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Abstract

The paper presents two risk-based capital frameworks for systemically important 
European life insurers by drawing a distinction between solvency risk and systemic risk. 
Solvency risk arises when the value of a life insurer’s assets falls below some threshold 
proportion of its liabilities. To assess solvency risk we implement the Merton-Vasicek 
portfolio credit risk model and determine capital adequacy of life insurers that correspond 
to a value-at-risk measure. We measure systemic risk as the expected capital shortfall of 
an insurer conditional on the overall European life insurance sector being in distress. Our 
results show that European life insurers have been growing in systemic risk exposure since 
2007 and suggest that regulatory capital requirements should account for this. We also 
find evidence of interconnectedness between systemically important banks and insurance 
companies, as measured by the transmission of volatility shocks, which increased during 
periods of financial stress.
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1 Introduction

Life insurance companies' business models are exposed to a variety of risks on both sides of the balance

sheet. The value of assets of a life insurer could decrease following a deterioration in �nancial market

conditions. The value of liabilities could increase if a prolonged period of low interest rates increases

their present value. Solvency risk arises when a life insurer's assets become less valuable than its

liabilities. Given the long contractual horizon of life insurers policies, they are not liquid in the same

way as bank deposits. To ensure that life insurers can meet future payments as they occur, they

are required to keep certain assets as reserves, typically in the form of �xed-income securities such

as government or corporate bonds. However, life insurers liabilities typically have a longer maturity

pro�le than that of the �xed income assets held to meet those obligations, implying a negative duration

gap that �uctuates with movements in long-term interest rates.

Insurers are traditionally considered as long-term investors as they typically hold assets until ma-

turity. It has been argued that insurance companies have much longer-term assets and less liquid

liabilities which make them less susceptible to runs on their liabilities of the type that a�ected banks,

during the global �nancial crisis (GFC) of 2008-2009, or open-ended mutual funds during the shock

from the COVID pandemic in March 2020. The argument rests on the view that traditional life in-

surance can eliminate risks through diversi�cation and asset-liability matching (ALM), and therefore,

not generate risks of a systemic nature. However, this observation would not hold for more complex

hedging arrangements, and the broadening scale and scope of credit investments that life insurers have

undertaken in recent years. In such a situation, insurance regulation should incorporate a systemic

element in the assessment of capital requirements.

The de�nition of a systemically important �nancial institution (SIFI) related to its size, inter-

connectedness and lack of substitutability has been applied to insurers. In 2013, the International

Association of Insurance Supervisors (IAIS (2011)) published a methodology for identifying global

systemically important insurers (G-SIIs), on the basis of which, the Financial Stability Board (FSB)

brought out a list of G-IIs (FSB (2013)). Systemic risk may rise from insurers' collective activities and

exposures sectorwide, as well as the distress or failure of individual insurers. This was recognised in

the Holistic Framework for Systemic Risk in the Insurance Sector ((IAIS (2019)).

Against this background, we aim to contribute to a more informed assessment of risk-based capital

by an empirical assessment of the systemic importance of 6 European life insurers (Aviva, Legal &

General, Prudential, AXA, Allianz SE and Assicurazioni Generali), which include both UK and EU

insurers classi�ed as G-IIs. To the best of our knowledge we are the �rst paper to provide an empirical

analysis of both solvency and systemic risk in the European life insurance sector. To determine capital

adequacy for addressing solvency risk, we implement an augmented version of the Merton-Vasicek

portfolio credit risk model (Vasicek (2002)). The model postulates that an insurer defaults when the

value of its assets falls below some threshold. Standard solvency regulation is centred around the

tail risk of an individual institution's asset returns captured by their value-at-risk (VaR). Systemic

risk is more concerned with the correlation that exists between the tails of asset returns of individual

institutions within the �nancial system.

The empirical �nance literature contains a number of market-based systemic risk measures which

di�er in terms of their scope and application. In this section we implement the SRISK methodology,
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developed by Acharya et al. (2012) and Brownlees and Engle (2017), for our sample of European

life insurers. The objective of the SRISK methodology is to measure the capital shortfall a �nancial

institution is expected to experience conditional on a systemic event. Di�erent de�nitions of a systemic

event can be adopted. In this study we de�ne it as the occurrence of losses in the tail of the STOXX

Euro 600 Insurance index above a particular threshold.

Our results show that European life insurers have been growing in systemic risk exposure since 2007.

Systemic risk in the European life insurance sector peaked during the GFC in 2008-2009; the Eurozone

sovereign debt crisis in 2010-2012; and the asset price shock during the onset of the COVID pandemic

in 2020. During the global �nancial crisis in 2008-2009 and the COVID pandemic in 2020, both the

Bank of England (BoE) and the European Central Bank (ECB) lowered policy rates e�ectively to the

zero lower bound (ZLB) and conducted quantitative easing programmes that involved the purchase of

large volumes of government and corporate bonds. These unconventional monetary policies compressed

interest rates even further, and for a long time, giving rise to a period now referred to as the �low-for-

long� era. In the face of ultra low policy rates, of less than 1 percent, life insurers' ventured into risky

and less liquid asset classes in a search for yield. The �nancial turmoil in March 2020 resulting in the

extreme `dash for cash', led non-bank investors to sell o� safe assets, including government bonds, to

raise cash. Open-ended corporate bond and equity funds recorded signi�cant out�ows. The UK life

insurers, also experienced a rise in systemic risk in late September and early October 2022, when highly

leveraged liability-driven investment (LDI) strategies of pension funds caused severe repricing of UK

�nancial assets, particularly a�ecting long-dated UK government bonds. From mid-2023 systemic risk

in the European life insurance sector, as a whole, has trended downwards. But it remains non-trivial

and there are sign�cant variations in levels of systemic risk across institutions.

Life insurers have traditionally managed interest rate risk, through e�cient ALM strategies. This

has typically involved matching the duration of their assets, which used to be predominantly bonds,

and liabilities to immunise their �nancial reserves and equity from interest rate �uctuations. Since

2016 there has been a diversi�cation out of bonds into alternative investments largely driven by a

narrowing of spreads of investment grade bonds over risk-free rates.

Notwithstanding the di�erent business models of banks and insurers, we �nd common variation in

their systemic risk, which rises during periods of �nancial stress. For further evidence of co-movement,

we estimate using principal components analysis (PCA), that a single factor explains 77 percent of

the common variation in bank and insurance sector systemic risk. The method suggested by Diebold-

Yilmaz (Diebold and Yilmaz (2012)) is used to quantify interactions between the European bank and

life insurance sectors, also termed �spillovers�. The empirical results show the existence of spillovers,

with time-varying intensity that peak during periods of �nancial stress.

The rest of the paper is organised as follows: Section 2 provides a brief survey of the literature.

Section 3 describes the Merton-Vasicek portfolio credit risk model. Section 4 describes the data used

for the estimation. Section 5 shows how the empirical results from the model are used to determine

solvency capital levels. Section 6 examines the asset allocation of European life insurers. Section 7

estimates systemic risk capital levels using the SRISK measure. Section 8 analyses the co-movement

of systemic risk in European bank and life insurance sectors. Section 9 measures volatility spillovers

between the bank and insurance sectors. Section 10 concludes.
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2 Related Literature

Structural modelling of the risk of ruin has a strong tradition in actuarial science, dating back to

Lundberg in 1903 (Braunsteins and Mandjes (2023)). The Vasicek model (Vasicek (2002)), which is

based on the Merton (1974) structural model of �rm default has been used to model insurance failure

and to value the liabilities of insurance guarantee schemes. Shaked (1985) used the Merton model to

assess the probability of default of US life insurers. He treated liabilities as growing deterministically,

with life insurers more exposed to asset risks than non-life insurers. Cummins (1988) also applied the

Merton model to value insurance guarantee scheme liabilities.

Douglas et al. (2017) use a structural model of insurer's balance sheets to estimate how Solvency

II regulations might a�ect UK life insurers' incentives to hold di�erent types of �nancial assets. They

�nd that while Solvency II may partly protect insurers' solvency positions from falls in risky asset

prices, the new regulations might encourage certain types of UK Life insurers to de-risk - that is, move

to hold safe assets instead of risky - following falls in risk-free interest rates witnessed at the time.

Research has used data on actual failures of insurance companies, examining the factors that

increase the likelihood of them. de Bandt and Overton (2022) examined the causes of failure of life

insurance and non-life insurance �rms in France, Japan, UK and US, over the period 1986-2006. They

concluded that for life insurers a key cause of failure was default of bond instruments. Non-life insurers

were more likely to fail because of low pro�tability or ine�ciency. Duan and Liang (2022) estimated

the probability of failure for insurance companies from the US, Canada and France, over the period

2008-2021, using common macro variables, and �rm speci�c variables (liquidity, pro�tability, debt and

size). They found that higher debt levels increase the likelihood of failure.

Research has estimated the sectoral losses, or sectoral capital shortfall, that might be experienced

in the event of one or more insurance company failures to assess the value of liabilities for insurance

guarantee schemes. The Joint Research Council of the European Commission (2021) used the Vasicek

(2002) model of credit risk to calculate the expected cost of an insurance guarantee, and its VaR,

for European life and non-life insurance sectors, from 2016-2018. Their modelling treated insurance

sectors as a portfolio of investments, from the perspective of the insurance guarantee scheme. Our

study follows a variant of this approach by viewing the European life insurance sector as portfolio

of individual life insurers. We also augment the Vasicek (2002) model by incorporating the capital

asset pricing model (CAPM) that enables greater market-sensitivity when assessing the default risk of

individual insurers.

