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1 Introduction

Even more than a decade and half after the global �nancial crisis (GFC), the issue of `too important

to fail' banks is still relevant. Regulatory authorities across jurisdictions have addressed the problem

of systemically important banks (SIBs) with a two-pronged approach. First, the Basel III capital

reforms devised by the Basel Committee on Banking Supervision (BCBS) recommend increasing both

the quality and level of the regulatory capital base with a view to reducing the probability of default of

SIBs. Second, SIBs have been made more resolvable by subjecting them to special resolution regimes.

Resolution aims to ensure banks and other �nancial institutions can be allowed to fail in an orderly

way. In the European Union, a new resolution regime has been implemented via the Banking Recovery

and Resolution Directive (BRRD). This has introduced changes to the creditor waterfall which make

it easier for losses to be imposed on banks' creditors as part of a resolution process. This is known as

`bail-in' to distinguish it from `bail-out' using public funds. In line with international standards, banks

must meet a minimum requirement for own funds and eligible liabilities (MREL) which is earmarked

for loss absorption in the event of resolution. Liabilities eligible for MREL include regulatory capital,

including equity and subordinated bonds, and a new class of senior �bail-in� bonds.1 In the UK, the

Bank of England is the resolution authority and sets the level of MREL.

In India, the Reserve Bank of India (RBI), India's central bank, is empowered to deal with the

resolution of private sector banks by way of mergers, suspension of management and liquidation.

However, government-owned banks or public sector banks (PSBs), which account for more than half of

Indian bank assets cannot be resolved without government permission.2 Laws governing resolution of

�nancial institutions do not contain provisions for bail-in.3There could be an expectation of government

support in case of solvency concerns. To the extent that this is anticipated by a bank's creditors, these

institutions may bene�t from lower funding costs, a form of implicit subsidy from the government. In

India, and many other jurisdictions, these guarantees are not limited to SIBs. Smaller banks, with a

high degree of government ownership or interconnectedness may also be too important to fail.

1Lindstrom and Osborne (2020) show that the risk sensitivity of senior bond spreads increased since the implemen-
tation of the BRRD in 2015, suggesting that the introduction of the new bail-in regime resulted in a sustained change
in investors' perception of the likelihood of being bailed in.

2The IMF India Financial Sector Assessment Programme (FSAP) 2025 concluded that resolution powers and tools
are limited mostly to compulsory mergers or liquidation, and entail higher contingent �scal costs than well-designed
resolution regimes [IMF and Bank (2025)].

3The Financial Resolution and Deposit Insurance (FRDI) Bill 2017 [Government (2018)], was an attempt to consoli-
date India's regulatory framework on bank resolution and was referred to parliament for consideration. Subsequently, the
Government decided to withdraw the Bill due to apprehensions among the public about the `bail-in' clause for resolution
of bank failure which was perceived to be against the interest of the depositors [Pandey and Patnaik (2019)].
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The RBI has historically used mergers as a resolution mechanism in the banking sector, with

losses imposed only on shareholders. In March 2020, the RBI helped engineer a capital injection and

restructuring of Yes Bank, India's fourth-largest private sector bank, to prevent a run on the bank and

to preserve broader �nancial stability. On March 14, 2020, Yes Bank received a total capital injection

of Indian rupees (INR) 100 billion (GBP 1.09 billion) in total from the State Bank of India and a

group of private sector banks (HDFC, ICICI Bank, Axis Bank, Kotak Mahindra Bank, Federal Bank,

Bandhan Bank, IDFC First Bank) [Gupta (2024)]. On November 17, 2020, RBI instructed Lakshmi

Vilas Bank, a failing private-sector bank, to be merged with the Indian subsidiary of Singapore's DBS

bank [Shikha and Kapsis (2024)].

Reliance on mergers as a resolution mechanism is not just used by the RBI and is resorted to

by most regulatory authorities. Credit Suisse had a resolution strategy based on bail-in, and the

Swiss Financial Market Supervisory Authority and the Swiss National Bank had plans to execute that

strategy. In the end, the Swiss authorities chose not to go down the resolution route and instead

orchestrated the state-brokered commercial merger of Credit Suisse by its domestic banking rival UBS

[FINMA (2023), Pascal et al. (2023)]. This was announced on 19 March 2023. Nevertheless, the

contractual writedown of all the outstanding Additional Tier 1 (AT1) capital instruments issued by

Credit Suisse was a key element of the transaction. The writedown extinguished liabilities amounting

to CHF 16 billion from the bank's balance sheet. In May 2023, JP Morgan Chase took over US bank

First Republic in a deal brokered by regulators. JP Morgan paid $10.6bn (¿8.5bn) to the Federal

Insurance Deposit Corp (FIDC), after First Republic had been shut down [Gupta et al. (2025)]. First

Republic had been under pressure since March 2023, when the collapse of two other US lenders, Silicon

Valley Bank (SVB) and Signature Bank, sparked fears about the state of the banking system.

The purpose of this study is to derive a market-based estimate of the size of the implicit subsidy

to the Indian banking system represented by a sample of six major banks. There are a number of

di�erent approaches that can be used to estimate these implicit subsidies, as discussed in Section 2.

In this paper, the implicit subsidy is estimated using contingent claims analysis (CCA) which is based

on the principle that holders of a bank's debt can produce a `contingent claim' on the government

that could bail out the bank were it to fail. The CCA framework is implemented by comparing two

measures of default risk for each bank.

The �rst is obtained using a structural credit risk model, introduced in Black and Scholes (1973)

and Merton (1974), which de�nes the probability of default based on the risk-adjusted balance sheet

of banks whose assets may be above or below promised payments on its debt obligations. Under this

approach, equity holders have a call option on the bank's total value after outstanding liabilities have

been paid o�. Thus, debt holders e�ectively write a European put option to equity holders and receive

the option premium as compensation for holding risky debt. This measure relies on equity prices and,

assuming equity holders are not bene�tting from a government bail-out, put option values obtained

from this approach would be free from any implicit government guarantee.

In the second measure, the put option values of each bank are computed directly from their Credit

Default Swap (CDS) spreads. CDS is an over-the-counter contract settled in the credit derivative

market that can be used to insure against credit risk of a bond issuer. A CDS pays out if the bank

defaults on its debt. Therefore, the put option values obtained from CDS spreads should capture
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the joint risk of the bank becoming distressed and the government not bailing out debt holders. It

should, therefore, be lower than the put option estimated from equity prices. The di�erence between

the two put option values provides a measure of the nominal value of the implicit subsidy received by

an individual bank. The ratio of the two put option values can be used to derive the proportion of

default risk of a bank that is believed to be `insured' by the government.

Using this method, implicit subsidies are estimated for the 6 largest Indian banks by market

capitalisation [Axis Bank, HDFC Bank, ICICI Bank, Kotak Mahindra Bank, Bank of Baroda (BOB)

and the State Bank of India (SBI)], as on 31 December 2024, over the 20-year period 2005.1-2024.12.

These 6 banks are taken to be a representation of the whole Indian banking system. Of these, BOB and

SBI are PSBs. In June 2024, the Government held a majority stake of 64% in BOB [BOB (2024)] and

57% in SBI [SBI (2024)]. HDFC Bank, ICICI Bank and SBI are classi�ed as Domestic Systemically

Important Banks (D-SIBs) by the RBI [RBI (2023)]. Each D-SIB is awarded a Systemic Importance

Score, on the basis of which additional Common Equity Tier 1 (CET1) requirements are imposed.

Our results show that implicit subsidies to the Indian banking sector have decreased, from the

levels seen during the GFC, and the shock from the Covid-19 pandemic, but remain non-trivial. PSBs

backed by the government may be viewed as safer as they can be more readily recapitalised to shore

up their capital base. Creditors would then ask for a lower risk premium, taking into account expected

future transfers from the government, implying a higher level of implicit subsidy to PSBs. This is not

to suggest that debt holders of even 100% state-owned banks would have all their liabilities insured by

the government at all times. The guarantees are implicit because the government does not have any

explicit, ex ante commitment to intervene. Our results show that implicit subsidies tend to peak in the

midst of a crisis. During tranquil periods the implicit subsidy to PSBs has tended to higher than that

of private sector banks. However, during periods of �nancial crisis the implicit subsidy to the Indian

private sector banks surpassed that of PSBs. This could be attributed to their greater sensitivity to

shocks in �nancial markets witnessed during crisis periods.

