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1. Introduction

For years, inflation in the euro area had remained subdued, until the post pandemic episode

when it surged to levels not observed in four decades. This study emerges in the context of a

complex economic crisis triggered by the COVID-19 pandemic, marked by a sequence of global

and domestic shocks—supply chain disruptions, expansive fiscal and monetary stimulus during

the reopening phase, and a global energy supply shock following the Russian invasion of Ukraine.

This paper addresses two central questions: (1) What are the structural channels driving

euro area (EA) inflation? This is examined through the lens of both global and domestic shocks,

further disaggregated into demand and supply components. While many economists agree that

the imbalance between aggregate demand and supply contributed to the initial surge in inflation,

there remains considerable debate over the relative importance of domestic versus global forces.

(2) Do these structural channels primarily affect the transitory component of inflation—the

inflation gap—or the persistent component—trend inflation? This decomposition is both novel

and policy-relevant, as it helps distinguish inflationary pressures reflecting persistent changes

in economic conditions from those driven by more temporary disturbances—an essential input

for the design of monetary policy.

I organize the narrative around three episodes: the long phase of inflation broadly anchored

around 2%, the “missing inflation” period (2012–2017), and the post-COVID inflation surge.

This framing also speaks to the renewed debate on the anchoring of expectations at 2%—first

challenged from below during the sovereign-debt-crisis, and more recently from above after

2020.1

The approach adopted here builds on and integrates two key methodologies commonly used

to study inflation dynamics within a unified framework. The first involves identifying the

structural drivers of observed inflation—emphasizing global channels, supply bottlenecks and

energy-related in some contributions Ciccarelli and Garćıa (2021); Ascari et al. (2024a); Arce

et al. (2024) and demand-side (including fiscal) forces in others Giannone and Primiceri (2024);

Ascari et al. (2024b). Yet this literature typically interprets inflation fluctuations around a

deterministic component and, crucially for the present question, does not assess whether these

channels operate through the persistent component of inflation (trend), the transitory compo-

nent (inflation gap), or both. This paper takes that distinction as central.

The second approach involves estimating an unobserved components trend-cycle model. For

example, Jarociński and Lenza (2018) found that trend inflation in the EA remained stable

near 2% from 2000 to 2016, attributing the “missing inflation” to negative transitory develop-

ments. However, their analysis did not explore the structural sources underlying movements in

trend inflation or the inflation gap. This paper bridges that gap in a unified framework that

1This debate has been ongoing in both academic and policy circles since inflation remained persistently below
2% after 2012, despite expectations of a rise in inflation due to the ongoing recovery. Notably, the average headline
inflation in the euro area from 2012Q1 to 2018Q4 was just 1.28%. In contrast, current inflation dynamics may
represent a paradigm shift.
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decomposes inflation into trend and gap components and identifies the structural shocks driving

each.

The empirical framework combines three key components. First, following Del Negro et al.

(2017, 2019), the model decomposes macroeconomic variables into long-term and business-

cycle components—trend inflation and potential GDP versus the inflation gap and output

gap.2 Second, it incorporates time-varying volatility and fat-tailed innovations to accommo-

date episodes of extreme volatility—most notably the COVID-19 period.34 Third, the model

identifies structural shocks along two dimensions: persistence (permanent versus transitory)

and domain (global versus domestic; demand versus supply; energy-specific). The identifica-

tion strategy relies on sign and magnitude restrictions. In line with standard macroeconomic

theory, supply-side shocks are characterized by opposite movements in output and inflation,

while demand-side shocks induce a positive comovement, as in Canova and De Nicolo (2002).

The identification of energy supply shocks draws on the findings of Kilian (2008, 2009). To

distinguish between domestic and global shocks, I adopt the methodology of Corsetti, Dedola

and Leduc (2014), which assumes that global shocks have a stronger effect on global variables

than on domestic ones, and vice versa.5

I document the following findings: (1) Post-COVID EA inflation surge: Following the post-

COVID economic reopening, trend inflation in the euro area rose above the 2% level, reaching

approximately 3% by 2022Q2. This increase was predominantly driven by supply shocks, par-

ticularly domestic supply, which fed into the persistent component of inflation. Notably, the

majority of the increase in EA inflation is attributable to the inflation gap, accounting for 85%

of the total rise. This component is primarily explained by demand shocks—both domestic and

global. Although recent trend inflation dynamics are not yet extensively documented in the

literature, they align with the ECB’s revised monetary policy strategy. By the end of 2022, the

ECB adjusted its stance on inflation, shifting from the view that ‘the current inflation spike is

temporary and driven largely by transitory factors’ in 2021Q4, to ‘[...] inflation is expected to

decline from an average of 8.4% in 2022, 6.3% in 2023, 3.4% in 2024, and 2.3% in 2025’ by

2022Q4.

(2) Trend inflation fluctuations prior to COVID: The EA trend inflation has experienced

two significant declines: the first in the 1990s, when it decreased from 4% to 2% and remained

anchored at that level for nearly two decades; and the second between 2012Q3 and 2016Q1,

2Seminal contributions to the trend-cycle literature began with the univariate models of Beveridge and Nelson
(1981), Harvey (1985), Watson (1986), and Clark (1987). In the 2000s, Stock and Watson (2007) extended these
models by incorporating stochastic volatility into a univariate unobserved component trend-cycle framework.

3My model extends the VAR with common trends in Del Negro et al. (2017, 2019) by allowing for stochastic
volatility and fat tails, as in Jacquier et al. (2004).

4Related treatments of COVID-19 outliers in VARs include Carriero et al. (2021); Lenza and Primiceri
(2022); Schorfheide and Song (2021). As discussed in Section 3, both stochastic volatility and Student’s t errors
are needed: SV alone can impose overly tight prior beliefs on variance changes in trend components, while t
errors reduce spurious SV “compensation” for sharp volatility spikes when separating trends from cycles.

5Global shocks are identified using international measures, consistent with the open-economy perspective
on inflation dynamics as in Mart́ınez-Garćıa and Wynne (2010), Kabukçuoğlu and Mart́ınez-Garćıa (2018), and
Duncan and Mart́ınez-Garćıa (2023).
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during which it dropped from 2% to 1%. While the first decline is primarily associated with

domestic supply factors, the decline in trend inflation from 2012 to 2016 aligns more closely

with the demand-side narrative—both domestic and global—highlighted by Ciccarelli et al.

(2017). However, I find this demand-driven effect to primarily impact the persistent component

of inflation. Importantly, the estimated EA trend inflation exhibits similar comovement (pre-

and post-COVID) with inflation swaps at five-, ten-, and twenty-year horizons.6

(3) Second moments and potential GDP: Modeling time-varying volatility (and fat tails)

sharpens the trend–cycle split in extreme episodes. In a homoskedastic specification, the

COVID-19 GDP collapse is partly absorbed by the output trend, mechanically overstating

the decline in potential output; whereas in the baseline specification with stochastic volatility,

the collapse is treated as an episodic transitory disturbance and is allocated primarily to the

output gap, yielding a more stable and interpretable measure of potential GDP.7 Additionally,

the baseline model implies a marked slowdown in euro area potential GDP growth, from 0.50%

q-o-q (early 1990s–2005/06) to 0.24% since 2006. This deceleration is primarily driven by global

factors, including both demand and supply shocks, aligning with theories of a persistent shift

in globalization following the synchronized collapse of global trade in late 2008 (Baldwin, 2009;

Levchenko et al., 2010; Alessandria et al., 2010; Chor and Manova, 2012). Finally, consistent

with Giannone and Primiceri (2025), the model identifies strong post-pandemic demand; in the

decomposition, domestic demand shocks through 2022 and global demand shocks from 2023

onward contribute positively to the estimated potential GDP.

Related Literature. The recent surge in inflation has become an active area of research,

with several studies centering their analysis on the distinction between demand and supply

factors. I extend this work by identifying structural drivers—domestic (demand and supply),

global (demand and supply), and energy supply—while simultaneously assessing their effects

on both the persistent (trend) and transitory (gap) components of inflation.

Given the extensive body of literature on inflation processes, this paper does not aim to

provide an exhaustive survey. Rather, it seeks to situate itself within the most relevant strands

of the literature, emphasizing its specific contribution in the context of the euro area.

Much of the existing literature relies on structural models—typically Vector Autoregressive

(VAR) frameworks—that assess macroeconomic dynamics relative to a deterministic compo-

nent. Several studies use these frameworks to study the historical drivers of inflation before

COVID-19. For instance, Ferroni and Mojon (2014) emphasize global demand shocks, attribut-

ing much of the 2008 inflation rise and subsequent decline to these factors. Similarly, Conti

et al. (2017) identify a mix of domestic and global demand shocks in 2008–09, and highlight

energy supply and domestic demand shocks during the “missing inflation” episode. Ciccarelli et

al. (2017) distinguish two stages in the prolonged low-inflation period: an initial stage driven by

domestic shocks, followed by one dominated by global shocks. Bobeica and Jarociński (2019)

6See Figure 11 in Appendix C.
7See Figure 13 in Appendix C.
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also stress global demand in 2008, while attributing “missing inflation” primarily to domestic

shocks. In contrast, my findings suggest that “missing inflation” in the EA is driven mainly by

demand-side shocks—both domestic and global—which reduced trend inflation from 2% to 1%,

while supply shocks are the main drivers of the inflation gap during this period.

Regarding more recent inflation dynamics, Ciccarelli and Garćıa (2021) ask whether rising

U.S. inflation in mid-2021 signaled a return of global inflation, and document a global inflation

channel—operating through inflation-compensation markets—that amplifies spillovers from the

U.S. to the euro area. Ascari et al. (2024a) and Dao et al. (2024), together with recent ECB

reports and related studies Arce et al. (2024); Banbura et al. (2023); De Santis (2024) emphasize

global supply bottlenecks, supply-chain disruptions, and energy prices as the dominant drivers

in 2022.8 In contrast, other contributions stress demand-side forces Giannone and Primiceri

(2024); Ascari et al. (2023); Bergholt et al. (2024a), with Ascari et al. (2024b) highlighting an

important role for fiscal shocks. My findings reconcile these views: domestic supply shocks

primarily feed into the persistent component, raising trend inflation from 2% to 3%, while

domestic and global demand shocks account for most of the rise in the transitory component.

Importantly, as emphasized by Bergholt et al. (2024a), not incorporating informative priors on

the deterministic component in standard BVARs can significantly affect historical decomposition

analyses. In my model, the priors on the stochastic trend of inflation are structured to mitigate

such estimation uncertainty.

Much of the euro area literature studies the (de-)anchoring of inflation expectations to ex-

plain the “missing inflation” phase and, more recently, the post-COVID surge, but a key chal-

lenge is measuring medium- to long-run expectations. Studies use different sources—market-

based inflation swaps Strohsal and Winkelmann (2015); Gimeno and Ortega (2016); Hilscher et

al. (2022), professional forecasts Jarociński and Lenza (2018); Corsello et al. (2021); Dovern et al.

(2020), or both professional and consumer expectations  Lyziak and Paloviita (2017)—and reach

divergent conclusions (e.g., Gimeno and Ortega (2016) find a decline below 2% from late 2014,

while Jarociński and Lenza (2018) report stable trend inflation around 2% over 2000–2016).

Relative to this work, I estimate trend inflation using households’ perceived inflation and unit

labor costs (as a proxy for firms’ price-setting expectations), combined with weakly informative

priors on the expected volatility of trend inflation. As external validation, I show that the

estimated trend comoves with market-based inflation compensation at 5-, 10-, and 20-year hori-

zons—series not used in estimation. This paper aligns with the view of a gradual de-anchoring

starting in 2012, and supports a post-COVID rise in trend inflation above 2%, consistent with

Hilscher et al. (2022), who highlight heightened risks of persistent inflation in 2022.

The studies closest to this paper in model structure and identification are Johannsen and

Mertens (2021), Ascari and Fosso (2024), and Maffei-Faccioli (2025). Johannsen and Mertens

(2021) employs a similar model structure to identify U.S. monetary policy shocks from the

cyclical component of the policy interest rate and using a recursive point-identification scheme.

8Also, see Gonçalves and Koester (2022); O’Brien et al. (2021); Koester et al. (2021, 2022); ECB (2022).
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In a trend–cycle BVAR, Maffei-Faccioli (2025) study the long-run drivers of U.S. GDP growth

using sign restrictions on trend components, and conclude that the decline in long-run growth

is mainly driven by permanent demand shocks. Ascari and Fosso (2024) analyze the histor-

ical drivers of U.S. trend inflation and present evidence consistent with the “globalization of

inflation” hypothesis. While they employ a standard trend-cycle BVAR structure, key differ-

ences arise in the identification of shocks. Their identification scheme differs between the trend

and cycle components, making it challenging to reconcile the structural shocks affecting each

component. In contrast, the framework employed in this paper maintains a consistent identifi-

cation scheme across both trend and cycle components, allowing for a unified interpretation of

structural shocks.

The remainder of this paper is structured as follows. In the next section, I introduce the

data, detailing its sources and the transformations applied. Section 3 describes the econometric

methodology and the shock identification framework. Section 4 presents the empirical decom-

positions of inflation and real GDP, with Section 4.B focusing on the structural dynamics of

trend inflation and the inflation gap, and Section 4.C examining the structural dynamics of

potential GDP and the output gap. Finally, Section 5 concludes the paper.