Research has applied the methodology for measuring systemic risks, to the insurance sector, de-

veloped after the GFC. Acharya and Richardson (2014) have argued that given the degree to which

some insurers have shifted away from their traditional business model, the insurance sector does pose

a systemic risk. Cummins and Weiss (2014) observed that insurers' noncore business activities inter-

connect insurers more closely with �nancial markets. The authors identify reinsurance as one of the

primary factors driving systemic risk in the insurance industry. This is particularly relevant for the

UK where rapid growth of the primary bulk purchase annuity business has led to increased demand

for reinsurance.

Jobst (2014) provides a review of the regulatory e�orts in de�ning systemic risk in the insurance

sector and the designation of systemically important insurers. Bobtche� et al. (2016) describe how
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insurance companies create systemic risk through their nontraditional activities and provide an indepth

comparison between the insurance and banking industry. As in our study, Bobtche� et al. (2016)

stress the importance of di�erentiating traditional solvency risk from systemic risk. Gómez and Ponce

(2018) provide a framework for the macroprudential regulation of insurance companies, where capital

requirements increase in their contribution to systemic risk. They show that insurers exhibited a

�ight to quality during the European sovereign debt crisis and also engaged in procyclical investment

behaviour through the sale of southern European assets.

Recent work has analysed how the era of exceptionally low interest rates, from the aftermath of

the GFC until 2021, posed signi�cant challenges to the traditional business model of life insurers. By

examining the maturity pro�le of government holdings of the insurance sector in Germany, Domanski

et al. (2017) show how portfolio adjustments by long-term investors aimed at containing duration

mismatches may have acted as an ampli�caton mechanism in the process. Brinkho� and Sole (2022)

estimate that the search for yield accounted for about one-third of the total deterioration in credit

quality of European life insurers' portfolios from 2005 to 2021. In the context of the UK, Giese et

al. (2021) �nd that institutional investors like life insurers, with large UK government bond holdings

(gilts), are less sensitive to price movements than other investor groups and exhibit preferred habitat

behaviour. Fay and Ghiselli (2023) investigate European SII insurers' response to the asset price shock

of the Covid-19 pandemic and assess cyclical investment behaviour. The authors' demonstrate that the

insurers are active and not buy-and-hold investors, given that they rebalance their portfolios during

the shock in the �rst quarter of 2020. Farkas et al. (2023a) show that the underperformance of life

insurance companies' stock prices continued even after interest rates soared in 2022 and 2023. They

attribute this to the level and shape of the yield curve pulling in opposite directions following by the

inversion of the yield curve in late 2022. Garavito et al. (2024) show how the migration of risks from

life insurers' balance sheets and the increasing involvement of private equity �rms have sustained the

sector's growth and relieved capital constraints.

With insurance companies having grown in size and interconnectedness with banks, there is an

expanding literature on assessing the degree of interconnectedness. Using Granger causality analysis,

Nyholm (2012) observed that equity-return tail losses of insurers and banks are of similar magnitudes

and that �nancial equity markets of Europe do not di�erentiate their trading of banks and insurance

companies in periods of stress. Malik and Xu (2017) �nd evidence of interconnectedness between the

banking and insurance sectors based on a global sample of systemically important banks and insurance

companies. Gehrig and Iannino (2018) �nd a similar pattern of interconnectness in a large sample of

European banks and insurance companies. Both these papers analyse systemic risk using the SRISK

measure on which our analysis is also based. Our assessment of the comovement of bank and insurance

sector systemic risk are consistent with their �ndings. Kaserer and Klein (2019) use CDS spreads to

analyse systemic risk in insurance relative to banking within the context of a global �nancial system

comprising 147 banks and 54 insurers. Their results a�rm that some insurers are systemic and that

overall, multi-line and life insurers tend to show the highest levels of systemic risk.
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3 Modelling framework for solvency risk

This section describes the modelling framework used to assess solvency risk in the UK life insurance

sector. We analyse solvency risk in terms of losses to insurers' creditors, policy holders and investors.

The insurance sector is set within the framework of a structural model for portfolio credit risk. The

insurance sector comprises a portfolio of individual insurers i = 1,2,...n.

We follow Vasicek (2002) and apply to a �rm's asset values the basic structural credit risk model,

attributed to Merton (1974), where the market value of a �rm's assets evolve according to a Geometric

Brownian Motion (GBM). This is expressed as a stochastic di�erential equation (1),

dA = µAdt+ σAdW (1)

where A is the value of the �rm's assets, µ is the expected growth rate of the �rm's asset value, σ

is the asset volatility and W stands for a standard Brownian motion. Structural credit risk models

view a �rm's liabilities as �contingent claims� on the �rm's underlying assets. The basic premise

underlying structural models is that default occurs if the value of the assets (A) falls below a critical

value associated with the �rm's liabilities (D) that is due at some point in the future (T ). In this

study, we assume a time horizon T of 1 year. Solving the stochastic di�erential equation (1), we can

obtain the value of the �rm's assets at time t as:

At = A0exp

{(
µ− 1

2
σ2

)
t+ σW

}
(2)

where A0 is the asset value at time zero. It follows from the GBM assumption that the annual log

asset value is normally distributed.

Xt = log
At
A0

=

(
µ− 1

2
σ2

)
t+ σW (3)

and Xt is a normally distributed random variable.

Xt ∼ N(µ, σ2). (4)

To estimate the default probability we are interested in the likelihood that the �rm's asset value

A falls below its default point D, in the next year, i.e. P (logA<logD). Denoting logA = X and

logD = L, default for the �rm i occurs when

Xi ≤ Li = N−1 (pd) (5)

where pd is the probability of default, Li is the log of the default point. N (.) is the cumulative normal

distribution function and N−1 is the inverse of N .

The main feature of the Vasicek version of the Merton model is the introduction of dependence on

a common factor in driving process of value when considering a portfolio of institutions which, in this

case, are life insurers. The simplest set-up for this model is obtained by considering a single normally

distributed common factor and a single correlation coe�cient ρ for all insurers in the portfolio. Under

this assumption the value of assets of any insurer can be seen as being driven by a combination of a
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common factor St and an idiosyncratic factor Zit. The asset value of the i-th insurer at time t is given

by:

Xit = St
√
ρ+ Zit

√
1− ρ (6)

where St ∼ N (0, 1) and Zt ∼ N (0, 1). Here Xit and Zit are mutually independent standard normal

variables.

The Vasicek model can be interpreted in the context of a trigger mechanism that is useful for

modelling credit risk. A simple threshold condition determines whether insurer i defaults or not.

Integrating over S in equation (6) we denote the unconditional probability of default by pd :

P (Xi < L) = N−1 (L) = pd (7)

The probability of default conditional on St can be written as:

P (Xi < L|S) = P
(
S
√
ρ+ Zi

√
1− ρ < L|S

)
= P

(
Zi <

L− S√ρ
√

1− ρ
|S
)

(8)

It follows that the probability of default conditional on S, denoted as PD (S) = P (Xi < L|S) can

be rewritten as:

PD (S) = N

(
N−1 (pd)− S√ρ

√
1− ρ

)
(9)

In order to obtain the loss distribution function for the portfolio, we consider:

PD (S) = P (Fi = 1|S) (10)

where Fi is a random variable equal to 1 if the insurer defaults and 0 otherwise. The total loss on the

portfolio, expressed as a share between 0 and 1 (i.e. 0% to 100%), can be obtained as:

F =

n∑
i=1

Fi/n (11)

Conditional on the value of S, the random variables Fi are independent equally distributed variables

with �nite variance. Applying the law of large numbers, the loss of the whole portfolio conditional on

S converges to its expectation PD (S) as n goes to in�nity. This can be expressed as:

P (F ≤ x) = P

(
n∑
i=1

Fi/n ≤ x

)
= P (PD (S) ≤ x)

The probability that a loss smaller than x% will be incurred in a large portfolio can be written as:

P (F ≤ x) = N

(√
1− ρN−1 (x)N−1 (ρ)

√
ρ

)
(12)

Inverting this formula provides, for each probability α, the corresponding VaR x loss which is not

going to be exceeded with probability α:
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α = P (F ≤ V aRα)⇔ V aRα = N

(√
ρN−1 (α) +N−1 (ρ)

√
1− ρ

)
(13)

This gives the loss in percentage terms. The expected loss can be obtained by multiplying this

share by the Exposure-at-default (EAD) and the asset shortfall (LGD). The speci�cation of the VaR

in equation (13) is based on the assumption that the portfolio is equally distributed and that the law

of large numbers can be applied.

Theoretically, insurer-invariant risk weights can be used to limit the probability that losses exceed

total capital provided two assumptions are met. First, insurers must be `asymptotically �ne-grained,'

which means that each insurer must be of negligible size. Second, one must make an `asymptotic

single risk factor' (ASRF) assumption (Gordy (2003)). The ASRF assumption means that while every

insurer is exposed to idiosyncratic risk, there is only one source of common shocks. One may think

of the ASRF as representing aggregate macro�nancial conditions. Each insurer may have a di�erent

correlation with the ASRF, but correlations between insurers are only driven by their link to that

single factor.

The asymptotically �ne-grained assumption would treat the insurance sector as being made of an

in�nite number of negligible players. In practice, however, the insurance sector may be characterised

as being lumpy and made up a few dominant companies. This lumpiness e�ectively decreases the

diversi�cation of the portfolio of insurers, thereby increasing the variance of the loss distribution.