The RBI has adopted the Basel III capital adequacy framework which applies to public as well as

private sector banks. Increases in the equity capital base required under Basel III have resulted in

the Indian banking system raising its average Tier 1 capital ratios from 10% of Risk Weighted Assets

(RWA) in 2008 to 15.5% of RWA in 2024. The default protection provided by higher equity levels

can substitute for the protection provided by implicit subsidies by increasing investor con�dence and

lowering borrowing costs. While higher equity levels in Indian banks, may have decreased the implicit

government guarantees, they have not eliminated them.

This paper contributes to the literature on implicit subsidies, and the pricing of bank debt, by

implementing a novel technique to quantify the subsidy based on information from banks' equity

prices and CDS spreads. Analysis of implicit government subsidies for banks has been largely con�ned

to developed markets in the UK, US and Euro area where banking systems are driven by private sector

banks. To the best of my knowledge this study is the �rst attempt to estimate implicit subsidies for

banks in an emerging market, such as India, where PSBs still maintain a dominant presence. Although

banks account for about two-thirds of the Indian �nancial system assets, the empirical literature on the

Indian banking system is sparse. This paper is an attempt to �ll a gap in the literature by focussing

on an issue, that remains signi�cant, but has not been addressed.
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The rest of the paper is organised as follows. Section 2 provides a brief literature review and outlines

results from previous studies. Section 3 describes the CCA modeling framework and its application to

estimate put option values or expected losses from bank equity prices. Section 4 estimates put option

values from bank CDS spreads. Section 5 computes the implicit subsidy as the di�erence between the

put option values derived from bank equity prices and the put option values derived from bank CDS

spreads. Section 6 concludes.

2 Related literature

As described in Noss and Sowerbutts (2012), the approaches used to estimate the implicit subsidies can

be broadly classi�ed into two types. The �rst are the `funding cost advantage' models that value the

subsidy as the aggregate reduction in the cost of bank funding due to an implicit government guarantee.

In this approach, the cost the bank faces in issuing its debt is compared with a higher counterfactual

cost that it would face in the absense of implicit government support. Funding cost advantage models

can be di�erentiated by two approaches to estimate this counterfactual. The �rst is the size-based

approach that assumes that only large banks or SIBs would be supported by governments in the

event of their failure, and consequently enjoy a reduced cost of funding compared with smaller banks

within the banking system. The funding cost advantage enjoyed by the larger banks are determined by

simply comparing their bond yield spreads over a market benchmark (for example, EURIBOR in the

euro area or MIBOR in India) with those of smaller banks. It is assumed that, in the counterfactual

case where government support is withdrawn, large banks would face the same cost of funding as

smaller banks. However, this measure based on simple bond spread di�erentials can be misleading

as it ignores economies of scale and scope. If larger banks generate higher returns with lower risks

they would evidently bene�t from lower funding costs as compared to smaller banks. The second is

the ratings-based approach based on the fact that credit-rating agencies often issue two ratings for

a bank: a `stand-alone rating' and a `support rating'. Both re�ect an external assessment of the

probability of a bank defaulting on its debt, but only the latter includes the possibility of a bank

receiving government support. This approach compares the bank's actual cost of funding (re�ecting

its `support rating') with an estimate of the higher cost of funding a bank would face in the absence

of the implicit guarantee. What drives this approach is that markets use ratings for pricing debt

instruments and these ratings a�ect bond spreads. A drawback of this approach is that credit rating

agencies often have divergent views. Under both the size-based and ratings approach, the di�erence

between the actual and counterfactual cost of funding is assumed to re�ect the size of the government

guarantee.

Another approach is the contingent claims analysis (CCA) methodology that value the subsidy as

the expected payment from the government to the banking system necessary to prevent default. It

involves the application of option pricing models to estimate the fair value of credit risk insurance and

the modeling framework is described in Sections 3 and 4.

Noss and Sowerbutts (2012) use both a funding cost advantage model (ratings based) and CCA

approach to estimate the implicit subsidy for four large UK banks in 2010. They arrive at a broad

range of estimates across the di�erent approaches. The funding advantage approach estimates the
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implicit subsidy in 2010 to be around GBP 40 billion. The options price contingent claims methods

produce estimates of around GBP 120 billion.

Ueda and Di Mauro (2013) estimate the implicit subsidy for 900 banks across a variety of countries

for 2007 and 2009 using expectations of government support embedded in credit ratings provided

by Fitch. Fitch produces both `stand-alone' and `support' ratings. They found that the implicit

subsidy value was already sizable as of end-2007 and increased substantially by the end-2009, after

key governments con�rmed bailout expectations. Their results indicate a support rating that is 3-4

notches above the stand-alone rating for SIBs.

Kelly et al. (2016) represents a somewhat di�erent approach as they compare actual option prices of

individual institutions and �nancial sector indices. They conclude that �nancial sector equity holders

enjoy a sizeable government subsidy. Note that this subsidy comes in addition to the implicit subsidies

due to debt. Kelly et al. (2016) are amongst a few who point that the standard approach of using equity

price leads to a �contamination�, as expectations of public sector assistance are already embedded in

these prices, thus biasing downwards estimates of implicit subsidies.

Gudmundsson (2016) implements the CCA approach with a jump di�usion option pricing model

to estimate the implicit subsidy in a sample of 11 GSIB banks with a capital requirement surcharge of

1.5 percent or higher. The results suggest that the subsidy declined following the GFC in 2008-2009

as banks' asset volatilities declined and equity levels improved. The weighted-average subsidy for the

11 G-SIBs peaked during the crisis and declined to half that level in the post-crisis era.

Liu et al. (2016) investigated the impact of deposit insurance schemes on banks' credit risk and found

that banks in countries with explicit deposit insurance systems have higher CDS spreads, supporting

what they call the �moral hazard view�. They provide some evidence that the moral hazard e�ect due

to the presence of explicit deposit insurance increases the probability of default more for banks with

lower asset quality and lower liquidity, relative to �nancially sound ones.

Acharya et al. (2016) examine if expectations of implicit government support are embedded in the

credit spreads of unsecured bonds issued by large U.S. �nancial institutions. They �nd that in the

pre-Dodd Frank time period bond spreads were less sensitive to risk for large �nancial �rms compared

to smaller �nancial institutions, consistent with investors expecting large �nancial �rms to bene�t from

implicit government guarantees. In the post-Dodd Frank period after 2012, there were no di�erences in

the spread-risk sensitivity of large �nancial �rms compared to small �nancial �rms. These results are

consistent with a strengthening of market discipline in the aftermath of the policy reforms implemented

following the GFC.

Cummings and Guo (2020) examine whether SIBs realise an implicit subsidy when raising wholesale

debt funding and evaluates the e�ectiveness of the Basel III capital reforms in reducing the subsidy.

