.

Similar to factor models, the block structure in BAMs reduces the need to enforce
sparsity at the level of individual variables to achieve interpretability. Interpretation
is primarily centred on the block level, rather than on individual predictors.
Nevertheless, the modeller may still wish to communicate the contributions of individual
variables within a block. This can be done using post-hoc interpretability techniques, such
as Shapley values. Importantly, these individual signals remain interpretable, as they are
naturally contextualized within the economically meaningful determinant represented by
the block to which they belong.

BAMs also share conceptual similarities with autoencoders (Berahmand et al., 2024), a
neural network approach designed to learn lower-dimensional, non-linear representations of
high-dimensional input data, without imposing structural constraints such as orthogonality.
However, key distinctions remain. First, unlike BAMs, autoencoders learn representations
from the entire set of input variables, without incorporating any prior grouping or block
structure. Second, autoencoders are trained in an unsupervised manner—i.e., the latent
representation is not optimised to predict a target variable.

3.1.1 BADMs in economics and finance applications

Recent empirical work demonstrates the growing appeal of BAMs for interpreting and
forecasting macroeconomic variables such as inflation and bond returns. While differing
in model architecture and application, all three studies underscore how BAMs can com-
bine predictive performance with economic interpretability by structuring models around
theoretically meaningful blocks of indicators.
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Bianchi et al. (2021) forecast US Treasury bond returns using a neural network with a
custom architecture that “takes into account the economic structure of the input data.” The
model features multiple sub-networks, with one dedicated to bond forward rates, alongside
others corresponding to groups of macroeconomic variables such as output and income, the
labour market, and housing. These sub-networks operate independently within the hidden
layers and are only combined at the output layer. This design reflects the structure of
a BAM, as it preserves interpretability by maintaining separability between economically
meaningful blocks. The authors show that this BAM performs as well as, or better than,
an unconstrained neural network that allows full interaction across all variables. This
leads them to conclude that the strong performance stem primarily from non-linearities
within blocks, rather than from interactions between blocks. While the primary focus of
the paper is predictive performance, the authors also leverage the interpretability of the
BAM structure by analysing the learnt block scores.

Goulet Coulombe (2024) introduces the Neural Phillips Curve, a neural network-based
BAM designed to forecast and decompose the determinants of U.S. inflation. The model
groups input variables according to the structural components of a New Keynesian Phillips
Curve framework. Specifically, the input blocks correspond to long-run inflation expecta-
tions, short-run inflation expectations, real economic activity, and commodity and energy
prices, with an extended specification that also includes financial indicators. This blockwise
structure enables the model to reflect economic relationships while leveraging the flexibility
of neural networks to learn non-linear associations within each group.

In contrast to the shallow network architecture employed by Bianchi et al. (2021), the
Neural Phillips Curve model features deep sub-networks, each consisting of five hidden
layers. This depth enables the model to capture complex non-linear relationships and
interactions among variables within each block, while preserving additivity across blocks.
Each sub-network culminates in a single output neuron, and the final prediction is obtained
by summing the outputs of these neurons. This is illustrated in Figure 2, which replicates
Figure 1 from Goulet Coulombe (2024).

The author emphasizes the economic interpretability of his model, noting that it enables
model predictions to be directly decomposed into the sum of contributions from the Phillips
Curve components, which he refers to as “latent states.” The model draws on a large set of
time series, from which it extracts the optimal “summary statistic” for each component by
maximizing predictive performance. The long-run expectations component is proxied by a
time trend, while the short-term expectations component is informed by survey expecta-
tions and lagged price series. The real activity block draws on labour market, industrial
production, and national accounts data, whereas the energy price block incorporates oil,
gas, and metal prices. Each indicator is included with four lags and three moving averages.

In an extension to the base model, Goulet Coulombe allows for a time-varying slope
of the Phillips Curve, decomposing the contribution of real activity variables into a slowly
evolving slope coefficient and a more cyclical output gap. This approach draws on identifi-
cation assumptions common in unobserved component models and time-varying parameter
factor models, where structural parameters are assumed to change gradually over time, cap-
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Figure 2: Illustration of a neural BAM. Source: Replication of Figure 1 in Goulet Coulombe
(2024).

turing long-run shifts, while cyclical components fluctuate at higher frequencies (see, e.g.,
Chan et al., 2018). The same methodology is applied to estimate time-varying coefficients
for the short-run expectations and commodity price components. The author demonstrates
that the model performs competitively relative to a wide set of benchmarks—including a
linear Phillips Curve and a random forest—and notably outperforms all benchmarks after
2020 by better capturing the sharp rise in inflation.