So to keep the same probability of containing losses, more capital is needed for a sector with a few

dominant companies than for an asymptotically �ne-grained one.

Vasicek (2002) proposes an adjustment to take into consideration the market granularity of insur-

ance companies. He proposes replacing ρ by ρ+ δ (1− ρ), where δ is the quadratic sum of the weights

and the weights are de�ned as the ratio of the size of each insurance company to the total market size.

The Vasicek model may be characterised as an Asymptotic Single Risk Factor (ASRF) model with

a granularity adjustment.

V aRα = EAD ∗ LGD ∗N

(
N−1(PD)−

√
ρ+ δ (1− ρ)N−1 (1− α)√

(1− ρ− δ (1− ρ))

)
(14)

The value-at-risk (VaR) estimated by equation (14) represents the basis for the computation of

insurer capital requirements. Standard solvency regulation is centred around the tail risk of individual

institutions' asset returns as captured by their VaR. However, regulation of SIFIs would need to

consider the correlation between the tails in the distribution of asset returns of di�erent institutions.

These correlations are time-varying and increase in magnitude during periods of heightened �nancial

stress. The criticisms of the VaR measure are based on its perceived inability to curtail the risk-taking

behaviour of �nancial institutions and, further that it could not ensure adequate capital bu�ers to

prevent the propagation of systemic risk.

A single factor model cannot, by de�nition, capture any clustering of institution-speci�c default

risk due to common sensitivity of these components to global factors. Accounting for systemic risk

enables the recognition of time-varying conditional correlations between the �nancial system's returns

and individual institution's returns.
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4 Data

The portfolio credit-risk model is calibrated using market information and balance sheet data of six

global systemically important European life insurers - Allianz SE, Aviva, the AXA Group, Assicurazioni

Generali SpA, Legal & General and Prudential plc. These 6 institutions are taken to be a representation

of the European life insurance sector. In 2019, the 6 insurers had total assets of ¿3.4 trillion. Their

assets amounted to 28% of those of the largest 25 life insurers in the world, according to AM Best,1

and 70% of those of the European companies within the world top 25.

For these 6 institutions, daily market equity data and annual balance sheet data on total liabilities

and total assets have been sourced from LSEG Workspace. The combined panel dataset comprises

observations for each insurer from January 2005 to December 2024. 2Our measure of the risk-free rate

of interest is the spot yield on 1-year UK government bonds.3 Daily 1-year spot yields are sourced

from the estimated yield curves for the UK published by the Bank of England.

Based on the time series of the insurers' observed equity prices, the risk-free rate and debt levels,

the di�usion process given by equation (1) is used to back out a corresponding series of each insurer's

implied asset values as shown in equation (2). In structural credit risk models, default risk is inherently

dependent on the time horizon. These models de�ne default as a �rm's asset value falling below a

certain threshold level of liabilities, and the timing of this event depends on the chosen time frame. For

a 1-year horizon the default point, the asset value at which the insurer will default, will lie somewhere

between the value of total liabilities and the value of short-term debt. For insurers, debt holders are

not the only claim holders. There are also policy holders. At a 1-year time horizon, the insurance

company will need to meet both payments of claims, i.e. the bene�ts to policy holders falling due and

the maturing debt. The mean and median value of claims and bene�t payments to UK policy holders

relative to total liabilities is 9 percent over the period from 2006 to 2020. As an approximation, the

1-year cash �ows are consistent with a duration of liabilities of 11 years. The EU insurers write more

non-life business than the three UK insurers. As a rough approximation this reduces their duration

by 1 year and adds a further 1 percent of liabilities falling due at the 1-year horizon, i.e. 10 percent of

liabilities falling due to policyholders instead of 9 percent.

We do not have time series data on the maturity pro�le of debt liabilities. For estimating the

Merton model, we take debt at a 1-year horizon as 50 percent of total debt. Debt liabilities are, on

average, 2 percent of total liabilities over the same period. which we then halve for our 1-year estimate.

Taking 50% gives 1 percent. Based on the current year debt pro�le, taking 50 percent may overstate

the amount of debt falling due at a 1-year horizon, i.e. the proportion of debt falling due in 1 year

is less than 50% according to the most recent data, but given that claims tend to be a much larger

amount relative to debt, we do not think applying this materially a�ects our estimates. In view of these

considerations, for payments to policyholders and debt holders, we set the default barrier, consisting

of both insurance claims and debt, at 10 percent of total liabilities, i.e 9 percent plus 1 percent.

1A.M.Best is a credit rating agency that focuses on the insurance industry
2Our sample of European life insurers was driven, in part, by the availability of data. We could not include Phoenix

and the NN Group owing to the non-availability of consistent time series data over the period of observation.
3We opted for spot yields on 1-year UK gilts rather than German bunds as our measure of the risk-free rate of interest

rate. This is because yields on the German bunds were negative from 2015 and 2021. 1-year government yields peform
the role of a discount factor within the framework of a structural credit risk model. The model will not provide as
solution with negative discount discount rates.
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5 Empirical results from the portfolio credit-risk model

The model is calibrated using market information and balance sheet data of these six European insurers.

First, we show the estimation of default probabilities followed by capital requirements.

5.1 Estimating the implied asset value and default probability

We implement the Merton model to back out the asset values At of the six insurers consistent with

equation (2). Stochastic assets evolve through time relative to a distress barrier. The probability that

the assets will be below the distress barrier is the probability of default. We estimate the expected

change in the asset values of each individual insurer Ri with the Capital Asset Pricing Model (CAPM)

as described in Löe�er and Posch (2011).

As shown in equation (15), we obtain the beta of the assets with respect to a market index, and

then apply the CAPM formula for the return on the asset of insurer i:

E [Ri]−R = βi (E [RM ]−R) (15)

with R denoting the risk-free rate of interest given by the spot yield on 1-year UK government bonds.

The STOXX Europe 600 index4 return is taken to be a proxy for RM , the return on the market

portfolio. We regress excess returns of the insurer Ri on the excess returns of the market RM where

`excess' is relative to the risk-free rate R. The regression output provides an estimate of the insurer's

beta β. Assuming a value of 6 percent for the market risk premium, applicable to the UK, Germany

and France, we obtain the drift rate µ for the asset value returns for each insurer as:5

µ = R+ β ∗ (E [RM ]−R) (16)

We re-estimate the default probability of each insurer with the updated estimate for the drift rate

µ. Including the CAPM model in the estimation of the drift of the asset value returns augments the

market-sensitivity of the default risk measure. The time series evolution of default probabilities for

individual institutions are shown in Figure 1.

4STOXX Europe 600 is a broad measure of the European equity market.
5Market risk premiums (MRP) measure the expected return on investment an investor looks to make. The perfect

scenario for a risk-based investment would be a high rate of return with as small a risk as possible. Based on surveys,
this number was about 6% for both the UK and Germany in 2025. It is currently estimated to range between 5.25%
and 6.25% in France.
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Figure 1: Default probability of insurers

Notes: The �gure shows the time series evolution in the default probability of individual insurers. Default probabilities peaked
during the height of the GFC (2008-2009) and remained signi�cant during the European sovereign debt crisis (2010 2011). UK
insurers witnessed another rise in default risk during March 2020 market turmoil resulting in the extreme 'dash for cash'. The
UK insurers again witnessed an uptick in default risk in late September and early October 2022, when the UK gilt market
experienced a collapse in prices.
Source: Model outputs

The granularity adjustments for estimating δ, as given in equation(14) are based on the Her�ndal-

Hirschmann Index (HHI) of market concentration. The formula for the HH Index is:

HHt =

Nt∑
i=1

w2
i (17)

where wi is given by the total liabilities of insurer i. The obtained time series are plotted in Figure

2, indicating substantial variation in δ over time. The HH Index takes the value between 1/N (full

diversi�cation) and 1(full concentration).
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Figure 2: European Life Insurance sector: Her�ndal-Hirschmann Index (HHI) of market concentration

Source: Model outputs
Notes: The HH Index is calculated by squaring the total liabilities of each insurer and summing the results.

Credit concentration as given by δ has increased signi�cantly after Prudential sold o� assets in 2021

following its decision to demerge its UK and Asia operations. The granularity e�ect is sensitive to

the number of insurers in the portfolio. When this number decreases, the sector accounts for a larger

proportion of idiosyncratic risk.

With estimates of the parameters ρ, δ and the time series of default probabilities, we compute the

VaR and capital requirements for each insurer's asset returns based on the ASRF model described

in equation (6). EAD is given by the total liabilities of each insurer. LGD represents the fraction

of exposure that is lost when a counterparty defaults. The LGD is set at 0.25, which implies a 75%

recovery rate in the event of a default.6

5.2 Estimating VaR and solvency capital adequacy

VaR measures risk in terms of returns at a given probability. The VaR of the random variable Ri,t,

representing the log return of the estimated asset values Ai,t of the individual insurers, is de�ned as the

α-quantile of the return distribution and thus can be formulated in terms of returns in the following

way.

Pr
(
Ri,t ≤ V aRiα,t

)
= α (18)

where V aRiα,t is the α−quantile of the returns Ri,t at time t. Solvency II regulation in the UK and

Europe use a 1-year VaR of 99.5%. Adhering to that guideline we set the VaR level at 99.5% such

that α =0.005.