Using primary bond market data for Australian banks, their estimations suggest that, before the

reforms, SIBs were raising wholesale debt funding at costs that did not re�ect the risk inherent in their

operations compared to other banks. But after the reforms Basel III were implemented, the subsidy

was reduced by approximately one-half.
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3 Data

The models are calibrated using market information and balance sheet data of the 6 largest Indian

banks by market capitalisation: Axis bank (henceforth Axis), HDFC bank (henceforth HDFC), ICICI

bank (henceforth ICICI), Kotak Mahindra Bank (henceforth Kotak), Bank of Baroda (henceforth

BOB) and State Bank of India (SBI). I obtain daily market equity data and semi-annual balance sheet

data on total liabilities, Tier 1 capital and Risk Weighted Assets from the London Stock Exchange

Group (LSEG) Workplace. The combined panel dataset comprises observations for each bank j over

a six-month period. As a measure of the benchmark risk-free rate of interest, I selected the spot yield

on 5-year UK government bonds. Daily 5-year spot yields are sourced from the estimated yield curves

for the UK published by the Bank of England. The credit rating of UK government bonds is high

enough for their yields to qualify for an approximation of the risk-free rate of interest.4

4 Estimating expected losses from bank equity prices

In order to estimate the put option values of individual banks we develop a framework to implement

Merton's jump-di�usion model [Merton (1976)], which augments Merton's structural credit risk model

[Merton (1974)] with a jump process. Jump di�usions can incorporate rare, large �uctuations in asset

prices as witnessed during crises. The empirical distribution of asset returns di�ers in many ways

from the di�usion process assumed in the Black and Scholes (1973) and Merton (1974) models. The

assumption that asset price returns follow a normal distribution could underestimate the value of

government implicit subsidies as it would ignore the non-normal behaviour of asset prices, observed

particularly in banks. This measure relies on equity prices and, assuming equity holders are not

bene�ting from a government bail-out, put option values obtained from this approach should be free

of any implicit government guarantee. The model parameters are used to back out the asset values of

the six banks. Expected losses of individual banks are modelled as a put option which can be observed

as a credit spread over the risk-free rate of interest.

4.1 Payo�s to equity and debt holders

Banks have assets (A) that change in value over time, and a �xed amount of debt (D) that is due at

some point of time in the future (T ). Assets of a bank are uncertain and change due to factors such

as pro�t �ows and risk exposures. Default risk over a given horizon is driven by uncertain changes in

future asset values relative to promised payments on debt. The value of the bank is split into two -

that which goes to the equity holders and that which goes to the debt holders or creditors. If, at the

time (T ) when the debt falls due, the assets have more than enough value to repay the liabilities (D),

the excess value (A−D) goes to the equity holders. In the absence of any insurance, the payout to the

creditors is what they are owed (D). If the assets are not enough to repay the liabilities, then the bank

defaults, and the creditors receive what is left of the assets. So the market value of the debt, denoted

4At the time of writing, UK Government bond (gilts) credit ratings are AA by Fitch Ratings and Standard & Poor's
(S&P) Global; Aa3 by Moody's. All three ratings are accompanied by a stable outlook, indicating no immediate plans
for a downgrade. India's government bond (IGB) credit ratings are BBB- with a positive outlook by S&P Global; BBB-
with a positive outlook by Fitch Ratings and ; Baa3 with a stable outlook by Moody's.
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as (B), is equivalent in value to risk-free debt minus a guarantee against default. As demonstrated in

Merton (1977), this guarantee can be calculated as the value of a put option on the assets (A) with an

exercise price equal to (D).

B = D −max[D −A, 0]. (1)

If we introduce a guarantee, we can view the realised cost to the guarantor, C, as the payout in

case of default and zero otherwise.

C = max[D −A, 0]. (2)

Having identi�ed the nature of the payo�s to debt and equity holders, the next step is to examine

how the value of the bank's assets evolve through time relative to a default barrier. Stochastic assets

evolve relative to a distress barrier and determine the value of liabilities with implicit options. The

probability that the assets will be below the distress barrier is the probability of default.

4.2 Asset evolution according to a jump di�usion process

In the basic structural credit risk model, attributed to Merton (1974), the market value of a �rm's

assets A evolve according to a Geometric Brownian Motion (GBM) depicted in equation (3)

dA

A
= µdt+ σdWt (3)

where µ is the expected growth rate of the �rm's asset value, σ is the asset volatility. Wt stands for a

standard Brownian motion.

In this study, we apply the Merton (1976) jump di�usion model which was put in place to relax

the prior assumption that trading was continuous. The model has time invariant coe�cients, con-

stant volatility and log-normally distributed jump sizes. Jumps allow higher moment features such

as skewness and leptokurtic behaviour in the distribution of asset price returns. Changes in asset

values consist of a continuous di�usion component which is modelled as a GBM, and a discontinuous

jump component, modelled as a Poisson process. The evolution of the asset value At is given by the

stochastic di�erential equation,

dAt
At

= µdt+ σdWt + d(

Nt∑
q=0

(Jq − 1)) (4)

where the last term models the jumps. The jumps capture the price impact of extreme events, which

arrive only at discrete points in time and these arrivals are described by a Poisson process Nt, charac-

terised by its arrival rate λ. A jump is modelled by a random variable J , which transforms the asset

value At to JAt. The di�erence (J−1) is the relative change in price when a Poisson jump occurs. The

jump size Jq is a sequence of independent identically distributed nonnegative random variables. In the

absence of outside news, the asset price simply follows a GBM. In the model all sources of randomness,

Nt, Wt and J
′s, are assumed to be independent. Solving the stochastic di�erential equation (4) gives

the dynamics of the asset price:
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At = A0 exp{(µ− 1

2
σ2)t+ σWt}

Nt∏
q=0

Jq (5)

where A0 is the asset price at time zero. If we denote Yq = log Jq, we have

Xt = log
At
Ao

= (µ− 1

2
σ2)t+ σWt +

Nt∑
j=0

Yq, (6)

The jump size is drawn randomly from a distribution with probability density function J(Q) which

is independent of both the GBM and the Poisson process. The jump size J is a log-normally distributed

random variable:

ln J ∼ N(µq, σ
2
q ). (7)

The expected value of the jump size can be written as:

E[J − 1] = exp(µq +
σ2q

2
)− 1. (8)

Augmenting the di�usion process with jumps adds three extra parameters (λ, µq, σq) to the BSM

framework which contains two parameters (µ, σ). Using the approach of Ball and Torous (1983) and

discretising over [t, t+ ∆], the solution takes the form

∆Xt = (µ− 1

2
σ2)∆ + σ∆Wt +

∆Nt∑
j=0

Yq, (9)

where ∆Wt = Wt+∆ −Wt ∼ N(0,∆), where ∆Nt = Nt+∆ − Nt is the number of jumps occuring in

the interval [t, t+ ∆].

The estimated asset values for each bank are transformed into log returns, ∆ [ln (At)] = ln(At+1)−
ln(At). For estimation purposes, we need the probability density function of Xt as in (6). Since the

calibration is done in discrete time we work with ∆Xt as de�ned in (9) so that the density function

now has a �nite number of terms. The approximation assumes that λ4 converges to zero; this type

of discrete time speci�cation is referred to as a Bernoulli di�usion model. When the time di�erence

∆t is small, by the properties of the Poisson process Nt, we know that P (∆Nt = 0) = 1 − λ∆t,

P (∆Nt = 1) = λ∆t and P (∆Nt > 1) = 0. Therefore, the density in log returns, f∆Xt can be thought

of as a Bernoulli random variable that has a mixture distribution for a small4t. During ∆t, the density

in log returns is a weighted average of the di�usion density (f∆Diff ) and jump density (f4Jump) given

by:

f∆Xt = (1− λ∆t)f∆Diff + λ∆t(f∆Diff ∗ f4Jump). (10)

In equation (10) the di�usion part of the process is:

f∆Diff ∼ N((µ− σ2

2
)∆t, σ2∆t), (11)
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and the jump part is:

(f∆Diff ∗ f4Jump) ∼ N([(µ− σ2

2
)∆t+ µq], σ

2∆t+ σ2
q ) (12)

Denoting the distribution of daily log returns in a bank's asset values as 4X = ∆ lnVt, the log-

likelihood function over the set of parameter values θ = {µ, σ, λ, µq, σq}, can be written as:

logL(θ | ∆x1, ...∆xT ) =

T∑
t=1

log f∆x(∆xt | θ) (13)
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4.3 Estimating the parameters of the jump di�usion process

The normal practice for estimating the parameters would be to maximise the log-likelihood function

over a set of given parameter values {µ, σ, λ, µq, σq}. However, in this case, the standard maximum

likelihood (ML) procedure is not valid as the log return in the Bernoulli di�usion model is a mixture

of two normal distributions with di�erent means and variances as given by equations (11) and (12).