2. Data: Sources, Transformation and Description

Sources. Data are gathered from two main institutions EuroStat and OECD, and back-

dated using the Area Wide Model (AWM) database of Fagan, Henry and Mestre (2005). The

frequency of the data are quarterly and spans the period 1970Q1-2024Q1. My dataset consists

of two blocks, euro area and whole world. From EuroStat’s database, I collect for the euro area

the following variables: real GDP, unemployment, consumer confidence indicator, Harmonised

Index of Consumer Prices (HICP), price perception of households over the next 12 months,

unit labor cost index, and energy price index.9 From OECD’s database, I collect the following

variables: OCDE’s real GDP and HICP - as proxy of the whole world.10 Finally, my database

is characterized by a ‘ragged edge’, i.e., it has missing values.

Transformations. The series that are not already available in seasonal adjusted form

are seasonally adjusted using JDemetra+ 2.2 - this software uses the following algorithm X-

13ARIMA-SEATS. Table 1 reports for each variable the name (column 1), mnemonic (column

2), transformation (column 3), and the data span including the back-dated period. A brief

comment is needed for variables y8 and y9, that represent the GDP and HICP of the world, re-

spectively. These two variables are defined as the ratio between the analogous euro area variable

and OECD, representing the euro area’s share of world GDP or inflation. This transformation

9The consumer confidence and price perception of households over the next 12 months indicators are qual-
itative surveys, that are reported as aggregated diffusion time series for the euro area. The frequency of these
diffusion series is monthly, so I transform them taking quarterly averages.

10The identification of distinct global shocks using a limited set of global variables is justified when combined
with a robust identification strategy. In this analysis, I adopt the methodological approach proposed by Corsetti
et al. (2014) and Bobeica and Jarociński (2019), wherein global and domestic shocks are differentiated through
sign restrictions rather than relying on extensive panel datasets.
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becomes relevant, in Section 3, to implement the sign restrictions identification proposed by

Corsetti, Dedola and Leduc (2014).

Variable name Symbol Transformation Data span

Real GDP y1 log 1970.Q1 - 2024Q1
Unemployment Rate y2 ∆ Q-Q 1970.Q1 - 2024Q1
Consumer Confidence y3 none 1985.Q1 - 2024Q1
HICP y4 ∆log Q-Q 1970.Q1 - 2024Q1
Price Perception HH y5 none 1985.Q1 - 2024Q1
Unit Labor Cost Index y6 ∆log Q-Q 1970.Q1 - 2023Q4
Energy Price Index y7 log 1987.Q4 - 2024Q1
World Real GDP
(WRG)

y8 log(RGDPEA) - log(WRG) 1970.Q1 - 2024Q1

World HICP (WH) y9 ∆
(
log(HICPEA) - log(WH)

)
Q-Q 1970.Q1 - 2024Q1

Table 1. Description of the variables

3. Econometric Methodology

The model described in this section is the Vector Autoregressive (VAR) model with common

trends of Del Negro, Giannone, Giannoni and Tambalotti (2017, 2019), incorporating stochastic

volatility (in a similar spirit as Primiceri (2005)) and Student’s t-distribution (as in Geweke

(1993)).11 The model decomposes series into slow-moving trends (e.g., potential GDP, trend

inflation) and fast-moving cycles (e.g., output-gap, energy price cycle, inflation-gap). Variance-

covariance matrices for both components are time-varying, providing an additional hierarchical

layer. The identification scheme separates energy, global, and domestic shocks into permanent

and transitory components, facilitating volatility assessments over time. Structural drivers are

identified using sign-magnitude restrictions.

3.A. The Model: A VAR with Common Trends featuring Stochastic

Volatility

The model is given by the measurement equation

yt = Λȳt + ỹt, (1)

where yt is an n × 1 vector of observables, ȳt is a q × 1 vector of trends, q ≤ n, Λ(λ) is an n

× q matrix of loadings that is restricted and depends on the vector of free parameters λ, and

ỹt is an n × 1 vector of stationary components. The rank of Λ, which is equal to q, determines

the number of common trends, and the number of cointegrating relationships is therefore n -

q. Hence, Λ(λ) maps the trend component ȳt to the dependent variable yt. Both ȳt and ỹt are

latent variables and evolve according to the following transition equations, a random walk with

11An extension with time-varying autoregressive coefficients following Primiceri (2005) is explored in ongoing
research.
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drift

ȳt = c̄ + ȳt−1 + ϵt, with ϵt ∼ N (0,Σϵ
t), (2)

and a VAR

ỹt =
P∑

j=1

Aj ỹt−j + ut, with ut ∼ N (0,Σu
t ) (3)

respectively, where the Ajs are n×n matrices.12

In this model, the shocks affecting the trend (ϵt) and the cycle (ut) are orthogonal to one

another. This implies that my model is a type of “independent trend/cycle decomposition”.

See Watson (1986), Stock and Watson (1988), and Stock and Watson (2007),for an introduction

in standard unobserved component models. This assumption helps introducing in a standard

way, time-varying elements in the covariance matrices of the trend and cycle, and a common

identification scheme of the structural shocks for the trend and cycle.

The covariance matrices of the error terms ϵt and ut - Σϵ
t and Σu

t - have time-varying elements.

The modelization and its core assumptions follow Primiceri (2005), Benati and Mumtaz (2007)

and Gaĺı and Gambetti (2009). The structure of the heteroscedastic unobservable shocks is very

similar for the permanent and stationary shocks, with two main differences: 1. The dimension of

Σϵ
t is a q×q matrix, and Σu

t is of dimension n×n. 2. The innovations of the cycle feature fat-tails

and stochastic volatility, while the innovations of the trend only include stochastic volatility.

The stochastic volatility helps to capture standard-frequency movements at the cycle’s and

trend’s volatility, see Stock and Watson (2007) for a univariate representation. While, the fat-

tails elements capture outliers and extreme realizations over time in the cycle, for example the

COVID lockdown.

I consider the following structure for the covariance matrices,

Σϵ
t = Φ−1

ϵ,t Hϵ,t(Φ
−1
ϵ,t )′, (4)

Σu
t = Φ−1

u,tHu,t(Φ
−1
u,t)

′, (5)

where Φϵ,t and Φu,t are lower triangular matrices with elements ϕϵ
ij,t and ϕu

ij,t, respectively. Hϵ,t

is a diagonal matrix with diagonal elements hϵi,t, while Hu,t is a diagonal matrix with diagonal

elements hui,t and δi,t - diag
(
hu
1,t

δ1,t
, · · · , h

u
i,t

δi,t
, · · · , h

u
n,t

δn,t

)
.

The structure of Φz
t , where z = { ϵ, u}, is

Φz,t =


1 0 . . . 0

ϕz
21,t 1

. . .
...

...
. . .

. . . 0

ϕz
k1,t . . . ϕz

kk−1,t 1

 ,

12The drift is incorporated in the trend of variables that enter in levels and contain a time-trend, such as euro
area GDP, energy price index, and the ratio between the euro area and world GDP.
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where the elements in each row follow

ϕz
i,t = ϕz

i,t−1 + V z
i,t,Var

(
V z
i,t

)
= Dz

i , (6)

for i = 1 · · · k, where k = { q, n}. I assume that the non-zero and non-one elements of Φz,t

belonging to different rows evolve independently, with

Dz =



Dz
1 01×2 . . . 01×(k−1) 01×k

02×1 Dz
2

. . . 02×k−1 02×k

...
. . .

. . .
. . .

...

0(k−1)×1 0k−1×2
. . . Dz

k−1 0(k−1)×k

0k×1 0k×2
. . . 0k×(k−1) Dz

k


.

In other words, V z
i,t and V z

j,t are uncorrelated for j ̸= i.

The structure of Hϵ
t and Hu

t is

Hϵ,t =


hϵ1,t 0 . . . 0

0 hϵ2,t
. . .

...
...

. . .
. . . 0

0 . . . 0 hϵq,t

 , Hu,t =



hu
1,t

δ1,t
0 . . . 0

0
hu
2,t

δ2,t

. . .
...

...
. . .

. . . 0

0 . . . 0
hu
n,t

δn,t

 ,

with

lnhϵi,t = lnhϵi,t−1 + Zϵ
i,t,Var

(
Zϵ
i,t

)
= gϵi , (7)

lnhui,t = lnhui,t−1 + Zu
i,t,Var

(
Zu
i,t

)
= gui , (8)

, with slithery abuse of notation, for i = 1 · · · q / n. I assume that Zz
i,t and Zz

j,t are uncorrelated

for j ̸= i, with

Gz =


gz1 0 0 0

0 gz2 0 0

0 0
. . . 0

0 0 0 gzk

 .

In line with Geweke (1993), the weights [δ1,t, δ2,t, · · · , δn,t] are indexed by time t, since they

are meant to capture extreme volatility movements (fat-tails) over time in the cycle, hence

potentially providing an effective treatment of outliers and extreme events. [h1n,t, h
2
n,t, · · · , hun,t]

captures standard-frequency movements in the cycle’s volatility. It is worth noting the following
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relationships

Φϵ,t(Hϵ,t)
−1/2ϵt = wϵ

t ,Var (wp
t ) = Iq,

Φu,t(Hu,t)
−1/2ut = wu

t ,Var
(
wt
t

)
= In.

Hence, as shown by Geweke (1993), assuming a Gamma prior for δi,t of the form p(δi,t) =∏T
t=1 p(δi,t) =

∏T
t=1 Γ̃(1, κδ,i) leads to a scale mixture of normals for the orthogonal residuals

wu
t , with mean 1 and degrees of freedom κδ,i.

13 This assumption allows the degrees of freedom

for the Student’s t-distribution to be independent across equations and simplifies the estimation

algorithm. To further simplify the estimation of the model, I assume that wϵ
t , w

u
t , V ϵ

t , V u
t , Zϵ

t ,

Zu
t are mutually uncorrelated.14

As discussed earlier, there are two noteworthy things about this type of trend-cycle model.

First, the model decomposes observed variables (yt) into some slow-moving variables (trends)

and fast-moving variables (cycles). Second, this model has two sets of time varying ‘coefficients’

ϕϵ
ij,t and ϕu

ij,t - for the trend and cycle parts -, two stochastic volatility parameters for the

diagonal elements of each component, hϵi,t and hui,t, and fat-tails (δi,t) that capture infrequent

volatility movements over time in the cycle.

Discussion. Using both stochastic volatility (SV) and Student’s t-distributions might

initially seem redundant, as SV alone already implies a fat-tailed unconditional distribution.

However, incorporating Student’s t-distributions addresses two specific issues in this applica-

tion. Firstly, without Student’s t-distributions, the degrees of freedom governing the expected

volatility changes in trends must be substantially increased. This higher value tightens prior

beliefs excessively, creating an almost direct mapping between posterior and prior distributions.

Consequently, without Student’s t-distributions and at lower degrees of freedom, the volatility

and trend components mimic higher-frequency variations, overly suppressing cyclical dynamics.

For instance, Del Negro et al. (2017, 2019) use 100 degrees of freedom on diagonal elements of

trend covariance matrices in a model with time-invariant covariance matrices.15

Secondly, the posterior distributions of the degrees of freedom across the cyclical components

suggest that the inclusion of Student’s t-errors is empirically justified. As shown in Figure 25,

most variables exhibit posterior densities concentrated in the range of 5 to 20 degrees of freedom.

13This formulation is equivalent to a specification that assumes Student’s t-distribution for wu
t with κδ,i degrees

of freedom.
14These assumptions advocate for a block-diagonal structure for the joint set of innovations in the model. This

is convenient for several reasons: First, parsimony, as the model is already quite heavily parameterized. Second,
as discussed earlier, it heavily simplifies the estimation algorithm. Third, similar structures are used in other
types of model, e.g. TVP-VAR-SV models - see Primiceri (2005, pp. 6-7).

15In the context of this application, the prior distribution in Del Negro et al. (2017, 2019) corresponds to an
equivalent prior specification with 50 degrees of freedom. The prior distribution in Del Negro et al. (2017, 2019)
follows an Inverse-Wishart specification. The Inverse-Wishart distribution is the multivariate generalization of
the inverse gamma distribution. Consequently, for a 1 × 1 variance parameter, the Inverse-Wishart reduces to
an inverse gamma distribution. Specifically, if Σ represents a scalar variance σ2, then Σ ∼ Inverse-Wishart(ν,Ψ)
simplifies to σ2 ∼ Inverse-Gamma(α, β), where α = ν

2
and β = Ψ

2
. Thus, an n × n Inverse-Wishart prior with

ν = 100 implies that each variance term follows an inverse gamma distribution with a prior strength equivalent
to α = 50.
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This range is typically associated with moderately fat-tailed behavior. For some cycles, such

as the ones related to consumer confidence, household price perception, or energy prices, the

posterior mode lies even closer to the lower end of this spectrum (DOF ≈ 3–6), highlighting the

presence of heavy-tailed shocks that stochastic volatility alone cannot capture. These findings

align with the macroeconomic literature, which shows that Student’s t-distributions improve the

fit and density forecasting performance of macroeconomic models, particularly when combined

with stochastic volatility (e.g., Cúrdia et al., 2014; Clark and Ravazzolo, 2015; Chiu et al.,

2017).