The capital adequacy of individual insurers for solvency risk mirrors their respective VaR estimated

6The Joint Research Council of the European Commission (2021) apply a recovery rate of 85% for insurers, while
other estimates of recovery rates are lower. Hull and White (2017) quotes an average recovery rate of 52% on senior,
secured bonds, based on Moody's data.

11



in equation (14). As the EAD is expressed in GBP billions, capital adequacy is speci�ed in the same

units of GBP. Individual institution capital requirements are computed using a VaR con�dence level

of 99.5%, a one-year default probability and the correlation between each insurer's returns and index

returns. In this paper, the capital adequacy consistent with VaR is referred to as solvency capital

adequacy. We provide two interpretations of solvency capital adequacy: for individual insurers, and

for the sector as a whole, expressed as a share of total assets.

Figure 3 plots the solvency capital adequacy of the individual insurers. Capital requirements for

European life insurers peaked during the GFC. EU insurers, in particular, witnessed a rise in capital

requirements during the Eurozone sovereign debt crisis. Life insurance companies' valuations came

under pressure during this prolonged phase of exceptionally low interest rates, known as the low for

long era. As life insurers' liabilities have a longer maturity pro�le than �xed-income assets held to meet

those obligations, a decline in bond yields makes the discounted present value of those liabilities rise by

more than that of assets, giving rise to a negative duration gap. To the extent that it remains unhedged,

the negative duration gap would be a factor impinging upon the pro�t-margins of life insurers up to

end-2020. Closing the duration gap would entail adding longer-dated bonds to the portfolio of assets

so that the duration of assets catches up with the higher duration of liabilities. Domanski et al. (2017)

have provided evidence of this search for duration amongst German life insurers. As discussed in

Garavito et al. (2024), reduced pro�t margins induced life insurers' to develop risk-sharing strategies

to cut costs and economise on capital. Brinkho� and Sole (2022) estimate that the search for yield

accounted for about one-third of the total deterioration in credit quality of European life insurers'

portfolios from 2005 to 2021. Low interest rates underpinned the growth of funded reinsurance as a

source of capital. Funded reinsurance is a means to gain indirect exposure to asset classes beyond the

origination capacity of the traditional life insurance sector.

In March 2020, the COVID-19 shock exposed vulnerabilities in the �nancial system. From a

solvency perspective, UK insurers were particularly a�ected. The primary risk to insurers was via

their assets, with the potential for falling income from asset management type businesses, and the

scope for default on their credit assets and loans backing annuity businesses. In the UK, a `�ight to

safety', in which prices of risky assets fell and prices of government bonds increased, was followed by

an abrupt and extreme dash for cash � where even safe assets were sold to obtain cash. Insurance

companies and pension funds became net sellers of UK government bonds (gilts) during the dash for

cash. Net sales of gilts by insurance companies, pension funds and asset managers was very large

by historical standards - totalling GBP 6 billion over 9 days from 9-19 March (Czech et al. (2021)).

This led to several consecutive days of very high VaR implying increased solvency capital levels in UK

insurers. Balance sheet data shows that UK insurers, which are more oriented towards life business

than EU insurers, have higher derivatives exposures for asset-liability management. UK insurers also

have more exposure to unit-linked businesses as compared to their European counterparts. Unit-linked

businesses being fee based are more vulnerable to market downturns. The EU insurers are also more

diversi�ed than the UK insurers, writing more non-life business, as well as life, and across a wider range

of countries. This diversi�cation may have helped them reduce asset-side risks to a greater degree than

UK insurers.
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Figure 3: Solvency capital adequacy of insurers

Notes: The �gure shows the time series evolution in the solvency capital requirements of individual insurers. Solvency capital
requirements are computed using a VaR con�dence of 99.5%, a 1-year default probability and the correlation between each
insurer's asset value returns and the index returns, where the index is the STOXX Europe 600.
Source: Model outputs

In late September and early October 2022, the UK gilt market experienced an almost unprecedented

collapse in prices following the mini-budget delivered on 23 September 2022 against a background of

high in�ation and low economic growth. The highly leveraged LDI strategies followed by certain

pension funds, compelled them to sell gilts, amplifying pressure in certain segments of the gilt market.

Pension funds are a material player in the gilt market particularly at the long-end. Yields on index

linked gilts and on long-dated nominal gilts began to spiral upwards, with every rise in yields triggering

further asset sales by LDIs in an increasingly illiquid market. On September 28th, the Bank of England

launched a novel-asset purchase programme to restore market functioning (Breeden (2022)). 7 Life

insurers, as providers of annuities and de�ned bene�t (DB) pension schemes, provide an income for

the rest of the bene�ciary's life. Therefore, these providers need to ensure that they hold su�cient

assets to meet their future obligations to bene�ciaries, after accounting for movements in interest rates

and in�ation. The contractual obligations of pension funds are in real terms which explains why they

specialised in buying in�ation-indexed bonds better known as linkers. For example, if a pension fund

had to deliver a ¿100 in real terms in 30 years, with an expected in�ation rate of 2 percent and a

discount rate of 3 percent, this would be recorded as a liability of ¿73.60 today. The pension fund can

then invest this reduced amount in an in�ation-indexed bond such that it would grow to become ¿100

in 30 years. If the discount rate rises to 4 percent the present day liability falls to ¿50.50. Therefore,

lower gilt yields would raise their obligations and higher gilt yields would lower their obligations. With

the rise in gilt yields in September-October, life insurers and pension funds were able to discount their

liabilities at a higher rate than before, apparently strengthening their funding positions. However, the

7Pinter (2023) and Bandera and Stevens (2024) address the gilt market crisis in September-October 2022.
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problem arose from the LDI strategy followed by these DB pension schemes to hedge their exposure to

long-term interest rates and in�ation. A steep rise in gilt yields after the mini-Budget on 23 September

forced LDI managers to post huge amounts of margin to their swap counterparties as the value of their

positions declined. This led to a vicious cycle of collateral calls and forced gilt sales that led to further

market dysfunction. This was a problem of liquidity that would have turned into a more severe solvency

crisis had it not been for intervention by the Bank of England that involved a temporary and targeted

programme of purchases of long-dated gilts.

Although life insurers have the same type of long-term obligations as DB pension schemes, and

hedge their liabilities against the same risks, they operate under a much stricter prudential regulatory

governance and risk management framework based on the principles of Solvency II. Individual insurers

hedging strategies are speci�c to the institution rather than having to rely on pooled funds that

underpinned the DB pension schemes. The �nancial stress re�ected concerns about the e�ect of the

LDI crisis on the pensions business of insurers, and the e�ect of market liquidity more broadly on the

assets held by insurers.

Solvency capital adequacy has been estimated across insurers with varying balance sheet size, some

of which have shed or acquired assets over time. To assess solvency capital at a sectoral level, we divide

the insurance sector's solvency capital level by the total assets of the six insurers in the sector. This

generates the asset share of solvency capital. Figure 4 shows the evolution of the asset share of solvency

capital in the European life insurance sector. The level of solvency capital exhibits considerable time

series variation that captures the GFC, the Eurozone sovereign debt crisis, the Covid-19 pandemic and

gilt market crisis. The shaded vertical bars highlight the periods of �nancial stress associated with

these events.
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Figure 4: Asset share of solvency capital levels

Source: Model outputs
Notes: The �gure shows the time series variation in the asset share of solvency capital for the European life insurance sector
over the period 2005 to 2024. Solvency capital asset share is obtained by dividing the insurance sector solvency capital level by
the total value of assets of the six insurers. The shaded vertical areas refer to periods of �nancial stress : the global �nancial
crisis, the Eurozone debt crisis, the shock from the COVID pandemic and the UK gilt market crisis.

Life insurers' asset durations are typically shorter than liability durations, implying a negative

duration gap. A negative duration gap means assets decrease less in value than liabilities when interest

rates rise, which explains why most European life insurers saw a positive impact on their solvency

positions when interest rates rose in 2022 and 2023. Figure 4 shows that solvency capital levels for the

European life insurance sector stabilised between 2023 and 2024.

6 Asset allocation of European Life Insurers

As insurance is a liability driven business, the duration of the commitments and the guarantees o�ered

shape the asset allocation of insurers and their sensitivity to changes in interest rates. In the after-

math of the GFC in 2008 and the COVID pandemic in early 2020, both the Bank of England and the

ECB lowered policy rates e�ectively to the ZLB. They also conducted unconventional monetary pol-

icy operations involving acquisitions of sovereign and corporate bonds. These purchase programmes

compressed interests even further and for a long time, giving rise to the period now known as the

�low-for-long� era (shown in Figure 5). In an environment of low interest rates, insurers would have

di�culty generating su�cient returns to meet obligations from higher guaranteed returns promised to

their policyholders. The era of low interest rates incentivised life insurers to exit core lines of business

and divest assets. Private equity �rms entered the life insurance sector, acquiring legacy book assets

via reinsurance, to fund and expand their private credit operations.
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Figure 5: BoE and ECB Policy Rates

Source: Bank of England and European Central Bank

Figure 6 shows the portfolio composition of European life insurers valued at market prices. Cor-

porate and government bonds made up around 46 per cent of assets in 2016. In 2024, this stood at

30 per cent. There has been a diversi�cation out of bonds largely driven by a narrowing of spreads of

investment grade bonds over risk-free rates. As a share of total assets of the European life insurance

sector, government bonds accounted for more than 23 percent in 2016. By 2023 this share had fallen

to 15 per cent and remained at that level in 2024. The share of equity and collective investments in-

creased from 8 percent to 15 percent over the same period. In the UK, life insurers have increased their

exposures to illiquid credit by engaging in direct lending to long-term �nancing markets such as infras-

tructure, equity release mortgages, social housing and commercial real estate loans. EU insurers have

greater relative exposure to non-life liabilities and government bonds, as part of their asset-liability

management.