The likelihood function is not well-behaved, which indicates the occurrence of discontinuous jumps.

Moreover, since the intensity parameter, λ, is unknown ex ante, it is not possible to identify from which

of the two normal distributions each observation originates. This, coupled with the fact that the two

normal distributions are di�erent, the ML estimator does not exist.5 Maximising the log-likelihood

function, according to equation (13) fails to determine robust parameter estimates since the likelihood

equation has a �at surface. A solution to the problem would be to devise a method that would not

require all the �ve parameters to be optimised simultaneously.

A two-stage estimation process is used to calibrate the model parameters. The most intuitive way

to calibrate the model would be to use a bank's asset values. But these are not directly observable.

However, for publicly traded banks, the equity price is closely observed in the market. By assuming

that the bank's market value exhibits characteristics similar to those of the observable equity price,

we can estimate the jump parameters {λ, µq, σq} directly from the market capitalisation data. The

remaining di�usion parameters {µ, σ} are then estimated using ML. This two-stage estimation process

is described in the following two sections.

4.4 Detecting jumps as change points

The jump parameters {λ, µq, σq} are estimated using the observable market capitalisation, of each

sample bank, over an estimation window of six months from 2005 to 2024. We expect structural

breaks in the time series of log returns of the market capitalisation when the mean of the series

undergoes signi�cant changes. For the estimation, there is a need to identify the precise time when

the mean changes abruptly. These are called �change points�. A change point re�ects a discontinuity

or jump in the time series of log returns. If the intensity parameter λ is small, then in a period of 1

day, the log returns will either jump once or not at all. As an illustration, the left-hand side panel

Figure 1 shows the daily log returns in the market capitalisation of a SBI in 2020 (January to June).

Detecting the change points is an optimisation problem whose solution can be found by implement-

ing the dynamic programming algorithm described in Lavielle (2005) and Killick et al. (2012). The

implementation of the algorithm is described in Appendix A and its output is shown in the right-hand

side panel in Figure 1. Having identi�ed the number of jumps within the time series of log returns

in market capitalisation, we determine the jump rate λ, as the number of jumps divided by the total

number of observations. In the case of SBI, shown in Figure 1, over the six-month observation period

from January to June 2020, this was 0.08 (10 divided by 125). The corresponding mean jump size µ̂q

is 0.0036, and the jump size volatility σ̂q is 0.0879. This exercise is repeated across all six banks over

the observation period from 2005 to 2024.

5For further clari�cation see Kiefer (1978), Honore (1998), and Hamilton (1994).

11



Figure 1: Daily Log Returns of Market Capitalisation of SBI with Identi�ed Change Points, January-
June 2020

Daily Log Returns of Market Capitalisation Identi�ed Change Points

Notes: It is assumed the log returns �uctuate around some underlying signal that could be associated with the factors driving
the market capitalisation of the bank. The �gure in the right-hand side panel shows that the mean of the series does not
change during some time periods, which implies that the signal remains constant during any of these �distinct states�. The
horizontal lines capture these distinct states or regions whose starting and end date are identi�ed by a distinct change point.
During the course of these 130 trading days between Jan-June 2020, there are nine �change points� where the mean changes
abruptly. The algorithm also returns the residual error of the signal against the modeled changes which, in this case, is 0.0843.

4.5 Calibrating the di�usion parameters

Having obtained estimates of the jump parameters {λ, µq, σq}, we now estimate the remaining param-

eters µ and σ using conditional ML. We re-specify the negative of the log-likelihood for the mixed

density function in equation (10) such that the parameter values, θ∗, can be written as:

θ∗ =
{
µ, σ, λ̂, µ̂q, σ̂q

}
. (14)

This indicates that the jump parameters are now held constant within the log-likelihood function

for a bank's returns, and what varies is σ and µ. However, the value of the likelihood function is

ultimately determined by a single unknown parameter, σ. As describe in the standard Merton (1974)

model, the di�usion mean

µ =
(logAt+4 − logAt)

T
+

1

2
σ2 (15)

is dependent on the di�usion volatility.

In order to calibrate the jump di�usion model, we choose exogenously an initial value of the

unobserved volatility of asset value returns σ. A bank's actual asset value V is not observable. As

mentioned above, if a bank's shares are publicly traded, we can observe its market value, which is

re�ected in the price of equity E. So the estimation process begins by �tting the jump di�usion model

to the observed time series of bank equity prices (market capitalisation series) and then producing an

initial estimate for the market value over the residual maturity T − t so that

Et = Ct =

∞∑
k=0

e−λT (λT )k

k!
[Ate

µT+k(µq+
σ2q
2 )N(d1)−De−rT .N(d2)], (16)
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where

d1 =
ln At

D + (µ+ σ2

2 )T + k(µq + σ2
q )√

σ2T + kσ2
q

(17)

d2 = d1 −
√
σ2T + kσ2

q . (18)

Expected loss is modelled as a put option, PEt , where the present value of debt D represents the

strike price

PEt =

∞∑
k=0

e−λT (λT )k

k!
[De−rT .N(−d2)−AteµT+k(µq+

σ
q2

2 )N(−d1)]. (19)

The market value of the bank (A) comprises the equity (E) and the market value of debt (B) at

time t. It can be represented as:

At = Et +Bt. (20)

Put-call parity states that owning the asset At outright is equivalent to owning a portfolio comprising

(i) a call option Ct at strike price D, (ii) a risk-free bond valued D at time T , and (iii) a short put

option PEt with strike price D so that

At = Ct +De−rT − PEt . (21)

Rearranging we have:

Ct = At − (De−rT − PEt ). (22)

In equation (22), De−rT − PEt is the market value of debt Bt. As an initial step, we solve for

At using the jump di�usion parameters estimated from the observable changes in equity and equity

volatility. After updating the parameter estimates based on this solution for At, we follow an iterative

procedure until the estimates of At, µ, σ, λ, µj and σj have converged.

4.6 Estimated Put Option Values

Based on the time series of the banks' observed equity prices, the risk-free rate and debt levels, the

jump di�usion process given by equation (9) is used to back out a series of implied asset values, over a

20 year period, from 3 January 2005 to 30 December 2024 (with a total number of 5,194 observations),

with six-month rolling windows.

The expected loss of a bank is the equivalent of the put option premium speci�ed in equation (19).

Figure 2 plots the expected losses (in INR billions) of the six sample banks from 2005 to 2024. The

results show that expected losses of the two largest banks by market capitalisation at the time - SBI

and ICICI - increased during height of the GFC in 2008. Expected losses across all banks are high, in

part, due to the assumption of a time horizon of 5 years. This was necessary to enable a comparison

with expected losses derived from CDS spreads which have a 5-year maturity. A time horizon of 1

year, typically used to measure default risk of �nancial institutions by global credit-rating agencies,

would have resulted in expected losses of a much smaller magnitude. This is shown in Figure 3.

In 2015, the RBI initiated an asset quality review (AQR) of banks with a view to generating

clean and fully provisioned bank balance sheets (Viswanathan (2016); Bhusan et al. (2024)). The
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AQR revealed the high-incidence of non-performing assets (NPAs) in the Indian banking system.

The proportion of these assets was much higher in PSBs. During the �ve years to 2015, Indian

commerical banks had resorted to restructuring of loans in many cases to postpone recognition of

non-performance. Following the AQR, banks initiated transparent recognition, reclassifying standard

restructured advances as NPAs, and providing for expected losses on such advances. On April 1,

2018, Indian Accounting Standards (Ind- AS) converged with the International Financial Reporting

Standard 9 (IFRS9) on expected losses [IMF and Bank (2018)]. Indian banks gross NPAs remained

at a 12-year low of 2.6 percent in September 2024 [RBI (2024)].