Finally, in this study, the assumption of independence is adopted intentionally because it

clearly delineates permanent from cyclical components, simplifies structural shock identification

and facilitates the estimation of the time-varying covariance matrices, and ensures interpreta-

tive transparency by aligning long-run forecasts with the trend component.16 Nevertheless, in

ongoing research I further explore the possibility of relaxing this assumption by integrating

dependency and time variation.17

Baseline specification. In the baseline specification, yt contains nine macroeconomic

variables, see table 2. Column two and three describe the macroeconomic trends (five in total -

q = 5), and cycles (nine in total - n = 9) characterizing the set of variables in the system. The

estimation sample spans the period 1990Q1-2024Q1.18

Variable name Trend Cycle

Real GDP Potential GDP Output Gap
∆ Unemployment
Rate

none Unemployment Cycle

Consumer Confidence none Consumer Confidence Cycle
HICP Trend Inflation Inflation Gap
Price Trends next 12 m Trend Inflation Price Expectation Cycle
Unit Labor Cost Index Trend Inflation Labor Cost Cycle
Energy Price Index Trend Energy Energy Price Cycle
World GDP Potential WGDP World Output Gap
World HICP Trend W Inflation World Inflation Gap

Table 2. Description of the variables

Slow-moving variables: 1. The EA output trend - that I label as EA potential GDP - is

restricted to be common across only real EA GDP.19

16The consideration of standard correlated trends and cycles, as in Beveridge-Nelson decompositions, often
results in excessively volatile trends, diminishing the cyclical fluctuations - large in amplitude, persistent, and
procyclical- typically emphasized by policymakers.

17To address excessively volatile trends, previous research has recommended imposing a low signal-to-noise
ratio in the underlying autoregressive model, as shown by Kamber et al. (2018), Morley et al. (2024), Kamber et
al. (2025), Morley and Wong (2020), or González-Astudillo and Roberts (2022).

18The series used in the baseline specification are available, some of them, from 1970Q1 - see table 1. The
period 1970Q1-1989Q4 is used as presample to inform the priors on the initial conditions of the trend and the
cycle, which I discuss in the next section.

19The drift coefficient in the unit root process, that constantly accumulates over time, can be thought as an
average effect of technological innovation.

10



2. The persistent component of inflation (trend inflation) is extracted using the information

in inflation, households’ perceived inflation, and the unit labor cost (a proxy for firms’ inflation

expectations).20 Unit labor costs (defined as the growth of nominal wage adjusted per employee)

play a role in shaping firms’ inflation expectations by influencing future firms’ pricing decisions.

In theoretical models, the unit labor cost and price inflation are closely interrelated in the

medium / long-run. This is due to prices and nominal wages must adjust relative to each other

to be consistent with the fact that, in the long-run, the real wage is determined by slow-moving

factors such as productivity, wage demands or bargaining power.21 As shown in C Table 5, the

Johansen cointegration rank test rejects the null hypothesis of no cointegration r = 0 and also

rejects r ≤ 1 when tested against the alternative r ≥ 2, but fails to reject r ≤ 2 against r = 3.

These results indicate the presence of one common trend among the three variables. Figure 10

(Appendix C) plots the prior and posterior distributions of the cointegrating coefficients that

link inflation, household inflation expectations, and unit labor costs. The posterior distributions

deviate noticeably from the priors, suggesting that the data are informative about the common

component among these variables and support the existence of a stable cointegrating vector.22

3. The energy trend which is restricted to be common to EA energy prices. This assumption

is standard to be able to estimate an ‘energy price cycle’, see Hasenzagl et al. (2018). Moreover,

Kilian (2008) highlights the important influence of energy prices on economic performance.

In particular, Kilian points to the role of energy price fluctuations. In principle, permanent

disturbances coming from energy prices should be very low, since the major movements in energy

prices should come from the cycle part (which have a temporary influence on the economy).

4. The fourth and fifth trends denote the world potential output and world trend inflation.

These two trends are of core use if one seeks to understand the importance of global supply

and demand shocks. In particular, to address whether global demand–supply imbalances have

potential permanent effects.

The main reason for estimating five trends is to identify the following permanent shocks:

domestic demand and supply-side factors, energy supply factors, and global demand and supply-

side factors. The identification scheme is presented in the next section.

20Recently, Candia, Coibion and Gorodnichenko (2021) show that firms’ inflation expectations exhibit many of
the characteristics of households’ inflation expectations and dramatically depart from the inflation expectations
of professional forecasters. Moreover, recent empirical evidence for the euro area (e.g. Álvarez and Correa-López
(2020)) shows that time series that contain information about households’ and firms’ perceived inflation are better
at predicting inflation than professional forecasters or financial markets - in the context of open economy Phillips
curves. In another work, Coibion and Gorodnichenko (2015) present new econometric and survey evidence
consistent with firms having similar expectations as households. Moreover, they show evidence that inflation
expectation of professional forecasters do not proxy well the expectations of households.

21In my model, labor cost inflation and price inflation are cointegrated. Then, gradual changes in the long-run
labor cost inflation are mapped to the trend inflation. This assumption implies that in the cost of living enter the
dynamics of nominal wages. Hence, I am capturing potential second-round reactions of the labor cost to actual
inflation.

22For the case of the euro area, in a recent paper of Bobeica et al. (2019), they, find that there is a clear link
between the rate of change in labor cost and the rate of change in prices. Moreover, they find that this link
becomes stronger when inflation is high. However, in this paper I do not explore that this link could depend on
an inflation regime, given that it would make the second part of structural analysis too difficult and cumbersome.
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Fast-moving variables: The macroeconomic cycles are characterized by the same number

of variables in the system, nine. This implies that each variable in the system has its own

idiosyncratic cycle component. Notice that the consumer confidence indicator and differences

in the unemployment rate are left trendless.23 Finally, the information gathered within the

interrelation of these macroeconomic cycles - output gap (ỹ1), unemployment cycle (ỹ2), con-

sumer confidence (ỹ3), inflation gap (ỹ4), price expectation cycle (ỹ5), labor cost cycle (ỹ6),

energy price cycle (ỹ7), world output gap (ỹ8), and world inflation cycle (ỹ9) - can be compared

to a Dynamic Stochastic General Equilibrium (DSGE) model. To be more precise, the cycle

VAR structure nests several structural models, for example: (i) a range of Phillips curve mod-

els, since inflation can be a purely forward-looking process, driven by expectations on inflation

(price expectation cycle) or expectations of future real economic activity (consumer confidence).

Moreover, it integrates ‘the triangle model of inflation’, where potential fluctuations of infla-

tion in response to the temporary influence of movements in energy prices (energy price cycle),

the degree of resource utilization in the economy (output-gap and unemployment cycle).24 To

understand inflation dynamics from an open economy perspective, it also takes into account a

global Phillips curve part.25 (ii) From the perspective of the EA output-gap, it features the

inverse relation of the Okun’s law since output is linked to unemployment fluctuations. More-

over, it captures how slack in real output is affected when potential international political events

arise – as is the case for oil price, food and beverages, and the recent global supply bottlenecks.

Hence, my model accounts for a wide variety of sources that can modify the interrelation of

these macroeconomic cycles.

3.B. Priors and Estimation Procedure

Priors. First, I need to specify a distribution for the initial conditions ȳ0 and ỹ0:−p+1 =

(ỹ′0, · · · , ỹ′−p+1)
′ are distributed according to ȳ0 ∼ N

(
y0, Iq

)
and ỹ0:−p+1 ∼ N

(
0,ΣA

0

)
, where

y0 and ΣA
0 are computed using pre-sample data.

Starting with the prior for Λ(λ) is given by p(λ) = N(1, 0.52), the product of independent

23The consumer confidence indicator is included in its original, untransformed form, as by definition is in-
tended to capture short-term developments in economic activity. The unemployment rate, on the other hand,
is incorporated in quarterly differences due to the presence of a unit root, as shown in Appendix C, Table 6.
It is worth noting that if the unemployment rate were included in levels, it would be possible to estimate a
new trend component, thereby allowing for the identification of a new structural shock related to the trend,
such as labor supply shocks. However, the primary objective of this paper is to identify core structural shocks
rather than their subcomponents, particularly in the context of domestic supply shocks. For a detailed discussion
of identifying structural shocks on the supply side—including technology, labor supply, wage bargaining, and
matching efficiency—see Foroni et al. (2018). Furthermore, the inclusion of ∆ unemployment and the consumer
confidence indicator is important for the accurate estimation of the stationary component of GDP, the output
gap. Indeed, these two variables are central to core now-casting models, which are widely employed by many
central banks. See Laxton and Tetlow (1992), Kamber et al. (2018), and Barbarino et al. (2020) for a more
contemporary perspective.

24See Gordon (1981, 1988). Moreover, it reflects the view of Yellen (2016) which is widely shared by policy
makers and central bankers. See also the work of Hasenzagl et al. (2018) that emphasizes the inclusion of an
energy price cycle.

25The importance of including cyclical global activity measures is suggested in Mart́ınez-Garćıa and Wynne
(2010); Kabukçuoğlu and Mart́ınez-Garćıa (2018); Duncan and Mart́ınez-Garćıa (2023).
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Gaussian distributions for each element λ of the matrix Λ(λ). The drift c̄ incorporated in the

random walks of the trends is assumed to follow a diffuse normal prior, N (cy,0, 10) with mean

cy0, that represents the average growth rate of the pre-sample variables. The priors for the VAR

coefficients A = (A1, . . . , Ap) have a normal posterior distribution with mean Ā and variance

Σ̄A, based on prior mean A and ΣA
0 , where:

(Σ̄A)−1 = (ΣA
0 )−1 +

T∑
t=1

(
(Σu

t )−1 ⊗ x̃tx̃
′
t

)
,

vec(Ā) = Σ̄A

{
vec

(
T∑
t=1

(Σu
t )−1ỹtx̃

′
t

)
+ (ΣA

0 )−1 vec(A)

}
I(vec(A)),

x̃t contains the lags of ỹt and I(vec(A) is an indicator function that is equal to 0 if the VAR is

explosive - some of the eigenvalues of A(L) are greater than 1 - and to 1 otherwise. Hence, I am

enforcing a stationarity constraint on the VAR. Moreover, the prior for the VAR parameters

vec(A), describing the components ỹt, is a standard Minnesota prior with the hyperparameter

for the overall tightness equal to the commonly used value of 0.2 (see Giannone, Lenza and

Primiceri (2015)), and centered at zero rather than one, since I am dealing with stationary

processes. Finally, the VAR uses four lags (p = 4).

The priors for the variance-covariance time-varying elements follows Benati and Mumtaz

(2007) and Geweke (1993), with some minor modifications to take into account the important

differences between the permanent (Σϵ
t) and transitory (Σu

t ) matrices governing each process.

Prior distributions for the time-varying elements in the permanent side are going to be scaled

down by a factor of one hundred. Such a choice is clearly arbitrary, but motivated by my

goal of informing to the model that the former elements should have much lower volatility

than its counter part (the transitory elements). In other words, the elements belonging to the

slow-moving variables should resemble two features: (i) low volatility in magnitude and (ii)

low expected changed in volatility. This approach helps me to deal with the problem of label

switching in mixture models in order to reliably recover the entire posterior distribution.26

Following Geweke (1993), I set a hierarchical Gamma prior on the parameter controlling

the degree of freedom of the Student’s t distributions κδ,i and the weighting vector δi,t, for

i = 1, . . . , n:

p(κδ,i) ∼ Γ̃(n0, 2),

p(δi,t) ∼ Γ̃(1, κδ,i).

The prior mean n0 is assumed to equal 20. This allocates a substantial prior weight to fat-tailed

distributions as well as distributions that are approximately Normal. In order to calibrate the

prior distributions for ϕz
ij,0 and hzi,0, I ‘estimate’ a time-invariant version of 1 based on an

unbalanced dataset, from 1970 Q1 to 1989 Q4.27 Let Σz
0 be the estimated variance-covaraince

26See Geweke (2007) and Stephens (2000).
27This is not a real estimation. I run just a few iterations MCMC to decompose the pre-sample data into
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matrices from the time-invariant decomposition model. Let Lz be the lower-triangular Choleski

factor of Σz
0 - i.e., LzLz′ = Σz

0. The initial conditions for the stochastic volatily process, lnhu0

and lnhϵ0, are set to follow a N (lnµu
0 , 10 × In) and N (lnµϵ

0, 0.1 × Iq), respectively. The prior

means, µz
0 = {µϵ

0, µ
u
0} is a vector collecting the logarithms of the squared elements on the

diagonal of Lz. Then each column of Lz is divided by the corresponding element on its diagonal

- i.e., L̃z are the rescaled matrices - and set the initial conditions of the elements below the

diagonal, ϕu
ij,0 and ϕϵ

ij,0, to follow a N (ϕ̃u
ij,0, Ṽ (ϕ̃u

ij,0)) and N (ϕ̃ϵ
ij,0, Ṽ (ϕ̃ϵ

ij,0)), respectively. The

prior means of ϕ̃z
ij,0 are the non-zero and non-one elements of (L̃z)−1 (i.e., the elements below

the diagonal). The variance-covariance matrices, Ṽ (ϕ̃u
ij,0), are postulated to be diagonal with

each individual (i,i) element equal to the absolute value of the corresponding ϕ̃z
ij,0.

The matrices in Dz are also calibrated following Benati and Mumtaz (2007). Dz follow a

diffuse inverse Wishart - p (Dz
i ) = IW

(
κD,i, κD,i(ηzD

z
i )
)

- with just enough prior degrees of

freedom, κD,i, set equal to the number of rows in Dz
i plus two to have a well-defined prior mode.

The mode Dz
i is scaled by the number of degrees of freedom and ηu,ϵ = {10−3, 10−5}. Each Dz

i

is composed of the row elements below the diagonal in L̃z.

Finally, as for the variances of the stochastic volatility innovations (i.e., the diagonal elements

of Gz), I follow Cogley and Sargent (2005). They postulate an inverse-Gamma distribution,

gzj ∼ IG
(
κG
2 ,

gz
i
2

)
, for the elements of Gz with κG degrees of freedom and prior mode gz

i
. I use

different prior modes to take into account the important differences between the permanent (Gu)

and transitory (Gϵ) volatility innovations. In this way, I am informing the model to not mix

permanent and transitory volatility processes. For the stochastic volatility innovations from the

transitory part, I use the same specifications as Cogley and Sargent (2005), guj ∼ IG
(
1
2 ,

10−4

2

)
.