In the UK, most of the longevity risk on new �bulk purchase annuity� transactions is currently being

reinsured, often outside the UK. The rapid growth of the primary bulk purchase annuity business in

the UK has led to increased demand for funded reinsurance, as primary insurers seek to increase

their underwriting capacity without having to raise more capital. Reinsurance companies, where

private equity companies have full or partial ownership, or a strategic partnership � often invest more

in illiquid assets, potentially increasing risks (BOE (2024)). Reinsurance counterparty relationships

would add to interconnectedness in the life insurance industry.

16



Figure 6: Asset allocation of 6 European Life Insurers: 2016 to 2024

Portfolio composition by asset class (percentage) Portfolio composition by asset class (GBP billions)

Source: Companies' Solvency and Financial Condition reports and Authors' calculations

The European �nancial system experienced a notable shift in its interest rate environment in 2022

and 2023, marked by the re-emergence of higher interest rates, after a prolonged period of historically

low rates. Both the UK Bank Rate and ECB policy rates reverted to their pre-GFC levels, but did

so more rapidly than expected. A rise in interest rates should ease pressures over the long run and

improve solvency ratios. However, a very sharp rise in interest rates would entail liquidity risks for life

insurers, in the short term, as the market value of assets could drop to an extent that could incentivise

policy holders to lapse their policies and reinvest the proceeds in new higher-yielding products. With

interest rates rising, life insurers' balance sheets should have strengthened as the present value of their

assets typically declines by less than that of their liabilities. In the UK, higher interest rates have

improved funding levels in DB pension schemes. There is an expectation that higher interest rates will

lead to annuity-driven growth in the European life insurance sector.

The sharp rise in interest rates in 2022, also led to a signi�cant increase in the gross market value

of interest rate derivatives held by life insurers' and the requirement to pay variation margin calls. The

value of derivatives liabilities, for the European life insurance sector, doubled from GBP 37bn in 2021

to GBP 74bn in 2022. At the end of 2024, derivatives liabilities remained high at GBP 87bn. About

half of these derivatives exposures are interest rate derivatives. Derivatives exposures doubled from

1% to 2% of total assets between 2021 and 2022 (as shown in the left-hand-side panel of Figure 6).

Most risk-based insurance regulation, emphasises the requirement to hold enough capital to cover

a larger range of risks than traditional insurance risks (GA (2016)). Solvency II, the regulatory

framework that is in force since 2016, has had a signi�cant in�uence on insurers' investment strategies

by introducing a capital framework that directly links capital charges to asset risk. As a result, insurers

face higher capital charges for assets deemed riskier, such as equities, investments in mutual funds, or

lower-rated corporate bonds. The solvency coverage ratio (SCR) is the ratio of an insurance company's
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eligible capital to its regulatory capital requirement. This ratio is used as an indication of an insurance

company's �nancial strength and its ability to withstand the risks they are exposed to such as falling

asset prices or increased liabilities. It is usually expressed as a percentage and must exceed 100%. At

the same time, insurers must ful�l the solvency capital requirement to withstand shocks with a 99.5%

probability over the next year.

Figure 7: European Life Insurance sector: Solvency Coverage Ratios

Source: Companies' Solvency and Financial Condition reports and Authors' calculations

European life insurers' solvency capital positions remained stable at the end of the observation

period in 2024 and were not signi�cantly a�ected by the expected reduction in policy interest rates

(Figure 7). Both the BoE and ECB policy rates fell in 2024. Although these declines in interest rates

put some downward pressure on solvency coverage ratios, most insurers' capital positions were able to

withstand such rate movements.

7 Systemic risk in the insurance sector

Systemic risk, by its nature, is characterised by both a cross-sectional and a time series dimension.

The cross sectional dimension emerges from the correlation between risks of �nancial institutions at a

given point in time, due to spillovers and common exposure e�ects. The time series dimension focuses

on the evolution of systemic risk over time due to changes in �nancial market conditions and the build

up of vulnerabilities in the �nancial system.

In this section we implement the SRISK methodology, developed by Acharya et al. (2012) and

Brownlees and Engle (2017), for European life insurers. The objective of the SRISK methodology is to

measure the capital shortfall a �nancial institution is expected to experience conditional on a systemic

event. In this study, a systemic event is de�ned as the occurrence of losses in the tail of the STOXX

Euro 600 Insurance index above a particular threshold.8

8Allianz, AXA, Generali, Prudential and Aviva are amongst the top 10 components of the index
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SRISK takes into account an institution's market capitalisation, its prudential capital ratio, and

the level of debt given by its total liabilities. In the context of this study, the estimation of SRISK

involves the following variables: the returns of the particular insurer i at date t denoted as Ri,t , the

return of the chosen equity market index s at date t denoted as Rs,t , the value of total liabilities Li,t,

the market value of equity (market capitalisation) MEi,t and the prudential capital requirement k.

These variables are �rst used to calculate each insurer's long-run marginal expected shortfall (LRMES).

Conditional volatilities of the returns are estimated with an assymetric GJR GARCH process (Glosten

et al. (1993)) and correlations with a DCC correlation model (Engle (2002)).

For the estimation of SRISK we use daily market equity data and annual balance sheet data on

total liabilities for the six European life insurers. Later in the analysis we compute SRISK asset shares

and for this we require annual balance sheet data on total assets of the 6 institutions.

The Marginal Expected Shortfall (MES), proposed by Acharya et al. (2017), is de�ned here as the

expected loss on an insurer's equity conditional on the occurrence of losses in the tail of our chosen

index, the STOXX Euro 600 Insurance. Based on this de�nition, we take the MES of an insurer to be

its short-run equity loss conditional on the insurance sector taking a loss greater than its VaR. While

VaR is a quantile (α%) of the loss distribution over a prescribed holding period, expected shortfall

(ES) is the expected loss knowing that the loss is above VaR.9By de�nition, the expected shortfall

(ES) at the α% level is the expected return in the worst α% of the cases, but it can be extended to

the general case, in which returns exceed a given threshold C. We consider a threshold C equal to the

conditional VaR of the insurance sector's return, which is de�ned as Pr[Rs,t < V aRs,t(α)] = α where

α = 0.005 consistent with a VaR level at 99.5%

SRISK will decrease as the prudential capital ratio k decreases. We use a prudential capital ratio

of 5.5 percent applicable for �nancial institutions in Europe (see Acharya and Ste�en (2014)).

We de�ne the ES of the insurance sector as the expected loss in the insurance sector s conditional

on this loss being greater than C.

ESs,t(C) = Et−1(Rs,t | Rs,t < C) (19)

We evaluate measures of daily performance in the event of an extreme aggregate shock, as the

insurance index falls more than its 99.5% VaR. The expected daily loss of the individual insuerer

returns in this case is the MES.

MESi,t(C) = Et−1(Ri,t | Rs,t < C) (20)

MES measures how exposed an individual institution is to tail shocks within the system. Benoit

et al. (2013) have provided a theoretical proof of the proposition that the MES of a given �nancial

institution i is proportional to its systematic risk as measured by it's beta. As shown in equation (21),

MES corresponds to the product of the insurance sector's expected shortfall (sector tail risk) and the

insurer beta (insurer systematic risk). The proportionality coe�cient is the expected shortfall of the

9The Expected Shortfall (ES) of a given system is also known as the expected tail loss, or average value-at-risk. It
is the expected conditional loss, given that the VaR is exceeded (a worst-case scenario), and will be larger (or more
extreme) the more fat-tailed the distribution of returns. The MES is then the contribution of an individual institution
to the total estimated shortfall in the system.
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market:

MESi,t (α) = βi,tESs,t (α) (21)

where βi,t =
cov(Ri,t,Rs,t)
var(Rs,t)

=
ρi,tσi,t

σs,t
denotes the time-varying beta of insurer i and ESs,t (α) is the

expected shortfall of the market. Since the ES of the insurance sector is not institution-speci�c, the

greater sensitivity of an individual insurer's equity return to the sector's equity return, the more sys-

temically risky the insurer is. Since the insurance sector ES may not be constant over time, forecasting

the systematic risk of an insurer may not be su�cient to forecast the future evolution of its contribu-

tion to systemic risk. For a given insurer, the variation of its systemic risk (measured by it's MES)

may be di�erent from the variation of its systematic risk (measured by it's conditional beta).

We examined this proposition in the context of the European insurance sector. Figure 8 plots

the relationship between insurer betas and MES for each of the six insurers. The scatter plot shows

a positive relationship between MES and insurer beta, which implies that systemic risk rankings of

insurers based on their MES should broadly conform to the rankings obtained by sorting insurers on

their betas. However, there is noise in the relationship between beta and MES which could be partially

explained by the time-varying nature of the ES.