Figure 2: Indian Banking Sector (6 Largest Listed Banks): Put Option Values based on bank equity
prices with a time horizon of 5 years, 2005-2024 (In INR Billions)

Notes: Over the period of observation from 2005 to 2024, expected losses of the six banks have remained positive, albeit with
much smaller magnitudes, and with considerable variation across banks.
Source: Model Outputs

The Covid-19 pandemic led to acute stress in the global �nancial system. As the implications

of the shock began to crystalise in mid-March 2020, �nancial markets faced unusually high selling

pressure. The exogenous nature of the shock, set against the backdrop of a well-capitalised Indian

banking system, led to a surge in expected losses driven by sharp falls in bank equity prices. Banks

across global jurisdictions, witnessed a collapse in equity prices between March to September 2020.

The Indian banking system was no exception. Expected losses of the SBI and BOB, remained elevated

in 2022, but have since trended downwards. Expected losses of HDFC, ICICI and Kotak Mahindra

stabilisied over 2022 and have remained low since then.

Figure 3 shows the put option values of the 6 banks in which the time horizon for assessing default

risk is taken to be 1 year. In structural credit risk models, default risk is inherently dependent on the

time horizon. These models de�ne default as a �rm's asset value falling below a certain threshold level

of debt, and the timing of this event depends on the chosen time frame. Under the Basel II capital
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adequacy framework, the RWA formula does not factor in a time horizon because this assumed to be

�xed at 1-year (BCBS (2005)). If the bank applied for an Internal Rating Based (IRB) approach, it

would be expected to provide its own estimates of expected losses over a 1-year horizon. For a 1-year

horizon the default point, the asset value at which the �rm will default, will lie somewhere between

total liabilities and current, or short-term, liabilities. In a shift from the Basel framework, under IFRS9

the default probability under over the remaining life of a �nancial instrument has to be determined

(see Bank and Eder (2022)). For the 5-year time horizon it was reasonable to set the default point for

banks at the level of total liabilities. For a 1-year time horizon, the default point is set at 75 percent

of total liabilities as proposed by Nazeran and Dwyer (2015).6

Figure 3: Indian Banking Sector (6 Largest Listed Banks): Put Option Values based on bank equity
prices with a time horizon of 1 year, 2005-2024 (In INR Billions)

Notes: In 2024, expected losses of the Indian banking system have fallen to near pre-crisis levels.
Source: Model Outputs

At the height of the crisis in October 2008, the sharp decline in banks' asset values raised the

expected losses in the Indian banking system to INR 900 bn (GBP 11 bn) which was half the total

available amount of Tier 1 capital of INR 1800 bn (GBP 22 bn). Despite the stress caused by the

Covid-19 pandemic, expected losses in the banking system have declined considerably. This has been

facilated by government action to recapitalise and consolidate PSBs [IMF and Bank (2025)]. By the

end of 2024, expected losses had fallen to INR 6 bn (GBP 73 million) against a Tier 1 capital base of

INR 14.7 tn (GBP 137 bn). Empirical evidence suggests that the Indian banking system was insulated

from the GFC owing to signi�cant public ownership and conservative regulatory practices. The RBI

report on Currency and Finance, for the year 2010 [RBI, ed (2010a)], broadly concluded that the

6This deviates from the practice of de�ning the default point as �current liability +1/2 long term liability,� which
originated in KMV research and has been cited in the academic literature [see Crosby and Bohn (2003)]. Estimating the
default point as current liabilities plus one-half long-term liabilities would be problematic for banks, as �nancial �rms
typically do not report current liabilities as a separate item on their balance sheet.
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GFC, which caused great turmoil in the developed economies, did not a�ect the pro�tability of Indian

banking, in the same manner, due to the limited exposure of Indian banks to riskier assets and strong

macroeconomic fundamentals. Eichengreen and Gupta (2013) observed that in the second half of 2008,

there was a sharp increase in interbank borrowing rates. This was coupled with a �ight of deposits

from private sector banks to PSBs and to SBI in particular. However, this episode was shortlived.

Gulati and Kumar (2016) used a measure of pro�t e�ciency to conclude that the impact of the GFC

on the Indian banking industry was modest. Rakshit and Bardhan (2022) also concluded that the

e�ects of the GFC on bank pro�tability appeared insigni�cant. Our results, described in Section 5,

will indicate that the impact of the GFC on the Indian banking system was contained, in part, due to

the implicit subsidy provided by the Government.

5 Estimating expected losses from CDS spreads

In this section, I estimate expected losses of banks by calculating the value of the put option based on

their CDS spreads. In a CDS contract, the protection buyer pays a premium (given by the CDS spread)

and the protection seller agrees to compensate the buyer for any loss if the reference entities default.

CDS spreads with banks as the underlying reference entities thus e�ectively capture the market's view

of their credit risk and can be e�ective leading indicators of bank �nancial distress, particular during

periods of �nancial crisis. CDS contracts are homogeneous and standardized with no requirement

to select a benchmark risk-free interest rate to estimate default risk. Firm-level CDS present many

advantages over bond markets in terms of price discovery, liquidity and standardization. Analysing a

set of European and US banks, Avino et al. (2019) found that �rm-level CDS spreads are strongly and

signi�cantly associated with future bank failure. Czech (2021) provides evidence of a positive liquidity

spillover e�ect from CDS to bond markets, whereby bond trading volumes are larger for investors with

CDS positions written on the debt issuer.

For a CDS contract, from a protection buyer's perspective, future cash �ows include premium

payments and the recovery of the credit loss in the event of default. As these payments are contingent

on default, their present value depends on the default probability distribution. A key element in the

valuation of credit derivatives such as CDS is the modelling of the time to default. The uncertainty

underlying this event is captured in a default probability distribution, also known as the default term

structure. The default term structure models the probability that a CDS issuer will default at any

given time in the future.

The time to default of the credit derivative is denoted by T which can be viewed as a random

variable. In this modelling framework, T is assumed to be the time-to-event (in this case default).

Let S (t) be the survival probability, the probability that the event has not occurred until time t. Let

F (t) be the failure probability, the probability that the event occurred by time t. S (t) and F (t) can

be expressed as: S (t) = P (T > t); F (t) = P (T ≤ t); S (t) = 1− F (t).

The default probability upto time t, is de�ned as the cumulative probability distribution function

F (t) of T , which can be expressed as:

F (t) = P [T ≤ t] (23)
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The corresponding survival probability, that is the probability that no default occurs until time t,

is given by:

S (t) = 1− F (t) = P [T > t] (24)

where S (t = 0) = 1 and S (t =∞) = 0.

Alternatively, the random variable T may be represented by its hazard rate or default intensity.

h (t) =
lim

4t→ 0

P (t ≤ T < t+4t|T ≥ t)
4t

=
f (t)

S (t)
(25)

which is strictly positive, and can be interpreted as the instantaneous rate of default, conditional

on not having defaulted before. Integrating the default intensity function gives the cumulative default

intensity function:

Λ (t) =

ˆ t

0

h (u) du (26)

from which the survival function can be obtained again as:

S (t) = exp(−Λ (t))=exp

(
−
ˆ t

0

h (u) du

)
(27)

It is assumed here that h is integrable over the range of t, given by (0,∞), and for the function

to exist, lnS (t) is continuous [see Castellacci (2008)]. Given h, S could be obtained by integrating h

along with the initial condition S (0) = 1. Conversely, if S is di�erentiable one can obtain the hazard

rate from the survival probability function as:

h (t) = − d

dt
lnS (t) (28)

Whilst estimating the default term structure, the hazard rate is assumed constant between subse-

quent CDS maturities and is assumed to follow a piecewise function of maturity time.

The model is calibrated using observed 5 year CDS spreads for the 6 Indian banks at daily frequency,

from 2007.5 - 2024.12. 7 This provided 4,573 observations across all 6 banks.

A hazard rate curve is bootstrapped from observed CDS spreads to construct a default probability

curve or default term structure. Bootstrapping requires a default-free discount curve given by the

term structure of zero coupon yields. A zero rates curve is generated using the term structure of UK

government zero-coupon bond yields, which are obtained at daily frequency, from the Bank of England

public domain yield curve data base. 8 As discussed in Section 3, the credit rating of UK government

bonds is high enough for their yields to qualify for an approximation of the default-free discount curve.