The choice of for the stochastic volatility innovations belonging to the permanent part are chosen

accordingly to represent specific features. In this sense, I set the mode of diagonal elements of the

matrix Gϵ = {gϵ
1
, gϵ

2
, gϵ

3
, gϵ

4
, gϵ

5
} to Gϵ = {8.3 ∗ 10−6, 3.3 ∗ 10−5, 8.6 ∗ 10−5, 8.3 ∗ 10−6, 3.3 ∗ 10−5}.

A priori, it implies that the expected change over a period of a hundred years in the volatility

of potential GDP, inflation trend, energy trend, potential world GDP, and world inflation trend

is 0.33, 1.33, 3.33, 0.33, 1.33 percentage points, respectively.28 In addition, these priors are

weakly more informative than the previous ones, with the degrees of freedom set to five (i.e.,

κG = 5).29 There are two intrinsic reasons for the selection of these priors: (i) to ensure these do

not reflect business cycle fluctuations; and (ii) to a priori prevent scenarios such as de-anchoring

of long-term inflation trend. Nevertheless, if data spoke loudly in favor of relevant movements in

the low-frequency components of the system, it would push away from the prior assumptions.30

trends and cycles, and obtain the matrices of interest. Notice that this procedure yields ‘naive’ elements (i.e.,
ϕϵ
ij,0, ϕ

u
ij,0, h

ϵ
i,0 and hu

i,0).
28Relative to the ones of the cycle component, the current prior mean values exhibit reductions by factors of

12 for GDP trends, 3 for inflation trends, and 1.2 for energy trends.
29However, this specification remains considerably less restrictive than those used in standard trend-cycle

models, where the degrees of freedom are typically set to 100 (e.g., Del Negro et al. (2017, 2019)).
30While in the baseline specification I specify the same prior on the variance-covariance matrix of the trend

components for the euro area and the world, this could be in principle different for the two region components.
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Estimation. The state-space model, given by equations 1 through 8, is efficiently estimated

with Bayesian methods - Gibbs Sampling and Metropolis Hastings algorithm - using Kalman

Filter, in conjunction with modern simulation smoothing techniques (Carter and Kohn (1994))

that easily help me to accommodate missing observations, and draw the latent states. All

results are based on 150,000 simulations, of which I discard the first 142,000 as burn-in draws

and save every 15th draw in order to reduce the autocorrelation across draws.31 Section A of

the appendix describes the Gibbs sampler, which accommodates the hierarchical decomposition

model to different modeling choices.

3.C. Shock Identification Strategy

As discussed in the introduction, this study identifies the shocks most emphasized in the

inflation literature. These structural factors include energy supply, global and domestic shocks,

from a demand and supply view. Each of these is analyzed from both a permanent and transitory

perspective to gain a comprehensive understanding of inflation dynamics.

To derive economically meaningful conclusions regarding the transmission channels of these

shocks, restrictions must be imposed on the variance-covariance matrices (Σϵ
t,Σ

u
t ). These re-

strictions enable the mapping of economically interpretable structural shocks from the estimated

reduced-form residuals. In this framework, the relationship between reduced-form and struc-

tural trend residuals is defined as ϵt = Btw
P
t , where Bt is a non-singular matrix satisfying

BtB
′
t = Σϵ

t. The structural permanent shocks, denoted as wP
t , follow a standard normal distri-

bution wP
t ∼ N(0q,1, Iq,q) with unit variance. Similarly, the mapping between reduced-form and

transitory structural residuals is given by ut = Ctw
T
t , where Ct is a non-singular matrix satis-

fying CtC
′
t = Σu

t . The structural transitory shocks, represented by wT
t , also follow a standard

normal distribution wT
t ∼ N(0n,1, In,n) with unit variance.

The latent variables—i.e., trends and cycles—introduced in equation 1 can be rewritten as

follows:

yt =Λ
(
ȳ0 +

t∑
h=1

hc̄ +
t−1∑
j=0

ϵt−j

)
+

t−1∑
j=0

Ãjut−j

=Λ
(
ȳ0 +

t∑
h=1

hc̄ +

t−1∑
j=0

Bt−jB
−1
t−jϵt−j

)
+

t−1∑
j=0

ÃjCt−jC
−1
t−jut−j

=Λ
(
ȳ0 +

t∑
h=1

hc̄
)

+ Λ
t−1∑
j=0

Bt−jw
P
t−j︸ ︷︷ ︸

Contribution of Permanent Shocks

+
t−1∑
j=0

ÃjCt−jw
T
t−j︸ ︷︷ ︸

Contribution of Transitory Shocks

.

(9)

This formulation is derived by applying successive substitution for ȳt−j and ỹt−j , where Ãj

31I assess the convergence of the Markov chain by inspecting the autocorrelation properties of the ergodic
distribution’s draws. Moreover, I follow the diagnostic for monitoring the convergence of multiple Metropolis
Hastings chains of Geweke et al. (1991). The inefficiency factors for all posterior elements are represented in
Figure 9 of Appendix B.
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represents the companion form matrix raised to the power of horizon j. It further incorporates

the mapping between reduced-form and structural residuals. Here, Bt is interpreted as dȳt/dwP
t ,

while ÃjCt+j represents dỹt+j/dwT
t . These terms quantify the effects of shocks on the low-

and high-frequency components, respectively. In fact, equation 9 provides the full historical

decomposition of each variable in terms of permanent and transitory structural shocks, reflecting

deviations from initial conditions and the drift of the respective trend.

The structural identification in this study relies on sign and magnitude restrictions. First,

I follow Canova and De Nicolo (2002) in order to distinguish between demand-side and supply-

side factors. This identification strategy is based on the premise that supply-side forces drive

output and inflation in opposite directions, whereas demand-side forces result in a positive

comovement. Second, to differentiate between domestic and global shocks, the approach builds

on the comovements proposed by Corsetti et al. (2014), which state that global shocks have a

greater impact on global variables than on domestic ones, and vice versa for domestic shocks.32

To effectively implement this restriction, world GDP and inflation must be expressed as the

ratio of euro area to world values, as outlined in Section 2.

For example, if a shock leads to an increase in real EA GDP while simultaneously raising

the EA’s share of global GDP, it can be inferred that the shock had a stronger impact on the

domestic economy relative to the rest of the world, classifying it as a domestic shock. Conversely,

if the shock decreases the euro area’s share of global GDP, it suggests a greater impact on the

rest of the world, categorizing it as a global shock. A global supply shock, for instance, would

raise both euro area and world GDP, but more strongly abroad (+/(++)), thereby reducing the

euro area’s share of global GDP. Likewise, on the inflation side, this same shock would lower both

euro area and world inflation, with a larger decline in world inflation (−/(−−)); this implies

an increase in the euro area’s share of global inflation (i.e., the share rises because the world

component falls more than the euro-area component). A positive energy supply shock would

lower energy prices, positively impact euro area real activity, and reduce euro area inflation

upon impact. These restrictions align with findings in the literature on energy-related shocks,

such as Kilian (2009), who models the global crude oil market and examines the effects of such

shocks on key macroeconomic variables.33 Additionally, it is assumed that energy supply shocks

have a greater impact on the euro area due to its high energy dependence relative to the rest

of the world.34

A domestic supply shock is expected to have a smaller absolute effect on energy prices

compared to an energy supply shock, represented as |eds| < |ees|, where eds and ees denote the

responses of energy prices to domestic supply and energy supply shocks, respectively. In other

words, a contraction in energy supply capacity leads to a greater increase in energy prices than a

32Other empirical studies employing similar methodologies to distinguish between global and domestic shocks
include Bobeica and Jarociński (2019) and Conti et al. (2017).

33Peersman and Van Robays (2009) analyze the commovements of energy prices and euro area economic
activity following an energy supply shock. Such a shock increases energy prices and has negative real activity
effects.

34Currently, the euro area has an energy import dependency rate of approximately 60%.
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reduction in domestic economic activity. Similarly, an expansion in energy supply capacity has

a stronger downward effect on energy prices than a comparable expansion in domestic economic

activity, such that eds > ees.

The identification algorithm is based on the sign restrictions methodology developed by

Canova and De Nicolo (2002) and Uhlig (2005), with refinements by Rubio-Ramirez, Waggoner

and Zha (2010) and Arias, Rubio-Ramı́rez and Waggoner (2018).35 This approach employs

the Haar prior, which, as discussed in Baumeister and Hamilton (2015), results in non-uniform

marginal priors for individual impulse responses.36 However, Arias, Rubio-Ramirez and Wag-

goner (2023) argue that this property is inconsequential for joint inference, demonstrating that

the Haar prior ensures a uniform joint prior distribution over the identified set of impulse re-

sponses, meaning no specific structural vector is favored a priori. In fact, Arias et al. (2023)

show that with a sufficiently tight identification the influence of the prior diminishes, allowing

the data to drive posterior inference, consistent with the findings of Inoue and Kilian (2022).

This identification strategy is implemented similarly to traditional SVARs with sign restrictions.

The key distinction is that while structural VAR analysis typically focuses on business cycle

fluctuations, this study also aims to identify factors influencing low-frequency movements.

The sign–magnitude restrictions identify five economically meaningful shock domains span-

ning both the trend and cyclical components: domestic supply, domestic demand, global supply,

global demand, and energy supply. At the cyclical frequency, however, the restrictions do not

uniquely pin down all individual shocks within these domains. In particular, the cyclical block

is identified only up to four orthogonal rotations. If left unrestricted, these residual rotations

can mix innovations across the economically meaningful shock domains already labeled by the

sign–magnitude restrictions—a version of the “masquerading problem” emphasized by Wolf

(2020, 2022). To ensure that the reported results do not depend on an arbitrary within-domain

rotation, I proceed in two steps. First, I recover an admissible set of nine shocks consistent

with the sign–magnitude restrictions: two shocks each for domestic supply, domestic demand,

global supply, and global demand, plus one energy supply shock. Second, I report domain-

level composite shocks by aggregating the pair of shocks within each domain (domestic supply,

domestic demand, global supply, global demand), while leaving the energy supply shock as a

standalone fifth shock.37 I do not impose additional restrictions to label the two shocks within

each pair, since the objective is to recover aggregate domestic/global supply and demand effects

rather than to further decompose them (e.g., technology vs labor-supply, or fiscal vs monetary

vs financial innovations).

Tables 3 and 4 present the set of sign restrictions applied to the permanent and transitory

shocks, respectively. The restrictions are consistent across both types of shocks.

35Additional details on the sign and magnitude restrictions algorithm are provided in Appendix A.2.
36In the case of two variables, the prior is concentrated at extreme values, while for models with more than

three variables, it is centered around a zero impact response of shocks.
37By construction, the five composite shocks–domestic supply, domestic demand, global supply, global demand,

and energy supply–are orthogonal.
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Discussion. The use of sign and magnitude restrictions to identify structural shocks on the

cyclical side is a standard and widely accepted practice in the structural VAR literature, where

such restrictions typically apply to deviations from a deterministic trend. However, impos-

ing similar restrictions on the stochastic trend component—particularly to identify permanent

demand-side shocks—may be viewed as more controversial.

Domestic Domestic Energy Global Global
Supply Demand Supply Supply Demand

EA Potential GDP + + + + +
EA Inflation Trend - + - - +
Energy Price Trend - (|eds| < |ees|) + - (ees) - +

EA/W Potential GDP + + + - -
EA/W Inflation Trend - + - + -

Table 3. Sign restrictions on trends

Domestic Domestic Energy Global Global
Supply Demand Supply Supply Demand

Output Gap + + + + +
Unemployment Cycle · · · · ·

Consumer Confidence Cycle · · · · ·
Inflation Gap - + - - +

Price Expectation Cycle · · · · ·
Labor Cost Cycle · · · · ·

Energy Price Cycle - (|eds| < |ees|) + - (ees) - +
EA/World Output Gap + + + - -
EA/World Inflation Gap - + - + -

Table 4. Sign restrictions on cycles

Nonetheless, recent empirical work has made substantial progress in this area. Studies such

as Ascari and Fosso (2024), Furlanetto et al. (2025), and Maffei-Faccioli (2025) provide frame-

works to identify both permanent demand and supply shocks. For example, Maffei-Faccioli

(2025) investigates the long-run drivers of U.S. GDP growth by applying structural identifica-

tion to the trend component. Similarly, Ascari and Fosso (2024) identifies the determinants of

U.S. trend inflation from both global and domestic sources. While both studies employ compa-

rable empirical settings to disentangle structural shocks along demand-supply and international-

domestic dimensions, their identification strategies differ. Ascari and Fosso (2024) imposes sign

restrictions on the cointegration relationships between observable variables and trends. In con-

trast, Maffei-Faccioli (2025) employs sign restrictions directly on the impact matrix (i.e., the

variance-covariance structure) of trend innovations—a strategy that mirrors the standard SVAR

approach but is applied solely to the trend component.

This paper adopts the identification method of Maffei-Faccioli (2025) due to its clarity and

practical implementation. Importantly, the framework here extends that approach by jointly

identifying the same structural shocks across both the trend and cyclical components. Maffei-

Faccioli (2025) motivates his (trend) identification assumptions through a stylized Keynesian
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endogenous growth model with nominal wage rigidities, building on the theoretical foundations

of Benigno and Fornaro (2018) and Fornaro and Wolf (2023).

