The impact of machine learning and big data on credit markets

Staff working papers set out research in progress by our staff, with the aim of encouraging comments and debate.
Published on 09 July 2021

Staff Working Paper No. 930

By Peter Eccles, Paul Grout, Paolo Siciliani and Anna (Ania) Zalewska

There is evidence that machine learning (ML) can improve the screening of risky borrowers, but the empirical literature gives diverse answers as to the impact of ML on credit markets. We provide a model in which traditional banks compete with fintech (innovative) banks that screen borrowers using ML technology and show that the impact of the adoption of the ML technology on credit markets depends on the characteristics of the market (eg borrower mix, cost of innovation, the intensity of competition, precision of the innovative technology, etc.). We provide a series of scenarios. For example, we show that if implementing ML technology is relatively expensive and lower-risk borrowers are a significant proportion of all risky borrowers, then all risky borrowers will be worse off following the introduction of ML, even when the lower-risk borrowers can be separated perfectly from others. At the other extreme, we show that if costs of implementing ML are low and there are few lower-risk borrowers, then lower-risk borrowers gain from the introduction of ML, at the expense of higher-risk and safe borrowers. Implications for policy, including the potential for tension between micro and macroprudential policies, are explored.

The impact of machine learning and big data on credit markets

Give your feedback

Was this page useful?
Yes
No
Add your details...