Fourteen di�erent maturities that would broadly cover the maturity spectrum of the yield curve are

considered; they are 6-month, 1-,2-,3-,4-5-,6-7-,8-,9-,10-,15-,20- and 25-year bonds.

The value of the put option, based on CDS spreads, can now be computed by subtracting the

7The coverage of CDS series for banks is lower than equity prices, both in terms of the cross-section and time-series
dimensions. Axis bank had CDS spreads going back only as far as 15 May 2007. To generate a consistent time series
across all banks the estimation started from that date.

8http://www.bankofengland.co.uk/statistics/pages/yieldcurve/default.aspx
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expected discounted payo� from the debt contracts from the discounted face value of debt. The

expected discounted payo� from the debt contracts should be equal to:

Dexp (− (rt + CDSt)T ) (29)

where CDSt is the price at time t, rt is the risk-free rate of interest at time t, D is the face value of

debt that is due at some point in the future T. In this case T = 5 as the CDS spreads have a 5 year

maturity. In each period, the creditor would have to pay a premium of CDS to insure the debt. The

CDS spread can, therefore, be applied as a discount factor. The put option value based on CDS prices

can be expressed as:

PCDSt = Dexp (−rtT )−Dexp [− (rt + CDSt)T ] (30)

For a CDS contract, from a buyer's perspective, future cash �ows include premium payments and

the recovery of the credit loss in the event of default. As these payments are contingent on default,

their present values depend on the risk-neutral default term structure (Gray and Malone (2008)).

Figure 4 shows the put option values, estimated by equation (30), for the six Indian banks over the

observation period from May 2007 to December 2024.

Figure 4: Indian Banking Sector (6 Largest Listed Banks): Put Option Values based on bank CDS
spreads, May 2007 to December 2024 (In INR Billions)

Notes: Put Option values based on CDS spreads surged at the height of the GFC in the second half of 2008 and the Covid-19
pandemic in 2020.
Source: Model Outputs

CDS spreads spiked during the aftermath of the GFC in 2009 and the shock from the Covid-19

pandemic in 2020. However, severe market turmoil during both those periods might also have impeded

the e�cient pricing of CDS.
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6 Estimates of the implicit subsidy

The put option values of banks derived from equity prices, PEt (as shown in Figure 2) should capture

default risk under the assumption that there are no bailouts. Assuming that equity holders are wiped

out in the event of default, equity prices contain information only on the probability of default. Con-

versely, a CDS only pays out if the bank defaults on its debt. It follows that PCDSt (as shown in Figure

4) should capture the joint risk of the bank becoming distressed and the government not bailing out

creditors. It should, therefore, be lower than PEt . For an individual bank, the di�erence between PEt

and PCDSt provides a measure of the implicit subsidy it receives.

At the height of the GFC, in October 2008, the nominal value of the implicit subsidy to the Indian

banking system reached INR 4.75 tn (GBP 60 bn). Given that the total debt of the six banks amounted

to roughly INR 22 tn (GBP 270 bn) at the time, this yields a subsidy of about 2000 basis points (bps).

At the end of 2024, the implicit subsidy to the Indian banking system had fallen to about 600 bps

with a nominal value of INR 9 tn (GBP 82 bn) against a total debt of INR 155 tn (GBP 1.4 tn).

The relationship between the two put option prices can also be used to derive the proportion of

default risk of a bank that is believed to be insured by the government.

αt = 1− PCDSt

PEt
(31)

Figure 5 shows the fraction of default risk of the six Indian banks considered to be insured by the

Government. The left-hand side panel plots the average alphas for the 4 private sector banks. The

right-hand side panel shows the alpha average for the 2 PSBs.

Figure 5: Indian Banking Sector (6 Largest Listed Banks): Fraction of default risk insured by the
government

Private Sector Banks Public Sector Banks

Notes: The left-hand side panel shows time-variation in the average value of alpha for the 4 private sector banks. Alphas for
all 4 banks were high during the GFC and the Covid-19 pandemic. Since July 2020 alphas for private sector banks, as a whole,
have remained modest. The right-hand side panel shows alphas for the PSBs. As in the case of private sector banks, alphas
were high during the GFC. Alphas for these 2 PSBs dropped close to zero over the period from 2010 to 2017. Alphas rose
again during the Covid-19 pandemic in 2020. But not to the same degree that they did for private sector banks, Alphas for
PSBs increased again in 2022 and have remain elevated since then.
Source: Model Outputs
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It can be seen from the left-hand side panel of Figure 5, that the value of alpha was close to 1 across

private sector banks, during the onset of the GFC and the shock from the pandemic. This implies

that creditors of these banks would have been bene�ciaries of heightened government guarantees at

the time as highlighted by the shaded vertical bars. Since 2020 H2, the value of alpha for the private

sector banks has averaged below 0.1. For some private sector banks, alpha was e�ectively zero over

this period. The right-hand side panel shows that the average value of alpha, for the PSBs, also peaked

during the GFC and the Covid-19 pandemic. However, the value of alpha during the pandemic was

less for the PSBs than it was for the private sector banks. During the pandemic, PSBs did not witness

a fall in the market value of their equity to the same degree that private sector banks did. Within

the framework of a structural credit risk model, described in Section 4, a decline in the market value

of equity would lead to a rise in default risk, implying a higher implicit subsidy. For much of the

intervening period from 2010 to 2017, the average alpha ratio for the PSBs remained close to zero.

Alpha values for the PSBs began to rise from January 2022 and remained high until the end of the

observation period in 2024.

Figure 6: Indian Banking Sector (6 Largest Listed Banks): Implicit subsidies (In basis points), May
2007 to December 2024

Notes: The �gure shows the time series variation in the implicit subsidy for the Indian banking system over the period from
May, 2007 to December, 2024. The chart distinguishes between the implicit subsidy to the private sector banks and the public
sector banks. Implicit subsidies, expressed in basis points, are obtained by dividing the absolute value of the subsidy by the
total debt of the banks. The shaded vertical areas refer to periods of �nancial stress : the GFC (July 2007 to June 2009) and
the Covid-19 shock (February 2020 to September 2020). Implicit subsidies peaked during the GFC and the shock from the
Covid-19 pandemic. During these crisis periods implicit subsidies for private sector banks were higher than that for public
sector banks.
Source: Model outputs

Implicit subsidies, expressed in basis points, are plotted in Figure 6. The chart shows a decompo-

sition of the overall implicit subsidy to the Indian banking sector between the PSBs and private sector

banks. The results displayed in Figure 6, mirror those in Figure 5, in that the level of the implicit

subsidy peaked during the GFC and the pandemic when the alphas across banks were high. During
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these crisis periods, implicit subsidies expressed in basis points, were particularly high for private sec-

tor banks. This is notwithstanding the fact that PSBs are more leveraged than private sector banks

with higher volumes of debt in their capital structure. Implicit subsidies to the Indian banking system

dropped to their lowest levels in the second half of 2021, averaging 200 basis points. But they rose

again in 2022 driven increases in implicit subsidies for PSBs.

India, and many other jurisdictions, experienced a notable shift in its interest rate environment in

2022 marked by the re-emergence of high interest rates against a background of high in�ation. The

RBI increased it's policy rate, known as the Repo rate, four times in 2022, raising it from 4 percent

in April to 6.25 percent in December 2022. Banks are generally more pro�table in a high interest rate

environment as they bene�t from increased net interest margins if loan interest rates rise faster than

funding costs. At the same time, higher rates reduce the present value of assets with �xed payments,

including government bonds and other �xed-rates securities. Domestic banks have traditionally been

important players in sovereign bond markets, in emerging economies, both as investors and market

makers. In India, banks are required to hold large bu�ers of government securities (20.5 percent of

assets), with loans accounting for about 60 percent of bank assets [IMF and Bank (2018)]. PSBs tend

to hold a much larger proportion of government securities than their private sector peers, and as such

are likely to be more sensitive to interest rate risk and asset price revaluation. That may help explain

why the implicit subsidy for PSBs, has risen since 2022, and by substantively more than that for the

private sector banks.