4. Results: Dynamics and Drivers of the EA Inflation Trend

and Cycle

This section presents the main empirical results obtained from the estimated model. First,

I examine the dynamics of the model’s latent states by plotting the evolution of potential GDP,

trend inflation, and the output and inflation gaps for the euro area since 1990. Second, I

quantify the contribution of structural shocks—both permanent and transitory—in explaining

the historical and recent behavior of euro area inflation. This is done through a historical

decomposition that traces the impact of each structural shock at time t.

4.A. Hidden Components, Trends and Cycles

Figures 1 and 2 display the estimated low- and high-frequency components of inflation

and GDP alongside the observed data. The trend components are shown in the first row and

the cyclical components in the second. Red solid lines indicate the observed data, while the

thick black lines represent the pointwise median estimates of the trend and cycle components,

accompanied by 68% credible intervals.

Inflation Trend
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Figure 1. Actual data and estimated trends and cycles of HICP inflation

Note: Point-wise median (solid black line) with 68% credible bands are based on 150000 draws. HICP

is defined in annualized quarter-on-quarter terms.

Inflation (Trend Inflation & Inflation Gap). Figure 1 shows substantial fluctuations

in the estimated pointwise median of trend inflation over the sample period, which can be

divided into five distinct phases: (1) Early 1990s Decline: In the early 1990s, estimated trend
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inflation declined by more than 200 basis points, falling from approximately 4% to 2% by 1995.

(2) Anchored Period (1995–2012Q3): Following this decline, trend inflation remained anchored

around the 2% level for nearly two decades. This period is characterized by low variability in the

trend estimates, consistent with well-anchored inflation expectations. (3) European Sovereign

Debt Crisis (2012–2015): During the crisis, the median estimate of trend inflation declined

by over 100 basis points, reaching a historical low of 1% in 2015Q1. (4) Post-Crisis Recovery:

After 2015, trend inflation gradually re-anchored near the 2% level. (5) Post-COVID Economic

Reopening: In the aftermath of the COVID-19 economic reopening, trend inflation rose above

the 2% threshold, reflecting renewed inflationary pressures. Finally, as a validation exercise, I

assess whether the estimated trend behaves like medium- to long-term inflation expectations by

comparing it with euro area market-based inflation compensation at 5-, 10-, and 20-year horizons

(not included in the estimation); the series comove closely; see Figure 11 in Appendix C.

The first two findings are consistent with the prevailing view that inflation expectations

remained firmly anchored around the 2% level, largely due to the strong credibility of the ECB’s

price stability mandate (see Altissimo et al. (2006); Bowles et al. (2007); Gorter et al. (2008)).

However, the estimated decline in trend inflation between 2012 and 2016 is more contested.

While several studies find limited evidence of de-anchoring during this period (see Strohsal and

Winkelmann (2015); Jarociński and Lenza (2018); Dovern et al. (2020)), this paper supports a

gradual de-anchoring process beginning in 2012, as documented by Gimeno and Ortega (2016);

 Lyziak and Paloviita (2017) and more recently by Corsello et al. (2021).

In addition, the post-2020 rise in euro area trend inflation documented here has not yet

been explored in the literature. The estimates suggest that medium-term inflation is expected

to remain above the ECB’s target, stabilizing around 3%. This pattern is consistent with the

ECB’s evolving communication: while in 2021Q4 inflation was described as “temporary and

driven largely by transitory factors,” by 2022Q4 the ECB projected a more gradual return to

target—expecting headline inflation to fall from 8.4% in 2022 to 2.3% in 2025, reaching the 2%

target only in the second half of that year.38

The lower panel, which displays the inflation gap, shows values around 6–7% during the

recent inflation surge. This implies that approximately 85% of the increase in inflation can be

attributed to transitory factors. Consistent with this interpretation, Figure 26 in Appendix C

shows a sharp rise in the volatility of the inflation gap during this period, reflecting large tran-

sitory disturbances driving the post-COVID inflation dynamics. Notably, by 2023Q3, HICP

inflation had declined to between 2% and 3%, coinciding with a negative inflation gap. This

negative inflation gap likely reflects underlying slack in the economy, as evidenced by the neg-

ative output gap shown in the lower panel of Figure 2.

GDP (Potential GDP & Output Gap). Figure 2 shows the pointwise median estimates

of potential GDP and the corresponding output gap over the sample period. Two distinct growth

38See ECB (2021, 2022).
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patterns in potential GDP are evident. (1) Early 1990s to 2005–06: During this phase, po-

tential GDP exhibited robust growth, averaging 0.5% quarter-on-quarter (Q-Q). (2) Post-2007

Slowdown: From 2007 onward, potential GDP growth experienced a marked deceleration, where

the average growth rate declined to 0.24% Q-Q. Even when excluding major crisis episodes such

as the Great Financial Crisis (GFC), the European Sovereign Debt Crisis, and the COVID-19

pandemic, trend GDP growth remained subdued at approximately 0.34% Q-Q. This slowdown

is consistent with the ’secular stagnation’ hypothesis of Ball (2014); Fernández-Villaverde et al.

(2013); Gordon (2014); Summers (2014); Gordon (2015), who document a persistent reduction

in output growth across advanced economies following the mid-2000s.39
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Figure 2. Actual data and estimated trends and cycles of real GDP

Note: Point-wise median (solid black line) with 68% credible bands are based on 150000 draws. Real

GDP is defined in log terms.

During the COVID-19 pandemic, the model suggests that potential GDP remained rela-

tively stable, indicating that the underlying productive capacity was not severely impaired.

One likely explanation for this resilience is the rapid implementation of supportive policies

aimed at mitigating the economic fallout from lockdowns. Several studies (e.g., Bodnár et

al. (2020); Blanchard et al. (2020); Bénassy-Quéré et al. (2020)) highlight the importance of

liquidity support measures—particularly those that temporarily shifted labor costs from firms

to governments—in preventing widespread financial distress and preserving production capac-

ity. By contrast, the lower subfigure shows a sharp decline in the output gap, which reached

–14.7% during the lockdown period. This substantial negative gap reflects the sudden and

severe contraction in economic activity relative to potential. The increase in macroeconomic

39Figure 12 in Appendix C presents the average quarterly growth rate of euro area potential GDP (pointwise
median) using five-year rolling windows. The figure shows a clear and sustained decline in trend growth beginning
after 2005–06. This pattern is consistent with recent evidence documenting a slowdown in long-term U.S. output
growth (see Antolin-Diaz et al. (2017) and Maffei-Faccioli (2025)). The latter study specifically attributes this
deceleration to permanent demand-side shocks that began affecting GDP growth after 2000.
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volatility is also evident in the heightened variability of the output gap, as shown in Figure 26

in Appendix C.40

Finally, Figure 13 in Appendix C illustrates why allowing for time-varying volatility and fat-

tailed shocks matters for estimating unobserved components such as potential output and the

output gap. The figure reports a decomposition of real GDP from a specification that excludes

both stochastic volatility and fat tails. In that homoskedastic model, the pandemic contraction is

mechanically spread across the trend and cyclical components, yielding a less credible separation

between potential output and the output gap. As a result, estimated potential output becomes

more unstable and sensitive to extreme observations.

4.B. Historical Decomposition of euro area Inflation

This subsection presents a historical decomposition of euro area inflation, analyzing the

contributions of structural shocks to both trend inflation—driven by permanent shocks—and

the inflation gap—shaped by transitory shocks.

Permanent factors driving trend inflation. Figure 3 shows the estimated historical

decomposition of the pointwise median of trend inflation—the component labeled as permanent

shocks in Equation 9. The colored bars represent the cumulative contribution of each struc-

tural shock—domestic (both demand and supply), global (demand and supply), and energy

supply—over the period from 1990Q2 to 2024Q1, measured as deviations from the baseline of

1990Q1.41 The pointwise median of trend inflation is plotted alongside these contributions,

offering insight into the evolution of its underlying drivers over time. Figure 15 in Appendix C

presents the same decomposition, with both the structural contributions and the pointwise

median expressed as deviations from 1990Q1.

Over the full sample period, global and domestic factors account for the majority of the

variation in trend inflation, while energy supply shocks play a relatively modest role. However,

the relative importance of these five structural shocks in explaining trend inflation evolves

considerably over time.

In the early and late 1990s, domestic supply-side factors played a central role in driving trend

inflation downward. These negative contributions, alongside more modest negative effects from

domestic demand and global supply and demand shocks, accounted for much of the disinflation

observed during this period.

In the early 2000s, this disinflationary pressure began to moderate, as the negative con-

tributions from domestic and global supply-side factors were offset by a growing influence of

domestic demand shocks and a diminishing negative impact from global demand shocks, follow-

40For example, the estimated stochastic volatility of the euro area output gap successfully captures both
the increase in volatility during the GFC and the spike observed during the COVID-19 crisis, despite being
inferred from a latent variable. This is a notable result, as both the output gap and its volatility are unobserved
components jointly estimated by the model.

41Figure 14 in Appendix C displays the structural shocks affecting changes in the pointwise median of trend
inflation, without accumulation.
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ing a sequence of positive surprises—see Figure 14 in Appendix C. By 2006–07, global demand

shocks were contributing positively to trend inflation. The interaction of these forces resulted

in a prolonged period of stability, with trend inflation anchored around the 2% level.42

Following the 2008 financial crisis, the figure reveals a sequence of negative shocks originating

from both domestic and global sources. Domestic and global demand shocks began to unwind,

exerting downward pressure on trend inflation. Notably, the contribution of global demand

shocks turned negative after 2010. These effects were partially offset by a series of negative

supply shocks, which tended to raise trend inflation. During this period, energy supply shocks

contributed marginally to upward pressure, particularly in response to the sharp increase in oil

prices during 2007–08. Nevertheless, the de-anchoring of trend inflation from 2% to 1% was

primarily driven by a persistent sequence of negative demand-side shocks, as further illustrated

in Figure 4.

In the post-2019 period, the onset of the COVID-19 pandemic led to a rise in trend infla-

tion, primarily driven by supply-side factors—domestic and global—and, to a lesser extent, by

demand-side forces. In the historical decomposition, the contribution of domestic and global

supply shocks becomes rapidly less negative (i.e., the earlier disinflationary supply contribution

unwinds), which mechanically raises the level of trend inflation. At the same time, the previ-

ously negative contribution from global demand shocks that accumulated after the Sovereign

Debt Crisis also begins to reverse following a sequence of positive global demand shocks. These

dynamics are examined in greater detail in Figure 5.
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Figure 3. Estimated historical decomposition of the point-wise median of trend inflation from
1990Q2 to 2024Q1

Note: The black line represents the pointwise median of trend inflation, while the colored bars show the

cumulative contribution of each structural shock—domestic (demand and supply), global (demand and

supply), and energy supply—at time t, measured as deviations from the baseline period of 1990Q1.
42As noted by Borio and Filardo (2007) and Bianchi and Civelli (2015), globalization helped reduce inflationary

pressures in many advanced economies, including the euro area, prior to the GFC.
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The episode of missing inflation in the euro area appears to support explanations that are

primarily demand-driven, involving both domestic and global sources.43 To better understand

the role of demand shocks during this period, Figure 4 presents the cumulative contribution of

structural shocks starting in 2008.44

Trend inflation begins to gradually decline from the 2% level after 2008, largely due to

the increasing impact of negative demand shocks—both domestic and global. This downward

trend accelerates notably after 2013. Although a series of negative global supply shocks exerted

upward pressure on trend inflation in the aftermath of the GFC, the cumulative negative con-

tribution of demand shocks outweighed these supply-side effects. The upward pressure from

global supply shocks can be attributed to higher trade costs, fragmentation, and disruptions

in global value chains following the financial crisis. This supply-side effect partially offset the

disinflationary forces typically associated with globalization (see Bianchi and Civelli (2015);

Auer et al. (2017); Forbes (2019); Ha et al. (2019)).
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Figure 4. Estimated historical decomposition of median trend inflation from 2008 to 2017

Note: The black line represents the pointwise median of trend inflation, while the colored bars show the

cumulative contribution of each structural shock—domestic (demand and supply), global (demand and

supply), and energy supply—at time t, measured as deviations from the baseline period of 2008Q1.

The right panel of Figure 16 in Appendix C shows that demand shocks account for ap-

proximately 60% of the fluctuations in trend inflation during this period. Notably, domestic

demand shocks dominate in the early years, while global demand shocks become the primary

demand driver from 2011 onward. These findings align with narratives in the existing literature

43See IMF (2016, 2017).
44Figure 16 in Appendix C shows, on the left, the historical decomposition of structural shocks and the

pointwise median of trend inflation, with all values expressed as deviations from 2008Q1. The right panel
displays the same decomposition but normalizes the total contribution of shocks to sum to one at each point in
time. This normalization facilitates a clearer visual assessment of which structural shock is contributing most to
the variable of interest—trend inflation in this case—by expressing each contribution in percentage terms rather
than absolute magnitudes, which can vary over time.
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that emphasize the role of demand-side forces in explaining the period of missing inflation (see

Ferroni and Mojon (2014, 2017); Conti et al. (2017); Ciccarelli et al. (2017); Bobeica et al.

(2019)). However, my results underscore that demand shocks primarily affected the persistent

component of inflation, in contrast to the predominantly transitory effects suggested by much

of the previous literature.

The recent period following the COVID-19 economic reopening is characterized by a signif-

icant surge in trend inflation, largely driven by a combination of supply-side shocks—domestic,

and global. Figure 5 illustrates the cumulative contribution of structural shocks beginning in

2019Q4.45

The predominance of supply shocks—particularly domestic supply shocks—is evident during

this period and can be linked to widespread disruptions in both global and domestic supply

chains.46 Interestingly, the sharp rise in global wholesale energy prices following the COVID-19

crisis, and the subsequent escalation triggered by the Russian invasion of Ukraine, does not

appear to have significantly affected the persistent component of inflation.