Finally, Buckmann et al. (2025) examine the non-linear drivers of inflation in the United
Kingdom using the Blockwise Boosted Inflation Model, a BAM based on a blockwise boosted
tree approach. The model learns associations between inflation and five blocks of variables:
an expectations-informed trend and global and domestic demand and supply components.
The latter draw on real activity variables, identified shock series, and indicators of cost pres-
sures and supply-chain disruptions. To distinguish between demand and supply blocks, the
authors impose sign restrictions on the learnt associations within each block—another ap-
proach to incorporating economic theory into machine learning which we discuss in greater
detail in the next section. For each block, up to 200 trees are trained sequentially, with
each block conditioned on the others. The authors use cross-validation to assess the pre-
dictive contributions of the individual components. An out-of-sample forecasting exercise
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further demonstrates that the model performs as well as less interpretable models such as
a random forest and standard boosted tree model.
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Figure 3: Decomposition of UK inflation into inflation trend, demand and supply contri-
bution from a blockwise boosted tree model. Source: Buckmann et al. (2025).

Buckmann et al. (2025) also show that the model delivers an intuitive time-series decom-
position of inflation into blockwise contributions, illustrated in Figure 3. Monthly inflation
predictions (black line) and the component contributions are smoothed over 12 months.
Notable patterns include a negative demand contribution during the global financial crisis
and pronounced supply-side drags during periods of falling global energy prices and in-
creased supply chain integration. In the most recent inflation episode, the model attributes
the surge to a combination of strong supply-side effects, a positive demand contribution,
and an upward shift in the inflation trend.

3.1.2 BADMs in the machine learning literature

While additive models (AMs) are well established in the machine learning literature, BAMs
have received comparatively less attention—Ilikely due to the field’s traditional emphasis on
data-driven pattern discovery over structured model design. Nonetheless, several contribu-
tions point to blockwise structures. Hothorn et al. (2010) introduces the mboost R package
for model-based boosting, enabling BAM estimation, while Mayer et al. (2021) show how
popular boosting libraries like xgboost (Chen and Guestrin, 2016) and LightGBM (Ke
et al., 2017) can implement BAMs by only allowing interactions of variables within blocks,
demonstrating high interpretability in housing price applications.

Other contributions are more tangential to BAMs. Obster and Heumann (2024), draw-
ing on ideas from group Lasso (Simon et al., 2013), propose a linear component-wise boost-
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ing method for variable selection both within and between blocks, which can be viewed as
a linear BAM. Chen and Ye (2024) extend a neural additive model to allow interactions of
variables within blocks, effectively training a BAM. Their method outperforms standard
additive models and matches unconstrained neural networks on three financial datasets,
while offering greater interpretability. In contrast to our definition of BAMs, block struc-
ture is inferred from the data rather than imposed by the modeller. The authors caution
that “detecting statistical interactions without considering domain knowledge can result in
oversimplified and unreasonable models.”

3.2 Monotonicity constraints

To ensure economic interpretability, it may not be sufficient to merely separate blocks of
determinants if these blocks do not uniquely pin down the direction of association between
a predictor and the variable of interest. In practice, indicators grouped within the same
block can exhibit different or even opposing—associations with the target variable. As a
result, the model might learn effects that contradict expert knowledge or overlook relevant
signals due to offsetting influences within a block.

To address such ambiguities, the modeller can impose directional constraints on the re-
lationships between predictors and the target variable. For example, in a model predicting
the risk of lung cancer, it is reasonable to expect a positive monotonic relationship with
smoking: holding other risk factors constant, the more cigarettes an individual smokes per
day, the higher their risk of developing lung cancer. Similarly, in an inflation prediction
model, demand-driven inflation should be positively associated with indicators of economic
activity, such as GDP growth, whereas supply-driven inflation is expected to show a nega-
tive association. Imposing directional constraints helps ensure that the model reflects these
theoretically grounded relationships.