Figure 8: Relationship between insurer beta and MES

Notes: The �gure shows the scatter plot of conditional beta and MES for each of the six insurers. MES is the expected loss on
an insurer's equity conditional on the occurrence of losses in the tail of our chosen index (STOXX Euro 600 Insurance) greater
than its VaR at 99.5%. Expected shortfall (ES) is the expected loss knowing that the loss is above VaR. ES is an overall
measure of sysemic risk, being the expected impact on the insurance sector of a tail shock. The contribution of each
institution to the total shortfall, de�nes the MES. The MES of an institution is proportional to its systematic risk as measured
by its beta. The proportionality coe�cient is the ES of the insurance sector
Source: Model outputs
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The time-series average of the MES for each insurer and its beta suggests a cross-sectional rela-

tionship between the two measures. This is shown in Figure 9. Each point corresponds to one of the

six insurers listed in Table 1. The beta corresponds to the average of the time-varying beta, βi,t, in

equation 21. Figure 9 plots the output from regressing the MES of each institution as a linear function

of its beta. The straight line in Figure 9 is the ordinary least squares (OLS) regression line with no

constant term.

Table 1 reports the average of the time-varying beta, βi,t and MES for each insurer, as described

in equation (21).

Table 1: Insurers' beta and MES
Insurer beta β MES

UKInsurer1 0.93 0.0337
UKInsurer2 0.90 0.0365
UKInsurer3 1.02 0.0366
EUInsurer1 1.18 0.0399
EUInsurer2 1.00 0.0348
EUInsurer3 0.13 0.0016

Table 1 shows the varying levels of systematic risk in the insurance sector. Two inferences can be

made. First, the systematic risk of an insurer with a conditional beta of 1.0 will, on average, move in

the same direction and magnitude as its systemic risk. Second, the systematic risk of an insurer with

a conditional beta greater than 1.0 will, on average, be more volatile than it's systemic risk.

Figure 9: Relationship between average insurer betas and MES

Notes: The �gure plots the output from regressing the MES of each institution as a linear function of its beta. The straight
line is the OLS regression line.
Source: Model outputs
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The LRMES is a measure of an institution's expected cumulative loss of equity over a prolonged

period conditional upon a large shock in the �nancial system. There are two general approaches to

calculating the LRMES, both of which require a �rst step of �tting a DCC-GARCH model. The �rst

is by simulating the trajectories of insurance sector returns in future periods. We have adopted the

second approach based on the following approximation proposed by Acharya et.al. (2012):

LRMESi,t = Et−1 (Ri,t+T |Rs,t+T < C) ≈ 1− exp (−18 ∗MESi,t) (22)

where Ri,t+T is the cumulative return to a insurer's equity, and Rs,t+T is the cumulative return on the

insurance sector. Thereafter, SRISK is calculated as:

SRISKi,t = max (0, kt ∗ Li,t − (1− kt) ∗MEi,t ∗ (1− LRMESi,t))

SRISKi,t = max (0,MEi,t [kt ∗ LEVi,t − (1− kt) ∗ (1− LRMESi,t − 1)]) (23)

where LEVi,t =
Li,t+MEi,t

MEi,t
is the quasi-leverage ratio. SRISK can vary depending on the value of the

parameter k, the prudential capital ratio. This implies that an insurer with a capital surplus has an

SRISK value of zero.

Therefore, SRISK adjusts for the amount of regulatory capital that the insurer is mandated to

hold, and can be decomposed into three main components: (i) the market capitalisation of the insurer;

(ii) how leveraged the insurer is; and (iii) how risky the insurer is conditional on a distressed �nancial

system, as proxied by its LRMES. A positive SRISK value thus suggests that the insurer, in the

event of a systemic event, would experience �nancial distress, due to excessive debt, insu�cient equity,

and/or a deterioration in market-based risk-related measures of the insurer. By de�nition, SRISK can

be negative when an insurer is expected to have excess capital in a crisis.

Figure 10 presents the evolution of the conditional capital shortfall measure SRISK for individual

insurers between 2005 and 2024. Capital shortfall of individual insurers �uctuated widely over the

period of observation. Capital shortfall for two EU insurers, peaked during the GFC. Both these

institutions experienced heightened capital shortfall during the Eurozone sovereign debt crisis. In

March 2020, the shock from COVID pandemic caused the capital shortfall to surge across insurers.
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Figure 10: Conditional capital shortfall of institutions

Notes: The �gure shows the evolution of the conditional capital shortfall of individual insurers.
Source: Model outputs

To get sector conditional capital shortfall, we sum the SRISK measure across the six insurers,

assigning zero when the value is negative. As the insurers within the sector have di�erent balance

sheet sizes which have changed over time, we divide the sector SRISK by the total assets of insurers in

the sector. The table reports period averages for the entire period of observation and during periods of

stress. Figure 11 shows the evolution of capital shortfalls, expressed as asset shares, for the European

insurance sector. The �gure shows that capital shortfall peaked during crisis periods with the market

turmoil following the shock from the COVID pandemic having the most signi�cant impact.
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Figure 11: Asset share of capital shortfall

Source: Model outputs
Notes: The chart plots the evolution of capital shortfall, measured as asset shares, for the European life insurance sector over
the period 2005 to 2024. The shaded areas refer to periods of �nancial stress : the global �nancial crisis, the Eurozone debt
crisis, the Covid-19 shock and the UK gilt market crisis. Capital shortfall asset shares ranged from a maximum of 0.05 to a
minimum of 0.01.

SRISK asset shares have also shown considerable time variation throughout the period of observa-

tion. A comparison of Figure 4 and Figure 11 shows that systemic risk capital adequacy peaked earlier

than solvency capital during the run up to periods of �nancial stress. This points to the e�cacy of

the SRISK measure, as an ex-ante indicator that can quantify the build-up of systemic risk.

The SRISK measure, like other measures of systemic risk, does have features that would limit its

scope as a supervisory instrument. Tavolaro and Visnovsky (2014) raise concerns about the informa-

tion content of SRISK, as it mirrors market participants expectations, which may di�er signi�cantly

from economic fundamentals. Given its reliance on market factors, SRISK may not e�ectively re�ect

the fundamentals of �nancial institutions. In the context of life insurers, fundamental risk could be

associated with risks originating from non-performing assets or from idiosyncratic risks.
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8 Comovement of bank and insurance sector systemic risk

Over the past decade insurance companies have grown in size and interconnectedness with banks.

Systemic risk within the life insurance and banking sector may move together if they tap similar

funding markets and have a common exposure to the macroeconomy. During the phase of low interest

rates life insurers shifted to alternative assets, which included direct lending, while banks moved

away from some traditional elements of direct lending. The return on the underlying assets of the

insurer could be correlated to the return on assets held by other �nancial intermediaries, including

banks, and to economic growth. To investigate this comovement we compare the SRISK asset share

of the European insurance sector with a representation of the EU banking sector comprising 10 global

systemically important banks (G-SIBs) - Barclays, BNP Paribus, Credit Agricole, Deutsche Bank,

HSBC, ING, Santander, Societe General, Standard Chartered and UBS over the period from 2005

to 2024. In order to estimate SRISK for the banks we obtain daily market equity data and annual

balance sheet data on total liabilities and total assets from LSEG. To be consistent with the insurance

sector, we use a prudential capital ratio of 5.5 percent for each of the ten banks. The SRISK asset

share is computed by dividing aggregate SRISK in each sector by the total assets of institutions within

that sector. Figure 12 plots the SRISK asset shares of the bank and life insurance sector, along with

periods of �nancial stress. Systemic risk in banks and life insurers follow a similar trajectory, rising

during the GFC and the COVID pandemic.

Figure 12: Comovement of bank and insurance sector capital shortfall

Source: Model outputs
Notes: The chart plots the assets shares of SRISK for banks and life insurers over the period 2005 to 2024. The shaded areas
refer to periods of �nancial stress : the GFC, the European sovereign debt crisis, the Covid-19 shock and the UK gilt market
crisis.

The GFC is marked by distinct peaks in the SRISK asset shares of banks and insurers. In the early

phase of the crisis in late 2007 and early 2008 the banking sector had higher levels of systemic risk.
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In late 2008 and early 2009 policy measures taken to stabilise the banking system, which included

bank recapitalisation, resulted in a signi�cant drop in SRISK asset shares of the banking sector. Asset

shares of the European banking and insurance sectors peaked again during the Eurozone sovereign debt

crisis. The March 2020 turmoil resulting in the `dash for cash', impacted insurers more signi�cantly

than banks. The dash for cash was re�ective of margin requirement for derivatives which a�ected

insurers and other NBFIs rather than banks. On March 19, the Bank of England cut the Bank Rate

(UK's o�cial interest rate) to 0.1% at a special Monetary Policy Committee meeting. Interest rates in

the Eurozone were already negative. Both the Bank of the England and the ECB were also operating

unconventional monetary policies that target longer-term interest rates which would likely impact the

systemic risk of life insurers more than banks. Through quantitative easing (QE), the central bank

purchases assets and credits the reserves accounts of banks, which can use this liquidity to invest in

relatively more illiquid assets, such as loans to households and businesses. However, QE has a more

direct impact on life insurers as the lowering of long-term interest rates increases the present value

of their future liabilities and also makes it harder to meet guaranteed returns on policies. There was

another uptick in SRISK asset shares coinciding with the gilt market crisis in September 2022, given

the weight of UK banks and insurers within the European �nancial system.

The unexpected surge in interest rates, that began in 2022, resulted in signi�cant valuation losses

and increases in liquidity risks, as was observed in some banks. A number of bank deposit runs took

place over this period, which represented the most serious disruption to the banking sector in more than

a decade. The runs were the proximate cause of the collapse of Credit Suisse, a global systemically

important bank, and the failure of three US banks (SVB, Signature and First Republic) in quick

succession. SRISK asset shares for the European banking sector increased in 2023 and remained

elevated in 2024. For the European life insurance sector, SRISK asset shares declined during this

period of high interest rates which may be attributed to the longer duration of their liabilities relative

to their assets.