The role of supply-side drivers in the recent inflation surge is now well-documented. For

example, Ascari et al. (2024a), Arce et al. (2024), and Banbura et al. (2023) emphasize how

persistent supply-chain disruptions, bottlenecks in industrial goods, and shortages of critical in-

puts (e.g., semiconductors) have fueled price pressures in the euro area. In contrast, my frame-

work allocates most of the persistent component of inflation to supply disturbances, whereas in

their models, supply shocks predominantly drive inflation from a purely deterministic compo-

nent—essentially an inflation gap.

The divergence in findings can be partly attributed to differences in model specifications.

When imposing a deterministic trend, slow-moving dynamics are omitted, causing persistent

supply shocks to be absorbed into the cyclical component, making them appear as the dominant

drivers of the inflation gap. In my approach, however, the persistent component is modeled as

stochastic, allowing the inflation gap to be primarily driven by demand shocks, as illustrated in

Figure 6.

To empirically highlight this distinction, I estimate a standard Bayesian VAR model that

identifies the same set of structural shocks as in the main model.47 Figure 29 (Appendix C)

45Figure 17 in Appendix C shows, on the left, the historical decomposition of structural shocks and the
pointwise median of trend inflation, with all values expressed as deviations from 2019Q3. The right panel
displays the same decomposition but normalizes the total contribution of shocks to sum to one at each point in
time. This normalization facilitates a clearer visual assessment of which structural shock is contributing most
to the variable of interest by expressing each contribution in percentage terms rather than absolute magnitudes,
which can vary over time.

46Figure 18 reports the uncertainty surrounding the estimated structural contributors, since 2019Q4.
47All variables listed in Table 1 enter the model in first differences. The prior for the VAR parameters follows

a standard Minnesota prior, with the hyperparameter for overall tightness set to the conventional value of 0.2
(Giannone et al., 2015). However, unlike the standard Minnesota prior, the prior for the “own-lag” parameter is
centered at 0 rather than 1, as all variables are specified as stationary processes. The prior variance is specified
as an uninformative inverse Wishart distribution, centered at a diagonal matrix of the standard deviations of
the error terms from AR(1) regressions for each variable. Degrees of freedom are set to (n + 2), ensuring a
well-defined prior mean. The model estimation is based on 30,000 simulations, with the first 10,000 discarded as
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presents the historical decomposition of inflation under this specification, while Figure 30 (Ap-

pendix C) displays the same decomposition with shocks expressed as relative shares over time.

Under this framework, aggregate supply shocks—including domestic, global, and energy supply

shocks—account for approximately 60% of the variation in inflation relative to its deterministic

component, after 2020.
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Figure 5. Estimated historical decomposition of median trend inflation from 2019 to 2024

Note: The black line represents the pointwise median of trend inflation, while the colored bars show the

cumulative contribution of each structural shock—domestic (demand and supply), global (demand and

supply), and energy supply—at time t, measured as deviations from the baseline period of 2019Q3.

Transitory factors driving inflation-gap. Figure 6 illustrates the estimated historical

decomposition for the point-wise median of the inflation-gap. The colored bars represent the

estimated contribution of each structural shock at each point in time, including domestic shocks

(both demand- and supply-side), global shocks (demand- and supply-side), and energy supply

shocks over the period from 1990Q2 to 2024Q1. The historical decomposition is computed by

drawing from the posterior distribution of all model parameters, constructing the distribution

of the historical decompositions, and then taking the pointwise median contribution of each

shock, as in Bergholt et al. (2024b). This approach ensures that uncertainty in the estimated

VAR parameters is treated symmetrically, as suggested by Bergholt et al. (2024a).

Starting with the GFC, the observed deflation—evidenced by a sustained negative inflation

gap—has been largely driven by global factors and domestic demand. Together, global sup-

ply and demand shocks explain over 60% of the inflation-gap dynamics that underpinned the

post-2007 disinflation. On the supply side, intensified international competition and falling com-

modity and intermediate-goods prices compressed traded-goods inflation; on the demand side,

a synchronized pullback in household and business spending—triggered by financial instability

and tighter credit—further dampened aggregate price pressures (Ciccarelli and Mojon (2010),

burn-in draws. Every 10th draw is saved to mitigate potential autocorrelation across draws.
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Guerrieri et al. (2010), Mumtaz and Surico (2012), Henriksen et al. (2013), and Ferroni and

Mojon (2017)). The relative share of each shock over time is illustrated in Figure 21 (Appendix

C).

The low inflation period from the European Sovereign Debt Crisis through 2015 can be

attributed to a broader set of shocks, initially driven by demand-side factors and later by

supply-side forces, which began to exert a more pronounced effect on the inflation gap. This

period reflects the impact of austerity policies and fiscal tightening measures implemented across

euro area economies. From 2013 to 2015, the significance of domestic supply shocks increased

markedly, accounting for nearly 40% of the variation in the inflation gap, as shown in Figure 21

in Appendix C. This likely reflects constraints in productive capacity and a reduction in public

and private sector spending due to fiscal consolidations within the euro area. The prominent

role of domestic factors during this period is also highlighted by Bobeica and Jarociński (2019).

1990 1995 2000 2005 2010 2015 2020
-0.04

-0.02

0

0.02

0.04

0.06

0.08

D. Supply
D. Demand
Energy
W. Supply
W. Demand

Figure 6. Estimated historical decomposition of the point-wise median of inflation-gap from
1990Q2 to 2024Q1

Note: The black line is the point-wise median of inflation-gap. The colored bars represent the contri-

bution of each structural shock—domestic (demand and supply-side), global (demand and supply-side),

and energy supply shocks—at time t.

The COVID-19 pandemic and its aftermath introduced a notable shift in inflation dynamics.

Model estimates indicate that recent inflationary episodes have been predominantly driven by

transitory factors, which account for approximately 85% of the inflation surge. Specifically,

domestic and global demand shocks are the primary contributors to fluctuations in the inflation

gap, followed by supply shocks (both domestic and global), while energy supply shocks play

a relatively modest role. During this period, demand shocks (domestic and global) explain

roughly 70% of the total variance in the inflation gap, as illustrated in Figure 21 in Appendix C.
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Moreover, as discussed in the following subsection, these strong transitory effects in domestic

demand are also supported by a positive contribution of domestic demand to the output gap.

The demand-driven surge emerged as economies reopened and pandemic-related restrictions

were relaxed beginning in 2021Q2. While the paper does not attempt to further disentangle the

underlying drivers of these aggregate demand effects (domestic and global), plausible contrib-

utors include pent-up consumption, expansive fiscal support (e.g., job-retention schemes), and

accommodative monetary policy—operating at both the domestic and international level.

These findings align with recent research by Giannone and Primiceri (2024), who also identify

demand-driven factors as the primary drivers of post-pandemic inflation in both the euro area

and the United States. At the euro area level, Ascari et al. (2024b) further emphasize the role of

fiscal stimulus, highlighting its substantial impact on domestically-driven measures of inflation.

4.C. Historical Decomposition of euro area GDP

This subsection presents a historical decomposition of the structural sources influencing euro

area potential GDP—driven by permanent shocks—and the output gap—shaped by transitory

shocks.

Permanent factors driving potential GDP. Figure 7 presents the estimated historical

decomposition of the pointwise median of potential GDP, excluding the cumulative contribution

of the drift term c̄. The colored bars represent the cumulative contribution of each structural

shock—domestic (both demand and supply), global (demand and supply), and energy sup-

ply—over the period from 1990Q2 to 2024Q1, expressed as deviations from the baseline period

of 1990Q1. The cumulative contributions are shown on the left axis, while the pointwise median

of potential GDP is expressed in logarithmic terms, on the right axis.48

It is important to note that, in the absence of shocks, potential GDP grows at a constant

rate c̄ (see Equation 2). Accordingly, if no structural shocks occur, the pointwise median of

potential GDP should follow a linear trajectory. Any deviation from this behavior reflects the

influence of shocks to the trend, which generate either positive or negative hysteresis effects.

In other words, the constant growth of potential GDP driven by c̄ can be either accelerated or

decelerated at time t as a result of these shocks.49

In the first part of the sample (pre-GFC), shocks made a positive contribution to potential

GDP growth, with global supply factors playing a dominant role in explaining long-run fluctu-

ations, followed by domestic demand shocks through 2007. Global demand factors also played

an important role, shifting from a sizable negative contribution in the late 1990s to a positive

one by 2006–07, driven by a sequence of positive shocks—see Figure 19 in Appendix C.

48Figure 19 in Appendix C displays the structural shocks affecting changes in the pointwise median of potential
GDP, excluding the drift term c̄.

49For instance, Bluedorn and Leigh (2019) provide evidence of positive hysteresis in 34 advanced economies,
where permanent reductions in unemployment are associated with prolonged periods of economic expansion.
Conversely, Furlanetto et al. (2025) find evidence of negative hysteresis, showing that negative permanent demand
shocks significantly affect the U.S. economy, leading to lasting declines in employment and investment.
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Following the 2008 financial crisis, there is a notable de-accumulation in the contribution of

structural shocks. From 2008 onward, potential GDP growth appears to be sustained almost

entirely by the drift component c̄, until 2022Q4, when the net contribution of shocks turns

slightly positive again—resembling the pre-GFC period. This result helps explain why average

potential GDP growth was stronger during 1990–2007 (0.50% Q-Q) compared to the post-2008

period (0.34% Q-Q), even when excluding the most severe episodes of the GFC, the European

Sovereign Debt Crisis, and the COVID-19 pandemic.

These findings suggest a structural shift in the underlying forces driving potential GDP in

the euro area following the 2008 financial crisis. The pre-GFC period is marked by a steady

accumulation of positive contributions from global supply shocks, domestic demand shocks,

and the drift term c̄, supporting sustained potential GDP growth. In contrast, the post-GFC

period is characterized by a negative accumulation of all shocks—primarily global—which exerts

persistent downward pressure on potential output. In fact, the previously positive contribution

of global demand shocks in 2006–07 turns negative shortly thereafter, reflecting a structural

change in the dynamics of globalization.

This latter result aligns with the theory of the “great trade collapse,” which posits that

the synchronized contraction in global trade in late 2008—driven largely by the postponement

of purchases, particularly of durable consumer and investment goods—resulted in permanent

output losses globally.50

Another factor contributing to the decline in potential GDP is the negative impact of energy

supply shocks following the GFC, which accounted for nearly one percentage point of the total

decline and began to converge toward zero from 2013 onward.51

With the onset of the COVID-19 pandemic, the contribution of global and domestic shocks

continued to decline, with global supply and domestic supply and demand shocks becoming less

influential—particularly the former. In addition, the influence of energy supply shocks increased

after 2021, accounting for approximately half a percentage point of the total decline in potential

GDP. This renewed contribution is tied to the global surge in wholesale energy prices following

the COVID-19 pandemic and the onset of the Russian invasion of Ukraine—see the negative

shocks in 2022Q1–Q2 in Figure 19 in Appendix C.

After 2022Q3, the contribution of global shocks begins to recover, driven in part by a se-

quence of positive global demand shocks that gradually reduce their earlier negative impact.

As a result, the net contribution of shocks to potential GDP turns positive again. Finally,

50For evidence that the collapse was primarily demand-driven, see Baldwin (2009), Levchenko et al. (2010),
Abiad et al. (2014), and Chen et al. (2019). Other studies emphasize the role of global supply-side disruptions,
often in conjunction with global demand shocks—see Alessandria et al. (2010), Chor and Manova (2012), Bems
et al. (2013), and Eaton et al. (2016).

51This timing coincides with the major expansion of oil and gas fracking between 2012 and 2014, during which
global oil prices fell sharply due to the surge in U.S. shale oil production.Between June 2013 and January 2016,
global oil prices declined by approximately 70%. Brent crude oil, which was trading at around $115 per barrel
in mid-2014, fell to about $30 per barrel by early 2016. For more on the effects of fracking on economic growth,
see Hausman and Kellogg (2015) and Gilje et al. (2016).
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consistent with Giannone and Primiceri (2025), the model identifies strong post-pandemic de-

mand; in the decomposition, domestic demand shocks through 2021-2022 and global demand

shocks from 2023 onward contribute positively to the estimated potential GDP. Figure 20 in

Appendix C plots the cumulative contribution of structural shocks and the drift. It shows that

since 2020, domestic and global demand shocks have been the only structural innovations to

drive potential GDP above its underlying drift. Given the observed path of actual GDP, this rise

in estimated potential GDP mechanically implies that the estimated output gap becomes nega-

tive after 2022-2023—a pattern whose structural drivers are examined in detail in the following

subsection.

Contribution Drivers - Potential GDP
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Figure 7. Estimated historical decomposition of the pointwise median of potential GDP, ex-
cluding the cumulative contribution of the drift term c̄, from 1990.Q2 to 2024.Q1

Note: The black line is the point-wise median of potential GDP is expressed in logarithmic terms, on

the right axis. The colored bars show the cumulative contribution of each structural shock—domestic

(demand and supply), global (demand and supply), and energy supply—at time t, measured as deviations

from the baseline period of 1990.Q1.