In the machine learning literature, such constraints on the direction of association be-
tween an input and output variable are known as monotonicity constraints and are often
regarded as an important element of model interpretability (Martens et al., 2011; Freitas,
2014; Burkart and Huber, 2021; De Bock et al., 2024). A monotonicity constraint re-
stricts the direction of association between a feature and the predicted outcome.
For instance, a positive monotonicity constraint requires that an increase in a feature must
not lead to a decreasing in the predicted outcome if all other features are kept constant.

Formally, for a predictive model f a monotonicity constraint requires that:

f(l'l,l'g,'-- axa"') Zf(lj,l‘g,"' ,I/,"‘)
when z > 2’ is a positive (increasing) constraint; or
f(xlax%”' ,LE,"') Sf(x1,$2,"‘ axlu"'>

when z < 2’ is a negative (decreasing) constraint.
Monotonicity constraints limit the flexibility of machine learning models,
which can, in principle, negatively affect predictive performance. To manage this trade-off,
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various studies have proposed algorithms that balance the degree to which monotonicity
constraints are imposed with the goal of maintaining high accuracy (Ben-David, 1995;
Cano et al., 2019). At the same time, monotonicity constraints can enhance
predictive performance by acting as informed priors. They can also be viewed
as a form of regularization, preventing the model from learning overly complex
functional forms that might lead to overfitting. As such, monotonicity constraints
can be particularly advantageous when training data is limited or the prediction task is
inherently difficult.

To address such ambiguities, the modeller can impose directional constraints on the re-
lationships between predictors and the target variable. For example, in a model predicting
the risk of lung cancer, it is reasonable to expect a positive monotonic relationship with
smoking: holding other risk factors constant, the more cigarettes an individual smokes per
day, the higher their risk of developing lung cancer. Similarly, in an inflation prediction
model, demand-driven inflation should be positively associated with indicators of economic
activity, such as GDP growth, whereas supply-driven inflation is expected to show a nega-
tive association. Imposing directional constraints helps ensure that the model reflects these
theoretically grounded relationships.

3.2.1 Monotonicity constraints vs. sign restrictions for shock identification

In standard econometric models—especially vector autoregressions (VARs) and dynamic
factor models (DFMs)—sign restrictions are widely used to incorporate economic intuition,
particularly for identifying supply and demand drivers of variables like output, oil prices,
or inflation. While both sign restrictions and monotonicity constraints embed a priori
economic knowledge, they operate differently and it is important not to conflate the two.

Sign (or zero) restrictions in VARs (Arias et al., 2018) constrain the dynamic responses
of variables to structural shocks by filtering the set of admissible impulse responses—those
that satisfy the specified sign or zero restrictions over a limited number of horizons—from
all possible residual decompositions. Applied as a post-estimation procedure, they identify
orthogonal structural shocks based on contemporaneous correlations among variables and
can shape the joint response of multiple variables to a common shock.

By contrast, monotonicity constraints in machine learning models are imposed directly
during model estimation, restricting the functional relationship between individual predic-
tors and the target variable across the entire dataset. These constraints shape predictions
throughout the feature space, not merely in response to a shock. Although they do not
yield an identified series of structural shocks, when applied to multiple indicators simul-
taneously, monotonicity constraints can enable a nuanced decomposition of the prediction
into contributions from each determinant.

3.2.2 Implementing monotonicity constraints in ML models

Several approaches have been developed to effectively implement monotonicity constraints,
particularly within neural networks and decision tree-based methods (for reviews, see Cano
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et al., 2019; Nanfack et al., 2022). In neural networks, monotonicity can be induced by
either (i) creating a specific, constrained architecture that guarantees monotonicity or (ii)
modifying the loss function. A constraint architecture may limit the expressiveness of the
models and thus degrade their performance, or the implementation of the constraints comes
with high computational complexity (e.g. Sill, 1997; Daniels and Velikova, 2010; You et al.,
2017). However, recent advances suggest that these drawbacks can be effectively mitigated
(Runje and Shankaranarayana, 2023; Kitouni et al., 2023). Modified loss functions are
applicable to any neural network architecture, but cannot guarantee that the learnt neural
network is consistently monotonic (Sill and Abu-Mostafa, 1996; Gupta et al., 2019). Con-
sequently, other studies have introduced additional computational procedures to certify
that monotonicity is satisfied (Liu et al., 2020; Sivaraman et al., 2020), albeit at increased
computational costs.