To analyse the degree of comovement, we apply principal components analysis (PCA) to the time

series of SRISK asset shares of the two sectors. PCA involves a series of steps, including transforming

the asset shares to have a mean of zero and a standard deviation of one, calculating the covariance

matrix to measure the extent to which the asset shares change together, and determining the eigenvec-

tors and eigenvalues of the covariance matrix. The eigenvectors represent the principal components.

Figure 13 shows that the �rst principal component, or a single factor, explains 77 percent of the com-

mon variation in European bank and life insurance sector systemic risk and this factor is correlated

to the macroeconomic conditions that characterise periods of �nancial stress. This outcome is con-

sistent with Aradillas Fernandez et al. (2024) who found that a single factor explains 88 percent of

common variation in the comovement system of systemic risk in US banks and the US NBFI sector

more broadly.
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Figure 13: Factors driving common variation in SRISK asset shares for Banks and Insurers

First Principal Component Variance Explained

Source: Model outputs
Notes: The �gure in the left-hand-side panel shows that the �rst principal component spikes during �nancial stress episodes.
The �gure on the right-hand-side panel shows that this single factor accounts for almost 80 per cent of the cumulative variance
of the SRISK asset shares of banks and insurers.

It is well known that owing to the maturity mismatch between assets and liabilities, banks are

intrinsically risky and highly leveraged. Bank liabilities are also readily callable rendering them highly

liquid. Traditional insurance activity has been characterised by an inverted production cycle where

the policy holder �rst pays for a service that could be delivered conditional on a prede�ned event that

can occur in a relatively distant future. So an insurance company can become insolvent and remain

liquid at the same time (Bobtche� et al. (2016)). Insurers have much more longer time liabilities which

are much less liquid than bank liabilities and whose callability can be triggered by prede�ned events

that are not under the control of the policy holders.

For the European banking sector, we also examined the time pro�le of its systemic risk, measured

by its MES, and the evolution of its systematic risk measured by its conditional beta. This shown in

the scatter plot in Figure 14. Each point corresponds to one of the six insurers listed in Table 2.

Table 2: Banks' beta and MES
Insurer beta β MES

UKBank1 1.0052 0.0482
EUBank1 1.0771 0.0469
EUBank2 1.1360 0.0484
EUBank3 1.1412 0.0473
UKBank2 0.6144 0.0275
EUBank4 1.0137 0.0076
EUBank5 0.9664 0.0434
EUBank6 1.1724 0.0542
UKBank3 0.8007 0.0342
EUBank7 1.1360 0.0484
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A comparison of Table 2 with Table 1 shows that the banks' conditional betas are much lower than

insurers' betas. This implies that banks have much lower levels of systematic risk. However, bank

MES levels are greater than that of insurers suggesting higher systemic risk. Banks are less exposed

to risks from exposure to a common factor than insurers. However, risks emanating from banks can

cause larger �nancial losses, or even a collapse of the �nancial system, than insurers. The higher betas

for insurers could also be attributed to their equity investments, and unit-linked business, where they

earn a fee from assets under management.

Figure 14: Relationship between average bank betas and MES

Notes: The �gure plots the output from regressing the MES of each institution as a linear function of its beta. The straight
line is the OLS regression line.
Source: Model outputs
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9 Spillovers between European bank and insurance sectors

This section measures the degree to which European bank and insurance sectors have interacted during

the period from January 2005 to December 2024. The method suggested by Diebold-Yilmaz (Diebold

and Yilmaz (2012)) is used to quantify such interactions, also termed �spillovers�. The spillover analysis

�rst estimates a generalised VAR model with equity market data of the sample of banks and insurers.

The connectedness measure is then derived from the forecast error variance decomposition of the

underlying VAR for the volatility in equity returns. Daily conditional volatility is measured by applying

a GARCH(1,1) model to the return series of banks' and insurers' market value of equity. A moving

data window is used such that a time series of spillover observations is generated. The procedure starts

with a covariance stationary N-variable VAR(p) process:

xt =

p∑
i=0

φixt−1 + εt (24)

where xt is an N × 1 vector of endogenous variables and ε ∼ (0,
∑

) stands for a vector of i.i.d

disturbances.

The moving average representation of the above process is:

xt =

∞∑
i=0

Aiεt−i (25)

where the coe�cient matrices Ai follows:

Ai = Φ1Ai−1 + Φ2Ai−2 + ...+ ΦpAi−p (26)

with A0 an N ×N identity matrix and Ai = 0 for i < 0.

Forecast error variance decompositions are transformations of the moving-average coe�cients,

which attributes the H-step ahead forecast error variances of each variable i, to other variables in

the system.

Following Diebold and Yilmaz (2012), we consider the generalised variance decomposition of the

underlying VAR. In contrast to the Cholesky decomposition proposed by Sims (1980) and related iden-

ti�cation strategies, the generalised variance decomposition is invariant to the ordering of variables,

which o�ers more �exibility in the modelling strategy without making any a priori assumption on the

sequence of responses. The generalised variance decomposition is particularly applicable to the Euro-

pean bank and insurance sector with 16 �nancial institutions because of the infeasibility of imposing

a meaningful ordering among so many entities.

Variable j's contribution to variable i's H-step-ahead generalised forecast error variance is given

by:

θgij (H) =
σ−1jj

∑H−1
h=0

(
e
′

iAh
∑
ej

)2
∑H−1
h=0

(
e
′
iAh

∑
A

′
hei
) (27)

For H=1,2,..., where
∑

depicts the variance matrix corresponding to ther error vector ε. σjj is the

standard deviation of εj , ei is the selection vector with the i-th element unity and zeros elsewhere. The
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row sums of the variance decomposition matrix are not necessarily unity, due to non-zero correlations

across shocks.

N∑
j=1

θgij (H) 6= 1 (28)

Therefore, each forecast error variance decomposition is normalised by the row sum:

θ̃gij (H) =
θgij (H)∑N
j=1 θ

g
ij (H)

(29)

The construction proposed by Diebold and Yilmaz (2009) postulates that the following two relations

must hold:

N∑
j=1

θ̃gij (H) = 1 (30)

N∑
i,j=1

θ̃gij (H) = N (31)

By construction, θ̃gij (H) measures the pairwise directional connectedness from �nancial institution

j to i at horizon H. In other words, θ̃gij (H) captures the extent to which variations in i's asset returns

or volatility can be explained by �nancial institution j, based on the generalised forecast error variance

decomposition.

Considering the speci�cations on various decomposition, Diebold and Yilmaz (2012) introduce the

total volatility spillover index as:

Sg (H) =

∑N
i,j=1,i6=i θ̃ij (H)∑N
i,j=1 θ̃

g
ij (H)

× 100 =

∑N
i,j,i 6=j θ̃

g
ij (H)

N
× 100 (32)

Diebold and Yilmaz (2012) also provide a speci�cation for directional spillovers. The directional

volatility spillover received by market i from all markets j is:

Sgi. (H) =

∑N
j=1,j 6=i θ̃

g
ij (H)∑N

j=1 θ̃
g
ji (H)

× 100 (33)

The directional volatility spillovers propagated by market i to all other markets j is:

Sg.i (H) =

∑N
j=1,j 6=i θ̃

g
ji (H)∑N

j=1 θ̃
g
ji (H)

× 100 (34)

On the basis of the two equations presented above, we can determine the net volatility spillover

coming from market i to all other markets j by simple a subtraction:

Sgi (H) = Sg.i (H)− Sg.i (H)− Sgi. (H) (35)

The net pairwise volatility spillover is:
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Sgij (H) =
Φ̃gji (H)− φ̃gij (H)

N
.100 (36)

In this case, the vector xt comprises 2 endogenous variables - the conditional volatilies of banks'

and insurers' equity returns - and the VAR model is estimated with 1 lag.Following Diebold and

Yilmaz (2012), we calculate the overall connectedness of the European bank and insurance sector by

implementing the model in a 120-week moving window with an 8-week forecast horizon. This is done

to obtain to, from, and net results for the spillover index for the two sectors. The empirical results

document that spillovers are present in the data, with a time-varying intensity.

Figure 15, shows the spillovers between the bank and insurance sectors. It's ijth entry is the

estimated contribution to the forecast error variance of sector i coming from innovations to market j.

Figure 15: Volatility Spillovers

Notes: The �gure shows from, to and net speci�cations of spillovers from the European bank and insurance sectors. The
spillovers are �rst estimated using a VAR model with two endogenous variables - the conditional volatilities of banks' and
insurers' equity. returns. Spillovers are then derived from the forecast error variance decomposition of the underlying VAR.
Source: Model outputs

From the �gure we can see that gross directional volatility spillovers from banks to insurers is

49.27% and, from insurers to banks, it is 39.45%. This implies that volatility spillovers from banks

to insurers is of greater intensity than vice versa. The net directional volatility spillovers from the

banks to insurers is 9.82% and from insurers to banks it is - 9.82%. This would imply that banks are

transmitters of volatility shocks whereas insurers are receivers.
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10 Conclusion

This paper provides an empirical investigation into the evolution of solvency and systemic risk measures

for the European life insurance sector. The European G-II life insurers, considered in this analysis,

have maintained solvency capital ratios well in excess of the minimum regulatory requirements. There

is some variation across insurers because of di�ering exposures to the cause of the crisis, such as the

European sovereign debt crisis or the UK gilts market crisis. When engaged in traditional insurance

activities, that can be managed through standard diversi�cation principles, life insurance companies

may not be generating systemic risk. In the absence of systemic risk, with insurers facing only idiosyn-

cratic and diversi�able risk, capital levels derived by assessing solvency risk alone may be viewed as

optimum from a regulatory perspective.