Transitory factors driving output-gap. Figure 8 illustrates the estimated historical

decomposition for the point-wise median of the output-gap. The colored bars represent the

estimated contribution of each structural shock at each point in time, including domestic shocks

(both demand- and supply-side), global shocks (demand- and supply-side), and energy supply

shocks over the period from 1990Q2 to 2024Q1. The historical decomposition is computed by

drawing from the posterior distribution of all model parameters, constructing the distribution of

the historical decompositions, and then taking the pointwise median contribution of each shock,

as in Bergholt et al. (2024b). This approach ensures that uncertainty in the estimated VAR

parameters is treated symmetrically, as suggested by Bergholt et al. (2024a). va The Financial

Crisis and the European Sovereign Debt Crisis are characterized by distinct factors driving

economic activity during these periods. The sharp contraction in economic activity between
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2008–09 is predominantly explained by global factors, which account for approximately 60%

of the output gap fluctuations; nonetheless, domestic demand also played a significant role in

driving the downturn. In contrast, the downturn between 2012-15 is driven more by domestic

and energy factors, with around 50% of the output gap variation explained by domestic supply

and energy supply shocks. See Figure 22 in Appendix C, which plots the relative importance

of each shock from a historical perspective.

The COVID-19 lockdown resulted in a significant negative output gap, as indicated by the

model estimates. While it is difficult to provide a definitive economic interpretation for the

magnitude of this decline, a tentative explanation can be inferred from the historical decom-

position results. These results suggest that the COVID-19 lockdown shock was multifaceted,

driven by both global and domestic factors.52
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Figure 8. Estimated historical decomposition of the point-wise median of output-gap from
1990.Q2 to 2024.Q1

Note: The black line is the point-wise median of output-gap. The colored bars represent the contribution

of each structural shock—domestic (demand and supply-side), global (demand and supply-side), and

energy supply shocks—at time t.

The subsequent economic rebound following the reopening is predominantly driven by do-

mestic demand factors, accounting for nearly 90% of the recovery.53 This finding supports the

earlier inflation-gap results and underscores that, in the post-reopening period, demand for

goods and services surged. The continuation of the economic recovery after 2023 appears to be

primarily driven by positive domestic supply shocks.

Interestingly, energy supply shocks account for roughly one-third of the negative contri-

52Similar conclusions are drawn in reports from the ECB and the St. Louis Federal Reserve; see Croitorov et
al. (2021), Martin et al. (2022), and Muggenthaler et al. (2021).

53ECB policy, as discussed by De Santis and Stoevsky (2023), provides a similar narrative, emphasizing that
demand-side forces played a crucial role in driving the post-pandemic recovery in economic activity.
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butions to the output gap, beginning with the global surge in wholesale energy prices in the

second half of 2021 and intensifying after the onset of the Russian invasion of Ukraine. This

observation is also consistent with recent findings by Giannone and Primiceri (2024), who, in

their model extensions, identify demand, non-energy supply, and energy supply shocks as key

drivers of output fluctuations.

5. Conclusions

Since the post-COVID economic reopening, euro area inflation has surged to a 40-year high,

raising significant concerns about its underlying drivers. This paper addresses two central ques-

tions: (1) What are the structural channels driving euro area inflation? The analysis disentan-

gles shocks into global and domestic components from both demand and supply perspectives.

(2) Do these structural channels primarily affect the transitory component of inflation—the

inflation gap—or the persistent component—trend inflation? To address these questions, I em-

ploy a novel econometric model that integrates variable decomposition into trends and cycles,

incorporates time-varying second moments, and identifies structural shocks.

The findings provide evidence that both domestic supply shocks and demand shocks (do-

mestic and global) have been the primary drivers of the post-COVID inflation surge. However,

unlike the existing literature, I find that domestic supply shocks primarily feed into the persis-

tent component of euro area inflation, raising trend inflation to 3% by 2022. In contrast, demand

shocks—both domestic and global—manifest primarily in the transitory component (inflation

gap), which accounts for approximately 85% of the total post-COVID increase in inflation.

This approach contrasts with conventional VAR frameworks in which inflation is analyzed

around a deterministic component. In this paper, the corresponding low-frequency component

is instead modeled as a stochastic trend, which allows inflation dynamics to be decomposed into

persistent (trend) and transitory (gap) movements.

Furthermore, the paper underscores the importance of modeling time-varying second mo-

ments (stochastic volatility and fat tails). In a specification that abstracts from these dynam-

ics, the exceptional COVID-19 collapse in real GDP is mechanically spread across the trend

and cyclical components—partly absorbed by potential output and partly by the output gap—

thereby overstating the decline in potential GDP. Additionally, the model estimates a significant

slowdown in euro area potential GDP growth, with quarter-on-quarter growth declining from

an average of 0.50% between the early 1990s and 2005–06 to just 0.24% from 2006 onward. This

deceleration is largely driven by global factors, aligning with theories that suggest a permanent

structural shift in globalization.

While this paper offers a novel benchmark, it does so at the cost of imposing an indepen-

dent trend-cycle decomposition. This assumption may limit the model’s flexibility in capturing

interactions between transitory and permanent shocks. Thus, further work is needed to refine

the econometric framework, particularly in the model decomposition and shock identification

32



scheme. A promising avenue for future research would involve allowing transitory shocks to

transmit to the permanent component while retaining time-varying second moments. For in-

stance, a transitory shock could become more persistent—or even permanent—if it activates

mechanisms within the model that generate sustained economic disruptions.
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A A Gibbs Sampler for a VAR with Common Trends

featuring Stochastic Volatility

The VAR with Common Trends and SV with fat-tails specified in equations 1 through 8 is

estimated using a Gibbs sampler and Metropolis hasting, which involves the following blocks:

1. The first step requires to set up starting values, ϕϵ
ij,t, ϕ

u
ij,t, h

ϵ
i,t, h

u
i,t, δi,t, to form the history

of Σϵ
1:T ,Σ

u
1:T , y1:T . Draws from the joint distribution ȳ0:T , ỹ−p+1:T , λ | vec(A),Σϵ

1:T ,Σ
u
1:T , y1:T , vec(V),

are obtained, which is given by the product of the marginal posterior of λ | vec(A),Σϵ
1:T ,Σ

u
1:T , y1:T , vec(V)

times the distribution of the initial observations ȳ0:T , ỹ−p+1:T | λ, vec(A),Σϵ
1:T ,Σ

u
1:T , y1:T , vec(V).

Where, vec(V) = vec(Du, Dϵ, Gu, Gϵ, κδ). The marginal posterior of λ | vec(A),Σϵ
1:T ,Σ

u
1:T , y1:T , vec(V)

is given by:

p (λ | vec(A),Σϵ
1:T ,Σ

u
1:T , y1:T , vec(V)) ∝ L (y1:T | λ, vec(A),Σϵ

1:T ,Σ
u
1:T , vec(V)) p(λ)

where L (y1:T | λ, vec(A),Σϵ
1:T ,Σ

u
1:T , vec(V)) is the likelihood obtained by using the Kalman Fil-

ter in the state-space model specified in equation (1). Since p (λ | vec(A),Σϵ
1:T ,Σ

u
1:T , y1:T , vec(V))

could feature an unknown form, this step involves a Metropolis-Hastings algorithm. Finally, in

step 1, I use Carter and Kohn (1994)’s simulation smoother to obtain draws for the trend and

cycle components ȳ0:T , ỹ−p+1:T , for given λ, c̄ and vec(A),Σϵ
1:T ,Σ

u
1:T , y1:T , vec(V).

2. The second step is standard to the time-series literature because ȳ0:T , ỹ−p+1:T are given.

2.a To obtain the time-varying elements of Σu
1:T , p (Σu

1:T | ỹ1:T , ȳ1:T , λ, c̄, vec(A),Σϵ
1:T , y1:T , vec(V)),

I follow the algorithm described in Primiceri (2005) and Benati and Mumtaz (2007). (i) Com-

pute the VAR residuals, ût = ỹt − Ā′(j−1)x̃t, where Ā′(j−1) is the previous of these parameters.

Draw the time-varying, ϕu
ij,t, elements of Φu

t using the Carter and Kohn algorithm (conditional

on the previous of these parameters Ā, Hu
t , D

u
1:n). Then the state space formulation for ϕu

ij,t is

derived from the following relationship
1 0 . . . 0

ϕu
21,t 1

. . .
...

...
. . .

. . . 0

ϕu
k1,t . . . ϕu

kk−1,t 1




u1,t

u2,t
...

uk,t

 =


o1,t

o2,t
...

ok,t

 ,

where, VAR(ot) = Hu
t . The state space formulation for ϕu

21,t is

uu2,t = −au21,tu1,t + o2,t, V AR (o2,t) = hu2,t

au21,t = au21,t−1 + V1t, V AR (V1t) = Du
1 .
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The state space formulation for au31,t and au32,t is

u3,t = −au31,tu1,t − au32,tu2,t + o3,t, V AR (o3,t) = hu3,t(
au31,t

au32,t

)
=

(
au31,t−1

au32,t−1

)
+

(
V2t

V3t

)
, V AR

(
V2t

V3t

)
= Du

2 .

The same procedure is applied to obtain the rest of the state space formulations. (ii) Con-

ditional on a draw for (a21,t), (a31,t and a32,t), . . . , (a81,t, . . ., and a87,t) calculate the residuals

(V u
1,t, V

u
2,t, . . . , V

u
8,t). Draw each of Du

i from the inverse Wishart distribution with scale ma-

trix V ′,u
i,t V

u
i,t + (κ + i + 1)

(
ηzD

u
i

)
and degrees of freedom T + κD,u; where i = 1, · · · , (n-1),

κD,u = (κ + i + 1), and κ equals one. (iii) Using the draw of Φu
t calculate ot = Φu

t ut. Notice

that, ot are contemporaneously uncorrelated then drawing hui,t and δi,t can be done separately by

simply applying the independence Metropolis-Hastings algorithm. (iii-A) As in Geweke (1993)

I use the Random Walk Metropolis Hastings Algorithm to draw from the following conditional

distribution:

G(κδ,i|Ψ) ∝
(κδ,i

2

)Tκδ,i
2

Γ
(κδ,i

2

)−T
exp

(
−

(
1

n0
+ 0.5

T∑
t=1

[
ln
(
δ−1
i,t

)
+ δi,t

]
κδ,i

))
.

More specifically, for each of the n equations of the VAR, I draw κnewδ,i = κoldδ,i + c̃1/2ũ with ũ ∼

N(0, 1). The draw is accepted with probability min

(
1,

G(κnew
δ,i |δ̄k)

G(κold
δ,i |δ̄i)

)
, where δ̄i = [δi,1, δi,2, . . . , δi,T ],

with c̃ chosen to keep the acceptance rate around 20-40%. (iii-B) hui,t can be done separately

by simply applying the independence Metropolis-Hastings algorithm conditional on a draw for

gui . This is done using the univariate algorithm by Jacquier et al. (2004). Finally, as discussed

in Cogley and Sargent (2005) draw gui (each diagonal element of Gu), conditional on hui,t, from

inverse Gamma distribution with scale parameter

∑T
t=1

(
lnhui,t − lnhui,t−1

)2
+ gui

2

and degrees of freedom T+κG
2 .

2.b Sampling Σϵ
1:T , p (Σϵ

1:T | ȳ1:T , ỹ1:T , λ, c̄, vec(A),Σu
1:T , y1:T , vec(V)) in the trend equation.

Given the coefficients (c̄) and latent trends (ȳ1:T ), construct the trend innovations ϵ̂t = ȳt − c̄−
ȳt−1. Then sample the time-varying elements of Σϵ

1:T by applying the updating steps as in Step

2.a(i), 2.a(ii), and 2.a(iii-B), replacing the cycle residuals with ϵ̂1:T and setting the dimension

to q.

2.c The posterior distribution of vec(Ā) is given by a Metropolis-Hastings step, as in Del Ne-

gro et al. (2019). In this way, this proposal takes into account the conditional initial observations
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ỹ0:−p+1. The posterior distribution of vec(Ā) is given by

(Σ̄A)−1 = (ΣA
0 )−1 +

T∑
t=1

(
(Σu

t )−1 ⊗ x̃tx̃
′
t

)
,

vec(Ā) = Σ̄A

{
vec

(
T∑
t=1

(Σu
t )−1ỹtx̃

′
t

)
+ (ΣA

0 )−1 vec(A)

}
I(vec(A)),

where x̃t =
(
ỹ′t−1, · · · , ỹ′t−p

)′
collects the VAR regressors. Finally, a MH step is needed to

account for the istribution of ỹ0:−p+1, where the acceptance probability is given by:

αMH = min

{
1,

Num

Den

}
, where

Num =
T∏
t=1

N (ỹ0:−p+1; 0, V (vec(Ā)∗,Σ∗
t )) × I(vec(Ā)∗),

and

Den =
T∏
t=1

N (ỹ0:−p+1; 0, V (vec(Ā)j−1,Σj−1
t )) × I(vec(Ā)j−1),

where vec(Ā)⋆,Σ∗
t are current draws, N (µ, V ) represents the density of the Gaussian distribution

with mean µ and variance V , and vec(Ā)j−1 is the previous draw for these parameters. Repeat

steps from 1 to 2.c M times. The last L draws provide an approximation to the marginal

posterior distributions of the model parameters.

Identification procedure. The identification procedure described in subsection 3.C is

performed using the algorithm of Arias et al. (2018), which consists of the following steps, for

each given draw from the posterior of the reduced-form parameters (permanent side):

Step one. Draw a q x q matrix W from N (0n, Iq) and perform a QR decomposition of W ,

with the diagonal of R normalized to be positive and QϵQϵ′ = Iq.

Step two. Let Sϵ
t be the lower triangular Cholesky decomposition of Σϵ

t and define Bt =

Sϵ
tQ

ϵ′. Compute the candidate (permanent) responses are given by Bt. Check the set of per-

manent responses, if it satisfies all the sign restrictions, store them. If not, discard them and

go back to the first step.