In the work on monotonic decision trees, several methods adjust the loss function to
penalise monotonicity violations but cannot guarantee monotonicity (Ben-David, 1995;
Gonzalez et al., 2015). Even methods that locally blocks splits violating monotonicity
constraints do not ensure that the resulting tree satisfies global monotonicity, i.e. across
all nodes (Bartley et al., 2019). The popular boosting library xgboost implements global
monotonicity constraints by tracking the minimum and maximum permissible predicted
values during tree growth.? Bonakdarpour et al. (2018) propose an alternative method
that enforces monotonicity by directly adjusting tree predictions, without altering the tree
structure (see also van de Kamp et al., 2009). Bartley et al. (2019) introduce an approach
tailored to random forests that reportedly outperforms other monotonicity-enforcing meth-
ods in this context.

3.2.3 Applications of monotonicity constraints in forecasting

Monotonicity constraints are particularly influential in predictive applications within high-
stakes domains such as medicine (Pazzani et al., 2001; Royston, 2000) and credit scoring
(Chen and Li, 2014; Chen and Ye, 2022). Notably, Chen and Ye (2022) propose a mono-
tonic neural additive model, combining two key pillars of interpretability—additivity and
monotonicity constraints. Chen and Zhang (2023) apply this model on datasets from crim-
inology, education, health care, and finance.

Monotonicity constraints have also gained traction in economic and financial forecast-
ing, primarily due to their potential to enhance predictive performance. Campbell and
Thompson (2008) and Li and Tsiakas (2017) demonstrate that imposing monotonicity con-
straints on predictors in linear models can significantly improve the accuracy of stock return
forecasts. Similarly, Wen et al. (2022) finds that applying such constraints enhances predic-
tive performance in oil price forecasting. Other studies extend these findings to non-linear
models: Fisher et al. (2020) show that monotonicity constraints improve forecasts of firms’

9Bartley et al. (2019) show that this approach can introduce significant biases in deeper trees, as
commonly found in random forests. In boosting applications, however, this method performs well since
the trees are typically shallow and the sequential learning process helps correct for any induced biases.
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expected returns using a Bayesian non-linear additive model, while Richman and Wiithrich
(2024) report similar gains in the context of insurance pricing with neural networks.

In macroeconomic forecasting, theory-driven regularisation can be particularly valuable
due to typically small samples sizes and high intercorrelation between variables, which
can lead to overfitting and unstable parameter estimates if the model is not constrained.
However, to date, only a few studies have applied sign restrictions in machine learning
models for macroeconomic applications. Chalaux and Turner (2023) develop a machine
learning algorithm for selection of linear statistical models to predict economic downturns
across 20 OECD countries, selecting predictors based on both empirical relevance and
theoretically motivated monotonicity constraints. They differentiate between short-term
sign restrictions applied to quarter-on-quarter and year-on-year changes and “long-term”
sign restrictions imposed on annual changes over 3-5 years. For instance, the authors
explain that “a strong positive growth rate in real house prices over the previous five years
as well as a sharp fall over the previous quarter might both signal the increased likelihood
of a downturn.” Lin et al. (2024) incorporate monotonicity constraints when forecasting
exchange rates using boosted trees.

3.2.4 Monotonicity constraints to separate determinants of inflation

In a recent study, Buckmann et al. (2025) apply monotonicity constraints within a BAM
using boosted trees to disentangle supply- and demand-driven determinants of inflation (see
also Section 3.1.2). Indicators of real activity predict inflation through both a demand and
a supply block, meaning their effect can be attributed to either source. To separate these
channels in line with economic theory, the authors impose opposite monotonicity constraints
depending on the block. For example, the unemployment rate gap is constrained to have
a negative association with inflation within the demand block and a positive association
within the supply block. Specifically, the decision trees in the demand block are restricted
to splits where a lower unemployment gap corresponds to higher inflation, while splits
where the two move in the same direction are excluded.

Unlike VARs, which identify shocks through simulated dynamic responses with im-
posed sign restrictions (see Section 3.2.1), these constraints directly shape the functional
relationship between predictors and the target variable across the entire sample. By train-
ing numerous trees on a wide range of real activity indicators, the model exploits variation
over time and across indicators to separate supply- and demand-like contributions at each
point in time. Although the model remains predictive rather than fully structurally identi-
fied, the monotonicity constraints offer a theory-based method for disentangling supply- and
demand-driven influences on inflation. As shown in Figure 4, these constraints help uncover
meaningful cyclical demand effects that are missed in unconstrained models. Consequently,
a decomposition like that in Figure 3, estimated without monotonicity constraints, fails to
capture plausible demand cycles and understates the role of supply-side factors.