In practice, we �nd that life insurers, engage in activities that can no longer be characterised as

traditional and that the sector is exposed to systemic risks. A prolonged phase of exceptionally low

interest rates, from the GFC in 2008-09 until after 2021, changed life insurance asset management in

Europe. Life insurers reduced their government bond holdings in favour of higher yielding securities

and ventured into increasingly riskier and less liquid asset classes. They engaged in more direct lending

and made greater use of derivatives to match asset and liability cash �ows. It also spurred the transfer

of risks to non-a�liate insurers, located in o�shore centres. The need to economise on capital has been

a driver for some life insurers turning to funded reinsurance. This exposes life insurers to reinsurance

counterparty credit risk which tends to be highly concentrated. These non-core activities have altered

the risk pro�le of the life insurance sector and may be beyond the purview of traditional solvency

regulation.

As a consequence of these non-core activities, taken in response to market movements, life insurers'

share more characteristics with banks. Our �ndings provide insights into the dynamics of systemic

risk in the European bank and insurance sectors. We have shown that bank and insurance sector

systemic risk co-move because they have a common exposure to �nancial markets and the real economy.

However, the nature of the crisis determines the degree to which banking or insurance sectors are

impacted. The unconventional monetary policies adopted by the BoE and ECB targeted longer term

interest rates which had a greater relative impact on the systemic risk of life insurers given the longer-

term duration of annuities on the liability side and longer-term corporate bonds on the asset side. On

the other hand, the surge in interest rates in 2022-23 led to valuation losses and heightened funding

costs in the banking sector.

The main conclusion of this paper is that there is a case for prudential regulation to consider adding

a systemic component to capital adequacy that is linked to the life insurer's contribution to systemic

risk.
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A Estimation method for Marginal Expected Shortfall

Following Brownlees and Engle (2017) we specify a bivariate GARCH-DCC process for returns:

Rt = H
1/2
t vt (37)

where Rt = (Rst , R
i
t)

′
is the (2 x 1) vector of system and individual bank returns, and the random

vector of the disturbance terms vt =
(
εst , ξ

i
t

)′
. In this model, the disturbances (εs,t, ξi,t) are assumed

to be independently and identically distributed over time and have zero mean and unit variance. But

they are not considered to be independent of each other. Episodes of �nancial stress have a systemic

element and tend to a�ect most �nancial institutions. Ht is the (2 x 2) variance-covariance matrix. σs,t

and σi,t are the volatilities of the �nancial system and the individual institution at time t, and ρi,t is the

correlation at time t between Rst and R
i
t. The Ht matrix denotes the conditional variance-covariance

matrix10:

Ht =

(
σ2
s,t ρsiσs,tσi,t

ρis,tσi,tσs,t σ2
i,t

)
, (38)

We consider the Cholesky decomposition of the variance-covariance matrix Ht:

H
1/2
t =

(
σ2
s,t 0

σi,tρi,t σi,t
√

1− ρ2it

)
(39)

To estimate MES, we �rst model the bivariate process of �rm and market returns. Given equation

37, this can be expressed as:

Rs,t = σs,tεs,t (40)

Ri,t = σi,tεi,t (41)

Ri,t = σi,tρi,tεs,t + σi,t

√
1− ρ2i,tξi,t (42)

The MES can, therefore, be expressed more explicitly as a function of correlation and some tail

expectations of the standardised innovations distribution:

MESi,t−1 = Et−1(Ri,t | Rs,t < C) (43)

= σi,tEt−1(εi,t | εs,t <
C

σs,t
) (44)

= σi,tρi,tEt−1(εs,t | εs,t <
C

σs,t
) + σi,t

√
1− ρ2i,tEt−1(ξi,t | εs,t <

C

σs,t
) (45)

10Engle (2002) provides a detailed description of the DCC approach
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For the estimation of time-varying correlations, stochastic volatilities and tail expectations we use

the model de�ned in equations (37) and (38.).

A.1 Volatilities

The conditional volatilities are modelled with an asymmetric GARCH speci�cation described in Scaillet

(2005).

σ2
s,t = ωs + αsR

2
i,t−1 + γsR

2
s,t−1Is,t−1 + βsσ

2
s.t−1 (46)

σ2
i,t = ωi + αiR

2
i,t−1 + γiR

2
i,t−1Ii,t−1 + βiσ

2
i,t−1 (47)

where Ii,t = 1Ri,t<0and Is,t = 1Rs,t<0which can capture the leverage e�ect. It has been demon-

strated empircally that volatility in equity returns tends to increase more with negative shocks than

positive ones.

A. 2 Correlation

The time-varying conditional correlations are modelled using the DCC approach introduced by Engle

(2002). The variance covariance matrix is written as follows:

Ht = DtRtDt (48)

where Rt =

[
1 ρi,t

ρi,t 1

]
is the time-varying correlation matrix of the system and �rm returns

and Dt =

[
σi,t 0

0 σs,t

]
is a diagonal matrix for the conditional standard deviations.

The DCC framework introduces what is referred to as a pseudo-correlation Qt, which is a positive

de�nite matrix such that:

Rt = diag(Qt)
−1/2Qtdiag(Qt)

−1/2 (49)

where diag(Qt) is such that diag(Qt)i,j = (Qt)i,j1i=j .

In the DCC framework, Qtis de�ned as

Qt = (1− a− b)S + aηt−1η
′

t−1 + bQt−1 (50)

where ηt = (εi,tεs,t)
′
is the vector of standardised residuals, a and b are scalars. S = E[εtε

′

t] is the

unconditional correlation of the standardised residuals and is referred to as the intercept matrix. Qt is

a positive de�nite matrix under certain conditions which are a > 0, b > 0, a+ b < 0 and the positive

de�niteness of S. The matrix S is estimated by

Ŝ =
1

T

T∑
t=1

ηtη
′

t (51)
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The DCC model is estimated via QML. The steps involved in estimating the dynamic correlation

are described in Engle and Sheppard (2008).

A. 3 Tail Expectations

If we recall equation (45), then the remaining terms to be estimated in order to obtain the MES are

the two conditional tail expectations: Et−1(εs,t | εs,t < C
σs,t)

) and Et−1(ξi,t | εs,t < C
σs,t

). The term

Et−1(ξi,t | εs,t < C
σs,t

) captures the tail-spillover e�ects from the �nancial system to the bank that

is not captured by the correlation. Furthermore, if both marginal distributions of the standardised

returns are unknown, then the conditional expectatiion Et−1(εs,t | εs,t < C
σs,t)

) is also unknown. As a

consequence, both tail expectations must be estimated. In doing so, we use a non-parametric kernel

estimation which is described in ....In this analysis we consider a threshold C equal to the VaR of the

�nancial system i.e., C = V aRi,t(α). Then , if the standardised innovations, εs,t and ξi,tare i.i.d , the

nonparametric estimates of the tail expectations are given by:

Et−1(εs,t | εs,t < k) =

∑T
t=1K(

k−εs,t
h )εs,t∑T

t=1K
(
k−εm,t

h

) (52)

Et−1 (ξi,t | εs,t < k) =

∑T
t=1K

(
k−εs,t
h

)
ξi,t∑T

t=1K(
k−εs,t
h )

(53)

where k = V aRi,t(α)/σs,t, and

Kt(h) =

ˆ t
h

∞
k(u)du (54)

where k(u) is a kernel function and h a positive bandwith. Following ..., we �x the bandwith at

T−1/5 and choose the standard normal probability function as a kernel function, i.e., k(u) = φ (u) .Using

the GARCH-DCC model desribed above to determine the conditional variance and correlation we can

arrive at a an expression for the MES as follows:

MESi,t = σi,tρi,tEt−1 (εs,t | εs,t < k) + σit
√

1− ρ2Et−1(ξit | εs,t < k) (55)

B Estimating SRISK using the multivariate GARCH-DCCmodel

and dynamic conditional betas

SRISK is estimated without simulation in 4 steps. The �rst of these models the bivariate distribution

of individual institution and market returns as for the MES systemic risk measure. In particular, a

GJR-GARCH-DCC(1,1) (asymmetric) model is speci�ed, where individual returns are assumed to have

a skewed standard t-distribution, and the joint distribution of returns is assumed to be a multivariate

t-distribution11.

11That is, a simple parametric approach, as opposed to a copula or extreme-value theory approach, is employed in
this paper.
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The variance-covariance matrix that results from the �rst step is used to estimate a time-varying

beta (dynamic conditional betas). A nested DCB model is then estimated (56), whose consistency is

guaranteed by the consistency of the initial step's estimation procedure, allowing the data to choose

between a constant and time-varying beta coe�cient.

Ri,t = (θ1 + θ2βi,t)Rm,t +
√
hi,tεi,t (56)

This estimated beta is then used to calculate the LRMES by the formula presented on the New

York University Stern School of Business's Volatility Institute website, LRMESi,t = 1− exp(log(1−
P (crisis)) ∗ β̃i,t). This formula re�ects the 6-month joint distribution of an individual institution's

returns and that of the market, conditional on a severe negative shock to the market (crisis). The

�nal step calculates SRISK according to equation (23).
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