Step three. Repeat steps 1 and 2 until M impulse responses that satisfy the sign restrictions

are obtained. The resulting set characterizes the set of structural VAR models that satisfy the

sign restrictions.

The identification procedure for the transitory side is as follows:

Step one. Draw a n x n matrix W from N (0n, In) and perform a QR decomposition of W ,

with the diagonal of R normalized to be positive and QuQu′ = In.

Step two. Let Su
t be the lower triangular Cholesky decomposition of Σu

t and define Cu
t =
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Su
t Q

u′. Compute the candidate impulse responses as IRFj,t = AjC
u
t , where Aj are the reduced

form impulse responses from the Wold representation, for j = 0, . . . , J . If the set of impulse

responses satisfies all the sign restrictions, store them. If not, discard them and go back to the

first step.

Step three. Repeat steps 1 and 2 until M impulse responses that satisfy the sign restrictions

are obtained. The resulting set characterizes the set of structural VAR models that satisfy the

sign restrictions.
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B Convergence of the Markov chain Monte Carlo algorithm

This appendix assesses convergence of the Markov chain Monte Carlo algorithm in the

baseline application to the euro area data. Following Primiceri (2005), I assess the convergence

of the Markov chain by inspecting the autocorrelation properties of the ergodic distribution’s

draws. In order to judge how well the chain mixes, common practice is to look at the draws’

inefficiency factors (IF) for the posterior estimates of the parameters. Specifically, that is the

inverse of the relative numerical efficiency measure of Geweke et al. (1991), i.e., the IF is an

estimate of (1 + 2
∑∞

i=1 ρi), where ρi is the i-th autocorrelation of the chain. In this application

the estimate is performed using a Parzen window.54 Values of the IFs below or around 20 are

regarded as satisfactory, as stressed by Primiceri (2005). Figure 9 plots a complete description

of the characteristics of the chain for the different sets of parameters. All the IFs are around or

even below 20. Dϵ, Du, Gϵ, Gu: elements of the covariance matrix of the model’s innovations;

Hϵ,t, Hu,t: time varying volatilities from the permanent and transitory side; Φϵ,t,Φu,t: time

varying simultaneous relations; κδ: degrees of freedom for the Student’s t-distribution; A:

time-invariant autoregressive coefficients; Λ: time-invariant cointegrating coefficients; c̄: time-

invariant drifts.

54For inefficiency factors, see Section 6.1 of Giordani et al. (2011).
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Figure 9. Summary of the distribution of the Inefficiency Factors for different sets of parameters
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C Tables and Figures

Table 5. Johansen Cointegration Rank Test Results

NH (H0) AH (H1) Statistic Critical Value p-value Decision (5%)

r = 0 r ≥ 1 55.6178 35.1929 0.0010 Reject H0

r ≤ 1 r ≥ 2 24.4643 20.2619 0.0126 Reject H0

r ≤ 2 r = 3 7.8494 9.1644 0.0883 Fail to reject H0

Notes: The trace statistic is used with 5% significance. Model contains intercepts in cointegrating
relations, no deterministic trends, and 4 lags are applied. Rejection of H0 indicates evidence for the
alternative hypothesis. Variables: EA HICP Inflation, Price Trends next 12 months, and Unit Labor
Cost Index.

Table 6. Augmented Dickey-Fuller Test Results

Variable Test Statistic Critical Value p-value Decision (5%)

Unemployment Rate 0.6061 -1.9422 0.8465 Fail to reject H0

∆ Unemployment Rate -5.9314 -1.9422 0.0010 Reject H0

Notes: The ADF test is conducted with an AR model and 0 lags. The null hypothesis H0 is that the
series has a unit root (non-stationary). A 5% significance level is used.
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Figure 10. Prior and posterior of Λ

Note: Prior and posteriors distributions of the coefficients λ1 and λ2 in Λ
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Figure 11. Market inflation swaps: 5, 10 and 20 year and median trend inflation

Note: Source of inflation swaps: Refinitiv.
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Figure 12. Average quarterly growth rate over five-year rolling windows

Note: Average quarterly growth rate of EA Potential GDP Point-wise median over five-year rolling

windows.
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Figure 13. Actual data and estimated trends and cycles of real GDP in a model without
Stochastic Volatility

Note: Point-wise median (solid black line) with 68% credible bands. Real GDP is defined in log terms.

The model is estimated using the same priors but without the feature of Stochastic Volatility in both

the permanent and transitory sides.
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Figure 14. Estimated structural shocks of the point-wise median change of trend inflation from
1990Q2 to 2024Q1

Note: Colored bars depict the structural shocks —domestic (demand- and supply-side), global (demand-

and supply-side), and energy supply— affecting the changes in the point-wise median of trend inflation,

at time t.
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Contribution Drivers - Trend Inflation
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Figure 15. Estimated historical decomposition of the point-wise median of trend inflation from
1990Q2 to 2024Q1

Note: Both the black line, representing the point-wise median of trend inflation, and the colored bars,

depicting the cumulative contribution of each structural shock—domestic (demand- and supply-side),

global (demand- and supply-side), and energy supply—at time t, are expressed as deviations from the

baseline period of 1990Q1.
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Figure 16. (Left) Estimated historical decomposition of the point-wise median of trend inflation
(2008–2017). (Right) Relative percentage shares of structural shocks over the same period

Note: Left: The black line shows the point-wise median of trend inflation, and the colored bars show

the cumulative contributions of each structural shock (domestic supply, domestic demand, global supply,

global demand, and energy supply) at each date (t), all expressed as deviations from the 2008 Q1 baseline.

Right: At each date, the shares are computed using a variance-decomposition–style normalization, so

they sum to 100%, showing each shock’s percentage share of the total change in trend inflation.
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Figure 17. (Left) Estimated historical decomposition of the point-wise median of trend inflation
(2020 to 2024). (Right) Relative percentage shares of structural shocks over the same period

Note: Left: The black line shows the point-wise median of trend inflation, and the colored bars show

the cumulative contributions of each structural shock (domestic supply, domestic demand, global supply,

global demand, and energy supply) at each date (t), all expressed as deviations from the 2019Q3 baseline.

Right: At each date, the shares are computed using a variance-decomposition–style normalization, so

they sum to 100%, showing each shock’s percentage share of the total change in trend inflation.

Jan 2020 Jan 2021 Jan 2022 Jan 2023 Jan 2024
0

5

10

15
10-3 Domestic Supply Shocks

Jan 2020 Jan 2021 Jan 2022 Jan 2023 Jan 2024
-5

0

5

10
10-3 Domestic Demand Shocks

Jan 2020 Jan 2021 Jan 2022 Jan 2023 Jan 2024
-1

-0.5

0

0.5

1

1.5
10-3 Energy Supply Shocks

Jan 2020 Jan 2021 Jan 2022 Jan 2023 Jan 2024
-2

0

2

4

6

8
10-3 Global Supply Shocks

Jan 2020 Jan 2021 Jan 2022 Jan 2023 Jan 2024
-1

0

1

2

3

4
10-3 Global Demand Shocks

16-84%
50%

Figure 18. Posterior uncertainty for the estimated historical decomposition of trend inflation
from 2020 to 2024

Note: The colored lines depict the cumulative contribution of each structural shock—domestic (demand-

and supply-side), global (demand- and supply-side), and energy supply—at time t, expressed as de-

viations from the baseline period of 2019Q3. The colored blue lines represent the point-wise median

contribution of each structural shock, while red lines represent the associated 68% confidence set.
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Figure 19. Estimated structural shocks of the point-wise median change of potential GDP,
discounting the drift c̄, from 1990Q2 to 2024Q1

Note: Colored bars depict the structural shocks —domestic (demand- and supply-side), global (demand-

and supply-side), and energy supply— affecting the changes in the point-wise median of potential GDP,

discounting the drift c̄, at time t.
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Figure 20. Cummulative contribution of the estimated drift and structural shocks of the point-
wise median of potential GDP, from 2020Q1 to 2024Q1

Note: Colored bars depict the cumulative contribution at each date of the drift and structural shocks

—domestic (demand- and supply-side), global (demand- and supply-side), and energy supply— affecting

the point-wise median of potential GDP.
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Figure 21. Relative shares of structural shocks for the historical decomposition of inflation-gap
(point-wise median) over 1990Q2-2024Q1

Note: Colored areas show the percentage share of each structural shock—domestic supply, domestic de-

mand, global supply, global demand, and energy supply—in the historical decomposition of the inflation-

gap. At each date, the shares are computed using a variance-decomposition–style normalization, so they

sum to 100%, highlighting each shock’s relative importance.
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Figure 22. Relative shares of structural shocks for the historical decomposition of output-gap
(point-wise median) over 1990Q2-2024Q1

Note: Colored areas show the percentage share of each structural shock—domestic supply, domestic

demand, global supply, global demand, and energy supply—in the historical decomposition of the output-

gap. At each date, the shares are computed using a variance-decomposition–style normalization, so they

sum to 100%, highlighting each shock’s relative importance.
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Figure 23. Actual data and estimated trends

Note: Point-wise median (solid black line) with 68% credible bands are based on 150000 draws. Variables

are defined as in Table 1 and 2.
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Figure 24. Actual data and estimated cycles

Note: Point-wise median (solid black line) with 68% credible bands are based on 150000 draws. Variables

are defined as in Table 1 and 2.
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Figure 25. The posterior density of degrees of freedom (DOF) of each residual.

Note: The blue bars represent the frequency distribution of the DOF parameters from the

model..
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Figure 26. Stochastic volatility. The solid black lines are the posterior medians of the residual
time-varing variances permanent (first five) and transitory (last nine), with 68% credible bands
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Figure 27. Prior and Posterior Densities of the Coefficients of Gϵ
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Figure 28. Prior and Posterior Densities of the Coefficients of Gu
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Figure 29. Historical decomposition of the point-wise median of inflation in deviations from
its persistent component from 1991Q2 to 2024Q1. Estimated with a standard Bayesian VAR
model

Note: The black line is the point-wise median of inflation in deviations from its persistent component.

The colored bars represent the contribution of each structural shock—domestic (demand and supply-

side), global (demand and supply-side), and energy supply—at time t.
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Figure 30. Relative shares of structural shocks for the historical decomposition of inflation-gap
(point-wise median) over 1991Q2-2024Q1. Estimated with a standard Bayesian VAR model

Note: Colored areas show the percentage share of aggregate supply shocks—including domestic, global,

and energy supply shocks—and aggregate demand shocks—including domestic, and global demand

shocks—in the historical decomposition of the inflation in deviations from its persistent component.

At each date, the shares are computed using a variance-decomposition–style normalization, so they sum

to 100%, highlighting each shock’s relative importance.
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Álvarez, Luis J and Mónica Correa-López, “Inflation expectations in euro area Phillips

curves,” Economics Letters, 2020, 195, 109449.

Antolin-Diaz, Juan, Thomas Drechsel, and Ivan Petrella, “Tracking the slowdown in

long-run GDP growth,” Review of Economics and Statistics, 2017, 99 (2), 343–356.

Arce, Oscar, Matteo Ciccarelli, Antoine Kornprobst, and Carlos Montes-Galdón,

“What caused the euro area post-pandemic inflation?,” ECB Occasional Paper, 2024,

(2024/343).

Arias, Jonas E, Juan F Rubio-Ramı́rez, and Daniel F Waggoner, “Inference based

on structural vector autoregressions identified with sign and zero restrictions: Theory and

applications,” Econometrica, 2018, 86 (2), 685–720.

Arias, Jonas, Juan F Rubio-Ramirez, and Daniel F Waggoner, “Uniform priors for

impulse responses,” 2023.

Ascari, Guido and Luca Fosso, “The international dimension of trend inflation,” Journal

of International Economics, 2024, 148, 103896.

, Dennis Bonam, and Andra Smadu, “Global supply chain pressures, inflation, and

implications for monetary policy,” Journal of International Money and Finance, 2024, 142,

103029.

, , Lorenzo Mori, and Andra Smadu, “Fiscal Policy and Inflation in the Euro Area,”

2024.

, Paolo Bonomolo, Marco Hoeberichts, and Riccardo Trezzi, The euro area great

inflation surge, De Nederlandsche Bank nv, 2023.

Auer, Raphael, Claudio EV Borio, and Andrew J Filardo, “The globalisation of infla-

tion: the growing importance of global value chains,” 2017.

Baldwin, Richard E, The great trade collapse: Causes, consequences and prospects, Cepr,

2009.

52



Ball, Laurence, “Long-term damage from the Great Recession in OECD countries,” European

Journal of Economics and Economic Policies, 2014, 11 (2), 149–160.

Banbura, Marta, Elena Bobeica, and Catalina Mart́ınez Hernández, “What drives

core inflation? The role of supply shocks,” 2023.

Barbarino, Alessandro, Travis J Berge, Han Chen, and Andrea Stella, “Which output

gap estimates are stable in real time and why?,” 2020.

Baumeister, Christiane and James D Hamilton, “Sign restrictions, structural vector

autoregressions, and useful prior information,” Econometrica, 2015, 83 (5), 1963–1999.

Bems, Rudolfs, Robert C Johnson, and Kei-Mu Yi, “The great trade collapse,” Annu.

Rev. Econ., 2013, 5 (1), 375–400.
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Maffei-Faccioli, Nicolò, “Identifying the sources of the slowdown in growth: Demand versus

supply,” Journal of Applied Econometrics, 2025.

Martin, Fernando M, Juan M Sánchez, and Olivia Wilkinson, “The economic impact

of COVID-19 around the world,” FRB St. Louis Working Paper, 2022, (2022-30).
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