To visualise the non-linearities captured by the boosting model, the authors estimate
Shapley values (see Section 2.1) and plot them in a scatter plot against the realisations of the
corresponding indicator variable, as also shown here in Figure 5. This reveals pronounced
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Figure 4: Contribution to inflation from demand and supply blocks with monotonicity
constraints (baseline) versus blocks of indicators without restrictions (unidentified). Source:
Buckmann et al. (2025).

non-linear associations between inflation and both the unemployment rate gap and the
vacancy-to-unemployment (v/u) ratio gap —a measure of labour market tightness—in the
demand block. The authors observe a stronger predictive effect on inflation at low levels
of unemployment and, similarly, at high levels of the v/u ratio. These non-linearities are
consistent with evidence from time series analyses and theoretical models that suggest
a non-linear Phillips curve relationship between inflation and labour market tightness,
that has been particularly relevant in the recent inflation surge. In the supply block, the
effect of labour market variables—imposed to have the opposite sign by the monotonicity
constraints—is less pronounced and exhibits little evidence of non-linearity. Instead, other
variables in the supply block, such as two indices of global supply chain disruptions, display
marked non-linearities.

Despite the relatively restrictive design—imposing both a block structure and mono-
tonic constraints—the authors show that their model comparably to an unconstrained
boosting model and a random forest in out-of-sample forecasts. This suggests that restric-
tions do not necessarily come at the expense of predictive performance.

Finally, in upcoming work, De Polis et al. (2025) measure the evolution of inflation
risks over time via a flexible time-varying parameter model. They impose theory-driven
monotonicity constraints on predictor loadings towards the moments of the predictive dis-
tribution of inflation in the short-run and the long-run. As such, the authors impose the
unemployment gap and unit labour costs to have negative associations with the mean and
the skew of the inflation distribution in the short run, whereas an international commodity
price index is restricted towards a positive association. In the long run, money growth,
trend unit labour costs and the long-run real interest rate are restricted to have positive
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Figure 5: Non-linear demand and supply associations between selected indicators and UK
inflation, learnt by blockwise boosted tree model.

Note: Functional forms reflect the contribution to the inflation prediction (y-axis) from a blockwise
boosted tree model, against the realisation of the indicator at a given lag (x-axis). Colours
indicate specific realisations for selected months. The lines show best-fit segments. Top panel
shows selected indicators within the demand block, bottom panel shows selected indicators within
the supply block. Source: Buckmann et al. (2025).

predictor loadings towards the mean and skew of the inflation distribution. This yields
a decomposition of long-run inflation risks into meaningful determinants over time. For
instance, they find that Phillips curve-type effects show up in inflation skewness.

4 Conclusion

This paper highlights the potential of integrating economic theory into machine learning
models through structured architectures and interpretability-enhancing constraints. We
have discussed how block-additive models (BAMs) and monotonicity constraints embed
economic intuition into machine learning frameworks. By aligning model design with estab-
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lished theoretical relationships—whether by grouping predictors into economically mean-
ingful blocks or imposing monotonicity restrictions informed by expert knowledge—machine
learning models can be steered toward greater economic interpretability without necessar-
ily sacrificing predictive performance. Although these methods fall short of full structural
identification, they offer a pragmatic middle ground between purely data-driven machine
learning approaches and traditional econometric models. Post-hoc interpretation tools,
such as Shapley values, remain valuable for illustrating the signals a model exploits and
can provide clearer insights when applied to models explicitly designed for interpretability.

This opens new avenues for broadening the relevance of machine learning tools for policy
institutions such as central banks, where particular value is placed on model forecasts that
provide coherent and communicable narratives. Beyond the more established applications
of machine learning as purely predictive tools or as tools for estimating non-linear coeffi-
cients in standard economic models, these ML methods can also serve to track non-linear
determinants of economic aggregates in a way that aligns with economic theory.

Looking ahead, there is substantial scope for further research in this direction. Future
work could assess the robustness of these methods in different macroeconomic contexts and
examine potential biases introduced by the constraints discussed in this paper. In addition,
advancing machine learning techniques toward multivariate models that enable the iden-
tification of economic drivers—whether through restrictions on the correlation structure
between variables or through multivariate monotonicity constraints—would be a particu-
larly promising area of development.
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