7 Conclusion

This paper provides a market-based estimate of the size of the implicit subsidy, to the Indian banking

system, by comparing measures of default risk based on equity prices and CDS spreads. A bank's

market value of equity re�ects investor sentiment about its future pro�tability, while CDS speads

indicate the market's assessment of the bank's credit risk and potential for default, both providing

insights into the �nancial soundness of a bank. An implicit government guarantee compromises market

discipline by reducing creditors' incentive to monitor and price the risk-taking activities of banks. If

debt investors perceive that the government will protect them from bearing the full cost of failure,

they will provide funding without paying su�cient attention to the bank's risk pro�le. The extent of

this distortion and associated moral hazard depends on the size of the implicit subsidy given to banks,

which is why quantifying the subsidy is important.

The size of the implicit subsidy to the Indian banking system peaked during periods of �nancial

stress associated with the GFC and the shock from the Covid-19 pandemic. However, during the

intervening tranquil periods the implicit subsidy remained at low levels. Since the beginning of 2021

the proportion of default risk insured by the government, for the private sector banks, have remained

at modest levels. For some private sector banks they have been neglible over this period. But from

2022 onwards, implicit subsidies have increased for PSBs and remain elevated.

A key lesson from the recent crises has been that regulatory capital instruments in the future must

be able to absorb losses in order to help banks remain `going concerns'. During the GFC, equity

constituted a small proportion of regulatory requirements. The going concern loss absorption achieved
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by bank debt during the �nancial crisis was revealed to be weak. Since then bank capital levels have

risen. Indeed in India between 2008 and 2024, the aggregate Tier 1 capital of these six major Indian

banks increased eightfold from INR 1.8 tn (GBP 22 bn) to INR 14.6 tn (GBP 133 bn). That chimes

with the general fall in the estimated implicit subsidy over that period.

The implicit subsidy does, however, appear to rise during periods of �nancial stress. A resolution

framework - beyond standard insolvency and bankruptcy procedures - could reduce it further. Options

like bail-in of senior creditors however remain contentious, and such tools would need to be carefully

calibrated in the Indian context, given past public concerns and the strong emphasis on protecting

depositors. Notably it would require careful consideration of the prioritised order in which the investors

of the bank would be required to recapitalise the institution.

22



References

Acharya, Viral V, Deniz Anginer, and A Joseph Warburton, �The end of market discipline?

Investor expectations of implicit government guarantees,� Investor expectations of implicit govern-

ment guarantees (May 1, 2016), 2016.

Avino, Davide E, Thomas Conlon, and John Cotter, �Credit default swaps as indicators of

bank �nancial distress,� Journal of International Money and Finance, 2019, 94, 132�139.

Ball, Cli�ord A. and Walter N. Torous, �A Simpli�ed Jump Process for Common Stock Returns,�

Journal of Financial and Quantitative Analysis, 1983, 18(1), 53�65.

Bank, Matthias and Bernhard Eder, �A Review on the Probability of Default for IFRS 9,�

International Review of Economics & Finance, 2022.

BCBS, An Explanatory Note on the Basel II IRB Risk Weight Functions, Vol. 7, Basel Committee

on Banking Supervision, 2005.

Bhusan, Soumik, Ajit Dayanandan, and G Naresh, �Mandatory disclosure and bank earnings

management in India,� Emerging Markets Review, 2024, 62, 101187.

Black, Fisher and Myron S. Scholes, �The Pricing of Options and Corporate Liabilities,� Journal

of Political Economy, 1973, 81, 637�59.

BOB, �Bank of Baroda 2023-2024 Annual Report,� 2024.

Castellacci, G, �On Bootstrapping Hazard rates from CDS Spreads,� Unpublished Manuscript MIT,

2008.

Crosby, Peter and Je� Bohn, �Modeling Default Risk,� Technical Report, Moody's KMV Company

2003.

Cummings, James R and Yilian Guo, �Do the Basel III capital reforms reduce the implicit subsidy

of systemically important banks? Australian evidence,� Paci�c-Basin Finance Journal, 2020, 59,

101247.

Czech, Robert, �Credit default swaps and corporate bond trading,� Journal of Financial Intermedi-

ation, 2021, 48, 100932.

Eichengreen, Barry and Poonam Gupta, �The �nancial crisis and Indian banks: Survival of the

�ttest?,� Journal of International Money and Finance, 2013, 39, 138�152.

FINMA, �FINMA approves merger of UBS and Credit Suisse,� Swiss Financial Market Supervisory

Authority, 2023.

Government, India, �Financial Resolution and Deposit Insurance (FRDI) Bill, 2017,� Press Infor-

mation Bureau, January 2018, (Release ID:1514988).

Gray, Dale and Samuel Malone, Macro�nancial risk analysis, John Wiley & Sons, 2008.

23



Gudmundsson, Tryggvi, Whose Credit Line is it Anyway: An Update on Banks' Implicit Subsidies,

International Monetary Fund, 2016.

Gulati, Rachita and Sunil Kumar, �Assessing the impact of the global �nancial crisis on the pro�t

e�ciency of Indian banks,� Economic Modelling, 2016, 58, 167�181.

Gupta, Salil, �India: Yes Bank Capital Injection, 2020,� Journal of Financial Crises, 2024, 6 (3),

236�266.

, Jack French, and Steven Kelly, �United States: First Republic Bank Emergency Liquidity

Program, 2023,� Journal of Financial Crises, 2025, 7 (1), 623�653.

Hamilton, James D., Time Series Analysis, Princetown University Press, 1994.

Honore, Peter, �Pitfalls in Estimating Jump-Di�usion Models,� Technical Report, University of

Aarhus Aarhus School of Business 1998.

IMF and World Bank, �India Financial Sector Assessment Program: Basel Core Principles for

E�ective Banking Supervision,� January 2018.

and , �India Financial Sector Assessment Programme: Financial System Stability Assessment,�

February 2025.

Kelly, Bryan, Hanno Lustig, and Stijn Van Nieuwerburgh, �Too-systemic-to-fail: What option

markets imply about sector-wide government guarantees,� American Economic Review, 2016, 106

(6), 1278�1319.

Kiefer, N.M., �Discrete Parameter Variation: E�cient Estimation of a Switching Regression Model,�

Econometrica, 1978, 46, 427�34.

Killick, Rebecca, Paul Fearnhead, and Idris A. Eckley, �Optimal Detection of Change Points

with Linear Computational Cost,� Journal of the Americal Statistical Association, 2012, 107, 1590�

98.

Lavielle, Marc, �Using Penalized Contrasts for the Change-Point Problem,� Signal Processing, 2005,

85, 1501�10.

, �Detection of Change Points in a Time Series - Statistics in Action with R,� March 2017.

http://sia.webpopix.org/changePoints.html.

Lindstrom, Ryan and Matthew Osborne, �Has bail-in increased market discipline? An empirical

investigation of European banks credit spreads,� 2020.

Liu, Liuling, Gaiyan Zhang, and Yiwei Fang, �Bank credit default swaps and deposit insurance

around the world,� Journal of International Money and Finance, 2016, 69, 339�363.

Merton, Robert C., �On the Pricing of Corporate Debt: The Risk Structure of Interest Rates,� The

Journal of Finance, 1974, 29(2), 449�70.

24



, �Option Pricing When Underlying Stock Returns are Continuous,� Journal of Financial Economics,

1976, 3, 125�44.

, �An analytical derivation of the cost of deposit insurance and loan guarantees. An application of

modern option pricing theory,� Journal of Banking and Finance, 1977, 1, 3�11.

Nazeran, Pooya and Douglas Dwyer, �Credit Risk Modelling of Pubic Firms: EDF9,� Technical

Report, Moody's Analytics 2015.

Noss, Joseph and Rhiannon Sowerbutts, �The implicit subsidy of banks,� Bank of England

Financial Stability Paper, 2012, (15).

Pandey, Radhika and Ila Patnaik, Financial sector reforms in India, National Institute of Public

Finance and Policy New Delhi, India, 2019.

Pascal, Boni, Tim Alexander Kroencke, and Florin P Vasvari, �The UBS-Credit Suisse merger:

Helvetias gift,� Available at SSRN 4486417, 2023.

Rakshit, Bijoy and Samaresh Bardhan, �An empirical investigation of the e�ects of competition,

e�ciency and risk-taking on pro�tability: An application in Indian banking,� Journal of Economics

and Business, 2022, 118, 106022.

RBI, Framework for dealing with Domestic Systemically Important Banks Reserve Bank of India

December 2023.

, �RBI's Financial Stability Report.,� Finance India, 2024, 38 (4).

, ed., �Global Financial Crisis and the Indian economy.,� 2010a.

SBI, �State Bank of India 2023-2024 Annual Report,� 2024.

Shikha, Neeti and Ilias Kapsis, �Bank crisis management and resolution after SVB and Credit

Suisse: Perspectives from India and the European Union,� International Insolvency Review, 2024,

33 (1), 55�88.

Ueda, Kenichi and B Weder Di Mauro, �Quantifying structural subsidy values for systemically

important �nancial institutions,� Journal of Banking & Finance, 2013, 37 (10), 3830�3842.

Viswanathan, NS, �Asset quality of Indian banks: Way forward,� Technical Report, Bank for Inter-

national Settlements 2016.

25



Appendix A - Estimating Change Points

In this section we describe the optimisation process involved in identifying the structural breaks in

the mean of the time series of log returns of the observable market capitalisation. For illustration

purposes, we consider the daily market capitalisation of SBI during the observation period January

to June 2020 which consists of 130 observations. The purpose of the optimisation is to determine the

precise time when the mean changes abruptly, which we call change points.

Let xi denote the log returns in the market capitalisation of Barclays bank at time t where 1 ≤ i ≤ n
and n = 130 days. We assume that these log returns �uctuate around some underlying signal m that

could be associated with the factors driving the market capitalisation of the bank. xi can be expressed

as

xi = m(ti) + ei, (32)

Figure 7: Daily Log Returns of Market Capitalisation of SBI with Identi�ed Change Points, January-
June 2020

Daily Log Returns of Market Capitalisation Identi�ed Change Points

Notes: It is assumed the log returns �uctuate around some underlying signal that could be associated with the factors driving
the market capitalisation of the bank. The �gure in the right-hand side panel shows that the mean of the series does not
change during some time periods, which implies that the signal remains constant during any of these �distinct states�. The
horizontal lines capture these distinct states or regions whose starting and end date are identi�ed by a distinct change
point.The horizontal lines capture these distinct states or regions whose starting and end date are identi�ed by a distinct
change point. During the course of these 130 trading days between Jan-June 2020, there are nine �change points� where the
mean changes abruptly. The algorithm also returns the residual error of the signal against the modeled changes which, in this
case, is 0.0843.

where ei is a sequence of residual errors of the signal against the modelled changes. Figure 1 shows

that the mean does not change during some time periods, which implies that m is piecewise constant

within any of these �distinct states.� The horizontal lines in Figure 1 capture those distinct states

whose starting and end dates are identi�ed by a distinct change point. The objective of this detection

method is to determine these change points. For the log-return time series data x1, ..., xn if a change

point occurs at τ , then x1,...,xτ will di�er from xτ+1,...,xn in some way. Following Lavielle (2005) and

Killick et al. (2012), we assume that log-returns xi follow a normal distribution, where the means mi

are piecewise constant through time. Moreover, we assume that there exists discontinuity instants
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µ1, µ2, ...µK such that

m(t) = µk if τk−1 < i ≤ τk, (33)

where k − 1 is the number of change points, which gives k homogeneous intervals where the mean of

the log-returns are constant, and where τ0 = 0 and τk = n. Thus, for any τk−1 < i ≤ τk,

xi = µk + ei. (34)

The sequence of residual errors ei, 1 ≤ i ≤ n is a sequence of random variables with zero mean. So xi

is a sequence of random variables with piecewise constant mean

E(xi) = µk if τk−1 < i ≤ τk. (35)

Assuming that the sequence of residual errors is a sequence of independent and identically distributed

Gaussian variables ei ∼ N(0, σ2). It follows that

xi ∼ N(0, σ2) if τk−1 < i ≤ τk. (36)

Therefore, identifying the number and sequence of jumps in the time series of log asset value

returns would involve estimating (i) the number of K segments, (ii) the location of the discontinuities

(τk, where 1 ≤ k ≤ K − 1) and (iii) the value of the underlying signal or mean in each segment

(µk, 1 ≤ k ≤ K). We derive these estimates by minimising the residual errors, which is equivalent

to maximising the likelihood. Adding change points decreases the residual error but can result in

over�tting. In the extreme case, every point becomes a change point, and the residual error vanishes.

The model is speci�ed as a parametric model which depends on a vector of paramaters θ =

(µ1,...,µK , σ
2, τ1, ..., τK−1). Since the data from each segment represent an independent set of ran-

dom variables, the overall likelihood function is a product of local likelihood functions. The overall

likelihood function is denoted by L (θ | x1,x2, ..., xn) and is obtained by multiplying all the local prob-

ability distributions p (x1, x2, ..., xn; θ) so that

L(θ | x1, x2, ..., xn) = p(x1, x2, ..., xn; θ)

=

K∏
k=1

p(xτk−1+1,...,xτk : µk, σ
2)

=

K∏
k=1

(2πσ2)
−(τk−τk−1)

2 exp

− 1

2σ2

τk∑
i=τk−1+1

(xi − µk)
2

 (37)

The ML estimation of θ can be decomposed into two steps:

(i) the means (µk) and change points (τk) are estimated by minimising
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J (µ1, ..., µK , τ1, ..., τK−1) =

K∑
k=1

τk∑
i=τk−1+1

(xi − µk)
2
, (38)

(ii) the variance σ2 is estimated as the empirical variance of the estimated residuals

σ̂2 =
1

n

K∑
k=1

τ̂k∑
j=τ̂K−1+1

(xi − µ̂k)2. (39)

We will focus on the critical �rst step, i.e., the minimisation of J (µ1, ..., µK , τ1, ..., τK−1). For a

given sequence of change points τ1, ..., τK−1, J can be minimised with respect to 1; ...;K. This is

described below:

µ̂k (τk−1, τk) = xτk−1+1:τ̂k

=
1

τk − τk−1

τk∑
i=τk−1=1

xi

minimises
∑τk
j=τk−1+1 (yj − µk)

2
.

We insert the estimated mean values (µk (τk−1, τk)) into J so that

U (τ1, ..., τK−1) = J (µ̂1 (τ0, τ1) , ..., µ̂K (τK−1, τK) , τ1, ..., τK−1)

=

K∑
k=1

τk∑
i=τk−1+1

(
xi − xτk−1+1:τk

)2
.

The ML estimation process involves minimises

U (τ1, ..., τK−1) =

K∑
k=1

τk∑
j=τk−1+1

(
xi − xτk−1+1:τk

)2

. (40)

We use a dynamic programming algorithm for solving this optimisation problem, which is explained

in Lavielle (2017). In our analysis, we select the optimum number of change points k (where k =

1, 2, 3, ...., 10) to minimise the residual returned by the model. Specifying a maximum number of k

change points does not guarantee that k change points will be found. Rather, any number of change

points from 1 up to k could be found.

The output from the algorithm is shown in Figure 1, and speci�es the number of times the mean

of the log returns series xi changes most signi�cantly and also the dates at which those changes occur.

In this case there were 7 such identi�ed change points, which indicate the number of jumps in the time

series of the log returns for the period under observation. The algorithm also returns the residual error

of the signal against the modelled changes which, in this case, is 0.31935. The right hand-side panel

in Figure 1 shows the results from the algorithm for a UK bank between July and December 2008.
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